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CORRELATION DECAY AND PARTITION FUNCTION ZEROS:
ALGORITHMS AND PHASE TRANSITIONS\ast 

JINGCHENG LIU\dagger , ALISTAIR SINCLAIR\ddagger , AND PIYUSH SRIVASTAVA\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We explore connections between the phenomenon of correlation decay (more precisely,
strong spatial mixing) and the location of Lee--Yang and Fisher zeros for various spin systems.
In particular we show that, in many instances, proofs showing that weak spatial mixing on the
Bethe lattice (infinite \Delta -regular tree) implies that strong spatial mixing on all graphs of maximum
degree \Delta can be lifted to the complex plane, establishing the absence of zeros of the associated
partition function in a complex neighborhood of the region in parameter space corresponding to
strong spatial mixing. This allows us to give unified proofs of several recent results of this kind,
including the resolution by Peters and Regts of the Sokal conjecture for the partition function of
the hard-core lattice gas. It also allows us to prove new results on the location of Lee--Yang zeros
of the antiferromagnetic Ising model. We show further that our methods extend to the case when
weak spatial mixing on the Bethe lattice is not known to be equivalent to strong spatial mixing on
all graphs. In particular, we show that results on strong spatial mixing in the antiferromagnetic
Potts model can be lifted to the complex plane to give new zero-freeness results for the associated
partition function, significantly sharpening previous results of Sokal and others. This new extension
is also of independent algorithmic interest: it allows us to give the first polynomial time deterministic
approximation algorithm (a fully polynomial time approximation scheme (FPTAS)) for counting the
number of q-colorings of a graph of maximum degree \Delta provided only that q \geq 2\Delta , a question that
has been studied intensively. This matches the natural bound for randomized algorithms obtained
by a straightforward application of Markov chain Monte Carlo. In the case when the graph is also
triangle-free, we show that our algorithm applies under the weaker condition q \geq \alpha \Delta + \beta , where
\alpha \approx 1.764 and \beta = \beta (\alpha ) are absolute constants.
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1. Introduction.

1.1. Background and related work. A standard approach to formalizing
phase transitions in spin systems proceeds by characterizing when long-range cor-
relations between spins appear in the system. More formally, one starts with an
infinite graph, such as the Bethe lattice (infinite \Delta -regular tree) or \BbbZ 

d, and then
characterizes the regions in the space of parameters of the model in which, under the
associated Gibbs distribution that assigns probabilities to configurations, correlations
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between spins decay exponentially with the distance between them. This correlation
decay property is also known as ``spatial mixing."" This formalism can be extended to
infinite families of finite graphs and has also been studied extensively due to its con-
nections with the computational complexity of Markov chain Monte Carlo methods
for sampling from the associated Gibbs distributions.

A related but different approach to studying phase transitions is via the so-called
Yang--Lee theory [62]. Here, one views the infinite graph as a suitable limit of a
sequence of finite graphs of growing size and studies the convergence of the free energy
density (the logarithm of the partition function divided by the number of vertices)
over this sequence. Yang and Lee showed that, under mild conditions, this limit exists
and is analytic on a given subset S of the parameter space of the system, provided
that none of the partition functions of the graphs appearing in the sequence have any
roots in a complex neighborhood of S, uniformly over the graphs in the sequence.
This classical approach has also recently found new algorithmic applications inspired
by the work of Barvinok [2].

Classical work of Dobrushin and Shlosman [11, 12] establishes an equivalence
between a strong version of spatial mixing (called ``strong spatial mixing""1) and the
Yang--Lee formalism of phase transitions in the special case of lattices \BbbZ d. However,
their approach makes essential use of the amenability of the lattice (in the form that
the size of a neighborhood of radius r grows only as a polynomial in r), and does
not extend to non-amenable graph families. Until recently, few formal connections
between them were known for the setting of general graphs. Sokal [57] conjectured
that, for the hard-core lattice gas model, there is a complex neighborhood \scrN of the
interval (0, \lambda c(\Delta )), where \lambda c(\Delta ) is the critical activity of the model on the infinite
regular tree (Bethe lattice) of degree \Delta , such that the partition function of any finite
graph of degree at most \Delta does not vanish in \scrN . This conjecture was only recently
resolved by Peters and Regts [47]. More recently, this correspondence between the
two notions of phase transition for general bounded-degree graphs has been extended
to the Ising model [40, 48, 51].

In this paper, we further explore this correspondence with a view to establishing
it in more generality. Our first results show that previous arguments establishing an
equivalence between weak spatial mixing on the infinite \Delta -regular tree and strong
spatial mixing of the Gibbs measure on all graphs of maximum degree \Delta can be
``lifted"" to the complex plane in such a way as to also prove that the partition functions
of all such graphs remain zero-free in a uniform complex neighborhood of the real
parameter interval in which strong spatial mixing holds. This gives new and simpler
proofs of Peters and Regts' resolution of the Sokal conjecture [47] described above, and
of the results of the present authors on the Fisher zeros of the zero-field ferromagnetic
Ising model [40]. In addition, our method allows us to prove new results on the
Lee--Yang zeros of the antiferromagnetic Ising model, which we now describe.

Formally, the partition function of the Ising model on a graph G = (V,E) can be
written in terms of an edge activity (nearest-neighbor interaction) \beta > 0 and a vertex

1``(Weak) spatial mixing"" simply refers to the decay of correlations property; ``strong spatial
mixing"" is said to hold when correlations between spins decay with distance even in the presence
of fixed spins (boundary conditions) close to the spins being measured. Strong spatial mixing is
a crucial ingredient in the design of efficient algorithms, including Markov chain Monte Carlo and
algorithms based on the self-avoiding walk tree.

D
o
w

n
lo

ad
ed

 1
0
/1

6
/2

3
 t

o
 1

3
6
.1

5
2
.2

0
9
.6

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FOCS19-202 J. LIU, A. SINCLAIR, AND P. SRIVASTAVA

activity (external field) \lambda > 0 as follows:

(1) ZG(\beta , \lambda ) :=
\sum 

\sigma :V\rightarrow \{ +, - \} 

\beta d(\sigma )\lambda p(\sigma ),

where \sigma ranges over assignments of spins \{ +, - \} to vertices, d(\sigma ) is the number of
edges \{ u, v\} for which \sigma (u) \not = \sigma (v), and p(\sigma ) is the number of vertices for which
\sigma (v) = +. As usual, the partition function implicitly defines the Gibbs distribution
on configurations \sigma according to their weights in (1). When \beta < 1 the model is
ferromagnetic and assigns larger weight to configurations with more aligned neigh-
boring spins; conversely, when \beta > 1 the model is antiferromagnetic. For the infinite
\Delta -regular tree, it is known that weak spatial mixing holds when \beta \in (1, \Delta 

\Delta  - 2 ) for all

\lambda > 0, while for \beta > \Delta 
\Delta  - 2 there exists a \lambda c(\beta ,\Delta ) > 0 such that weak spatial mixing

holds if | log \lambda | > log \lambda c(\beta ,\Delta ) [24, p. 255]; see also the remarks following Theorems 1
and 3 of [53]. We show that, in a complex neighborhood of this weak spatial mixing
region, the model has no zeros in the parameter2 \lambda .

Theorem 1.1. Fix \Delta \geq 3 and let \beta > 1 and \lambda > 0 be such that weak spatial
mixing for the antiferromagnetic Ising model with edge activity \beta and vertex activity \lambda 
holds on the infinite \Delta -regular tree. Then there exists r\beta ,\lambda ,\Delta > 0 such that ZG(\beta , \lambda 

\prime ) \not =
0 for any \lambda \prime \in \BbbC satisfying | \lambda  - \lambda \prime | \leq r\beta ,\lambda ,\Delta .

Remark 1. Note that the width r\beta ,\lambda ,\Delta of the region depends on \beta and \lambda , and
indeed tends to zero as the parameters approach their critical values. For any fixed
compact subset of values of (\beta , \lambda ) within the regime of weak spatial mixing, we get a
fixed width r for the region.

Our second main result goes beyond the setting where a translation from weak
spatial mixing on the infinite tree to strong spatial mixing on general graphs is known,
and considers the antiferromagnetic Potts model. Even in this more general setting,
we show that currently known arguments for proving strong spatial mixing for the
model can be ``lifted"" to the complex plane to prove new zero-freeness results for the
Potts model partition function. We now formally describe these results.

The partition function of the antiferromagnetic Potts model (at zero field) of a
graph G = (V,E) with a fixed number q of spins (which we often refer to as ``colors"")
can be written as

(2) ZG(q;w) :=
\sum 

\sigma :V\rightarrow [q]

wm(\sigma ).

Here \sigma ranges over arbitrary assignments of spins (colors) to vertices, and m(\sigma ) is the
number of monochromatic edges, i.e., edges \{ u, v\} for which \sigma (u) = \sigma (v). Note that
the number of proper q-colorings of G (i.e., those with no monochromatic edges) is
just ZG(q; 0). The partition function again defines the Gibbs distribution on color-
ings \sigma of G, according to their weights in (2). We will often drop q from the notation,
since it will be clear from the context, and write ZG(q;w) simply as ZG(w).

Theorem 1.2. Fix a positive integer \Delta . Then there exists a \tau \Delta > 0 such that the
following is true. Let \scrD \Delta be a simply connected region in the complex plane obtained
as the union of disks of radius \tau \Delta centered at all points on the segment [0, 1]. For any

2Since ZG(\beta , \lambda ) is a bivariate polynomial, one can investigate phase transitions in terms of
either \beta or \lambda . Complex zeros of ZG as a function of \lambda are known as Lee--Yang zeros, while zeros of
ZG as a function of \beta are known as Fisher zeros.
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graph G of maximum degree at most \Delta \geq 3 and integer q \geq 2\Delta , we have ZG(q;w) \not = 0
when w \in \scrD \Delta .

Remark 2. The condition q \geq 2\Delta , as discussed in more detail below, corresponds
to the Dobrushin uniqueness condition and the ``path coupling"" method for analyzing
Gibbs samplers. The previous best result in this direction is due to Bencs et al. [6]
and requires q \geq e\Delta + 1, which is much stronger than the Dobrushin bound.

As discussed later in section 1.3, our technique is also capable of directly har-
nessing tighter strong spatial mixing arguments used in the analysis of Markov chains
for special classes of graphs. As an example, we can exploit such an argument of
Gamarnik, Katz, and Misra [22] to improve the bound on q in Theorem 1.2 when the
graph is triangle-free, for all but small values of \Delta .

Theorem 1.3. Let \alpha  \star \approx 1.7633 be the unique positive solution of the equation
xe - 1/x = 1. For every \alpha > \alpha  \star , there exists a \beta = \beta (\alpha ) such that for any integer
\Delta \geq 3, there exists a \tau \Delta > 0 for which the following is true. Let \scrD \Delta be a simply
connected region in the complex plane obtained as the union of disks of radius \tau \Delta 
centered at all points on the segment [0, 1]. For any triangle-free graph G of maximum
degree at most \Delta and integer q \geq \alpha \Delta + \beta , we have ZG(q;w) \not = 0 when w \in \scrD \Delta .

Finally, for the special case of trees, the argument leading to the above theorems
also leads to the following improved bound.

Proposition 1.4. Fix an integer \Delta \geq 3, and let q \geq \Delta + 1. Then, there exists
a \tau \Delta > 0 for which the following is true. Let \scrD \Delta be a simply connected region in the
complex plane obtained as the union of disks of radius \tau \Delta centered at all points on the
segment [0, 1]. Then, for every tree T of maximum degree \Delta , we have ZT (q;w) \not = 0
when w \in \scrD \Delta .

We note that one can directly analyze the roots of the partition function of the
Potts model on a tree, and they all lie at the points 0 and 1  - q. Nevertheless,
we include the above observation since the bound q \geq \Delta + 1 matches the optimal
number of colors in the classical result of Jonasson [35] showing weak spatial mixing,
and while proving strong spatial mixing for q \geq \Delta + 1 remains an important open
problem, we find it interesting that one can obtain the above bound for the related
property of zero-freeness using an argument that is based on spatial mixing. Further,
the argument leading to Proposition 1.4 appears to be robust, and we expect that it
may extend to more general settings (e.g., that of list colorings discussed later in this
section).

For ease of later reference, we record the above three results in the following.

Theorem 1.5. Fix an integer \Delta \geq 3. Then there exists a \tau \Delta > 0 such that for
the simply connected region \scrD \Delta in the complex plane obtained as the union of disks
of radius \tau \Delta centered at all points on the segment [0, 1], the following is true. For any
graph G of maximum degree \Delta and integer q satisfying the hypotheses of Theorem 1.2,
Theorem 1.3, or Proposition 1.4, ZG(q;w) \not = 0 when w \in \scrD \Delta .

Remark 3. Our proof of the above theorem actually holds under an abstract con-
dition on coloring instances that we call admissibility (see Definition 4.3). We show in
section 4 that the instances covered in Theorems 1.2 and 1.3 and Proposition 1.4 are all
admissible. Proving admissibility for any larger class of instances would immediately
extend Theorem 1.5 to such a class.

There has been extensive previous work on the complex zeros of the antiferro-
magnetic Potts model, which we now briefly summarize. Sokal [56, 58] proved (in the
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language of the Tutte polynomial) that the partition function has no zeros in the en-
tire unit disk centered at w = 0, under the strong condition q \geq 7.964\Delta ; the constant
was later improved to 6.907 by Fern\'andez and Procacci [16] (see also [32]). The results
in these papers, since they are in terms of the Tutte polynomial, in fact extend to
complex values of q---a setting which is not accessible in the Potts model formulation
we use---and hence are not directly comparable to our result. However, for the most
natural case of positive integer q, our result significantly improves upon them. Much
more recently, the work of Bencs et al. [6] referred to above gave a zero-free region
analogous to that in Theorem 1.2 above, but under the stronger condition q \geq e\Delta +1.
We note also that Barvinok and Sober\'on [4] (see also [2] for an improved version)
established a zero-free region in a disk centered at w = 1 of radius significantly less
than 1.

1.2. Algorithmic implications for the problem of counting colorings.
The above theorems also allow us to make progress on a long-standing open problem
in theoretical computer science: that of approximately counting proper colorings of
a bounded degree graph using a deterministic algorithm. The problem of counting
colorings is a benchmark problem in the theory of approximate counting, due both
to its importance in combinatorics and statistical physics and to the fact that it has
repeatedly challenged existing algorithmic techniques and stimulated the development
of new ones. Below, we briefly summarize its history and current status.

Given a finite graph G = (V,E) of maximum degree \Delta , and a positive integer q,
the goal is to count the number of (proper) vertex colorings of G with q colors. It is
well known [7] that a greedy coloring exists if q \geq \Delta +1. While counting colorings ex-
actly is \#P-complete, a long-standing conjecture asserts that approximately counting
colorings is possible in polynomial time provided q \geq \Delta + 1. It is known that when
q < \Delta , even approximate counting is NP-hard [20].

This question has led to numerous algorithmic developments over the past 25
years. The first approach was via Markov chain Monte Carlo (MCMC), based on
the fact that approximate counting can be reduced to sampling a coloring (almost)
uniformly at random. Sampling can be achieved by simulating a natural local Markov
chain (or Glauber dynamics) that randomly flips colors on vertices: provided the chain
is rapidly mixing, this leads to an efficient algorithm (a fully polynomial randomized
approximation scheme, or FPRAS ).

Jerrum's 1995 result [34] that the Glauber dynamics is rapidly mixing for q \geq 2\Delta 
gave the first non-trivial randomized approximation algorithm for colorings and led
to a plethora of follow-up work on MCMC (see, e.g., [13, 14, 17, 26, 28, 29, 30, 45, 59]
and [18] for a survey), focusing on reducing the constant 2 in front of \Delta . The best
constant known for general graphs remains essentially 11

6 , obtained by Vigoda [59]
using a more sophisticated Markov chain, though this was recently reduced to 11

6  - \varepsilon 
for a very small \varepsilon by Chen et al. [9]. The constant can be substantially improved if
additional restrictions are placed on the graph; e.g., Dyer et al. [14] achieve roughly
q \geq 1.49\Delta provided the girth is at least 6 and the degree is a large enough constant,
while Hayes and Vigoda improve this to q \geq (1+ \varepsilon )\Delta for girth at least 11 and degree
\Delta = \Omega (log n), where n is the number of vertices.

A significant recent development in approximate counting is the emergence of
deterministic approximation algorithms that in some cases match, or even improve
upon, the best known MCMC algorithms.3 Interestingly, these algorithms have made
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use of one of two main techniques, both of which are inspired by the two different
notions of phase transitions in statistical physics described above. The first, based
on decay of correlations, exploits the decreasing influence of the spins (colors) on
distant vertices on the spin at a given vertex; while the second, based on polynomial
interpolation, uses the absence of zeros of the partition function in a suitable region
of the complex plane to perform a form of algorithmic analytic continuation. Early
examples of the decay of correlations approach include [1, 5, 61], while for early
examples of the polynomial interpolation method we refer the reader to the monograph
of Barvinok [2] (see also [3, 15, 27, 31, 33, 41, 46] for more recent examples).

Unfortunately, however, in the case of colorings on general bounded degree graphs,
these techniques have so far lagged well behind the MCMC algorithms mentioned
above. One obstacle to getting correlation decay to work is the lack of a higher-
dimensional analogue of Weitz's beautiful algorithmic framework [61], which allows
correlation decay to be fully exploited via strong spatial mixing in the case of spin
systems with just two spins (as opposed to the q \geq 3 colors present in coloring). For
polynomial interpolation, the obstacle has been a lack of precise information about
the location of the zeros of associated partition functions.

So far, the best algorithmic condition for colorings obtained via correlation decay
is q \geq 2.58\Delta +1, due to Lu and Yin [43], and this remains the best available condition
for any deterministic algorithm. This improved on an earlier bound of roughly q \geq 
2.78\Delta (proved only for triangle-free graphs), due to Gamarnik and Katz [21]. For the
special case \Delta = 3, Lu et al. [42] give a correlation decay algorithm for counting 4-
colorings. Furthermore, Gamarnik, Katz, and Misra [22] establish the related property
of ``strong spatial mixing"" under the weaker condition q \geq \alpha \Delta + \beta for any constant
\alpha > \alpha  \star , where \alpha  \star \approx 1.7633 is the unique solution to xe - 1/x = 1 and \beta is a constant
depending on \alpha , and under the assumption that G is triangle-free (see also [23, 26]
for similar results on restricted classes of graphs). However, as discussed in [22], this
strong spatial mixing result unfortunately does not lead to a deterministic algorithm.4

The newer technique of polynomial interpolation, pioneered by Barvinok [2], has
also recently been brought to bear on counting colorings. In a recent paper, Bencs
et al. [6] use this technique to derive a fully polynomial time approximation scheme
(FPTAS) for counting colorings provided q \geq e\Delta + 1. Although this result is weaker
than those obtained via correlation deay, it is of independent interest because it uses
a different algorithmic approach, and because it establishes a new zero-free region for
the associated partition function in the complex plane (see below).

In this paper, we push the polynomial interpolation method further and obtain
an FPTAS for counting colorings under the condition q \geq 2\Delta .

Theorem 1.6. Fix positive integers q and \Delta such that q \geq 2\Delta . Then there exists
an FPTAS for counting q-colorings in any graph of maximum degree \Delta .

This is the first deterministic algorithm (of any kind) that for all \Delta matches the
``natural"" bound for MCMC, first obtained by Jerrum [34]. Indeed, q \geq 2\Delta remains

3In this case, the notion of an FPRAS is replaced by that of a fully polynomial time approximation
scheme, or FPTAS. An FPTAS for q-colorings of graphs of maximum degree at most \Delta is an algorithm
that, given as input the graph G and an error parameter \varepsilon \in (0, 1), produces a (1 \pm \varepsilon )-factor
multiplicative approximation of the number of q-colorings of G in time poly (| G| , 1/\varepsilon ). (The degree
of the polynomial is allowed to depend upon the constants q and \Delta .)

4The strong spatial mixing condition does imply fast mixing of the Glauber dynamics, and hence
an FPRAS, but only when the graph family being considered is ``amenable,"" i.e., if the size of the
\ell -neighborhood of any vertex does not grow exponentially with \ell . This restriction is satisfied by
regular lattices, but fails, e.g., for random regular graphs.
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the best bound known for rapid mixing of the basic Glauber dynamics that does not
require either additional assumptions on the graph or a spectral comparison with
another Markov chain: all the improvements mentioned above require either lower
bounds on the girth and/or maximum degree, or (in the case of Vigoda's result [59])
analysis of a more sophisticated Markov chain. This is for good reason, since the
bound q \geq 2\Delta coincides with the closely related Dobrushin uniqueness condition
from statistical physics [49], which in turn is closely related [60] to the path coupling
method of Bubley and Dyer [8] that provides the simplest currently known proof of
the q \geq 2\Delta bound for the Glauber dynamics.

We therefore view our result also as a promising starting point for deterministic
coloring algorithms to finally compete with their randomized counterparts. As pointed
out above, our technique is capable of harnessing strong spatial mixing arguments
used in the analysis of Markov chains for certain classes of graphs in order to relax
the requirements on q. In particular, for the same reason as in Theorem 1.3 above, we
can exploit such an argument of Gamarnik, Katz, and Misra [22] to improve the bound
on q in Theorem 1.6 when the graph is triangle-free, for all but small values of \Delta .
(Recall that \alpha  \star \approx 1.7633 is the unique positive solution of the equation xe - 1/x = 1.)

Theorem 1.7. For every \alpha > \alpha  \star , there exists a \beta = \beta (\alpha ) such that the following
is true. For all integers q and \Delta such that q \geq \alpha \Delta + \beta , there exists an FPTAS for
counting q-colorings in any triangle-free graph of maximum degree \Delta .

We mention also that our technique applies without further effort to the more
general setting of list colorings, where each vertex has a list of allowed colors of size q,
under the same conditions as above on q. Indeed, our proofs are written to handle
this more general situation.

We now describe in more detail the connection between our results on the zeros
of the Potts model and the above algorithmic results.

1.2.1. Our approach. Recall that the polynomial ZG(w) in eq. (2), being the
partition function of the Potts model, implicitly defines a probability distribution on
colorings \sigma according to their weights in eq. (2). The parameter w measures the
strength of nearest-neighbor interactions. The value w = 1 corresponds to the trivial
setting where there is no constraint on the colors of neighboring vertices, while w = 0
imposes the hard constraint that no neighboring vertices receive the same color. For
intermediate values w \in (0, 1), neighbors with the same color are penalized by a factor
of w. We establish Theorems 1.6 and 1.7 as special cases of the following more general
theorem.

Theorem 1.8. Suppose that the hypotheses of either Theorem 1.6 or Theorem 1.7
are satisfied, and fix w \in [0, 1]. Then there exists an FPTAS for the partition function
ZG(w).

Note that Theorems 1.6 and 1.7 follow immediately as the special case w = 0 of
Theorem 1.8; however, the extension to other values of w is of independent interest
as the computation of partition functions is a very active area of study in statistical
physics and combinatorics.

Theorem 1.8 is obtained from our main result, Theorem 1.5, by appealing to a
recent algorithmic paradigm of Barvinok [2]. The paradigm (see Lemma 2.2.3 of [2])
states that, for a partition function Z of degree m, if one can identify a simply con-
nected, zero-free region \scrD for Z in the complex plane that contains a \tau -neighborhood
of the interval [0, 1], and a point in that interval where the evaluation of Z is easy (in
our setting this is the point w = 1), then using the first O

\bigl( 
e\Theta (1/\tau ) log (m/\varepsilon )

\bigr) 
coeffi-
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cients of Z one can obtain a 1\pm \varepsilon multiplicative approximation of Z(x) at any point
x \in \scrD . Barvinok's framework is based on exploiting the fact that the zero-freeness of
Z in \scrD is equivalent to logZ being analytic in \scrD , and then using a carefully chosen
transformation to deform \scrD into a disk (with the easy point at the center) in order
to obtain a convergent Taylor expansion. The coefficients of Z are used to compute
the coefficients of this Taylor expansion.

Barvinok's framework in general leads to a quasi-polynomial time algorithm, be-
cause the computation of the O

\bigl( 
e\Theta (1/\tau ) log (m/\varepsilon )

\bigr) 
terms of the expansion may take

time O
\bigl( 
(m/\varepsilon )

e\Theta (1/\tau ) logm\bigr) 
(which is only quasi-polynomial inm) for the partition func-

tions considered here. However, additional insights provided by Patel and Regts [46]
(see, e.g., the proof of Theorem 6.2 in [46]) show how to reduce this computation time

to O
\bigl( 
(m/\varepsilon )

e\Theta (1/\tau ) log\Delta \bigr) 
for many models on graphs of degree at most \Delta , including

the Potts model with a bounded number of colors q at each vertex. Hence we obtain
an FPTAS. This (by now standard) reduction is the same path as that followed by
Bencs et al. [6, Corollary 1.2]; for completeness, we sketch some of the details in sec-
tion 3.3. We note that, for each fixed \Delta and q, the running time of our final algorithm
is polynomial in n (the size of G) and \varepsilon  - 1, as required for an FPTAS. However, as
is typical of deterministic algorithms for approximate counting, the exponent in the
polynomial depends on \Delta (through the quantity \tau \Delta in Theorem 1.5, which in the case
where all lists are subsets of [q] is inverse polynomial in q).

We conclude this introduction by sketching our approach to proving the zero-
freeness results, which constitute the main technical contribution of the paper.

1.3. Technical overview. We start with an outline of the proofs of our results
for two-spin systems, including Theorem 1.1 and our simplified proofs of previous zero-
freeness results. A standard observation in the area is that proving ZG(\beta , \lambda ) \not = 0 is
equivalent to showing that the occupation ratio Rv,G(\beta , \lambda ) at a fixed vertex v, defined
as the ratio of the sum of those terms in the partition function where the vertex v
has spin + to the sum of those terms in the partition function where the vertex v
has spin  - , is not equal to  - 1. In order to analyze this quantity, another standard
step is to use an observation of Weitz [61],5 which allows one to transfer the question
from general graphs to trees. More precisely, for any fixed vertex v in the graph G,
Weitz's theorem constructs a finite tree T = Tv,G (with carefully chosen boundary
conditions at the leaves), of maximum degree at most the maximum degree of G, such
that if \rho is the root of T , then R\rho ,T (\beta , \lambda ) = Rv,G(\beta , \lambda ) for all positive real \beta , \lambda . On a
tree, one can easily write down a recurrence for the occupation ratio, and the problem
then reduces to proving that, with initial conditions corresponding to the boundary
conditions of T , the recurrence never reaches  - 1.

The convergence properties of such recurrences have been analyzed before, in the
context of proving that weak spatial mixing (or uniqueness of the Gibbs measure) on
the infinite \Delta -regular tree implies strong spatial mixing on all graphs of maximum
degree \Delta , for the hard-core model [37, 52, 61] and the Ising model with and without
field [53, 63]. These analyses, which are restricted to positive, real values of the
parameters, often take the form of showing that the recurrence for an appropriate
function \phi (R) of the occupation ratio is a uniform contraction. Our main contribution
is to show that the arguments in the above references are in fact robust enough that
one can extend them to a complex neighborhood (independent of the size of the graph)

5The ideas behind Weitz's reduction first appeared in the work of Godsil [25], and also later in
the work of Scott and Sokal [50].
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of the real intervals on which they hold. Thus the behavior of the recurrence in this
neighborhood remains close to what one sees for positive real parameters, and in
particular the value of the occupation ratio remains away from  - 1, thus establishing
zero-freeness.

The situation is more complicated for the case of the Potts model (where the
number of spins is more than two), since neither the translation to trees, nor the tight
recurrence analyses for tree recurrences, is known. The starting point for our proof
of Theorem 1.5 is a simple geometric observation, versions of which have been used
before for constructing inductive proofs of zero-freeness of partition functions (see,
e.g., [2, 6]). Fix a vertex v in the graph G. Given w \in \BbbC and a color k \in [q], let

Z
(k)
v (w) denote the restricted partition function in which one sums only over those

colorings \sigma in which \sigma (v) = k. Then, since ZG(w) =
\sum 

k\in [q] Z
(k)
v (w), the zero-freeness

of ZG will follow if the angles between the complex numbers Z
(k)
v (w), viewed as vectors

in \BbbR 
2, are all small, and provided that at least one of the Z

(k)
v is nonzero. (In fact,

this condition on angles can be relaxed for those Z
(k)
v (w) that are sufficiently small in

magnitude, and this flexibility will be important for us when w is a complex number
close to 0.) Therefore, one is naturally led to consider the so-called marginal ratios :

R
(i,j)
G,v (w) :=

Z
(i)
v (w)

Z
(j)
v (w)

.

(In the q-coloring problem, this ratio is 1 by symmetry. However, in our recursive
approach we have to handle the more general list-coloring problem, in which the ratio

becomes non-trivial.) We then require that, for any two colors i, j for which Z
(k)
v (w)

is large enough in magnitude, the ratio R
(i,j)
G,v (w) is a complex number with small

argument. This is what we prove inductively in sections 5 and 6.
The broad contours of our approach as outlined so far are quite similar to some

recent work [2, 6]. However, it is at the crucial step of how the marginal ratios are an-
alyzed that we depart from these previous results. Instead of attacking the restricted
partition functions or the marginal ratios directly for given w \in \BbbC , as in these previ-
ous works, we crucially exploit the fact that for any real \~w \in [0, 1] close to the given
w, these quantities have natural probabilistic interpretations, and hence can be much
better understood via probabilistic and combinatorial methods. For instance, when

\~w \in [0, 1], the marginal ratio R
(i,j)
G,v (w) is in fact a ratio of the marginal probabilities

PrG, \~w [\sigma (v) = i] and PrG, \~w [\sigma (v) = j], under the natural probability distribution on
colorings \sigma . In fact, our analysis cleanly breaks into two separate parts:

1. First, understand the behavior of true marginal probabilities of the form
PrG, \~w [\sigma (v) = i] for real \~w \in [0, 1]. This is carried out in section 4.

2. Second, argue that, for complex w \approx \~w, the ratios R
(i,j)
G,v (w) remain well

behaved. This is carried out separately for the two cases when w is close to
0 (in section 5) and when w is bounded away from 0 but still in the vicinity
of [0, 1] (in section 6).

A key technical point in our analysis is the notion of ``niceness"" of vertices, which
stipulates that the marginal probability PrG, \~w [\sigma (v) = i] \leq 1

degG(v)+2 , where degG(v)

is the degree of v in G (see Definition 4.2). Note that this condition refers only to real
nonnegative \~w, and hence is amenable to analysis via standard combinatorial tools.
Indeed, our proofs that the conditions on q and \Delta in Theorems 1.6 and 1.7 imply
this niceness condition are similar to probabilistic arguments used by Gamarnik et
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al. [22] to establish strong spatial mixing (in the special case \~w = 0). We emphasize
that this is the only place in our analysis where the lower bounds on q are used. One
can therefore expect that combinatorial and probabilistic ideas used in the analysis
of strong spatial mixing and the Glauber dynamics with a smaller number of colors
in special classes of graphs can be combined with our analysis to obtain deterministic
algorithms for those settings; indeed, our Theorem 1.7 demonstrates this point for
triangle-free graphs, leveraging the strong spatial mixing argument of [22].

The above ideas are sufficient to understand the real-valued case (part 1 above).

For the complex case in part 2, we start from a recurrence for the marginal ratios R
(i,j)
G,v

that is a generalization (to the case w \not = 0) of a similar recurrence used by Gamarnik,
Katz, and Misra [22]; this recurrence is defined in Lemma 3.4. The inductive proofs in
sections 5 and 6 use this recurrence to show that, if \~w \in [0, 1] is close to w \in \BbbC , then

all the relevant R
(i,j)
G,v (w) remain close to R

(i,j)
G,v ( \~w) throughout. The actual induction,

especially in the case when w is close to 0, requires a delicate choice of induction
hypotheses (see Lemmas 5.2 and 6.3). The key technical idea is to use the ``niceness""
property of vertices established in part 1 to argue that the two recurrences (real and
complex) remain close at every step of the induction. This in turn depends upon a
careful application of the mean value theorem, separately to the real and imaginary
parts (see Lemma 3.5), of a function f\kappa that arises naturally in the analysis of the
recurrence (see Lemma 3.6).

1.3.1. Comparison with correlation decay based algorithms. We con-
clude this overview with a brief discussion of how we are able to obtain a better
bound on the number of colors than in correlation decay algorithms, such as those
in [21, 43] cited earlier. In these algorithms, one first uses recurrences similar to
the one mentioned above to compute the marginal probabilities, and then appeals
to self-reducibility to compute the partition function. Of course, expanding the full
tree of computations generated by the recurrence will in general give an exponential
time (but exact) algorithm. The core of the analysis of these algorithms is to exploit
the correlation decay property to show that, even if this tree of computations is only
expanded to depth about O(log(n/\varepsilon )), and the recurrence at that point is initialized
with arbitrary values, the computation still converges to an \varepsilon -approximation of the
true value. However, the requirement that the analysis be able to deal with arbitrary
initializations implies that one cannot directly use properties of the actual probability
distribution (e.g., the ``niceness"" property alluded to above); indeed, this issue is also
pointed out by Gamarnik, Katz, and Misra [22]. In contrast, our analysis does not
truncate the recurrence and thus only has to handle initializations that make sense in
the context of the graph being considered. Moreover, the exponential size of the recur-
sion tree is no longer a barrier for us since, in contrast to correlation decay algorithms,
we are using the tree only as a tool to establish zero-freeness; the algorithm itself fol-
lows from Barvinok's polynomial interpolation paradigm. Our approach suggests that
this paradigm can be viewed as a method for using (complex-valued generalizations
of) strong spatial mixing results to obtain deterministic approximation algorithms.

2. Correlation decay implies absence of zeros. In this section, we present
a sequence of results relating correlation decay and the absence of zeros for two-spin
systems.6 In addition to their intrinsic interest, these results will also serve as a
``warm-up"" to our results on the Potts model, which use similar methods in a more

6The results in this section were first reported in JL's Ph.D. thesis [38]. Subsequently, similar
results, in a slightly more general context, have independently been obtained by Shao and Sun [51].
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complex setting. We begin by re-proving the main result of [40] on the Fisher zeros of
the Ising model (without external field). While the proof in [40] also implicitly used
correlation decay, here we rewrite the argument as a special case of a more general
method for ``lifting"" already known correlation decay results for various models to the
complex plane. We go on to apply this generic method to prove new results on the
Lee--Yang zeros of the antiferromagnetic Ising model (with field), and to give a new,
simpler proof of the Sokal conjecture (first proved by Peters and Regts [47]) on the
zeros of the hard core partition function. The ideas developed here will be extended
to the Potts model in later sections of the paper.

2.1. Ising model. In this section we show that there are no Fisher zeros of the
Ising model in a complex neighborhood around the correlation decay interval of the
infinite \Delta -regular tree (Bethe lattice). This gives a different proof of the main result
of [40], making the role of the correlation decay arguments in the real domain more
explicit.

Recall from eq. (1) that, given a graph G, an edge activity \beta , and a vertex
activity \lambda , the Ising partition function is defined as ZG(\beta , \lambda ) =

\sum 

\sigma \beta 
d(\sigma )\lambda p(\sigma ), where

d(\sigma ) is the number of edges between different spins, and p(\sigma ) is the number of vertices
with spin +. Formally, we view this partition function as a polynomial in \beta for a fixed
\lambda , and we study the complex zeros in \beta ; these are known as Fisher zeros. In fact,
in this section we fix \lambda = 1, and hence we will simply write ZG(\beta ) := ZG(\beta , 1) for
the rest of the section. The correlation decay interval for the Ising model has been
well studied: the Gibbs distribution of the Ising model on any graph of maximum
degree \Delta exhibits decay of correlations when \beta lies in the interval (\Delta  - 2

\Delta , \Delta 
\Delta  - 2 ) [63],

which corresponds exactly to the correlation decay interval for the \Delta -regular tree [24].
The main result of this section will be Corollary 2.7, which says that there is a complex
neighborhood of the correlation decay interval in which there are no Fisher zeros for
the Ising model on any graph of maximum degree \Delta . This provides a formal link
between the ``decay of correlations"" and ``analyticity of free energy density"" views
of phase transitions. Further, as discussed in more detail in [40], this zero-freeness
result also implies the existence of efficient approximation algorithms for the partition
function ZG(\beta ) via Barvinok's paradigm discussed in section 3.3.

We recall some notation and definitions from [40]. Let G be any graph of
maximum degree \Delta . For any non-isolated vertex v of G, let Z+

G,v(\beta ) (respectively,

Z - 
G,v(\beta )) be the contribution to ZG(\beta ) from configurations with \sigma (v) = + (respec-

tively, \sigma (v) =  - ), so that ZG(\beta ) = Z+
G,v(\beta ) + Z - 

G,v(\beta ). We also define the ratios

RG,v(\beta ) :=
Z+

G,v(\beta )

Z - 
G,v(\beta )

. Note that Z+
G,v(\beta ) and Z - 

G,v(\beta ) can be seen as Ising partition

functions defined on the same graph G with the vertex v pinned to the appropri-
ate spin. Without loss of generality, we assume that every pinned vertex has degree
exactly one.7 We will prove, inductively on the number of unpinned vertices, that
neither Z+

G,v(\beta ) nor Z - 
G,v(\beta ) vanishes. Under this induction hypothesis, the condi-

tion ZG(\beta ) \not = 0 is clearly equivalent to RG,v(\beta ) \not =  - 1. As we will see, for \beta \in \BbbR ,
RG,v(\beta ) > 0. Thus it suffices to show that, for complex \beta sufficiently close to the
correlation decay interval on the real line, RG,v(\beta ) \approx RG,v(\Re \beta ).

As in [40], our development in this section is also based on the formal recur-
rences derived by Weitz [61] for computing ratios such as RG,v(\beta ) in two-state spin

7Suppose that a vertex v of degree k is pinned in a graph G, and consider the graph G\prime obtained
by replacing v with k copies of itself, each pinned to the same spin and connected to exactly one of
the original neighbors of v. Then ZG(\beta ) = ZG\prime (\beta ) for all \beta .
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systems. However, instead of following [40], where Weitz's reduction to the so-called
self-avoiding walk tree was used directly, we provide here a self-contained description
in a form that is a simplification of the more complicated recurrences for the Potts
model that we study in sections 3 and beyond.

We start with some notation and definitions. For a vertex u in a graph G, if u
has s+ neighbors pinned to spin +, and s - neighbors pinned to spin  - , then we say
that u has (s -  - s+) signed pinned neighbors.

Definition 2.1 (the graphs Gi). Given a graph G and an unpinned vertex u in
G, let v1, . . . , vk be the unpinned neighbors of u. We define Gi (the vertex u will be
understood from the context) to be the graph obtained from G as follows:

\bullet first, replace vertex u with u1, . . . , uk, and connect u1 to v1, u2 to v2, and so
on;

\bullet next, pin vertices u1, . . . , ui - 1 to spin +, and vertices ui+1, . . . , uk to spin  - ;
\bullet finally, remove vertex ui.

Note that the graph Gi has one fewer unpinned vertex than G. Moreover, the number
of unpinned neighbors of vi in Gi is at most \Delta  - 1.

Lemma 2.2. Let \omega be a formal variable. Given a graph G and an unpinned vertex
u, let k be the number of unpinned neighbors of u, and s be the number of signed pinned
neighbors of u. Defining h\omega (x) :=

\omega +x
\omega x+1 , we have

RG,u(\omega ) = \omega s
k\prod 

i=1

h\omega (RGi,vi
(\omega )) .

Remark 4. (i) Note that the above formal equalities become valid numerical
equalities when a numerical value \beta \in \BbbC is substituted for \omega , provided that (a)
\beta xi + 1 \not = 0 for any \bfitx appearing in the computation, and (b) Z - 

G,u(\beta ) \not = 0.
(ii) Moreover, since the number of unpinned neighbors of vi in Gi is at most \Delta  - 1,

the tree recurrence will be applied with k \leq \Delta  - 1 except possibly at the root, where
k may be \Delta .

Proof. Let v1, v2, . . . , vk be the unpinned neighbors of u, and let vk+1, . . . , vdegG(u)

be its pinned neighbors. For 0 \leq i \leq degG(u), let Hi be the graph obtained from G
as follows:

\bullet replace vertex u with u1, . . . , udegG(u), and connect u1 to v1, u2 to v2, and so
on;

\bullet pin vertices u1, . . . , ui to spin +, and vertices ui+1, . . . , udegG(u) to spin  - .
Note that Hi is the same as Gi, except that the last step of the construction of Gi is
skipped, i.e., the vertex ui is not removed, and, further, ui is pinned to spin +. We
can now write

RG,u(\omega ) =
Z+
G,u(\omega )

Z - 
G,u(\omega )

=
ZHdegG(u)

(\omega )

ZH0
(\omega )

=

degG(u)
\prod 

i=1

ZHi(\omega )

ZHi - 1
(\omega )

= \omega s \cdot 
k\prod 

i=1

ZHi(\omega )

ZHi - 1
(\omega )

,(3)

where k, s are the numbers of unpinned neighbors and signed pinned neighbors, re-
spectively, of u. We observe that

ZHi
(\omega ) = Z+

Gi,vi
+ \omega \cdot Z - 

Gi,vi
;

ZHi - 1
(\omega ) = \omega \cdot Z+

Gi,vi
+ Z - 

Gi,vi
.
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Substituting these expressions into eq. (3) gives

RG,u(\omega ) = \omega s \cdot 
k\prod 

i=1

Z+
Gi,vi

+ \omega \cdot Z - 
Gi,vi

\omega \cdot Z+
Gi,vi

+ Z - 
Gi,vi

= \omega s \cdot 
k\prod 

i=1

Z+
Gi,vi

Z - 
Gi,vi

+ \omega 

\omega \cdot Z+
Gi,vi

Z - 
Gi,vi

+ 1

= \omega s
k\prod 

i=1

h\omega (RGi,vi(\omega )) .

This completes the proof.

Lemma 2.2 leads to the following recurrence relation on the ratios:

(4) F\beta ,k,s(\bfitx ) := \beta s
k\prod 

i=1

h\beta (xi),

where as before h\beta (x) :=
\beta +x
\beta x+1 . As in several previous studies of this recurrence in the

literature (see, e.g., [40, 44, 63]), it is useful to reparameterize it in terms of logarithms
of likelihood ratios as follows. Let \varphi (x) := log x, and define

(5) F\varphi 
\beta ,k,s(\bfitx ) :=

\bigl( 
\varphi \circ F\beta ,k,s \circ \varphi  - 1

\bigr) 
(\bfitx ) = s log \beta +

k\sum 

i=1

log h\beta (e
xi).

One may then derive the correlation decay property in the form of a convenient
stepwise contraction [63]. The version here (and its proof, which we include for
completeness) is taken from [40].

Proposition 2.3. Fix a degree \Delta \geq 3 and integers k \geq 0 and s. If \Delta  - 2
\Delta < \beta <

\Delta 
\Delta  - 2 , then there exists \eta > 0 (depending upon \beta and \Delta ) such that \| \nabla F\varphi 

\beta ,k,s(\bfitx )\| 1 \leq 
k

\Delta  - 1 (1 - \eta ) for every \bfitx \in \BbbR 
k.

Proof. A direct calculation of the derivative gives

\| \nabla F\varphi 
\beta ,k,s(\bfitx )\| 1 =

k\sum 

i=1

\bigm| 
\bigm| 1 - \beta 2

\bigm| 
\bigm| 

\beta 2 + 1 + \beta (exi + e - xi)
.

Since ex + e - x \geq 2 for every real x, the right-hand side is at most k \times | 1 - \beta | 
1+\beta . The

condition on \beta implies that | 1 - \beta | 
1+\beta \leq 1 - \eta 

\Delta  - 1 for some fixed \eta > 0. Therefore, we have

\| \nabla F\varphi 
\beta ,k,s(\bfitx )\| 1 \leq k \times | 1 - \beta | 

1+\beta \leq k
\Delta  - 1 (1 - \eta ).

We recall a few further computations from [40]. First, we bound RG,u(\beta ) for
real-valued \beta . From (4), for any integers k \geq 0 and s and a positive real \beta , we have
\beta k+| s| \leq F\beta ,k,s(\bfitx ) \leq 1

\beta k+| s| when \beta \leq 1, and 1
\beta k+| s| \leq F\beta ,k,s(\bfitx ) \leq \beta k+| s| when \beta \geq 1,

for all \bfitx \in 
\bigl( 
\BbbR +\cup \{ 0,\infty \} 

\bigr) k
. Noting that k+ | s| \leq \Delta and taking the logarithm of these

bounds motivates the definition of the intervals I0(\beta ,\Delta ) as follows:

(6) I0 = I0(\beta ,\Delta ) := [ - \Delta | log \beta | ,\Delta | log \beta | ] .

Recalling Lemma 2.2, we see that the ratios RG,u(\beta ) can be obtained by recur-
sively applying the recurrence F\beta ,k,s(\bfitx ). Therefore, for \beta \in \BbbR +, any graph G, and
unpinned vertex u, we have logRG,u(\beta ) \in I0(\beta ,\Delta ). Our second point of departure
from the strategy followed in [40] is the following corollary of Proposition 2.3 in the
complex plane.
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Corollary 2.4. Fix a degree \Delta \geq 3 and integers k \geq 0 and s. If \Delta  - 2
\Delta < \beta <

\Delta 
\Delta  - 2 , then there exist positive constants \eta , \varepsilon , \delta (depending upon \beta and \Delta ) such that
the following is true. Let D := D(\beta ,\Delta ) be the closed and convex set of points within
distance \varepsilon of I0(\beta ,\Delta ) in \BbbC . Then \| \nabla F\varphi 

\beta ,k,s(\bfitx )\| 1 \leq (1  - \eta /2) for all k, s satisfying

k + | s| \leq \Delta  - 1 and every \bfitx \in Dk. Moreover, there is a finite constant M \geq 1
(depending upon \beta and \Delta ) such that

sup
\bfitx \in Dk, \beta \prime \in \BbbC :| \beta \prime  - \beta | <\delta 

\bigm| 
\bigm| 
\bigm| F

\varphi 
\beta ,k,s(\bfitx ) - F\varphi 

\beta \prime ,k,s(\bfitx )
\bigm| 
\bigm| 
\bigm| \leq M | \beta  - \beta \prime | ;(7)

sup
x,y:\varphi (x),\varphi (y)\in D

| \varphi (x) - \varphi (y)| \leq M | x - y| ;(8)

sup
x,y\in D

\bigm| 
\bigm| \varphi  - 1(x) - \varphi  - 1(y)

\bigm| 
\bigm| \leq M | x - y| ; and(9)

sup
\bfitx \in Dk

\| \nabla F\varphi 
\beta ,k,s(\bfitx )\| 1 \leq M when k + | s| = \Delta .(10)

Proof. Observe that \| \nabla F\varphi 
\beta ,k,s(\bfitx )\| 1 =

\sum k
i=1

| 1 - \beta 2| 
\beta 2+1+\beta (exi+e - xi )

is a continuous func-

tion in xi for every i. Since by Proposition 2.3 it is uniformly upper bounded by
k

\Delta  - 1 (1 - \eta ) for all \bfitx \in I0(\beta ,\Delta )
k
, for small enough \varepsilon the expression can be bounded by

k
\Delta  - 1 (1 - \eta /2) for all \bfitx \in Dk; this in turn is bounded by (1 - \eta /2) when k+ | s| \leq \Delta  - 1.

Finally, the existence of M follows from the analyticity of F\varphi 
\beta ,k,s on Dk, of \varphi  - 1

on D, and of \varphi on \varphi  - 1(D), respectively.

We will also need the following standard consequence of the mean value theorem
for complex functions (also used, e.g., in [40]).

Lemma 2.5. Let K(\bfitx ) be a holomorphic function on a convex subset D of \BbbC k.
For any \bfitx ,\bfitx \prime \in D, we have

| K(\bfitx ) - K(\bfitx \prime )| \leq sup
\bfitxi \in Dk

\| \nabla K(\bfitxi )\| 1 \cdot \| \bfitx  - \bfitx \prime \| \infty .

Proof. Consider g(t) := K (\bfitx + t(\bfitx \prime  - \bfitx )) for t \in [0, 1]. Since D is convex, \bfitx +
t(\bfitx \prime  - \bfitx ) lies in D for all t \in [0, 1]. Now, observe that

g\prime (t) = \nabla K (\bfitx + t(\bfitx \prime  - \bfitx ))
\intercal 
(\bfitx  - \bfitx \prime ) .

Thus, for any \bfitx ,\bfitx \prime \in D, we have

| K(\bfitx ) - K(\bfitx \prime )| = | g(1) - g(0)| =
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int 1

0

g\prime (t)dt

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\leq sup

t\in [0,1]

| g\prime (t)| 

\leq sup
\bfitxi \in Dk

\| \nabla K(\bfitxi )\| 1 \cdot \| \bfitx  - \bfitx \prime \| \infty .

Finally, we are ready to give a proof of the main result of this section (also the
main result of [40]). The proof of the theorem below serves as a template for our
arguments for establishing zero-free regions for the Potts model partition function in
sections 5 and 6.

Theorem 2.6. Fix a degree \Delta \geq 3, and let \beta \in (\Delta  - 2
\Delta , \Delta 

\Delta  - 2 ). There exist positive
constants \delta 0, \tau (both depending on \beta and \Delta ) such that, for any graph G of maximum
degree \Delta , any vertex u in G, and any complex \beta \prime with | \beta \prime  - \beta | < \delta 0, the following are
true:
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1. | Z+
G,u(\beta 

\prime )| > 0, | Z - 
G,u(\beta 

\prime )| > 0.
2. | \varphi (RG,u(\beta )) - \varphi (RG,u(\beta 

\prime ))| < \tau if u has degree at most \Delta  - 1 in G.
3. ZG(\beta 

\prime ) \not = 0.

We will refer to the two items above as the ``induction hypothesis."" We remark
that the assumption \beta \in (\Delta  - 2

\Delta , \Delta 
\Delta  - 2 ) is needed only so that we may appeal to corre-

lation decay (in the form of Corollary 2.4).

Proof. We use induction on the number of unpinned vertices in G. Without loss
of generality, we assume that the graph G is connected.

For the base case, if u is the only unpinned vertex in G, with s+ neighbors pinned
to spin + and s - neighbors pinned to spin  - , then Z+

G,u(\beta 
\prime ) = (\beta \prime )s

 - 

, Z - 
G,u(\beta 

\prime ) =

(\beta \prime )s
+

. Item 1 of the induction hypothesis is thus satisfied for all small enough positive

\delta 0. For item 2, we note that RG,u(\beta 
\prime ) = (\beta \prime )s

+ - s - , and, since 0 \leq s+, s - \leq \Delta , also
that \varphi (RG,u(\beta )) \in I0(\beta ,\Delta ). Now, let \eta , \varepsilon , \delta ,M be the constants and D the closed
convex set (depending on \beta and \Delta ) whose existence is guaranteed by Corollary 2.4.
For all small enough positive \delta 0, we then also have (i) \Re (RG,u(\beta 

\prime )) > 0 (since \beta >
(\Delta  - 2)/\Delta and | \beta \prime  - \beta | \leq \delta 0); and (ii) \varphi (RG,u(\beta 

\prime )) \in D. Combined with eq. (8) in
the statement of the corollary, inequality (ii) implies item 2, provided \tau is chosen to
be small enough (in terms of \varepsilon and M). Item 3 follows from item 1 and inequality (i),
since \Re (RG,u(\beta 

\prime )) = \Re 
\bigl( 
Z+
G,u(\beta 

\prime )/Z - 
G,u(\beta 

\prime )
\bigr) 
> 0.

We now proceed to the inductive step. In this case, G has at least two unpinned
vertices. We begin by deriving a useful consequence of the induction hypothesis. Let
u be an arbitrary unpinned vertex in G, with s pinned and k unpinned neighbors. Let
the k unpinned neighbors be v1, . . . , vk. We denote Bi(\beta ) := \varphi (RGi,vi(\beta )), \bfitB (\beta ) :=
\{ B1(\beta ), B2(\beta ), . . . , Bk(\beta )\} , and H\beta (x1, x2, . . . , xk) := F\varphi 

\beta ,k,s (x1, x2, . . . , xk), where
the graphs Gi are as in Definition 2.1. Note that the above quantities are all well
defined: this is because, by construction, each Gi has one fewer unpinned vertex than
G, and also the degree of vi in Gi is at most \Delta  - 1 (since u, which is an unpinned
neighbor of vi in G, is not present in Gi), so that items 1 and 2 of the induction
hypothesis apply at vertex vi in Gi, and also (by item 3) ZGi(\beta 

\prime ) \not = 0. These items
also imply that Bi(\beta ), Bi(\beta 

\prime ) \in D, and further that | Bi(\beta ) - Bi(\beta 
\prime )| < \tau (provided

that \tau \leq \varepsilon and \delta 0 is small enough). The triangle inequality then gives (again, assuming
\delta 0 \leq \delta )

| H\beta (\bfitB (\beta )) - H\beta \prime (\bfitB (\beta \prime ))| \leq | H\beta (\bfitB (\beta )) - H\beta (\bfitB (\beta \prime ))| + | H\beta (\bfitB (\beta \prime )) - H\beta \prime (\bfitB (\beta \prime ))| 
\leq sup \| \nabla F\varphi 

\beta ,k,s\| 1 \cdot max
i

| Bi(\beta ) - Bi(\beta 
\prime )| +M | \beta  - \beta \prime | ,

\leq \tau sup \| \nabla F\varphi 
\beta ,k,s\| 1 +M\delta 0.

Here, in the second line, the first term comes from Lemma 2.5 (where the supremum
is over all \bfitx \in Dk), and the second term comes from eq. (7) of Corollary 2.4. Now let
\delta 0 be chosen so that it is also smaller than \tau \cdot min \{ 1, \eta /2M\} . We have two cases.

Case 1: k + | s| = \Delta . In this case, we use eq. (10) of Corollary 2.4 to get

(11) | H\beta (\bfitB (\beta )) - H\beta \prime (\bfitB (\beta \prime ))| \leq M(\tau + \delta 0) < 2M\tau .

Case 2: k+| s| \leq \Delta  - 1. In this case, we use the case k+| s| \leq \Delta  - 1 of Corollary 2.4
to get

(12) | H\beta (\bfitB (\beta )) - H\beta \prime (\bfitB (\beta \prime ))| \leq (1 - \eta /2)\tau +M\delta 0 < \tau .
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Armed with these consequences of the induction hypothesis, we now proceed
to establish the inductive step. Before proceeding, we note that, by Lemma 2.2,
H\beta (\bfitB (\beta )) = \varphi (RG,u(\beta )), and, when Z+

G,u, Z
 - 
G,u \not = 0, H\beta \prime (\bfitB (\beta \prime )) = \varphi (RG,u(\beta 

\prime )).
For item 1, we consider the graphG\prime where we pin vertex u to spin +. Note that by

definition, Z+
G,u(\beta 

\prime ) = ZG\prime (\beta \prime ). Let v be any unpinned vertex in G\prime . Since G\prime has one

fewer unpinned vertex than G, by the induction hypothesis we have | Z - 
G\prime ,v(\beta 

\prime )| > 0.
Thus, RG\prime ,v(\beta 

\prime ) is well defined and is in D. The calculations leading to eqs. (11) and
(12) applied to the vertex v in G\prime imply that | \varphi (RG\prime ,v(\beta )) - \varphi (RG\prime ,v(\beta 

\prime ))| < 2M\tau 
(in fact, the upper bound improves to \tau in case v has degree at most \Delta  - 1 in G\prime ).
Applying eq. (9) of Corollary 2.4 then shows that | RG\prime ,v(\beta ) - RG\prime ,v(\beta 

\prime )| < 2M2\tau .
Thus, since RG\prime ,v(\beta ) > min

\bigl\{ 
\beta \Delta , 1/\beta \Delta 

\bigr\} 
, we have, for all small enough \tau and \delta 0,

(13) \Re (RG\prime ,v(\beta 
\prime )) > 0.

We can therefore write

| ZG\prime (\beta \prime )| = | Z+
G\prime ,v(\beta 

\prime ) + Z - 
G\prime ,v(\beta 

\prime )| = | Z - 
G\prime ,v(\beta 

\prime )| \cdot | 1 +RG\prime ,v(\beta 
\prime )| .

But then, by eq. (13), | 1 +RG\prime ,v(\beta 
\prime )| \geq \Re (1 +RG\prime ,v(\beta 

\prime )) > 1. Thus,

| Z+
G,u(\beta 

\prime )| = | ZG\prime (\beta \prime )| \geq | Z - 
G\prime ,v(\beta 

\prime )| > 0.

An identical argument also proves that | Z - 
G,u(\beta 

\prime )| > 0, completing the verification of
item 1 of the induction hypothesis.

Now, since Z - 
G,u(\beta 

\prime ) and Z+
G,u(\beta 

\prime ) have both been proved to be nonzero, it follows
that RG,u(\beta 

\prime ) is well defined, and, by Lemma 2.2, is equal to H\beta \prime (\bfitB (\beta \prime )). Item 2
of the induction hypothesis then follows immediately from eq. (12). Finally, item 3
follows from item 1 and eq. (13).

The main result of this section, establishing the absence of Fisher zeros in a
complex region around the correlation decay interval, now follows immediately from
item 3 of the previous theorem.

Corollary 2.7. Fix a degree \Delta \geq 3, and let \beta \in (\Delta  - 2
\Delta , \Delta 

\Delta  - 2 ). There exists a
positive constant \delta 0 (depending on \beta and \Delta ) such that, for any graph G of maximum
degree \Delta , and any complex \beta \prime with | \beta \prime  - \beta | < \delta 0, we have ZG(\beta 

\prime ) \not = 0.

2.2. Antiferromagnetic Ising model. In this section we consider the anti-
ferromagnetic Ising model. Recall from the introduction that, for the infinite \Delta -
regular tree, weak spatial mixing holds when \beta \in (1, \Delta 

\Delta  - 2 ) for all \lambda > 0, while

for \beta > \Delta 
\Delta  - 2 there exists a \lambda c(\beta ,\Delta ) > 0 such that weak spatial mixing holds if

| log \lambda | > log \lambda c(\beta ,\Delta ) [24, 53]. We will refer to this as the correlation decay region
for the antiferromagnetic Ising model. Fix any \beta , \lambda in the correlation decay region.
As claimed in Theorem 1.1 of the introduction, we will show that there exists \delta > 0
such that, for any \lambda \prime with | \lambda \prime  - \lambda | < \delta , the partition function ZG(\beta , \lambda 

\prime ) \not = 0. This is
apparently the first result precisely relating correlation decay to absence of Lee--Yang
zeros for the antiferromagnetic Ising model on general graphs.

As before, for a fixed vertex v, we write ZG(\beta , \lambda ) = Z+
G,v(\beta , \lambda ) + Z - 

G,v(\beta , \lambda ) and

let RG,v(\beta , \lambda ) :=
Z+

G(\beta ,\lambda )

Z - 
G (\beta ,\lambda )

. Then we can write a formal recurrence relation analogous

to that in Lemma 2.2, as follows.
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Lemma 2.8. Let \omega \beta , \omega \lambda be formal variables. Given a graph G and an unpinned
vertex u, let k be the number of unpinned neighbors of u, and let s be the number of
signed pinned neighbors of u. Denoting h\omega (x) :=

\omega +x
\omega x+1 , we have

RG,u(\omega \beta , \omega \lambda ) = \omega \lambda \omega 
s
\beta 

k\prod 

i=1

h\omega \beta 
(RGi,vi(\omega \beta , \omega \lambda )) ,

where the graphs Gi are defined as in Definition 2.1.

Given integers k and s, let F\beta ,\lambda ,k,s(\bfitx ) := \lambda \beta s
\prod k

i=1 h\beta (xi). This recurrence has
been studied before in the literature [36, 53], and as in the case of the ferromagnetic
Ising model, it has been found useful to reparameterize F\beta ,\lambda ,k,s with a ``potential
function"" \varphi as follows: F\varphi 

\beta ,\lambda ,k,s := \varphi \circ F\beta ,\lambda ,k,s \circ \varphi  - 1. In [53] the function \varphi (x) :=

log x+D
1 - x+D was used, where D > 0 is a constant depending on \beta and \Delta (but not on

\lambda ). (This choice of \varphi is by no means unique: alternative choices can be found in,
e.g., [36, 37].) For this choice of \varphi , the following stepwise correlation decay in the
1-norm is proved in [53].

Theorem 2.9 ([53]). Fix a degree \Delta \geq 3 and integers k > 0, s such that k+ | s| \leq 
\Delta  - 1. If (\beta , \lambda ) is in the correlation decay region of the infinite \Delta -regular tree, then
there exists an \eta > 0 (depending upon \beta , \lambda , and \Delta ) such that \| \nabla F\varphi 

\beta ,\lambda ,k,s(\bfitx )\| 1 < 1 - \eta 

for every \bfitx \in \BbbR 
k.8

We also note that an analogue of the calculation leading to eq. (6) gives the bound
\lambda 
\beta \Delta \leq RG,u(\beta , \lambda ) \leq \lambda \beta \Delta . Thus we define the analogous interval

(14) I0(\beta , \lambda ,\Delta ) :=
\Bigl[ 

\varphi 
\Bigl( 

\lambda 
\beta \Delta 

\Bigr) 

, \varphi 
\bigl( 
\lambda \beta \Delta 

\bigr) \Bigr] 

.

The following corollary is analogous to Corollary 2.4 and is an immediate consequence
of Theorem 2.9 and the analyticity of F\varphi 

\beta ,\lambda ,k,s and \varphi  - 1 at points close to I0(\beta , \lambda ,\Delta ).

Corollary 2.10. Fix a degree \Delta \geq 3 and integers k \geq 0 and s. If (\beta , \lambda ) is
in the correlation decay region of the infinite \Delta -regular tree, then there exist positive
constants \eta , \varepsilon , \delta (depending upon \beta , \lambda , and \Delta ) such that the following is true. Let
D := D(\beta , \lambda ,\Delta ) be the set of points within distance \varepsilon of I0(\beta , \lambda ,\Delta ) in \BbbC . Then
\| \nabla F\varphi 

\beta ,\lambda ,k,s(\bfitx )\| 1 < 1  - \eta /2 for every \bfitx \in Dk whenever k + | s| \leq \Delta  - 1. Moreover,
there is a finite constant M \geq 1 (depending upon \beta , \lambda , and \Delta ) such that

sup
\bfitx \in Dk, \lambda \prime \in \BbbC :| \lambda \prime  - \lambda | <\delta 

\bigm| 
\bigm| 
\bigm| F

\varphi 
\beta ,\lambda ,k,s(\bfitx ) - F\varphi 

\beta ,\lambda \prime ,k,s(\bfitx )
\bigm| 
\bigm| 
\bigm| \leq M | \lambda \prime  - \lambda | ;

sup
x,y:\varphi (x),\varphi (y)\in D

| \varphi (x) - \varphi (y)| \leq M | x - y| ;

sup
x,y\in D

\bigm| 
\bigm| \varphi  - 1(x) - \varphi  - 1(y)

\bigm| 
\bigm| \leq M | x - y| ; and

sup
\bfitx \in Dk

\| \nabla F\varphi 
\beta ,\lambda ,k,s(\bfitx )\| 1 \leq M when k + | s| = \Delta .

Finally, given Lemma 2.8 and Corollary 2.10, an identical argument to that in
the proof of Theorem 2.6 establishes the following.

8Reference [53] uses a different convention for the Ising model, in which \beta corresponds to our
1/\beta (see eq. (1) of [53]).
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Theorem 2.11. Fix a degree \Delta \geq 3, and let (\beta , \lambda ) be in the correlation decay
region for the infinite \Delta -regular tree. There exist positive constants \delta 0, \tau (both de-
pending on \beta , \lambda , and \Delta ) such that, for any graph G of maximum degree \Delta , any
unpinned vertex u in G, and any complex \lambda \prime with | \lambda \prime  - \lambda | < \delta 0, the following are true:

1. | Z+
G,u(\beta , \lambda 

\prime )| > 0, | Z - 
G,u(\beta , \lambda 

\prime )| > 0.
2. | \varphi (RG,u(\beta , \lambda )) - \varphi (RG,u(\beta , \lambda 

\prime ))| < \tau if u has degree at most \Delta  - 1 in G.
3. ZG(\beta , \lambda 

\prime ) \not = 0.

The main result of this section, which is a restatement of Theorem 1.1 in the
introduction, is a direct consequence of item 3 of the above theorem.

Corollary 2.12. Fix a degree \Delta \geq 3, and let (\beta , \lambda ) be in the correlation decay
region for the antiferromagnetic Ising model on the infinite \Delta -regular tree. Then, there
exists a positive constant \delta 0 (depending on \beta , \lambda , and \Delta ) such that, for any graph G
of maximum degree \Delta , and any complex \lambda \prime with | \lambda \prime  - \lambda | < \delta 0, we have ZG(\beta , \lambda 

\prime ) \not = 0.

2.3. Hard-core model. In this section we consider the independence polyno-
mial, which is the partition function of the hard-core model. Formally, given a graph
G = (V,E) and a vertex activity \lambda > 0, we let \scrI (G) be the set of independent sets of
vertices in G. Then the independence polynomial is given by

ZG(\lambda ) =
\sum 

I\in \scrI (G)

\lambda | I| .

The hard-core model is a simple model of the ``excluded volume"" phenomenon: ver-
tices in the independent set I correspond to particles, each of which prevents neigh-
boring sites from being occupied. The parameter \lambda controls the density of particles
in the system.

It is known from seminal work of Weitz and Sly that there is a critical activity
\lambda c(\Delta ) such that, when \lambda < \lambda c(\Delta ), the partition function for graphs of maximum
degree \Delta can be approximated efficiently [61], while for \lambda > \lambda c(\Delta ) it is NP-hard to
approximate the partition function [54] (see also [19, 55]). We will refer to \lambda < \lambda c(\Delta )
as the correlation decay interval for the hard-core model. In this section, we view
ZG(\lambda ) as a polynomial in \lambda and study its complex zeros. The main result of this section
will again be that there are no zeros in a complex neighborhood of the correlation
decay interval (0, \lambda c(\Delta )).

In similar fashion to the Ising model, for a fixed vertex v we write the partition

function as ZG(\lambda ) = ZG\setminus v(\lambda ) + \lambda \cdot ZG\setminus NG[v](\lambda ) and let RG,v(\lambda ) :=
ZG\setminus NG[v](\lambda )

ZG\setminus v(\lambda )
. Note

that ZG\setminus v(\lambda ) corresponds to pinning v to be ``unoccupied"" (not in the independent
set) in G, while ZG\setminus NG[v](\lambda ) corresponds to pinning v to be ``occupied"" (in the in-
dependent set) in G. By analogy with Lemmas 2.2 and 2.8, we have the following
formal recurrence relation for RG,u [61], which is easily verified.

Lemma 2.13. Let \omega be a formal variable. Given a graph G and a vertex u in G,
let k be the number of neighbors of u. We then have

RG,u(\omega ) = \lambda 
k\prod 

i=1

1

1 +RGi,vi(\omega )
,

where the graphs Gi := G \setminus \{ u, v1, . . . , vi - 1\} are defined in an analogous fashion to
Definition 2.1.
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For a nonnegative integer k, let F\lambda ,k(\bfitx ) := \lambda 
\prod k

i=1
1

1+xi
. This recurrence has

been studied before in the literature. As with the Ising model examples above, it
has been found useful to reparameterize F\lambda ,k using a ``potential function"" \varphi in the
form F\varphi 

\lambda ,k := \varphi \circ F\lambda ,k \circ \varphi  - 1. As shown by Li, Lu, and Yin [37], using the function

\varphi (x) = 2 sinh - 1(
\surd 
x ) leads to the following stepwise correlation decay in the 1-norm.9

Theorem 2.14 ([37]). Fix a degree \Delta \geq 3, and let k \leq \Delta  - 1 be a positive integer.
If \lambda is in the correlation decay interval, then there exists an \eta > 0 (depending upon \lambda 
and \Delta ) such that \| \nabla F\varphi 

\lambda ,k(\bfitx )\| 1 < 1 - \eta for every \bfitx \in \BbbR 
k.

Again by analogy with the Ising model, we have \lambda / (1 + \lambda )
\Delta \leq RG,u(\lambda ) \leq \lambda ,

leading us to define the following analogue of the interval in eq. (6):

(15) I0(\lambda ,\Delta ) :=
\Bigl[ 

\varphi 
\bigl( 
\lambda / (1 + \lambda )

\Delta \bigr) 
, \varphi (\lambda )

\Bigr] 

.

The following corollary is again a consequence of Theorem 2.14 and the smoothness
properties of F\varphi 

\lambda ,k and \varphi  - 1 at points close to the set I0(\lambda ,\Delta ).

Corollary 2.15. Fix a degree \Delta \geq 3, and let k \geq 0. If \lambda is in the correlation
decay interval, then there exist positive constants \eta , \varepsilon , \delta (depending on \lambda and \Delta ) such
that the following is true. Let D := D(\lambda ,\Delta ) be the set of points within distance \varepsilon of
I0(\lambda ,\Delta ) in \BbbC . Then, whenever k \leq \Delta  - 1, \| \nabla F\varphi 

\lambda ,k(\bfitx )\| 1 < 1 - \eta /2 for every \bfitx \in Dk.
Moreover, there is a finite constant M \geq 1 (depending on \lambda and \Delta ) such that

sup
\bfitx \in Dk, \lambda \prime \in \BbbC :| \lambda \prime  - \lambda | <\delta 

\bigm| 
\bigm| 
\bigm| F

\varphi 
\lambda ,k(\bfitx ) - F\varphi 

\lambda \prime ,k(\bfitx )
\bigm| 
\bigm| 
\bigm| \leq M | \lambda  - \lambda \prime | ;

sup
x,y:\varphi (x),\varphi (y)\in D

| \varphi (x) - \varphi (y)| \leq M | x - y| ;

sup
x,y\in D

\bigm| 
\bigm| \varphi  - 1(x) - \varphi  - 1(y)

\bigm| 
\bigm| \leq M | x - y| ; and

sup
\bfitx \in Dk

\| \nabla F\varphi 
\lambda ,k(\bfitx )\| 1 \leq M when k = \Delta .

Finally, given Lemma 2.13 and Corollary 2.15, an identical argument to that in
the proof of Theorem 2.6 establishes the following.

Theorem 2.16. Fix a degree \Delta \geq 3, and let \lambda be in the correlation decay interval.
Then there exist positive constants \delta 0 and \tau (depending on \lambda and \Delta ) such that, for
any graph G of maximum degree \Delta , any unpinned vertex u in G, and any \lambda \prime with
| \lambda \prime  - \lambda | < \delta 0, the following are true:

1. | ZG(\lambda 
\prime )| > 0.

2. | \varphi (RG,u(\lambda 
\prime )) - \varphi (RG,u(\lambda ))| < \tau .

The main result of this section, establishing a zero-free region containing the
correlation decay interval, now follows as an immediate corollary of the above theorem.

Corollary 2.17. Fix a degree \Delta \geq 3, and let \lambda lie in the correlation decay
interval for the hard-core model on the infinite \Delta -regular tree. There exist positive
constants \delta , \varepsilon (both depending on \lambda and \Delta ) such that, for any graph G of maximum
degree \Delta , and any \lambda \prime with | \lambda \prime  - \lambda | < \delta , we have ZG(\lambda 

\prime ) \not = 0.

9This is a special case of Lemma 4.4 of [37], taken in combination with item 5 of Lemma 3.1
of that paper, obtained by setting \beta = 0 and \gamma = 1 in their notation. Also note that in [37], only
the derivative \Phi of the message \varphi is explicitly mentioned (at the bottom of page 76, at the end of

column 1). The function \varphi (x) = 2 sinh - 1(
\surd 
x) is obtained by integrating \Phi (x) = 1/

\sqrt{} 

x(1 + x).
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The above result was conjectured by Sokal [57] and first proved (with more de-
tailed information about the geometry of the zero-free region) by Peters and Regts [47]
via a different argument involving a tailor-made ``potential function."" Our argument
above describes a simpler route to the result starting from the previously known
correlation decay properties for real parameters.

2.4. Related work and discussion. There are a few recent papers which use
correlation decay-like arguments for proving absence of complex zeros: Peters and
Regts [47] considered the case of the roots of the independence polynomial, while
an earlier paper by the present authors [40] looked at the Fisher zeros of the zero-
field Ising model. A recent paper of Peters and Regts [48] on the Lee--Yang zeros
of the antiferromagnetic Ising model on graphs of maximum degree at most \Delta for
\beta \in (\Delta  - 2

\Delta , \Delta 
\Delta  - 2 ) is also in a similar spirit. The main message of this section is that

the somewhat different arguments used in these results can in fact be carried out in a
unified framework which allows one to ``lift"" known analyses of Weitz recurrences for
the corresponding models [37, 53, 61, 63] to show that, in each case, there is a zero-
free region of constant width that contains the entire correlation decay interval. Thus,
as mentioned earlier, this puts on a more formal footing the observation that Weitz's
algorithm can be seen as a bridge between the ``decay of correlations"" and ``analyticity
of free energy density"" formalisms of phase transitions. We also note in passing
that, via Barvinok's general paradigm, the results in this section lead to polynomial
time approximation algorithms for the model partition functions in the respective
correlation decay intervals (and indeed in a complex neighborhood of those intervals).
However, in all of the above cases, these algorithmic consequences (at least for real-
valued parameters) can be derived directly from correlation decay [37, 53, 61, 63], so
we do not pursue this direction here.

In the following section we turn to the Potts model, where such tight correlation
decay results are not known. We show that, with a more careful analysis, less tight
correlation decay arguments can also be lifted to the complex plane in a similar fashion
to the results of this section. Further, in contrast to the two-spin systems considered
in this section, the algorithmic consequences are also novel and resolve open questions;
indeed, it is not yet known how to obtain them directly from correlation decay without
passing to the complex plane.

3. Potts model: Preliminaries.

3.1. Colorings and the Potts model. Throughout, we assume that the graphs
that we consider are augmented with a list of colors for every vertex. Formally, a
graph is a triple G = (V,E, L), where V is the vertex set, E is the edge set, and
L : V \rightarrow 2\BbbN specifies a list of colors for every vertex. The partition function as defined
in the introduction generalizes naturally to this setting: the sum is now over all those
colorings \sigma which satisfy \sigma (v) \in L(v).

We also allow graphs to contain pinned vertices: a vertex v is said to be pinned
to a color c if only those colorings of G are allowed in which v has color c. Suppose
that a vertex v of degree dv in a graph G is pinned to a color c, and consider the
graph G\prime obtained by replacing v with dv copies of itself, each of which is pinned to
c and connected to exactly one of the original neighbors of v in G. It is clear that
ZG\prime (w) = ZG(w) for all w. We will therefore assume that the operation of pinning a
vertex comprises this operation as well; in particular, this means we can assume that
all pinned vertices in our graphs have degree at most one. Further, if a pinned vertex
u has another pinned vertex v as a neighbor, then u and v must form a connected
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component consisting of a single edge. The size of graph G is defined to be the number
of unpinned vertices. Note that the above operation of duplicating pinned vertices
does not change the size of the graph.

Let G be a graph and v an unpinned vertex in G. A color c in the list of v is said
to be good for v if every pinned neighbor u of v is pinned to a color different from c.
The set of good colors for a vertex v in graph G is denoted \Gamma G,v. We sometimes omit
the graph G and write \Gamma v when G is clear from the context. A color c that is not in
\Gamma v is called bad for v. Further, given a graph G possibly with pinned vertices, we say
that the graph is unconflicted if no two neighboring vertices in G are pinned to the
same color. Note that since all pinned vertices have degree exactly one, any conflicted
graph is the vertex-disjoint union of an unconflicted graph and a collection of disjoint,
conflicted edges.

We will assume throughout that all unconflicted graphs G we consider have at
least one proper coloring: this will be guaranteed in our applications since we will
always have | L(u)| \geq degG(u) + 1 for every unpinned vertex u in G.

Definition 3.1. For a graph G, a vertex v, and a color i \in L(v), the restricted

partition function Z
(i)
G,v(w) is the partition function restricted to colorings in which

vertex v receives color i.

Definition 3.2. Let \omega be a formal variable. For any G, a vertex v, and colors

i, j \in L(v), we define the marginal ratio of color i to color j as R
(i,j)
G,v (\omega ) :=

Z
(i)
G,v(\omega )

Z
(j)
G,v(\omega )

.

Similarly we also define formally the corresponding pseudo marginal probability as

\scrP G,\omega [c(v) = i] :=
Z

(i)
G,v(\omega )

ZG(\omega ) .

Remark 5. Note that when a numerical value w \in \BbbC is substituted in place of

\omega in the above formal definition, R
(i,j)
G,v (w) is numerically well defined as long as

Z
(j)
G,v(w) \not = 0, and \scrP G,w [c(v) = i] is numerically well defined as long as ZG(w) \not = 0.

In the proof of the main theorem in sections 5 and 6, we will ensure that the above
definitions are numerically instantiated only in cases where the above conditions for
such an instantiation to be well defined are satisfied. For instance, when w \in [0, 1],
this is the case for the first definition when either (i) w \not = 0; or (ii) w = 0, G is
unconflicted, and j \in \Gamma G,v. And for the second definition, this is the case when either
(i) w \not = 0; or (ii) w = 0 and G is unconflicted.

Remark 6. Note also that when w \in [0, 1], the pseudo probabilities, if well defined,
are actual marginal probabilities. In this case, we will also write \scrP G,w [c(v) = i] as
PrG,w [c(v) = i]. For arbitrary complex w, this interpretation as probabilities is of
course not valid (since \scrP G,w [c(v) = i] can be non-real), but provided that ZG(w) \not = 0

it is still true that
\sum 

i\in L(v) \scrP G,w [c(v) = i] = 1
ZG(w)

\sum 

i\in L(v) Z
(i)
G,v(w) =

ZG(w)
ZG(w) = 1. We

also note that if v is pinned to color k, then \scrP G,w [c(v) = i] is 1 when k = i and 0
when k \not = i.

Notation. For the case w = 0 (proper colorings) we will sometimes shorten
the notation \scrP G,0 [c(v) = i] and PrG,0 [c(v) = i] to \scrP G [c(v) = i] and PrG [c(v) = i],
respectively.

Definition 3.3 (the graphs G
(i,j)
k ). Given a graph G and a vertex u in G, let

v1, . . . , vdegG(u) be the neighbors of u. We define G
(i,j)
k (the vertex u will be understood

from the context) to be the graph obtained from G as follows:
\bullet first we replace vertex u with u1, . . . , udegG(u), and connect u1 to v1, u2 to v2,
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and so on;
\bullet next we pin vertices u1, . . . , uk - 1 to color i, and vertices uk+1, . . . , udegG(u)

to color j;
\bullet finally we remove the vertex uk.

Note that the graph G
(i,j)
k has one fewer unpinned vertex than G. Moreover, the

vertices u1, . . . , udegG(u) are of degree one, so this construction maintains the property
that pinned vertices have degree one.

We now derive a recurrence relation between the marginal ratios of the graph

G and pseudo marginal probabilities of the graphs G
(i,j)
k . This is an extension to

the Potts model of a similar recurrence relation derived by Gamarnik, Katz, and
Misra [22] for the special case of colorings (that is, w = 0).

Lemma 3.4. Let \omega be a formal variable. For a graph G, a vertex u, and colors
i, j \in L(u), we have

R
(i,j)
G,u (\omega ) =

degG(u)
\prod 

k=1

1 - \gamma \cdot \scrP 
G

(i,j)
k ,\omega 

[c(vk) = i]

1 - \gamma \cdot \scrP 
G

(i,j)
k ,\omega 

[c(vk) = j]
,

where we define \gamma := 1 - \omega . In particular, when a numerical value w \in \BbbC is substituted
in place of \omega , the above recurrence is valid as long as the quantities Z

G
(i,j)
k

(w) and

1 - \gamma \cdot \scrP 
G

(i,j)
k ,w

[c(vk) = j] for 1 \leq k \leq degG(u) are all nonzero.

Proof. Let t := degG(u). For 0 \leq k \leq t, let Hk be the graph obtained from G as
follows:

\bullet first we replace vertex u with u1, . . . , ut, and connect u1 to v1, u2 to v2, and
so on;

\bullet we then pin vertices u1, . . . , uk to color i, and vertices uk+1, . . . , ut to color j.

Note that Hk is the same as G
(i,j)
k , except that the last step of the construction of

G
(i,j)
k is skipped, i.e., the vertex uk is not removed, and, further, uk is pinned to color

i. We can now write

R
(i,j)
G,u (\omega ) =

Z
(i)
G,u(\omega )

Z
(j)
G,u(\omega )

=
ZHt

(\omega )

ZH0
(\omega )

=
t\prod 

k=1

ZHk
(\omega )

ZHk - 1
(\omega )

.

Next, for 1 \leq k \leq t, let Yk := Z
G

(i,j)
k

(\omega ) and Y
(i)
k := Z

(i)

G
(i,j)
k ,vk

(\omega ). We observe that

\scrP 
G

(i,j)
k ,\omega 

[c(vk) = i] =
Y

(i)
k

Yk
;

ZHk
(\omega ) = Yk  - (1 - \omega ) \cdot Y (i)

k ;

ZHk - 1
(\omega ) = Yk  - (1 - \omega ) \cdot Y (j)

k .

Therefore, we have

R
(i,j)
G,u (\omega ) =

t\prod 

k=1

Yk  - (1 - \omega ) \cdot Y (i)
k

Yk  - (1 - \omega ) \cdot Y (j)
k

=

t\prod 

k=1

1 - \gamma \cdot \scrP 
G

(i,j)
k ,\omega 

[c(vk) = i]

1 - \gamma \cdot \scrP 
G

(i,j)
k ,\omega 

[c(vk) = j]
,

where \gamma = 1  - \omega . The claim about the validity of the recurrence on numerical
substitution then follows from the conditions outlined in Remark 5.
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3.2. Complex analysis. In this subsection we collect some tools and observa-
tions from complex analysis. Throughout this paper, we use \iota to denote the imaginary
unit

\surd 
 - 1, in order to avoid confusion with the symbol ``i"" used for other purposes.

For a complex number z = a + \iota b with a, b \in \BbbR , we denote its real part a as \Re z, its
imaginary part b as \Im z, its length

\surd 
a2 + b2 as | z| , and, when z \not = 0, its argument

sin - 1( b
| z| ) \in ( - \pi , \pi ] as arg z. We also generalize the notation [x, y] used for closed

real intervals to the case when x, y \in \BbbC , and use it to denote the closed straight line
segment joining x and y.

We start with a consequence of the mean value theorem for complex functions,
specifically tailored to our application. Let D be any domain in \BbbC with the following
properties.

\bullet For any z \in D, \Re z \in D.
\bullet For any z1, z2 \in D, there exists a point z0 \in D such that one of the numbers
z1  - z0, z2  - z0 has zero real part while the other has zero imaginary part.

\bullet If z1, z2 \in D are such that either \Im z1 = \Im z2 or \Re z1 = \Re z2, then the segment
[z1, z2] lies in D.

We remark that a rectangular region symmetric about the real axis will satisfy all of
the above properties.

Lemma 3.5 (mean value theorem for complex functions). Let f be a holomorphic
function on a domain D as above such that, for z \in D, \Im f(z) has the same sign as
\Im z. Suppose further that there exist positive constants \rho I and \rho R such that

\bullet for all z \in D, | \Im f \prime (z)| \leq \rho I ;
\bullet for all z \in D, \Re f \prime (z) \in [0, \rho R].

Then for any z1, z2 \in D, there exists Cz1,z2 \in [0, \rho R] such that

| \Re (f(z1) - f(z2)) - Cz1,z2 \cdot \Re (z1  - z2)| \leq \rho I \cdot | \Im (z1  - z2) | ,

and, furthermore,

| \Im (f(z1) - f(z2))| \leq \rho R \cdot 
\Biggl\{ 

| \Im (z1  - z2)| when (\Im z1) \cdot (\Im z2) \leq 0;

max \{ | \Im z1| , | \Im z2| \} otherwise.

Proof. We write f = u+\iota v, where u, v : D \rightarrow \BbbR are seen as differentiable functions
from \BbbR 

2 to \BbbR satisfying the Cauchy--Riemann equations

u(1,0) = v(0,1) and u(0,1) =  - v(1,0).

This implies in particular that \Re f \prime (z) = u(1,0)(z) = v(0,1)(z) and \Im f \prime (z) = v(1,0)(z) =
 - u(0,1)(z).

Let z0 be a point in D such that \Re (z2  - z0) = 0 and \Im (z1  - z0) = 0 (by the
conditions imposed on D, such a z0 exists, possibly after interchanging z1 and z2).
Now we have

\Re (f(z1) - f(z2)) = u(z1) - u(z0) + u(z0) - u(z2)

= u(1,0)(z\prime ) \cdot \Re (z1  - z0) + u(z0) - u(z2),

where z\prime is a point lying on the segment [z0, z1], obtained by applying the standard
mean value theorem to the function u along this segment (note that the segment is
parallel to the real axis). On the other hand, since the segment [z0, z2] is parallel to
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the imaginary axis, we may apply the standard mean value theorem to the real-valued
function u to get (after recalling that

\bigm| 
\bigm| u(0,1)(z)

\bigm| 
\bigm| = | \Im f \prime (z)| \leq \rho I for all z \in D)

| u(z0) - u(z2)| \leq \rho I | \Im (z2  - z0)| = \rho I | \Im (z2  - z1)| .

This proves the first part, once we set Cz1,z2 = u(1,0)(z\prime ) = \Re f \prime (z\prime ), which must lie in
[0, \rho R] since z\prime \in D.

For the second part, we note that since \Im f(z) = 0 when \Im z = 0, we have, for
z \in D,

\Im f(z) = \Im (f(z) - f(\Re z)) = v(z) - v(\Re z)
= v(0,1)(z\prime ) \cdot \Im z,

where z\prime is a point lying on the segment [z,\Re z], obtained by applying the standard
mean value theorem to the function v along this segment (note that the segment is
parallel to the imaginary axis).

Since v(0,1)(z\prime ) = u(1,0)(z\prime ) \in [0, \rho R] for all z\prime \in D, there therefore exist a, b \in 
[0, \rho R] such that

| \Im (f(z1) - f(z2))| = | a\Im z1  - b\Im z2| ,

so that we get

| \Im (f(z1) - f(z2))| = | a\Im z1  - b\Im z2| \leq \rho R \cdot 
\Biggl\{ 

| \Im (z1  - z2)| when (\Im z1) \cdot (\Im z2) \leq 0;

max \{ | \Im z1| , | \Im z2| \} otherwise.

This completes the proof.

Later, we will apply the above lemma to the function

(16) f\kappa (x) :=  - ln(1 - \kappa ex),

which will play a central role in our proofs. (We note that here, and also later in
the paper, we use ln to denote the principal branch of the complex logarithm; i.e., if
z = re\iota \theta with r > 0 and \theta \in ( - \pi , \pi ), then ln z = ln r + \iota \theta .) In the following lemma,
we verify that, for real \kappa \in [0, 1], f\kappa indeed satisfies the hypotheses of Lemma 3.5
so that such an application is valid, and we also quantify the deviation in f\kappa (z) for
complex z close to the real interval.

Lemma 3.6. Consider the domain D given by

D := \{ z | \Re z \in ( - \infty , - \zeta ) and | \Im z| < \tau \} ,

where \tau < 1/2 and \zeta are positive real numbers such that \tau 2 + e - \zeta < 1. Suppose
\kappa \in [0, 1] and consider the function f\kappa defined in eq. (16). Then the following hold:

1. The function f\kappa and the domain D satisfy the hypotheses of Lemma 3.5 if \rho R
and \rho I in the statement of the theorem are taken to be e - \zeta 

1 - e - \zeta and \tau \cdot e - \zeta 

(1 - e - \zeta )2
,

respectively.
2. If \varepsilon > 0 and \kappa \prime \in \BbbC are such that | \kappa \prime  - \kappa | < \varepsilon and (1+ \varepsilon ) < e\zeta , then, for any

z \in D,

| f\kappa \prime (z) - f\kappa (z)| \leq 
\varepsilon 

e\zeta  - 1 - \varepsilon 
.
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Proof. Note first that the domain D is rectangular and symmetric about the real
axis, so it satisfies the properties listed before Lemma 3.5. We also note that since
\kappa \leq 1, f\kappa (z) is well defined when \Re z < 0, and maps real numbers inD to real numbers.
Further, a direct calculation shows that \Im f\kappa (z) =  - arg(1  - \kappa ez) has the same sign
as sin(\Im z) when \Re z < 0 (since \kappa \in [0, 1]). Since | \Im z| \leq \tau < \pi , we see therefore
that \Im f\kappa (z) has the same sign as \Im z, and hence f\kappa satisfies the first hypothesis of
Lemma 3.5.

Note that f \prime 
\kappa (z) =

\kappa ez

1 - \kappa ez . A direct calculation shows that \Re f \prime 
\kappa (z) =

\kappa \Re ez - \kappa 2| ez| 2

| 1 - \kappa ez| 2

and \Im f \prime 
\kappa (z) =

\kappa \Im ez

| 1 - \kappa ez| 2
. Now, for z \in D, | arg ez| \leq \tau , so that \Re ez \geq | ez| cos arg ez \geq 

| ez| (1 - \tau 2). Thus, \kappa \Re ez  - \kappa 2 | ez| 2 \geq \kappa | ez| 
\bigl( 
1 - \tau 2  - \kappa | ez| 

\bigr) 
\geq \kappa | ez| 

\bigl( 
1 - \tau 2  - \kappa e - \zeta 

\bigr) 
.

Since \kappa \in [0, 1] and \tau 2 + e - \zeta < 1 by assumption, we therefore have \Re f \prime 
\kappa (z) \geq 0.

Further, \Re f \prime 
\kappa (z) \leq | f \prime 

\kappa (z)| = \kappa | ez| 
| 1 - \kappa ez| \leq \kappa | ez| 

1 - \kappa | ez| \leq \kappa e - \zeta 

1 - e - \zeta , since \kappa \in [0, 1]. Together,

these show that \Re f \prime 
\kappa (z) \in 

\Bigl[ 

0, e - \zeta 

1 - e - \zeta 

\Bigr] 

for z \in D, so that the claimed choice of the

parameter \rho R in Lemma 3.5 is justified.

Similarly, for the imaginary part, we have | \Im f \prime 
\kappa (z)| = \kappa | \Im ez| 

| 1 - \kappa ez| 2
, which in turn is at

most \kappa \cdot \tau \cdot e - \zeta 

(1 - \kappa e - \zeta )2
for z \in D. Since \kappa \in [0, 1], this justifies the choice of the parameter

\rho I and concludes the verification of item 1.
We now turn to item 2. The derivative of fx(z) with respect to x is ez

1 - xez , which

for x within distance \varepsilon (satisfying (1 + \varepsilon ) < e\zeta ) of \kappa and z \in D has length at most
1

e\zeta  - 1 - \varepsilon 
. Thus, the standard mean value theorem applied along the segment [\kappa , \kappa \prime ]

(which is of length at most \varepsilon ) yields the claim.

We will also need the following simple geometric lemma, versions of which have
been used in the work of Barvinok [2] and also Bencs et al. [6].

Lemma 3.7. Let z1, z2, . . . , zn be complex numbers such that the angle between
any two nonzero zi's is at most \alpha \in [0, \pi /2). Then | \sum n

i=1 zi| \geq cos(\alpha /2)
\sum n

i=1 | zi| .
Proof. Fix a nonzero zi, and without loss of generality let z1 and z2 be the non-

zero elements giving the maximum and minimum values, respectively, of the quantity
arg(zj/zi), as zj varies over all the nonzero elements (breaking ties arbitrarily). Con-
sider the ray z bisecting the angle between z1 and z2. Then, by the assumption, the
angle made by z and any of the nonzero zi's is at most \alpha /2, so that the projection
of zi on z is of length at least | zi| cos(\alpha /2) and is in the same direction as z. Thus,
denoting by S\prime the projection of S =

\sum n
i=1 zi on z, we have

| S| \geq | S\prime | \geq 
n\sum 

i=1

| zi| cos(\alpha /2).

3.3. Sketch of the algorithm. In this subsection we outline how to apply
Barvinok's algorithmic paradigm to translate our zero-freeness result (Theorem 1.5)
into the FPTAS claimed in Theorem 1.8. Let G be a graph with n vertices, m edges,
and maximum degree \Delta . Recall that our goal is to obtain a 1 \pm \varepsilon approximation of
the Potts model partition function ZG(w) at any point w \in [0, 1]. Note that ZG is a
polynomial of degree m, and that computing ZG at w = 1 is trivial since ZG(1) = qn.
Recall also that Theorem 1.5 ensures that ZG has no zeros in the region \scrD \Delta of width
\tau \Delta around the real interval [0, 1]. For technical convenience we will actually work
with a slightly smaller zero-free region consisting of the rectangle

\scrD \prime 
\Delta = \{ w \in \BbbC :  - \tau \prime \Delta \leq \Re w \leq 1 + \tau \prime \Delta ; | \Im w| \leq \tau \prime \Delta \} ,
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where \tau \prime \Delta = \tau \Delta /
\surd 
2. Note that \scrD \prime 

\Delta \subset \scrD \Delta so \scrD \prime 
\Delta is also zero-free. In the rest of this

section, we drop the subscript \Delta from these quantities.
Now let f(z) be a complex polynomial of degree d for which f(0) is easy to

evaluate, and suppose we wish to approximate f(1). Barvinok's basic paradigm [2,
section 2.2] achieves this under the assumption that f has no zeros in the open disk
\scrB (0, 1 + \delta ) of radius 1 + \delta centered at 0: the approximation simply consists of the
first k = O( 1\delta log(

d
\varepsilon \delta )) terms of the Taylor expansion of log f around 0. (Note that

this expansion is absolutely convergent within \scrB (0, 1 + \delta ) by the zero-freeness of f .)
These terms can in turn be expressed as linear combinations of the first k coefficients
of f itself. We now sketch how to reduce our computation of ZG(w) to this situation.

First, for any fixed w \in [0, 1], define the polynomial g(z) := ZG(z(w - 1)+1). Note
that g(0) = ZG(1) is trivial, while g(1) = ZG(w) is the value we are trying to compute.
Moreover, plainly g(z) \not = 0 for all z \in \scrD \prime . Next, define a polynomial \phi : \BbbC \rightarrow \BbbC that
maps the disk \scrB (0, 1 + \delta ) into the rectangle \scrD \prime , so that \phi (0) = 0 and \phi (1) = 1;
Barvinok [2, Lemma 2.2.3] gives an explicit construction of such a polynomial, with
degree N = exp(\Theta (\tau  - 1)) and with \delta = exp( - \Theta (\tau  - 1)). Now we have reduced the
computation of ZG(w) to that of f(1), where f(z) := g(\phi (z)) is a polynomial of
degree deg(g) \cdot deg(\phi ) = mN that is nonzero on the disk \scrB (0, 1+ \delta ), so the framework
of the previous paragraph applies. Note that the number of terms required in the
Taylor expansion of log f is k = O( 1\delta log(

mN
\varepsilon \delta )) = exp(O(\tau  - 1)) log(n\Delta \varepsilon ).

Naive computation of these k terms requires time n\Theta (k), which yields only a quasi-
polynomial algorithm since k contains a factor of log n. This complexity comes from
the need to enumerate all colorings of subgraphs induced by up to k edges. However, a
technique of Patel and Regts [46], based on Newton's identities and an observation of
Csikv\'ari and Frenkel [10], can be used to reduce this computation to an enumeration
over subgraphs induced by connected sets of edges (see [46, section 6] for details). Since

G has bounded degree, this reduces the complexity to \Delta O(k) = (n\Delta \varepsilon )log(\Delta ) exp(O(\tau  - 1)).
For any fixed \Delta this is polynomial in (n/\varepsilon ), thus satisfying the requirement of an
FPTAS.

Note that the degree of the polynomial is exponential in \tau  - 1; since \tau  - 1 in turn is
exponential in \Delta (see the discussion following the proof of Theorem 1.5), the degree
of the polynomial is doubly exponential in \Delta . The same discussion explains how this
can be improved to singly exponential for the case of uniformly large list sizes.

4. Properties of the real-valued recurrence. In this section we prove some
basic properties of the real-valued recurrence in Lemma 3.4, that is, in the case where
w \in [0, 1] is real (and hence \gamma = 1 - w \in [0, 1]).

We remark that in all graphs G appearing in our analysis, we will be able to
assume that for any unpinned vertex u in G, | L(u)| \geq degG(u) + 1. Thus, ZG(w) \not = 0
whenever either (i) w \in (0, 1]; or (ii) w = 0 and G is unconflicted. As discussed in
the previous section, this implies that the marginal ratios and the pseudo marginal
probabilities are well defined, and, further, the latter are actual probabilities. Note
also that G is not connected, and G\prime is the connected component containing u; then

we have R
(i,j)
G,u (w) = R

(i,j)
G\prime ,u(w) and \scrP G,w [c(u) = i] = \scrP G\prime ,w [c(u) = i].

As noted in the introduction, we will prove our main theorem about zero-freeness
under a certain abstract condition on list-coloring instances which we call admissi-
bility. In this section, we define admissibility and then show that all three classes
of instances referred to in Theorems 1.2 and 1.3 and Proposition 1.4 are admissible.
The last two sections of the paper will be devoted to proving zero-freeness for all
admissible instances.
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To define admissibility, we augment our list-coloring instances by marking certain
unpinned vertices; we call the resulting instances marked instances.

The first key property of admissible instances is that they are ``hereditary"" in the
following sense.

Definition 4.1 (hereditary). A condition on marked list-coloring instances is
hereditary if it is preserved under each of the following operations:

1. Remove a pinned vertex from the graph without changing the set of marked
vertices.

2. Pin a marked vertex u to any color in its list L(u), and mark (if they are not
already marked) all unpinned neighbors of u. (Note that u itself is no longer
marked since it is now a pinned vertex, while all other marked vertices, if
any, remain marked.)

3. Given a graph G and a marked unpinned vertex u in G, take any neighbor

vk of u and colors i, j in the list L(u), and construct the instance G
(i,j)
k as

in Definition 3.3, with the set of marked vertices in G
(i,j)
k consisting of all

unpinned neighbors of u in G and all other marked vertices v\prime in G.
4. Take a connected component H of G, with the set of marked vertices in H

being those vertices of H that were marked in G.

The second key property of admissible instances is that the marginal distributions
of colors on certain vertices have ``large"" min-entropy. This ``niceness"" property is
spelled out in the following definition. We emphasize that establishing niceness is the
only place in our analysis where the lower bounds on the list sizes are used.

Definition 4.2 (niceness). Given a graph G and an unpinned vertex u in G, let
d be the number of unpinned neighbors of u. We say the vertex u is nice in G if for
any real w \in [0, 1] and any color i \in L(u), PrG,w [c(u) = i] \leq 1

d+2 .

We are now in a position to define admissible instances, as previously advertised.

Definition 4.3 (admissibility). A condition \scrL on marked list-coloring instances
is an admissible list condition if it satisfies all of the following properties:

(i) \scrL is hereditary;
(ii) if a list-coloring instance G satisfies \scrL , then for every unpinned vertex u in

G, | L(u)| \geq degG(u) + 1;
(iii) if a list-coloring instance G satisfies \scrL , and G has at least one unpinned

vertex, then G also has at least one marked unpinned vertex;
(iv) if a list-coloring instance G satisfies \scrL , then for any marked unpinned vertex

u in G, and any unpinned neighbor vk of u, vk is nice in G
(i,j)
k .

We now recall the three conditions on coloring instances from the introduction,
appropriately generalized to include list-coloring and marking.

Condition A. | L(v)| \geq max \{ 2, 2 \cdot degG(v)\} for every unpinned vertex v in G,
and all unpinned vertices are marked.

Condition B. The graph G is triangle-free, and further, for every unpinned ver-
tex v of G,

| L(v)| \geq \alpha \cdot degG(v) + \beta ,

where \alpha is any fixed constant larger than the unique positive solution \alpha  \star of the equation

xe - 
1
x = 1 and \beta = \beta (\alpha ) \geq 2\alpha is a constant chosen so that \alpha \cdot e - 1

\alpha (1+ 1
\beta ) \geq 1. We

note that \alpha  \star lies in the interval [1.763, 1.764], and \beta as chosen above is at least 7/2.
Further, all unpinned vertices are marked.
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Condition C. G is a forest of maximum degree \Delta , with the same list of q \geq \Delta +1
colors for every unpinned vertex. Further, each connected component of the forest that
does not consist entirely of pinned vertices has exactly one marked unpinned vertex,
and all unpinned vertices with pinned vertices as neighbors are marked.

Remark 7. Note that the condition | L(v)| \geq 2 imposed in Condition A above
is without loss of generality, since any vertex with | L(v)| = 1 can be removed from
G after removing the unique color in its list from the lists of its neighbors without
changing the number of colorings of G.

Remark 8. Condition B is essentially identical to Assumption 1 of Gamarnik,
Katz, and Misra [22]. Indeed, an important technical calculation for us, which appears
in Lemma 4.7, is essentially identical to a similar calculation in [22]. The differences
between Condition B and Assumption 1 of [22] are of a technical nature and are driven
by the form of the upper bound we require in Lemma 4.7. In particular, Assumption 1
of [22] puts a somewhat weaker restriction on \beta (\beta \geq 2 +

\surd 
2), but then requires the

stronger condition (1 - 1/\beta ) \cdot \alpha \cdot exp( - 1/\alpha \cdot (1 + 1/\beta ) > 1 on \alpha and \beta together.

Our goal in the remainder of this section is to prove that all three of the above
conditions are admissible.

Lemma 4.4. Conditions A, B, and C above are all admissible.

To prove this lemma, we first verify the easy fact that all three list conditions are
hereditary.

Proposition 4.5. Conditions A, B, and C above are all hereditary.

Proof. Recall that hereditary conditions must be preserved under the four oper-
ations listed in Definition 4.1.

For the first operation, observe that removing any number of pinned vertices does
not increase the degree or change the lists at any unpinned vertices. Further, if the
graph is triangle-free, it remains so after such a removal. Finally, this operation does
not change which vertices are marked. Hence the first operation preserves all three
conditions.

For the second operation, we note that pinning a vertex does not change the degree
or the list at any unpinned vertex. Further, if the graph is either triangle-free or a tree,
it remains so after the operation of pinning a vertex. This already establishes that
the second operation preserves Conditions A and B, as all unpinned vertices remain
marked. For Condition C, we note that on pinning a marked vertex u in the forest,
the component in which u lies breaks into connected components (trees) indexed by
the neighbors of u, none of which are marked in G (since, by the hypothesis, u is the
unique marked vertex in its connected component). Further, the components indexed
by the pinned neighbors of u are just single edges with both endpoints pinned, while
those indexed by an unpinned neighbor v of u get v as their unique marked vertex.
Thus, Condition C is also preserved under the second operation.

We now turn to the third operation. Again, as in the second operation, none
of the lists at the unpinned vertices change, while the degree of vk drops by one.
As all unpinned vertices remain marked, this already establishes that this operation
preserves Conditions A and B. For the case when G is a forest (Condition C), we note

that in G
(i,j)
k , the component of G containing u breaks into connected components

(trees) indexed by the neighbors of u in G. Further, since only u was marked in
its connected component in G, and only the unpinned neighbors of u get marked in

the new connected components created in G
(i,j)
k , the condition that each connected
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component not consisting entirely of pinned vertices must have exactly one marked
vertex is satisfied. Finally, we observe that the only pinned vertices in the newly

created connected components in G
(i,j)
k must correspond to either (i) pinned neighbors

of u in G; or (ii) pinned copies of u that are now neighbors of (marked) vertices that
were the unpinned neighbors of u in G. All these pinned vertices have either a
pinned vertex or a marked vertex as their (unique) neighbor. This establishes that
Condition C is also preserved by the third operation.

Finally, the fourth operation of passing to a connected component trivially main-
tains all three conditions.

Continuing with our proof of Lemma 4.4, we note next that property (ii) is trivially
true for all three of Conditions A, B, and C, while property (iii) is also easily verified in
all three cases. To conclude the proof, it therefore remains only to prove the niceness
property (iv). We do this separately for each of the three conditions in the following
subsections.

Remark 9. In the remainder of this section, we adopt the convention that if G is a
conflicted graph (so that it has no proper colorings) and w = 0, then PrG,w [c(u) = i] =
0 for every color i and every unpinned vertex u in G. This is just to simplify the
presentation in this section by avoiding the need to explicitly exclude this case from
the lemmas below. In the proof of our main result in sections 5 and 6, we will never
consider conflicted graphs in a situation where w could be 0, so that this convention
will then be rendered moot.

4.1. Analysis for Condition A.

Lemma 4.6. Let G be a graph that satisfies Condition A. Then for any unpinned

vertex u in G, and any unpinned neighbor vk of u, we have that vk is nice in G
(i,j)
k .

Proof. For ease of notation, we denote G
(i,j)
k by H and vk by v. Since G satisfies

Condition A, and degH(v) = degG(vk) - 1 (since the neighbor u of vk in G is dropped

in the construction of H = G
(i,j)
k ), we have | LH(v)| = | LG(vk)| \geq 2 degG(vk) \geq 

2 \cdot degH(v) + 2.
Consider any valid coloring10 \sigma \prime of the neighbors of v in H. For k \in LH(v), let nk

denote the number of neighbors of v that are colored k in \sigma \prime . Then for any w \in [0, 1]
and i \in LH(v),

PrH,w [c(v) = i| \sigma \prime ] =
wni

\sum 

j\in LH(v) w
nj

\leq 1

| LH(v)|  - degH(v)
,

since at most degH(v) of the nj can be positive. Note in particular that if i is not
a good color for v in H, then the probability is 0. Since this holds for any coloring
\sigma \prime , we have PrH,w [c(v) = i] \leq 1

| LH(v)|  - degH(v) . Now, let d be the number of unpinned

neighbors of v in H. Noting that degH(v) \geq d, and recalling the observation above
that | LH(v)| \geq 2 degH(v) + 2, we thus have

Pr
G

(i,j)
k ,w

[c(vk) = i] = PrH,w [c(v) = i] \leq 1

| LH(v)|  - degH(v)
\leq 1

d+ 2
.

Thus vk is nice in G
(i,j)
k .

10Here, we say that a coloring \sigma is valid if the color \sigma assigned to any vertex v is from L(v), and
further, in case w = 0, no two neighbors are assigned the same color by \sigma .
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4.2. Analysis for Condition B. Note that, as established in Proposition 4.5,

if G satisfies Condition B, then so does G
(i,j)
k . Thus in order to show that vk is nice

in G
(i,j)
k , it suffices to show the following more general fact.

Lemma 4.7. Let G be any graph that satisfies Condition B, and let u be any
unpinned vertex in G. Then u is nice in G.

The proof of this lemma is almost identical to arguments that appear in the work
of Gamarnik, Katz, and Misra [22] on strong spatial mixing; we include a proof here
for completeness.

Proof. We show first that PrG,w [c(u) = i] \leq 1
\beta whenever LG(u) \geq degG(u) + \beta ;

this will be required later in the proof. To do so, we repeat the arguments in the
proof of Lemma 4.6 to see that PrG,w [c(u) = i] \leq 1

| L(u)|  - degG(u) . The claimed bound

then follows since | L(u)|  - degG(u) \geq \beta .
Next we show that the upper bound of 1

d+2 , where d is the number of unpinned
neighbors of u in G, holds conditioned on every coloring of the neighbors of the
(unpinned) neighbors of u, by following a similar path as in [22]. Consider any valid
coloring \sigma \prime (defined as in the proof of the previous lemma) of the vertices at distance
two from u. Since G is triangle-free, we claim there is a tree T of depth two rooted
at u, with all the leaves pinned according to \sigma \prime , such that

(17) PrG,w [c(u) = i| \sigma \prime ] = PrT,w [c(u) = i] .

To see this, notice that once we condition on the coloring of the vertices at distance
2 from u, the distribution of the color at u becomes independent of the distribution
of colors of vertices at distance 3 or more. Further, because of triangle freeness, no
two neighbors of u have an edge between them, and hence any cycle in the distance-2
neighborhood, if one exists, must go through at least one pinned vertex. We then
observe that such a cycle can be broken by replacing any pinned vertex v\prime in it with
deg(v\prime ) copies, one for each of its neighbors: as discussed earlier, this operation cannot
change the partition function or probabilities. This operation therefore ensures that
every pinned vertex in the resulting graph is now a leaf of a tree T of depth 2 rooted
at u. Further, in T , the root u has d unpinned children, and all vertices at depth 2
are pinned according to \sigma \prime .

Let v1, . . . , vd be the d unpinned neighbors of u in T , and let T1, . . . , Td be the
subtrees rooted at v1, . . . , vd, respectively. For each k \in LG(u), let nk be the number
of neighbors of u that are pinned to color k. Then by Lemma 3.4,

R
(j,i)
T,u (w) =

wnj \cdot \prod d
k=1 (1 - \gamma \cdot \scrP Tk,w [c(vk) = j])

wni \cdot \prod d
k=1 (1 - \gamma \cdot \scrP Tk,w [c(vk) = i])

.

Define tkj := \gamma \cdot PrTk,w [c(vk) = j], and note that from the calculation at the beginning
of the proof, we have 0 \leq tkj \leq \gamma 

\beta \leq 1
\beta \leq 1/2. Note also that tkj = 0 if j \not \in L(vk).

Thus, we have

(18)
\sum 

j\in \Gamma u

tkj = \gamma 
\sum 

j\in \Gamma u\cap L(vk)

PrTk,w [c(vk) = j] \leq \gamma \leq 1.
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Therefore,

PrT,w [c(u) = i] =
1

\sum 

j\in L(v) R
(j,i)
T,v (w)

=
wni \cdot \prod d

k=1 (1 - tki)
\sum 

j\in L(u) w
nj

\prod d
k=1 (1 - tkj)

\leq 1
\sum 

j\in \Gamma u

\prod d
k=1 (1 - tkj)

,(19)

where, in the last inequality we use that nj = 0 when j is good for u in G, and also
that w \in [0, 1].

Since PrG,w [c(u) = i| \sigma \prime ] = PrT,w [c(u) = i], it remains to lower bound the de-

nominator term
\sum 

j\in \Gamma u

\prod d
k=1 (1 - tkj). We begin by recalling the following standard

consequence of the Taylor expansion of ln(1 - x) around 0: when 0 \leq x \leq 1
\beta < 1, and

\beta is such that (1 - 1/\beta )2 \geq 1/2,

ln(1 - x) \geq  - x - x2

2(1 - 1/\beta )2
\geq  - x - x2 \geq  - 

\biggl( 

1 +
1

\beta 

\biggr) 

x.(20)

Note that the condition required of \beta is satisfied since \beta \geq 2\alpha \geq 7/2, as stipulated in
Condition B. Since 0 \leq tkj \leq 1/\beta , we therefore obtain, for every j \in \Gamma u,

d\prod 

k=1

(1 - tkj) \geq 
d\prod 

k=1

exp

\biggl( 

 - 
\biggl( 

1 +
1

\beta 

\biggr) 

tkj

\biggr) 

= exp

\Biggl( 

 - 
\biggl( 

1 +
1

\beta 

\biggr) d\sum 

k=1

tkj

\Biggr) 

.(21)

For convenience of notation, we denote | \Gamma u| by qu. Note that since | L(u)| \geq \alpha deg(u)+
\beta , and u has deg(u) - d pinned neighbors, we have

qu \geq | L(u)|  - (deg(u) - d) \geq | L(u)|  - \alpha (deg(u) - d) \geq \alpha d+ \beta ,(22)

where in the second inequality we use \alpha \geq 1. Now, by the AM-GM inequality, we get

\sum 

j\in \Gamma u

d\prod 

k=1

(1 - tkj) \geq qu

\left( 

 
\prod 

j\in \Gamma u

d\prod 

k=1

(1 - tkj)

\right) 

 

1
qu

\geq qu exp

\left( 

  - 1 + 1/\beta 

qu
\cdot 

d\sum 

k=1

\sum 

j\in \Gamma u

tkj

\right) 

 using eq. (21)

\geq (\alpha d+ \beta ) exp

\biggl( 

 - d(1 + 1/\beta )

\alpha d+ \beta 

\biggr) 

by eqs. (18) and (22)

\geq (d+ 2)\alpha \cdot exp
\biggl( 

 - (1 + 1/\beta )

\alpha 

\biggr) 

using \beta \geq 2\alpha 

\geq (d+ 2),

where the last line uses the stipulation in Condition B that \alpha and \beta satisfy \alpha \cdot 
exp

\Bigl( 

 - (1+1/\beta )
\alpha 

\Bigr) 

\geq 1. From eqs. (17) and (19) we therefore get

PrG,w [c(u) = i| \sigma \prime ] \leq 1

d+ 2
.
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Since this holds for any conditioning \sigma \prime of the colors of the neighbors of the neighbors
of u in G, we then have

PrG,w [c(u) = i] \leq 1

d+ 2
,

which concludes the proof.

4.3. Analysis for Condition C.

Lemma 4.8. Let G be a list-coloring instance that satisfies Condition C (in par-
ticular, G is a forest), and let u be a marked unpinned vertex in G. Then any unpinned

neighbor vk of u is nice in G
(i,j)
k .

Proof. Since G is a forest, and all pinned vertices in the connected component of
u in G must be neighbors of u (since u is, by Condition C, the unique marked vertex

in its component), we see that the connected component of vk in G
(i,j)
k contains no

pinned vertices. Since all unpinned vertices in G have the same list, which is of size
q \geq \Delta + 1 (where \Delta is the maximum degree of G), it follows by symmetry that the
marginal distribution of the color of vk is uniform. Further, since the neighbor u of

vk in G is not present in G
(i,j)
k , we know that vk has d \leq \Delta  - 1 unpinned neighbors

in G
(i,j)
k . Thus, for each i \in L(vk),

Pr
G

(i,j)
k ,w

[c(vk) = i] =
1

q
\leq 1

\Delta + 1
\leq 1

d+ 2
,

which establishes that vk is nice in G
(i,j)
k .

Proof of Lemma 4.4. The proof of Lemma 4.4 now follows by combining Propo-
sition 4.5 and Lemmas 4.6, 4.7, and 4.8, along with the simple observations about
properties (ii) and (iii) preceding Remark 9.

We conclude this section by noting that the niceness condition can be strengthened
in the case when all the list sizes are uniformly large (e.g., as in the case of standard
q-colorings).

Remark 10. In Conditions A and B, if we replace the degree of a vertex by the
maximum degree \Delta (i.e., in Condition A, if we assume | L(v)| \geq 2\Delta , and in Condi-
tion B, if we assume | L(v)| \geq \alpha \Delta +\beta , for each v), then for every vertex v in the graph
G we also have PrG,w [c(v) = i] < min

\bigl\{ 
4
3\Delta , 1

\bigr\} 
.

To see this, notice that the same calculation as in the proof of Lemma 4.6 above
gives

PrG,w [c(v) = i] \leq 1

| L(v)|  - \Delta 
<

4

3\Delta 
,

under the maximum degree versions of both Conditions A and B. We will refer to
this stronger condition on list sizes as the uniformly large list size condition. Note
that the maximum degree versions of the conditions are also admissible by the same
arguments as those for Conditions A and B.

5. Zero-free region for small | \bfitw | . As explained in the introduction, all our
algorithmic results follow from Theorem 1.5, which establishes a zero-free region for
the partition function ZG(w) around the interval [0, 1] in the complex plane. We split
the proof of Theorem 1.5 into two parts: in this section, we establish the existence
of a zero-free disk around the endpoint w = 0 (see Theorem 5.1): this is the most
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delicate case because w = 0 corresponds to proper colorings. Then in section 6 (see
Theorem 6.1) we derive a zero-free region around the remainder of the interval, using a
similar but less delicate approach. Taken together, Theorems 5.1 and 6.1 immediately
imply Theorem 1.5, so this will conclude our analysis.

Theorem 5.1. Fix a positive integer \Delta , and let \scrL be an admissible list condition.
There exists a \nu w = \nu w(\Delta ) such that the following is true. Let G be a graph of
maximum degree \Delta satisfying the admissible list condition \scrL , and having no pinned
vertices. Then, ZG(w) \not = 0 for any w satisfying | w| \leq \nu w.

In the proof, we will encounter several constants which we now fix. Given the
degree bound \Delta \geq 1, we define

(23) \varepsilon R :=
0.01

\Delta 2
; \varepsilon I := \varepsilon R \cdot 0.01

\Delta 2
; and \varepsilon w := \varepsilon I \cdot 

0.01

\Delta 3
.

We will then see that the quantity \nu w in the statement of the theorem can be chosen
to be 0.2\varepsilon w/2

\Delta . (In fact, we will show that if one has the slightly stronger assumption
of uniformly large list sizes, as considered in Remark 10, then \nu w can be chosen to be
\varepsilon w/(300\Delta ).)

Throughout the rest of this section, we fix \Delta to be the maximum degree of the
graphs, and let \varepsilon w, \varepsilon I , \varepsilon R be as above.

We now briefly outline our strategy for the proof. Recall that, for a vertex u and

colors i, j, the marginal ratio is given by R
(i,j)
G,u (w) =

Z
(i)
G,u(w)

Z
(j)
G,u(w)

. When G is an uncon-

flicted graph, R
(i,j)
G,u (0) is always a well-defined nonnegative real number. Intuitively,

we would like to show that R
(i,j)
G,u (w) \approx R

(i,j)
G,u (0), independent of the size of G, when

w \in \BbbC is close to 0. Given such an approximation, one can use a simple geometric ar-
gument (see Consequence 5.3) to conclude that the partition function does not vanish
for such w. In order to prove the above approximate equality inductively for a given
graph G, we take an approach that exploits the properties of the ``real"" case (i.e., of

R
(i,j)
G,u (0)) and then uses the notion of ``niceness"" of certain vertices described earlier to

control the accumulation of errors. To this end, we will prove the following lemma via
induction on the number of unpinned vertices in G. Theorem 5.1 will follow almost
immediately from the lemma; see the end of this section for the details. Throughout
the section, we fix an admissible list condition \scrL , and a w \in \BbbC satisfying | w| \leq \nu w (as
in the statement of Theorem 5.1).

Lemma 5.2. Let G be an unconflicted graph of maximum degree \Delta satisfying an
admissible list condition \scrL , and let u be any marked unpinned vertex in G. Then, the
following are true (with \varepsilon w, \varepsilon I , and \varepsilon R as defined in eq. (23)):

1. For i \in \Gamma u,
\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| > 0.

2. For i, j \in \Gamma u, if u has all neighbors pinned, then R
(i,j)
G,u (w) = R

(i,j)
G,u (0) = 1.

3. For i, j \in \Gamma u, if u has d \geq 1 unpinned neighbors, then

1

d

\bigm| 
\bigm| 
\bigm| \Re lnR

(i,j)
G,u (w) - \Re lnR

(i,j)
G,u (0)

\bigm| 
\bigm| 
\bigm| < \varepsilon R.

4. For i, j \in \Gamma u, if u has d \geq 1 unpinned neighbors, then 1
d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| < \varepsilon I .

5. For i \not \in \Gamma u, j \in \Gamma u, we have
\bigm| 
\bigm| 
\bigm| R

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq \varepsilon w.
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We will refer to items 1 to 5 as ``items of the induction hypothesis."" The rest
of this section is devoted to the proof of this lemma via induction on the number of
unpinned vertices in G.

We begin by verifying that the induction hypothesis holds in the base case when
u is the only unpinned vertex in an unconflicted graph G. In this case, items 3 and
4 are vacuously true since u has no unpinned neighbors. Since all neighbors of u in
G are pinned, the fact that all pinned vertices have degree at most one implies that
G can be decomposed into two disjoint components G1 and G2, where G1 consists
of u and its pinned neighbors, while G2 consists of a disjoint union of unconflicted
edges (since G is unconflicted). Now, since G1 and G2 are disjoint components, we

have Z
(i)
G,u(w) = ZG2

(w) = 1 for all i \in \Gamma G,u and all w \in \BbbC . This proves items 1 and

2. Similarly, when i \not \in \Gamma G,u, we have Z
(i)
G,u(w) = wni , where ni \geq 1 is the number of

neighbors of u pinned to color i. This gives
\bigm| 
\bigm| 
\bigm| R

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq | w| ni \leq \varepsilon w,

since | w| \leq \varepsilon w \leq 1, and proves item 5.
We now derive some consequences of the above induction hypothesis that will be

helpful in carrying out the induction. Throughout, we assume that G is an uncon-
flicted graph satisfying an admissible list condition \scrL , and u is a marked unpinned
vertex in G.

Consequence 5.3. | ZG(w)| \geq 0.9mini\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,v(w)

\bigm| 
\bigm| 
\bigm| > 0.

Proof. Note that ZG(w) =
\sum 

i\in L(u) Z
(i)
G,u(w). Recall also that since u is an un-

pinned vertex in G and G satisfies an admissible list condition \scrL , we have

| L(u)| \geq degG(u) + 1.

Now, from item 4, we see that the angle between the complex numbers Z
(i)
G,u(w)

and Z
(j)
G,u(w), when i, j \in \Gamma u, is at most d\varepsilon I . Applying Lemma 3.7 to the terms

corresponding to the good colors and item 5 to the terms corresponding to the bad
colors, we then have

\bigm| 
\bigm| 
\bigm| 
\bigm| 

\sum 

i\in L(u)

Z
(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\geq 

\biggl( 

| \Gamma u| cos
d\varepsilon I
2

 - | L(u) \setminus \Gamma u| \varepsilon w
\biggr) 

min
i\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| 

\geq 
\biggl( 

cos
d\varepsilon I
2

 - degG(u) \cdot \varepsilon w
\biggr) 

min
i\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| ,

where we use the fact that | L(u) \setminus \Gamma u| \leq degG(u) and | L(u)| \geq degG(u)+1 in the last

inequality. Since d\varepsilon I \leq 0.01 and \varepsilon w \leq 0.01/\Delta , we then have
\bigm| 
\bigm| 
\bigm| 
\sum 

i\in L(u) Z
(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| \geq 

0.9mini\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,v(w)

\bigm| 
\bigm| 
\bigm| , which in turn is positive from item 1.

Consequence 5.4. The pseudo probabilities approximate the real probabilities in
the following sense:

1. for any i \not \in \Gamma u, | \scrP G,w [c(u) = i]| \leq 1.2\varepsilon w;
2. for any j \in \Gamma u,

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\Im ln

\scrP G,w [c(u) = j]

\scrP G [c(u) = j]

\bigm| 
\bigm| 
\bigm| 
\bigm| 
= | \Im ln\scrP G,w [c(u) = j]| \leq d\varepsilon I + 2\Delta \varepsilon w,
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and
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\Re ln

\scrP G,w [c(u) = j]

\scrP G [c(u) = j]

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\leq d\varepsilon R + d\varepsilon I + 2\Delta \varepsilon w,

where d is the number of unpinned neighbors of u in G.

Proof. For part 1, by Consequence 5.3 we have

| \scrP G,w [c(u) = i]| =

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| 

| ZG(w)| 

\leq 

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| 

0.9minj\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(j)
G,u(w)

\bigm| 
\bigm| 
\bigm| 

\leq 1.2\varepsilon w,

where the last inequality follows from induction hypothesis item 5.
For part 2, by items 2 to 4 of the induction hypothesis, there exist complex

numbers \xi i (for all i \in \Gamma u) satisfying | \Re \xi i| \leq d\varepsilon R and | \Im \xi i| \leq d\varepsilon I such that

1

\scrP G,w [c(u) = j]
=

\sum 

i\in L(u)

Z
(i)
G,u(w)

Z
(j)
G,u(w)

=
\sum 

i\in \Gamma u

Z
(i)
G,u(0)

Z
(j)
G,u(0)

e\xi i

\underbrace{}  \underbrace{}  

:=A

+
\sum 

i\in L(u)\setminus \Gamma u

Z
(i)
G,u(w)

Z
(j)
G,u(w)

\underbrace{}  \underbrace{}  

:=B

.

Next we show that A \approx 1
\scrP G[c(u)=j] and B is negligible. From item 5 of the induction

hypothesis we have

(24) \scrP G [c(u) = j] \cdot | B| \leq \Delta \varepsilon w.

Now, note that
\sum 

i\in \Gamma u

Z
(i)
G,u(0)

Z
(j)
G,u(0)

= 1
\scrP G[c(u)=j] . Further, when \varepsilon I \leq 0.1/\Delta , we also have11

(25) \Re e\xi i \in 
\bigl( 
e - d\varepsilon R  - d2\varepsilon 2I , e

d\varepsilon R
\bigr) 
, and | arg e\xi i | \leq d\varepsilon I .

The above will therefore be true also for any convex combination of the e\xi i . Noting
that \scrP G [c(u) = j] \cdot A is just such a convex combination (as the coefficients of the e\xi i

are non-negative reals summing to 1), we have

\scrP G [c(u) = j] \cdot \Re A \in (e - d\varepsilon R  - d2\varepsilon 2I , e
d\varepsilon R),(26)

| arg (\scrP G [c(u) = j] \cdot A) | \leq d\varepsilon I .(27)

Together, eqs. (24), (26), and (27) imply that if C := \scrP G[c(u)=j]
\scrP G,w[c(u)=j] , then (using the

values of \varepsilon R, \varepsilon I , and \varepsilon w)
12

\Re C \in 
\bigl( 
e - d\varepsilon R  - d2\varepsilon 2I  - \Delta \varepsilon w, e

d\varepsilon R +\Delta \varepsilon w
\bigr) 
, and

argC \in ( - d\varepsilon I  - 2\Delta \varepsilon w, d\varepsilon I + 2\Delta \varepsilon w) .

11Here, we also use the elementary facts that if z is a complex number satisfying \Re z = r and
| \Im z| = \theta \leq 0.1, then | arg ez | = | \Im z| = \theta , and er \geq \Re ez = er cos \theta = exp(r+ ln cos \theta ) \geq exp(r - \theta 2) \geq 
er  - er\theta 2. Hence if r < 0, we have \Re ez \geq er  - \theta 2.

12Here, for the second inclusion, we use the following elementary computation. Let z, s be complex
numbers such that \Re z = r \in [0.9, 1.1], | arg z| = \theta \leq 0.1, and | s| \leq 0.1. Then, we have \Re (z+s) \geq r - | s| 
and | \Im (z + s)| \leq r\theta + | s| . Thus, | arg(z + s)| \leq | \Im (z+s)| 

| \Re (z+s)| 
\leq r\theta +| s| 

r - | s| 
= \theta + | s| \cdot 1+\theta 

r - | s| 
\leq \theta + 2 | s| .
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Thus, since \varepsilon I , \varepsilon R are small enough and \varepsilon w \leq 0.01min \{ \varepsilon I , \varepsilon R\} , we have

| \Re lnC| \leq d\varepsilon R + d\varepsilon I + 2\Delta \varepsilon w, and

| \Im lnC| \leq d\varepsilon I + 2\Delta \varepsilon w.

Here we use the elementary fact that for z \in \BbbC , \Re ln z = ln | z| and \Im ln z = arg z.
Further, for z satisfying \Re z = r \in [0.9, 1.1] and | arg z| = \theta \leq 0.1, we also have
ln r \leq \Re ln z \leq ln r + ln sec \theta \leq ln r + \theta 2.

In the next consequence, we show that the error contracts during the induction.
We first set up some notation. For a graph G, a vertex u, and a color i \in \Gamma u, we let

a
(i)
G,u(w) = ln\scrP G,w [c(u) = i]. We also recall that \gamma := 1 - w, and the definition of the

function f\gamma (x) :=  - ln(1 - \gamma ex) from eq. (16).

Consequence 5.5. There exists a positive constant \eta \in [0.9, 1) so that the fol-
lowing is true. Let d be the number of unpinned neighbors of u. Assume further
that u is nice in G. Then, for any colors i, j \in \Gamma u, there exists a real number
C = CG,u,i \in [0, 1

d+\eta ] such that

\bigm| 

\bigm| 

\bigm| 
\Re f\gamma (a

(i)
G,u(w)) - f1(a

(i)
G,u(0)) - C \cdot \Re (a

(i)
G,u(w) - a

(i)
G,u(0))

\bigm| 

\bigm| 

\bigm| 
\leq \varepsilon I + \varepsilon w;

(28)

\bigm| 

\bigm| 

\bigm| 
\Im f\gamma (a

(i)
G,u(w)) - \Im f\gamma (a

(j)
G,u(w))

\bigm| 

\bigm| 

\bigm| 
\leq 

1

d+ \eta 
\cdot (d\varepsilon I + 4\Delta \varepsilon w) + 2\varepsilon w;(29)

\bigm| 

\bigm| 

\bigm| 
\Im f\gamma (a

(i)
G,u(w))

\bigm| 

\bigm| 

\bigm| 
\leq 

1

d+ \eta 
\cdot (d\varepsilon I + 4\Delta \varepsilon w) + \varepsilon w.(30)

Proof. Since u is nice in G, the bound \scrP G,0 [c(u) = k] \leq 1
d+2 (for any k \in \Gamma G,u)

applies. Combining them with Consequence 5.4 we see that a
(i)
G,u(w), a

(i)
G,u(0), a

(j)
G,u(w),

a
(j)
G,u(0) lie in a domain D as described in Lemma 3.6 (with the parameter \kappa therein

set to 1), with the parameters \zeta and \tau in that observation chosen as

(31)
\zeta = ln(d+ 2) - d\varepsilon R  - d\varepsilon I  - 2\Delta \varepsilon w , and

\tau = d\varepsilon I + 2\Delta \varepsilon w.

Here, for the bound on \zeta , we use the fact that for j \in \Gamma G,u, \scrP G [c(u) = j] \leq 1
d+2 ,

which is due to u being nice in G.
The bounds on \varepsilon w, \varepsilon I , and \varepsilon R now imply e\zeta \geq (d + 2)

\bigl( 
1 - 0.02

\Delta 

\bigr) 
\geq d + 1.94,

and also that \tau \leq 0.02/\Delta . Thus, the conditions required on \zeta and \tau in Lemma 3.6
(i.e., that \tau < 1/2 and \tau 2 + e - \zeta < 1) are satisfied. Further, \rho R and \rho I as set in the
observation satisfy \rho R \leq 1

d+\eta , where \eta can be taken to be 0.94, and \rho I < 3\varepsilon I .

Using Lemma 3.5 followed by the value of \varepsilon w, and noting that a
(i)
G,u(0) is a real

number, we then have
\bigm| 

\bigm| 

\bigm| 
\Re f1(a

(i)
G,u(w)) - f1(a

(i)
G,u(0)) - C \cdot \Re 

\Bigl( 

a
(i)
G,u(w) - a

(i)
G,u(0)

\Bigr) 
\bigm| 

\bigm| 

\bigm| 
\leq \rho I \cdot 

\bigm| 

\bigm| 

\bigm| 
\Im 
\Bigl( 

a
(i)
G,u(w) - a

(i)
G,u(0)

\Bigr) 
\bigm| 

\bigm| 

\bigm| 

\leq 3\varepsilon I(d\varepsilon I + 2\Delta \varepsilon w) \leq 4d\varepsilon 2I \leq \varepsilon I(32)

for an appropriate nonnegative C \leq 1/(d+ \eta ). This is almost eq. (28); the difference
will be handled later.

Similarly, applying Lemma 3.5 to the imaginary part we have

(33)
\bigm| 
\bigm| 
\bigm| \Im f1(a(i)G,u(w)) - \Im f1(a(j)G,u(w))

\bigm| 
\bigm| 
\bigm| 

\leq \rho R \cdot max
\Bigl\{ \bigm| 
\bigm| 
\bigm| \Im 

\Bigl( 

a
(i)
G,u(w) - a

(j)
G,u(w)

\Bigr) \bigm| 
\bigm| 
\bigm| ,

\bigm| 
\bigm| 
\bigm| \Im a(i)G,u(w)

\bigm| 
\bigm| 
\bigm| ,

\bigm| 
\bigm| 
\bigm| \Im a(j)G,u(w)

\bigm| 
\bigm| 
\bigm| 

\Bigr\} 

,
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where, as noted above, \rho R \leq 1
d+\eta . Now, note that the first term in the above maximum

is less than d\varepsilon I by item 4 of the induction hypothesis, while the other two terms are
at most d\varepsilon I + 2\Delta \varepsilon w from item 2 of Consequence 5.4. This is almost the bound in
eq. (29); again, the difference will be handled later.

To prove the bound in eq. (30), we first apply the imaginary part of Lemma 3.5

along with the fact that \Im a(i)G,u(0) = 0 to get

\bigm| 
\bigm| 
\bigm| \Im f1(a(i)G,u(w))

\bigm| 
\bigm| 
\bigm| =

\bigm| 
\bigm| 
\bigm| \Im f1(a(i)G,u(w)) - f1(a

(i)
G,u(0))

\bigm| 
\bigm| 
\bigm| 

\leq \rho R \cdot 
\bigm| 
\bigm| 
\bigm| \Im 

\Bigl( 

a
(i)
G,u(w)

\Bigr) \bigm| 
\bigm| 
\bigm| 

\leq 1

d+ \eta 
(d\varepsilon I +\Delta \varepsilon w).(34)

Finally, we use item 2 of Lemma 3.6 (with the parameter \kappa \prime therein set to \gamma )
to conclude the proofs of eqs. (28) to (30). To this end, we note that \gamma satisfies
| \gamma  - 1| \leq \varepsilon w, so that the condition (1 + \varepsilon w) < e\zeta required for item 2 to apply is
satisfied. Thus we see that for any z \in D,

| f\gamma (z) - f1(z)| \leq \varepsilon w,

so that the quantities | \Re f\gamma (a(i)G,u(w)) - \Re f1(a(i)G,u(w))| , | \Im f\gamma (a
(i)
G,u(w)) - \Im f1(a(i)G,u(w))| ,

| \Im f\gamma (a(j)G,u(w))  - \Im f1(a(j)G,u(w))| , and | \Im f\gamma (a(j)G,u(w))  - \Im f1(a(j)G,u(w))| are all at most
\varepsilon w. The desired bounds of eqs. (28) to (30) now follow from the triangle inequality
and the bounds in eqs. (32) to (34).

We set up some further notation for the next consequence. For a color i \in L(u)\setminus \Gamma u

we let b
(i)
G,u(w) = \scrP G,w [c(u) = i]. We then consider the function g\gamma (x) :=  - ln(1 - \gamma x).

Consequence 5.6. For every color i \not \in \Gamma u,
\bigm| 
\bigm| 
\bigm| g\gamma (b

(i)
G,u(w))

\bigm| 
\bigm| 
\bigm| \leq 2\varepsilon w.

Proof. Item 1 of Consequence 5.4 implies that
\bigm| 
\bigm| 
\bigm| b

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| \leq 1.2\varepsilon w. Thus, recalling

that | \gamma  - 1| \leq \varepsilon w, we get that for all \varepsilon w < 0.01,
\bigm| 
\bigm| 
\bigm| g\gamma (b

(i)
G,u(w))

\bigm| 
\bigm| 
\bigm| =

\bigm| 
\bigm| 
\bigm| ln(1 - \gamma b

(i)
G,u(w))

\bigm| 
\bigm| 
\bigm| \leq 

2\varepsilon w.

Inductive proof of Lemma 5.2. We are now ready to see the induction step in
the proof of Lemma 5.2; recall that the base case (when u is the only unpinned vertex
in G) was already established immediately following the statement of the lemma. Let
G be any unconflicted graph which satisfies the admissible list condition \scrL and has at
least two unpinned vertices. We first prove induction item 1 for any marked unpinned
vertex u in G. Consider the graph G\prime obtained from G by pinning vertex u to color

i. Note that by the definition of the pinning operation, Z
(i)
G,u(w) = ZG\prime (w). When

i \in \Gamma G,u, the graph G\prime is also unconflicted and, further, since \scrL is hereditary (because
it is admissible), satisfies the admissible list condition \scrL . Also, G\prime has one fewer
unpinned vertex than G. Thus, from Consequence 5.3 of the induction hypothesis

applied to G\prime , we have that
\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| = | ZG\prime (w)| > 0.

We now consider item 2. When all neighbors of u in G are pinned, the fact that
all pinned vertices have degree at most one implies that G can be decomposed into
two disjoint components G1 and G2, where G1 consists of u and its pinned neighbors,
while G2 is also unconflicted (when G is unconflicted) and has one fewer unpinned
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vertex than G. Note also that G2, being a connected component of G, also satisfies
the admissible list condition \scrL (since \scrL is hereditary). Thus, from Consequence 5.3
of the induction hypothesis applied to G2, we get that ZG2

(w) and ZG2
(0) are both

nonzero. Now, since G1 and G2 are disjoint components, we have Z
(k)
G,u(x) = ZG2(x)

for all k \in \Gamma G,u and all x \in \BbbC . It therefore follows that when i, j \in \Gamma G,u, R
(i,j)
G,u (w) =

R
(i,j)
G,u (0) = 1.

We now consider items 3 and 4. Recall that by Lemma 3.4, we have

(35) R
(i,j)
G,u (w) =

degG(u)
\prod 

k=1

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = i]

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = j]
.

For simplicity we writeGk := G
(i,j)
k . Note that when i, j \in \Gamma G,u, andG is unconflicted,

so are the Gk. Note also that when i, j \in \Gamma G,u, we can restrict the product above
to the d unpinned neighbors of u, since for such i, j, the contribution of the factor
corresponding to a pinned neighbor is 1, irrespective of the value of w. Without loss
of generality, we relabel these unpinned neighbors as v1, v2, . . . , vd.

Since \scrL is hereditary, Gk also satisfies \scrL , and the vertex vk is marked in Gk (since
u was marked in G). Further, each Gk has exactly one fewer unpinned vertex than
G, so that the induction hypothesis applies to each Gk at the vertex vk.

Now, as before, for s \in \Gamma Gk,vk we define a
(s)
Gk,vk

(w) := ln\scrP Gk,w [c(vk) = s]; while

for t \in L(vk) \setminus \Gamma Gk,vk we let b
(t)
Gk,vk

(w) := \scrP Gk,w [c(vk) = t]. For a graph G, a vertex
u, and a color s, we let BG,u(s) be the set of those neighbors of u for which s is a bad
color in G\setminus \{ u\} . For simplicity we will also write B(s) := BG,u(s) when it is clear from
the context. As before, we have \gamma = 1 - w, f\gamma (x) =  - ln(1 - \gamma ex), g\gamma (x) =  - ln(1 - \gamma x).
From the above recurrence, we then have

 - lnR
(i,j)
G,u (w) =

\sum 

vk\in B(i)\cap B(j)

\Bigl( 

f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \Bigr) 

+
\sum 

vk\in B(i)\cap B(j)

f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - 
\sum 

vk\in B(i)\cap B(j)

f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - 
\sum 

vk\in B(i)\cap B(j)

g\gamma 

\Bigl( 

b
(j)
Gk,vk

(w)
\Bigr) 

+
\sum 

vk\in B(i)\cap B(j)

g\gamma 

\Bigl( 

b
(i)
Gk,vk

(w)
\Bigr) 

+
\sum 

vk\in B(i)\cap B(j)

\Bigl( 

g\gamma 

\Bigl( 

b
(i)
Gk,vk

(w)
\Bigr) 

 - g\gamma 

\Bigl( 

b
(j)
Gk,vk

(w)
\Bigr) \Bigr) 

.(36)

Note that the same recurrence also applies when w is replaced by 0 (and hence \gamma by
1), except in that case the last three sums are 0 (as, when i is bad for vk in Gk, we

have b
(i)
Gk,vk

(0) := PrGk
[c(vk) = i] = 0):

 - lnR
(i,j)
G,u (0) =

\sum 

vk\in B(i)\cap B(j)

\Bigl( 

f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \Bigr) 

+
\sum 

vk\in B(i)\cap B(j)

f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) 

 - 
\sum 

vk\in B(i)\cap B(j)

f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) 

.(37)

Further, by Consequence 5.6 of the induction hypothesis applied to the graph Gk

at a vertex vk \in B(i) (respectively, vk \in B(j)) we see that
\bigm| 
\bigm| 
\bigm| g\gamma 

\Bigl( 

b
(i)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq 2\varepsilon w
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(respectively,
\bigm| 
\bigm| 
\bigm| g\gamma 

\Bigl( 

b
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq 2\varepsilon w). Thus, applying the triangle inequality to the

real part of the difference of the two recurrences, we get

1

d

\bigm| 
\bigm| 
\bigm| \Re lnR

(i,j)
G,u (0) - lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq 2\Delta \varepsilon w

+max

\Biggl\{ 

max
vk\in B(i)\cap B(j)

\Bigl\{ \bigm| 
\bigm| 
\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \Bigr) \bigm| 

\bigm| 
\bigm| 

\Bigr\} 

,

max
vk\in B(i)\cap B(j)

\Bigl\{ \bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| 

\Bigr\} 

,

max
vk\in B(j)\cap B(i)

\Bigl\{ \bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| 

\Bigr\} 
\Biggr\} 

.(38)

In what follows, we let vk be the vertex that maximizes the above expression
and dk be the number of unpinned neighbors of vk in Gk. Before proceeding with
the analysis, we recall the observation above that the graphs Gk are unconflicted and
satisfy the admissible list condition \scrL . Further, we note that vk is (i) marked in Gk

(this follows from the fact that \scrL is hereditary); and (ii) nice in Gk (this last fact
follows from Lemma 4.4 and the fact that G satisfies the admissible list condition \scrL ).
Thus, the preconditions of Consequence 5.5 apply to the vertex vk in graph Gk. We
now proceed with the analysis.

We first consider vk \in B(i) \cap B(j). Note that this implies that i \in \Gamma Gk,vk . Thus,
the conditions of Consequence 5.5 of the induction hypothesis instantiated on Gk

apply to vk with color i, and we thus have from eq. (28) that

\bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq 1

dk + \eta 

\bigm| 
\bigm| 
\bigm| \Re a(i)Gk,vk

(w) - a
(i)
Gk,vk

(0)
\bigm| 
\bigm| 
\bigm| + \varepsilon I + \varepsilon w,

where dk is the number of unpinned neighbors of vk and \eta \in [0.9, 1) is as in the
statement of Consequence 5.5. Applying item 2 of Consequence 5.4 (which, again,

is applicable because i \in \Gamma Gk,vk), we then have
\bigm| 
\bigm| 
\bigm| \Re a(i)Gk,vk

(w) - a
(i)
Gk,vk

(0)
\bigm| 
\bigm| 
\bigm| \leq dk(\varepsilon R +

\varepsilon I) + 2\Delta \varepsilon w, so that (recalling \Delta \geq 3 and \eta \geq 0.9, notably for the case dk = 0)

\bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon R + 2\varepsilon I + 3\Delta \varepsilon w.(39)

By interchanging the roles of i and j in the above argument, we see that, for vk \in 
B(j) \cap B(i),

\bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon R + 2\varepsilon I + 3\Delta \varepsilon w.(40)

We now consider vk \in B(i) \cap B(j). Note that both i and j are good for vk in Gk, so
that

\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1
\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1
\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \Bigr) \bigm| 

\bigm| 

\bigm| 

\leq max
i\prime ,j\prime \in \Gamma Gk,vk

\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i\prime )
Gk,vk

(w)
\Bigr) 

 - f1
\Bigl( 

a
(i\prime )
Gk,vk

(0)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j\prime )
Gk,vk

(w)
\Bigr) 

 - f1
\Bigl( 

a
(j\prime )
Gk,vk

(0)
\Bigr) \Bigr) \bigm| 

\bigm| 

\bigm| 
.

D
o
w

n
lo

ad
ed

 1
0
/1

6
/2

3
 t

o
 1

3
6
.1

5
2
.2

0
9
.6

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTITION FUNCTION ZEROS AND ALGORITHMS FOCS19-239

Now, for any color s \in \Gamma Gk,vk , Consequence 5.5 of the induction hypothesis instan-
tiated on Gk and applied to vk and s shows that there exists a Cs = Cs,vk,Gk

\in 
[0, 1/(dk + \eta )] such that

(41)
\bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(s)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(s)
Gk,vk

(0)
\Bigr) 

 - Cs

\Bigl( 

\Re a(s)Gk,vk
(w) - a

(s)
Gk,vk

(0)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq \varepsilon I +\varepsilon w.

Substituting this into the previous display shows that
\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \Bigr) 

\bigm| 

\bigm| 

\bigm| 

\leq \mathrm{m}\mathrm{a}\mathrm{x}
i\prime ,j\prime \in \Gamma Gk,vk

\bigm| 

\bigm| 

\bigm| 
Ci\prime (\Re a

(i\prime )
Gk,vk

(w) - a
(i\prime )
Gk,vk

(0)) - Cj\prime (\Re a
(j\prime )
Gk,vk

(w) - a
(j\prime )
Gk,vk

(0))
\bigm| 

\bigm| 

\bigm| 
+ 2\varepsilon I + 2\varepsilon w

= 2\varepsilon I + 2\varepsilon w + \mathrm{m}\mathrm{a}\mathrm{x}
i\prime ,j\prime \in \Gamma Gk,vk

| Ci\prime \Re \xi i\prime  - Cj\prime \Re \xi j\prime | 

= 2\varepsilon I + 2\varepsilon w + Cs\Re \xi s  - Ct\Re \xi t,
(42)

where \xi l := a
(l)
Gk,vk

(w) - a
(l)
Gk,vk

(0) for l \in \Gamma Gk,vk , and s and t are given by

s := argmax
i\prime \in \Gamma Gk,vk

Ci\prime \Re \xi i\prime and t := argmin
i\prime \in \Gamma Gk,vk

Ci\prime \Re \xi i\prime .

We now have the following two cases.

Case 1: (\Re \xi s) \cdot (\Re \xi t) \leq 0. Recall that Cs, Ct are nonnegative and lie in [0, 1/(dk+
\eta )]. Thus, in this case, we must have \Re \xi s \geq 0 and \Re \xi t \leq 0, so that

Cs\Re \xi s  - Ct\Re \xi t = Cs\Re \xi s + Ct | \Re \xi t| \leq 
\Re \xi s + | \Re \xi t| 

dk + \eta 
=

| \Re \xi s  - \Re \xi t| 
dk + \eta 

.(43)

Now, note that

\Re \xi s  - \Re \xi t = \Re ln
\scrP Gk,w [c(vk) = s]

\scrP Gk
[c(vk) = s]

 - \Re ln
\scrP Gk,w [c(vk) = t]

\scrP Gk
[c(vk) = t]

= \Re ln
\scrP Gk,w [c(vk) = s]

\scrP Gk,w [c(vk) = t]
 - \Re ln

\scrP Gk
[c(vk) = s]

\scrP Gk
[c(vk) = t]

= \Re lnR
(s,t)
Gk,vk

(w) - lnR
(s,t)
Gk,vk

(0).

Note that all the logarithms in the above are well defined from Consequence 5.4 of the
induction hypothesis applied to Gk and vk (as s, t \in \Gamma Gk,vk). Further, from items 2
and 3 of the induction hypothesis, the last term is at most dk\varepsilon R in absolute value.
Substituting this into eq. (43), we get

(44) Cs\Re \xi s  - Ct\Re \xi t \leq 
dk

dk + \eta 
\varepsilon R.

This concludes the analysis of Case 1.

Case 2: \Re \xi i\prime for i\prime \in \Gamma Gk,vk
all have the same sign. Suppose first that \Re \xi i\prime \geq 0

for all i\prime \in \Gamma Gk,vk . Then, we have

(45) 0 \leq Cs\Re \xi s  - Ct\Re \xi t \leq 
\Re \xi s

dk + \eta 
\leq dk \cdot \varepsilon R

dk + \eta 
+ \varepsilon I + 4\Delta \varepsilon w,
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where the last inequality follows from item 2 of Consequence 5.4 of the induction
hypothesis applied to Gk at vertex vk with color s, which states that | \Re \xi s| \leq dk(\varepsilon R +
\varepsilon I) + 4\Delta \varepsilon w. Similarly, when \Re \xi i\prime \leq 0 for all i\prime \in \Gamma Gk,vk , we have

0 \leq Cs\Re \xi s  - Ct\Re \xi t = Ct| \Re \xi t|  - Cs| \Re \xi s| 

\leq | \Re \xi t| 
dk + \eta 

\leq dk \cdot \varepsilon R
dk + \eta 

+ \varepsilon I + 4\Delta \varepsilon w,(46)

where the last inequality follows from item 2 of Consequence 5.4 of the induction
hypothesis applied to Gk at vertex vk with color t, which states that | \Re \xi t| \leq dk(\varepsilon R +
\varepsilon I) + 4\Delta \varepsilon w. This concludes the analysis of Case 2.

Now, substituting eqs. (44) to (46) into eq. (42), we get

(47)
\bigm| 
\bigm| 
\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(i)
Gk,vk

(0)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f1

\Bigl( 

a
(j)
Gk,vk

(0)
\Bigr) \Bigr) \bigm| 

\bigm| 
\bigm| 

\leq dk
dk + \eta 

\varepsilon R + 3\varepsilon I + 5\Delta \varepsilon w.

Substituting eqs. (39), (40), and (47) into eq. (38), we get

1

d

\bigm| 
\bigm| 
\bigm| \Re lnR

(i,j)
G,u (w) - lnR

(i,j)
G,u (0)

\bigm| 
\bigm| 
\bigm| \leq dk \cdot \varepsilon R

dk + \eta 
+ 3\varepsilon I + 7\Delta \varepsilon w < \varepsilon R,

where the last inequality follows since \eta \varepsilon R > (\Delta + 1)(3\varepsilon I + 7\Delta \varepsilon w) (recalling that
0 \leq dk \leq \Delta and \eta \in [0.9, 1)). This verifies item 3 of the induction hypothesis.

For item 4, we consider the imaginary part of eq. (36). As in the derivation of
eq. (38), we use the fact that the induction hypothesis applied to the graph Gk at

the vertex vk \in B(i) (respectively, vk \in B(j)) implies that
\bigm| 
\bigm| 
\bigm| g\gamma 

\Bigl( 

b
(i)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq 2\varepsilon w

(respectively,
\bigm| 
\bigm| 
\bigm| g\gamma 

\Bigl( 

b
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq 2\varepsilon w). This yields

1

d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq 2\Delta \varepsilon w

+max

\Biggl\{ 

max
vk\in B(i)\cap B(j)

\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - \Im f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| ,

max
vk\in B(i)\cap B(j)

\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| , max

vk\in B(j)\cap B(i)

\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| 

\Biggr\} 

.(48)

Again, let vk be the vertex that maximizes the above expression and dk be the number
of unpinned neighbors of vk in Gk. We first consider vk \in B(i) \cap B(j). Applying
eq. (29) of Consequence 5.5 of the induction hypothesis to the graph Gk at vertex vk
with colors i, j \in \Gamma Gk,vk

gives

(49)
\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - \Im f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 6\Delta \varepsilon w.

Now consider vk \in B(i) \cap B(j). For this case, eq. (30) of Consequence 5.5 of the
induction hypothesis applied to Gk at vertex vk with color i \in \Gamma Gk,vk gives

(50)
\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 5\Delta \varepsilon w.
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Similarly, for vk \in B(j)\cap B(i), eq. (30) of Consequence 5.5 of the induction hypothesis
applied to Gk at vertex vk with color j \in \Gamma Gk,vk gives

(51)
\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 5\Delta \varepsilon w.

Substituting eqs. (49) to (51) into eq. (48), we have

1

d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 8\Delta \varepsilon w < \varepsilon I ,

where the last inequality holds since \eta \varepsilon I > 8(\Delta + 1)\Delta \varepsilon w (recalling that 0 \leq dk \leq \Delta 
and \eta \in [0.9, 1)). This completes the proof of item 4 of the induction hypothesis.

Finally, we prove item 5. Since i \not \in \Gamma u, there exist ni > 0 neighbors of u that are
pinned to color i. Let H be the graph obtained by removing these neighbors of u from
G. Then, H is an unconflicted graph with the same number of unpinned vertices as
G, which also satisfies the admissible list condition \scrL (since \scrL is hereditary). Further,
u remains marked in H, and H further satisfies i, j \in \Gamma H,u. We can therefore apply
the already proved items 1 to 3 to H to conclude that

(52)
\bigm| 
\bigm| 
\bigm| R

(i,j)
H (w)

\bigm| 
\bigm| 
\bigm| \leq 

\bigm| 
\bigm| 
\bigm| R

(i,j)
H (0)

\bigm| 
\bigm| 
\bigm| ed\varepsilon R .

Now, since i, j \in \Gamma H,u, we can apply the recurrence of Lemma 3.4 in the same way as
in the derivation of eq. (35) above to get

(53) R
(i,j)
H,u (w) =

degH(u)
\prod 

k=1

1 - \scrP 
H

(i,j)
k ,w

[c(vk) = i]

1 - \scrP 
H

(i,j)
k ,w

[c(vk) = j]
,

where, for the reasons described in the discussion following eq. (35), the product can
be restricted to unpinned neighbors of u in H. Renaming these unpinned neighbors
as v1, v2, . . . , vd, we then have

(54) 0 \leq R
(i,j)
H (0) =

d\prod 

k=1

(1 - \scrP Hk
[c(vk) = i])

(1 - \scrP Hk
[c(vk) = j])

,

where, as before, Hk := H
(i,j)
k . Now, as observed above, H satisfies the admissible

list condition \scrL . Thus, for 1 \leq k \leq d, vk is nice in Hk (Lemma 4.4), and hence,
\scrP Hk

[c(vk) = j] \leq 1
dk+2 for 1 \leq k \leq d, where dk \geq 0 is the number of unpinned

neighbors of vk in Hk. We then have

0 \leq R
(i,j)
H (0) =

d\prod 

k=1

(1 - \scrP Hk
[c(vk) = i])

(1 - \scrP Hk
[c(vk) = j])

\leq 
d\prod 

k=1

1

1 - 1
dk+2

=
d\prod 

k=1

dk + 2

dk + 1
\leq 2\Delta .

(As an aside, we note that one could get a better bound under the slightly stronger
assumption of uniformly large list sizes considered in Remark 10. Under the conditions
of that remark, we have \scrP Hk

[c(vk) = j] < min
\bigl\{ 

4
3\Delta , 1

\bigr\} 
, so that the above upper bound

can be improved to R
(i,j)
H (0) \leq e4 for \Delta > 1.)

Combining the estimate with eq. (52), we get
\bigm| 
\bigm| 
\bigm| R

(i,j)
H (w)

\bigm| 
\bigm| 
\bigm| \leq 5 \cdot 2\Delta since d\varepsilon R \leq 1/2.

Now note that since j \in \Gamma G,u,

Z
(i)
G,u(w) = wniZ

(i)
H,u(w), and Z

(j)
G,u(w) = Z

(j)
H,u(w),
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so that
\bigm| 
\bigm| 
\bigm| R

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| = | w| ni

\bigm| 
\bigm| 
\bigm| R

(i,j)
H,u (w)

\bigm| 
\bigm| 
\bigm| \leq 5 \cdot 2\Delta \cdot | w| ni . The latter is at most \varepsilon w

whenever | w| \leq 0.2\varepsilon w/2
\Delta . This proves item 5 and also completes the inductive proof

of Lemma 5.2. (Note also that using the stronger upper bound above under the
condition of uniformly large list sizes, we can in fact relax the requirement further to
| w| \leq \varepsilon w/(300\Delta ).)

We conclude this section by using Lemma 5.2 to prove Theorem 5.1.

Proof of Theorem 5.1. Let G be a graph of maximum degree \Delta satisfying the
admissible list condition \scrL . Since G has no pinned vertices, G is unconflicted. Let
u be an unpinned vertex that is marked in G. By Consequence 5.3 of the induction
hypothesis (which we proved in Lemma 5.2), we then have Zw(G) \not = 0 provided
\nu w \leq 0.2\varepsilon w/2

\Delta .
Furthermore, as discussed above, under a slightly stronger assumption of uni-

formly large list sizes considered in Remark 10, \nu w can be chosen to be \varepsilon w/(300\Delta ).

6. Zero-free region around the interval (0, 1]. In this section, we consider
the case of w close to [0, 1] but bounded away from 0. In particular, we prove the
following theorem, which complements Theorem 5.1.

Theorem 6.1. Fix a positive integer \Delta and an admissible list condition \scrL . Let
\nu w = \nu w(\Delta ) be as in Theorem 5.1. Then, for any w satisfying

(55) \Re w \in [\nu w/2, 1 + \nu 2w/8] and | \Im w| \leq \nu 2w/8,

and any graph G of maximum degree \Delta which satisfies \scrL , we have ZG(w) \not = 0.

(Here, we recall that, as described in the discussion following Theorem 5.1, \nu w can
be chosen to be \varepsilon w/(300\Delta ) when the uniformly large list size condition of Remark 10
is satisfied. However, as in that theorem, in the case of general list coloring, one
chooses \nu w = 0.2\varepsilon w/2

\Delta .)
For w as in eq. (55), we define \~w to be the point on the interval [0, 1] which is

closest to w. Thus

\~w :=

\Biggl\{ 

\Re w when \Re w \in [\nu w/2, 1];

1 when \Re w \in (1, 1 + \nu 2w/8].

We also define, in analogy with the last section, \gamma := 1 - w and \~\gamma := 1 - \~w. We record
a few properties of these quantities in the following observation.

Observation 6.2. With w, \gamma , \~w, and \~\gamma as above, we have
1. 0 \leq \~\gamma , | \gamma | < 1;
2. | lnw  - ln \~w| \leq \nu w.

Proof. We have \~\gamma \in [0, 1  - \nu w/2], \Re \gamma \in [ - \nu 2w/8, 1  - \nu w/2], and | \Im \gamma | \leq \nu 2w/8.
Since \nu w \leq 0.01, these bounds taken together imply item 1. We also have 0 \leq \~w \leq 
| w| \leq \~w + \nu 2w/4 and \~w \geq \nu w/2. Thus

0 \leq \Re (lnw  - ln \~w) = ln
| w| 
\~w

\leq ln

\biggl( 

1 +
\nu 2w
4 \~w

\biggr) 

\leq \nu w
2
.

Similarly, \Im (lnw  - ln \~w) = \Im lnw = argw, so that

| \Im (lnw  - ln \~w)| \leq | argw| \leq | \Im w| 
\Re w \leq \nu w

4
.

Together, the above two bounds imply item 2.
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In analogous fashion to the proof of Theorem 5.1, we would like to show that

R
(i,j)
G,u (w) \approx R

(i,j)
G,u ( \~w) independent of the size of G. (Note that for positive \~w, R

(i,j)
G,u ( \~w)

is a well-defined positive real number for any graph.) To this end, we will prove the
following analogue of Lemma 5.2 via an induction on the number of unpinned vertices
in G. The induction is very similar in structure to that used in the proof of Lemma 5.2,
except that the fact that w has strictly positive real part allows us to simplify several
aspects of the proof. In particular, we do not need to consider good and bad colors
separately and do not require the underlying graphs to be unconflicted.

As in the previous section, we assume that all graphs in this section have max-
imum degree at most \Delta \geq 1, and we define the quantities \varepsilon w, \varepsilon R, \varepsilon I in terms of \Delta 
using eq. (23). We again fix an admissible list condition \scrL throughout this section.

Lemma 6.3. Let G be a graph of maximum degree \Delta satisfying the admissible list
condition \scrL , and let u be any marked unpinned vertex in G. Then, the following are
true (here, \varepsilon w, \varepsilon I , \varepsilon R are as defined in eq. (23)):

1. For i \in L(u),
\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| > 0.

2. For i, j \in L(u), if u has all neighbors pinned, then

| lnR(i,j)
G,u (w) - lnR

(i,j)
G,u ( \~w)| < \varepsilon w.

3. For i, j \in L(u), if u has d \geq 1 unpinned neighbors, then

1

d

\bigm| 
\bigm| 
\bigm| \Re lnR

(i,j)
G,u (w) - \Re lnR

(i,j)
G,u ( \~w)

\bigm| 
\bigm| 
\bigm| < \varepsilon R.

4. For i, j \in L(u), if u has d \geq 1 unpinned neighbors, then

1

d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| < \varepsilon I .

We will refer to items 1 to 4 as ``items of the induction hypothesis."" The rest of
this section is devoted to the proof of this lemma via an induction on the number of
unpinned vertices in G.

We begin by verifying that the induction hypothesis holds in the base case when u
is the only unpinned vertex in a graph G. In this case, items 3 and 4 are vacuously true
since u has no unpinned neighbors. Since all neighbors of u in G are pinned, the fact
that all pinned vertices have degree at most one implies thatG can be decomposed into
two disjoint components G1 and G2, where G1 consists of u and its pinned neighbors,
while G2 consists of a disjoint union of edges with pinned endpoints. Let m be the
number of conflicted edges on G2, and let nk denote the number of neighbors of u

pinned to color k. We then have Z
(k)
G,u(x) = xnkZG2

(x) = xnk+m for all x \in \BbbC . This
already proves item 1 since w, \~w \not = 0. Item 2 follows via the following computation
(which uses item 2 of Observation 6.2):

| lnR(i,j)
G,u (w) - lnR

(i,j)
G,u ( \~w)| = | ni  - nj | \cdot | lnw  - ln \~w| \leq \Delta \nu w < \varepsilon w.

We now derive some consequences of the above induction hypothesis that will be
helpful in carrying out the induction. Throughout, we fix the graph G and the vertex
u as in the statement of Lemma 6.3.

Consequence 6.4. If | L(u)| \geq 1, then | ZG(w)| > 0.
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Proof. Note that ZG(w) =
\sum 

i\in L(u) Z
(i)
G,u(w). From item 4, we see that the angle

between the complex numbers Z
(i)
G,u(w) and Z

(j)
G,u(w), for all i, j \in L(u), is at most

d\varepsilon I . Applying Lemma 3.7, we then have

\bigm| 
\bigm| 
\bigm| 

\sum 

i\in L(u)

Z
(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| \geq | L(u)| cos d\varepsilon I

2
\cdot min
i\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| \geq 0.9 min

i\in \Gamma u

\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| 

when | L(u)| \geq 1 and d\varepsilon I \leq 0.01. This last quantity is positive from item 1.

Consequence 6.5. For all \varepsilon R, \varepsilon I , \varepsilon w small enough such that \varepsilon I \leq \varepsilon R and \varepsilon w \leq 
0.01\varepsilon I , the pseudo probabilities approximate the real probabilities in the following
sense: for any j \in L(u),

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\Im ln

\scrP G,w [c(u) = j]

\scrP G, \~w [c(u) = j]

\bigm| 
\bigm| 
\bigm| 
\bigm| 
= | \Im ln\scrP G,w [c(u) = j]| \leq d\varepsilon I + 2\Delta \varepsilon w;

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\Re ln

\scrP G,w [c(u) = j]

\scrP G, \~w [c(u) = j]

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\leq d\varepsilon R + d\varepsilon I + 2\Delta \varepsilon w,

where d is the number of unpinned neighbors of u in G.

Proof. Using items 2 to 4 of the induction hypothesis, there exist complex num-
bers \xi i (for all i \in \Gamma u) satisfying | \Re \xi i| \leq d\varepsilon R + \varepsilon w and | \Im \xi i| \leq d\varepsilon I + \varepsilon w such that

\scrP G, \~w [c(u) = j]

\scrP G,w [c(u) = j]
= \scrP G, \~w [c(u) = j]

\sum 

i\in L(u)

Z
(i)
G,u(w)

Z
(j)
G,u(w)

= \scrP G, \~w [c(u) = j]
\sum 

i\in L(u)

Z
(i)
G,u( \~w)

Z
(j)
G,u( \~w)

e\xi i .

(56)

Now, note that
\sum 

i\in L(u)

Z
(i)
G,u( \~w)

Z
(j)
G,u( \~w)

= 1
\scrP G, \~w[c(u)=j] , so that the sum above is a convex

combination of the exp(\xi i). From the bounds on the real and imaginary parts of
the \xi i quoted above, by a calculation similar to that in eq. (25), we also have (when
\varepsilon I , \varepsilon w \leq 0.01/\Delta )

\Re e\xi i \in (e - d\varepsilon R - \varepsilon w  - (d\varepsilon I + \varepsilon w)
2, ed\varepsilon R+\varepsilon w), and | arg e\xi i | \leq d\varepsilon I + \varepsilon w.

The above will therefore be true also for any convex combination of the e\xi i , in par-

ticular the one in eq. (56). We therefore have, for C :=
\scrP G, \~w[c(u)=j]
\scrP G,w[c(u)=j] ,

\Re C \in 
\bigl( 
e - d\varepsilon R - \varepsilon w  - (d\varepsilon I + \varepsilon w)

2, ed\varepsilon R+\varepsilon w
\bigr) 
,

| argC| \leq d\varepsilon I + \varepsilon w.

Now recall that for | \theta | \leq \pi /4, we have  - \theta 2 \leq ln cos \theta \leq  - \theta 2/2. Thus, using the values
of \varepsilon w, \varepsilon I , and \varepsilon R, we have

| \Re lnC| \leq d\varepsilon R + d\varepsilon I + 2\Delta \varepsilon w, and

| \Im lnC| \leq d\varepsilon I + \varepsilon w.

As before, we define a
(i)
G,u(w) = ln\scrP G,w [c(u) = i] and recall the definition of the

function f\gamma (x) :=  - ln(1 - \gamma ex).
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Consequence 6.6. There exists a positive constant \eta \in [0.9, 1) so that the fol-
lowing is true. Let d be the number of unpinned neighbors of u. Assume further that
the vertex u is nice in G. Then, for any colors i, j \in L(u), there exists a real number
C = CG,u,i \in [0, 1

d+\eta ] such that

\bigm| 
\bigm| 
\bigm| \Re f\gamma (a(i)G,u(w)) - f\~\gamma (a

(i)
G,u( \~w)) - C \cdot \Re 

\Bigl( 

a
(i)
G,u(w) - a

(i)
G,u( \~w)

\Bigr) \bigm| 
\bigm| 
\bigm| \leq \varepsilon I + \varepsilon w;(57)

\bigm| 
\bigm| 
\bigm| \Im f\gamma (a(i)G,u(w)) - \Im f\gamma (a(j)G,u(w))

\bigm| 
\bigm| 
\bigm| \leq 1

d+ \eta 
\cdot (d\varepsilon I + 4\Delta \varepsilon w) + 2\varepsilon w.(58)

Proof. Since u is nice in G, the bound \scrP G, \~w [c(u) = k] \leq 1
d+2 (for any k \in L(u))

applies. Combining them with Consequence 6.5, we see that a
(i)
G,u(w), a

(i)
G,u( \~w), a

(j)
G,u(w),

a
(j)
G,u( \~w) lie in a domain D as described in Lemma 3.6, with the parameters \zeta and \tau 

in that lemma chosen as

\zeta = ln(d+ 2) - d\varepsilon R  - d\varepsilon I  - 2\Delta \varepsilon w , and

\tau = d\varepsilon I + 2\Delta \varepsilon w.

Here, for the bound on \zeta , we use the fact that for k \in L(u), \scrP G, \~w [c(u) = k] \leq 1
d+2 ,

since u is nice in G. As in the proof of Consequence 5.5, we use the values of \varepsilon w, \varepsilon I , \varepsilon R
to verify that the condition \tau < 1/2 and \tau 2 + e - \zeta < 1 are satisfied, so that item 1
of Lemma 3.6 applies (with the parameter \kappa therein set to \~\gamma ) and further that \rho R
and \rho I as set there satisfy \rho R \leq 1

d+\eta and \rho I < 3\varepsilon I , with \eta = 0.94. Using Lemma 3.5
followed by the bound on \varepsilon w, we then have

\bigm| 
\bigm| 
\bigm| \Re f\~\gamma (a(i)G,u(w)) - f\~\gamma (a

(i)
G,u( \~w)) - C \cdot \Re 

\Bigl( 

a
(i)
G,u(w) - a

(i)
G,u( \~w)

\Bigr) \bigm| 
\bigm| 
\bigm| \leq 3\varepsilon I(d\varepsilon I + 2\Delta \varepsilon w)

\leq 4d\varepsilon 2I \leq \varepsilon I ,

(59)

for an appropriate nonnegative C \leq 1/(d+\eta ). This is almost eq. (57), whose difference
will be handled later.

Similarly, applying Lemma 3.5 to the imaginary part, we have

(60)
\bigm| 
\bigm| 
\bigm| \Im 

\Bigl( 

f\~\gamma (a
(i)
G,u(w)) - f\~\gamma (a

(j)
G,u(w))

\Bigr) \bigm| 
\bigm| 
\bigm| 

\leq \rho R \cdot max
\Bigl\{ \bigm| 
\bigm| 
\bigm| \Im 

\Bigl( 

a
(i)
G,u(w) - a

(j)
G,u(w)

\Bigr) \bigm| 
\bigm| 
\bigm| ,

\bigm| 
\bigm| 
\bigm| \Im a(i)G,u(w)

\bigm| 
\bigm| 
\bigm| ,

\bigm| 
\bigm| 
\bigm| \Im a(j)G,u(w)

\bigm| 
\bigm| 
\bigm| 

\Bigr\} 

,

where, as noted above, \rho R \leq 1
d+\eta . Now, note that the first term in the above maximum

is less than d\varepsilon I + \varepsilon w by items 2 and 4 of the induction hypothesis, while the other
two are at most d\varepsilon I + 2\Delta \varepsilon w from item 2 of Consequence 6.5.

Finally, we use item 2 of Lemma 3.6 with the parameter \kappa \prime therein set to \gamma . To
this end, we note that | \gamma  - \~\gamma | \leq \varepsilon w, and that with the fixed values of \varepsilon w, \varepsilon R, and \varepsilon I ,
the condition (1 + \varepsilon w) < e\zeta is satisfied, so that the item applies. Using the item, we
then see that for any z \in D,

| f\gamma (z) - f\~\gamma (z)| \leq \varepsilon w.

Thus, the quantities | \Re f\gamma (a(i)G,u(w)) - \Re f\~\gamma (a(i)G,u(w))| , | \Im f\gamma (a
(i)
G,u(w)) - \Im f\~\gamma (a(i)G,u(w))| ,

| \Im f\gamma (a(j)G,u(w))  - \Im f\~\gamma (a(j)G,u(w))| , and | \Im f\gamma (a(j)G,u(w))  - \Im f\~\gamma (a(j)G,u(w))| are all at most
\varepsilon w. The desired bounds now follow from the triangle inequality and the bounds in
eqs. (59) and (60).
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Inductive proof of Lemma 6.3. We are now ready to see the inductive proof
of Lemma 6.3; recall that the base case was already established immediately following
the statement of the lemma. Let G be any graph which satisfies the admissible list
condition \scrL and has at least two unpinned vertices. We first prove induction item 1
for any marked unpinned vertex u in G. Consider the graph G\prime obtained from G
by pinning vertex u to color i. Note that by the definition of the pinning operation,
Zi
G,u(w) = ZG\prime (w). Further, since \scrL is hereditary (because it is admissible), the

graph G\prime also satisfies \scrL and has one fewer unpinned vertex than G. Thus, from

Consequence 6.4 of the induction hypothesis applied to G\prime , we have that
\bigm| 
\bigm| 
\bigm| Z

(i)
G,u(w)

\bigm| 
\bigm| 
\bigm| =

| ZG\prime (w)| > 0.
We now consider item 2. When all neighbors of u in G are pinned, the fact

that all pinned vertices have degree at most one implies that G can be decomposed
into two disjoint components G1 and G2, where G1 consists of u and its pinned
neighbors, while G2 has one fewer unpinned vertex than G. Note also that G2, being
a connected component of G, also satisfies the admissible list condition \scrL (since \scrL 
is hereditary). Thus, from Consequence 6.4 of the induction hypothesis applied to
G2, we have that ZG2

(w) and ZG2
( \~w) are both nonzero. Let nk be the number of

neighbors of u pinned to color k. Now, since G1 and G2 are disjoint components, we

get Z
(k)
G,u(x) = xnkZG2

(x) for all k \in L(u) and all x \in \BbbC . It therefore follows that

| lnR(i,j)
G,u (w) - lnR

(i,j)
G,u ( \~w)| = | ni  - nj | \cdot | lnw  - ln \~w| \leq \Delta \nu w < \varepsilon w.

We now consider items 3 and 4. Recall that by Lemma 3.4, we have

R
(i,j)
G,u (w) =

degG(u)
\prod 

k=1

\Bigl( 

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = i]
\Bigr) 

\Bigl( 

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = j]
\Bigr) .

Without loss of generality, we relabel the unpinned neighbors of u as v1, v2, . . . , vd. As

before, for simplicity we write Gk := G
(i,j)
k . Note that each Gk has exactly one fewer

unpinned vertex than G and satisfies \scrL (since \scrL is hereditary). Further, the vertex
vk is marked in Gk (as u was marked in G). Thus, the induction hypothesis applies
to each Gk at the vertex vk. Now, let nk be the number of neighbors of u pinned to
color k. Recalling that 1 - \gamma = w, we can then simplify the above recurrence to

R
(i,j)
G,u (w) = wni - nj

d\prod 

k=1

\Bigl( 

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = i]
\Bigr) 

\Bigl( 

1 - \gamma \scrP 
G

(i,j)
k ,w

[c(vk) = j]
\Bigr) .

Now, as before, for s \in L(vk) we define a
(s)
Gk,vk

(w) := ln\scrP Gk,w [c(vk) = s]. From the
above recurrence, we then have

(61)  - lnR
(i,j)
G,u (w) = (ni  - nj) lnw +

d\sum 

k=1

\Bigl( 

f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\gamma 

\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \Bigr) 

.

Note that the same recurrence also applies when w is replaced by \~w (and hence \gamma by
\~\gamma ):

 - lnR
(i,j)
G,u ( \~w) = (ni  - nj) ln \~w +

d\sum 

k=1

\Bigl( 

f\~\gamma 

\Bigl( 

a
(i)
Gk,vk

( \~w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j)
Gk,vk

( \~w)
\Bigr) \Bigr) 

.
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(Recall that since \Re w, \~w > 0, lnw and ln \~w are well defined.)
Using item 2 of Observation 6.2, | ni  - nj | \leq \Delta , and the fact that \Delta \nu w \leq \varepsilon w, we

have

| ni  - nj | \cdot | lnw  - ln \~w| \leq \varepsilon w.

Applying the triangle inequality to the real part of the difference of the two recur-
rences, we therefore get

(62)
1

d

\bigm| 

\bigm| 

\bigm| 
\Re lnR

(i,j)
G,u

(w) - lnR
(i,j)
G,u

( \~w)
\bigm| 

\bigm| 

\bigm| 

\leq \varepsilon w+ max
1\leq k\leq d

\Bigl\{ \bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(i)
Gk,vk

( \~w)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j)
Gk,vk

( \~w)
\Bigr) \Bigr) \bigm| 

\bigm| 

\bigm| 

\Bigr\} 

.

In what follows, we let vk be the vertex that maximizes the above expression and
dk be the number of unpinned neighbors of vk in Gk. Before proceeding with the
analysis, we recall the observation above that the graphs Gk satisfy the admissible
list condition \scrL . Further, we note that vk is (i) marked in Gk (this follows from the
fact that \scrL is hereditary) and (ii) nice in Gk (this last fact follows from Lemma 4.4
and the fact that G satisfies the admissible list condition \scrL ). Thus, the preconditions
of Consequence 6.6 apply to the vertex vk in graph Gk. We now proceed with the
analysis.

We begin by noting that
\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(i)
Gk,vk

( \~w)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j)
Gk,vk

( \~w)
\Bigr) \Bigr) \bigm| 

\bigm| 

\bigm| 

\leq max
i\prime ,j\prime \in L(vk)

\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i\prime )
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(i\prime )
Gk,vk

( \~w)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j\prime )
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j\prime )
Gk,vk

( \~w)
\Bigr) \Bigr) \bigm| 

\bigm| 

\bigm| 
.

On the other hand, for any color s \in L(vk), Consequence 6.6 of the induction
hypothesis instantiated on Gk and applied to vk and s shows that there exists a
Cs = Cs,vk,Gk

\in [0, 1/(dk + \eta )] such that
\bigm| 
\bigm| 
\bigm| \Re f\gamma 

\Bigl( 

a
(s)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(s)
Gk,vk

( \~w)
\Bigr) 

 - Cs(\Re a(s)Gk,vk
(w) - a

(s)
Gk,vk

( \~w))
\bigm| 
\bigm| 
\bigm| \leq \varepsilon I + \varepsilon w.

Substituting this into the previous display shows that
\bigm| 
\bigm| 
\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(i)
Gk,vk

( \~w)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j)
Gk,vk

( \~w)
\Bigr) \Bigr) \bigm| 

\bigm| 
\bigm| 

\leq max
i\prime ,j\prime \in L(vk)

\bigm| 
\bigm| 
\bigm| Ci\prime (\Re a(i

\prime )
Gk,vk

(w) - a
(i\prime )
Gk,vk

( \~w))  - Cj\prime (\Re a(j
\prime )

Gk,vk
(w) - a

(j\prime )
Gk,vk

( \~w))
\bigm| 
\bigm| 
\bigm| + 2\varepsilon I + 2\varepsilon w

= 2\varepsilon I + 2\varepsilon w + max
i\prime ,j\prime \in L(vk)

| Ci\prime \Re \xi i\prime  - Cj\prime \Re \xi j\prime | 

= 2\varepsilon I + 2\varepsilon w + Cs\Re \xi s  - Ct\Re \xi t,
(63)

where \xi l := a
(l)
Gk,vk

(w) - a
(l)
Gk,vk

( \~w) for l \in \Gamma Gk,vk , and s and t are given by

s := argmax
i\prime \in L(vk)

Ci\prime \Re \xi i\prime and t := argmin
i\prime \in L(vk)

Ci\prime \Re \xi i\prime .

We now have the following two cases.

Case 1: (\Re \xi s) \cdot (\Re \xi t) \leq 0. Recall that Cs, Ct are nonnegative and lie in [0, 1/(dk+
\eta )]. Thus, in this case, we must have \Re \xi s \geq 0 and \Re \xi t \leq 0, so that

Cs\Re \xi s  - Ct\Re \xi t = Cs\Re \xi s + Ct | \Re \xi t| \leq 
\Re \xi s + | \Re \xi t| 

dk + \eta 
=

| \Re \xi s  - \Re \xi t| 
dk + \eta 

.(64)
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Now, note that

\Re \xi s  - \Re \xi t = \Re ln
\scrP Gk,w [c(vk) = s]

\scrP Gk, \~w [c(vk) = s]
 - \Re ln

\scrP Gk,w [c(vk) = t]

\scrP Gk, \~w [c(vk) = t]

= \Re ln
\scrP Gk,w [c(vk) = s]

\scrP Gk,w [c(vk) = t]
 - \Re ln

\scrP Gk, \~w [c(vk) = s]

\scrP Gk, \~w [c(vk) = t]

= \Re lnR
(s,t)
Gk,vk

(w) - lnR
(s,t)
Gk,vk

( \~w).

Note that all the logarithms in the above are well defined from Consequence 6.5 of
the induction hypothesis applied to Gk and vk. Further, from items 2 and 3 of the
induction hypothesis, the last term is at most dk\varepsilon R+\varepsilon w in absolute value. Substituting
this into eq. (64), we get

(65) Cs\Re \xi s  - Ct\Re \xi t \leq 
dk

dk + \eta 
\varepsilon R + \varepsilon w.

This concludes the analysis of Case 1.

Case 2: \Re \xi i\prime for i\prime \in L(vk) all have the same sign. Suppose first that \Re \xi i\prime \geq 0 for
all i\prime \in L(vk). Then, we have

(66) 0 \leq Cs\Re \xi s  - Ct\Re \xi t \leq 
\Re \xi s

dk + \eta 
\leq dk \cdot \varepsilon R

dk + \eta 
+ \varepsilon I + 4\Delta \varepsilon w,

where the last inequality follows from the second inequality in Consequence 6.5 of
the induction hypothesis applied to Gk at vertex vk with color s, which states that
| \Re \xi s| \leq dk(\varepsilon R + \varepsilon I) + 4\Delta \varepsilon w. Similarly, when \Re \xi i\prime \leq 0 for all i\prime \in \Gamma Gk,vk , we have

0 \leq Cs\Re \xi s  - Ct\Re \xi t = Ct| \Re \xi t|  - Cs| \Re \xi s| 

\leq 1

dk + \eta 
| \Re \xi t| \leq 

dk
dk + \eta 

\varepsilon R + \varepsilon I + 4\Delta \varepsilon w,(67)

where the last inequality follows from the second inequality in Consequence 6.5 of
the induction hypothesis applied to Gk at vertex vk with color t, which states that
| \Re \xi t| \leq dk(\varepsilon R + \varepsilon I) + 4\Delta \varepsilon w. This concludes the analysis of Case 2.

Now, substituting eqs. (65) to (67) into eq. (63), we get

(68)
\bigm| 
\bigm| 
\bigm| 

\Bigl( 

\Re f\gamma 
\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(i)
Gk,vk

( \~w)
\Bigr) \Bigr) 

 - 
\Bigl( 

\Re f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) 

 - f\~\gamma 

\Bigl( 

a
(j)
Gk,vk

( \~w)
\Bigr) \Bigr) \bigm| 

\bigm| 
\bigm| 

\leq dk
dk + \eta 

\varepsilon R + 3\varepsilon I + 5\Delta \varepsilon w.

Substituting eq. (68) into eq. (62), we get

(69)
1

d

\bigm| 
\bigm| 
\bigm| \Re lnR

(i,j)
G,u (w) - lnR

(i,j)
G,u ( \~w)

\bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon R + 3\varepsilon I + 7\Delta \varepsilon w < \varepsilon R,

where the last inequality holds since \eta \varepsilon R > (\Delta + 1)(3\varepsilon I + 7\Delta \varepsilon w) (recalling that
0 \leq dk \leq \Delta and \eta \in [0.9, 1)). This verifies item 3 of the induction hypothesis.
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Finally, to prove item 4, we consider the imaginary part of eq. (61). We first note
that

| ni  - nj | \cdot | \Im lnw| \leq \Delta | lnw  - ln \~w| \leq \Delta \nu w \leq \varepsilon w.

We then have

(70)
1

d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq \varepsilon w + max

1\leq k\leq d

\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - \Im f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| .

Again, let vk be the vertex that maximizes the above expression and dk be the number
of unpinned neighbors of vk in Gk. Applying eq. (58) of Consequence 6.6 of the
induction hypothesis to the graph Gk at vertex vk with colors i, j \in L(vk) gives

(71)
\bigm| 
\bigm| 
\bigm| \Im f\gamma 

\Bigl( 

a
(i)
Gk,vk

(w)
\Bigr) 

 - \Im f\gamma 
\Bigl( 

a
(j)
Gk,vk

(w)
\Bigr) \bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 6\Delta \varepsilon w.

Substituting eq. (71) into eq. (70), we then have

1

d

\bigm| 
\bigm| 
\bigm| \Im lnR

(i,j)
G,u (w)

\bigm| 
\bigm| 
\bigm| \leq dk

dk + \eta 
\varepsilon I + 8\Delta \varepsilon w < \varepsilon I ,

where the last inequality holds since \eta \varepsilon I > 8(\Delta + 1)\Delta \varepsilon w (recalling that 0 \leq dk \leq \Delta 
and \eta \in [0.9, 1)). This proves item 4 and also completes the inductive proof of
Lemma 6.3.

We now use Lemma 6.3 to prove Theorem 6.1.

Proof of Theorem 6.1. Let G be any graph of maximum degree \Delta satisfying the
admissible list condition \scrL . If G has no unpinned vertices, then ZG(w) = 1, and there
is nothing to prove. Otherwise, let u be an unpinned vertex that is marked in G. By
Consequence 6.4 of the induction hypothesis (which we proved in Lemma 6.3), we
then have Zw(G) \not = 0 for w as in the statement of the theorem.

The proof of Theorem 1.5 is now immediate.

Proof of Theorem 1.5. Let the quantity \nu w = \nu w(\Delta ) be as in the statements of
Theorems 5.1 and 6.1. Fix the maximum degree \Delta , and suppose that w satisfies

(72)  - \nu 2w/8 \leq \Re w \leq 1 + \nu 2w/8 and | \Im w| \leq \nu 2w/8.

Now, if G satisfies the hypotheses of Theorem 1.2 (respectively, Theorem 1.3), we
mark all its vertices so that the resulting instance satisfies Condition A (respectively,
Condition B); whereas if G is a tree satisfying the hypotheses of Proposition 1.4,
we root G at an arbitrary vertex and mark the root, so that the resulting instance
satisfies Condition C.

By Lemma 4.4, the list coloring instance for G so generated then satisfies an
admissible list condition. When w satisfying eq. (72) is such that \Re w \leq \nu w/2, we
have | w| \leq \nu w, so that ZG(w) \not = 0 by Theorem 5.1, while when such a w satisfies
\Re w \geq \nu w/2, we have ZG(w) \not = 0 from Theorem 6.1. It therefore follows that ZG(w) \not =
0 for all w satisfying eq. (72), and thus the quantity \tau \Delta in the statement of Theorem 1.5
can be taken to be \nu 2w/8.

We conclude with a brief discussion of the dependence of \tau \Delta on \Delta . We saw above
that \tau \Delta can be taken to be \nu w(\Delta )2/8, so it is sufficient to consider the dependence of
\nu w = \nu w(\Delta ) on \Delta . Let c = 10 - 6. As stated in the discussion following eq. (23), \nu w
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can be chosen to be 0.2c/(2\Delta \Delta 7) for the case of general list colorings, or c/(300\Delta 8)
with the assumption of uniformly large list sizes (which, we recall from Remark 10,
is satisfied in the case of uniform q-colorings). We have not tried to optimize these
bounds, and it is conceivable that a more careful accounting of constants in our proofs
can improve the value of the constant c by a few orders of magnitude.
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