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On the Sample Complexity of Decentralized
Linear Quadratic Regulator With Partially

Nested Information Structure
Lintao Ye , Member, IEEE, Hao Zhu , Senior Member, IEEE, and Vijay Gupta , Fellow, IEEE

Abstract—In this article, we study the problem of con-
trol policy design for decentralized state-feedback linear
quadratic control with a partially nested information struc-
ture, when the system model is unknown. We propose
a model-based learning solution, which consists of two
steps. First, we estimate the unknown system model from a
single system trajectory of finite length, using least squares
estimation. Next, based on the estimated system model, we
design a decentralized control policy that satisfies the de-
sired information structure. We show that the suboptimality
gap between our control policy and the optimal decentral-
ized control policy (designed using accurate knowledge of
the system model) scales linearly with the estimation error
of the system model. Using this result, we provide an end-
to-end sample complexity result for learning decentralized
controllers for a linear quadratic control problem with a
partially nested information structure.

Index Terms—Decentralized control, large-scale sys-
tems, optimal control, reinforcement learning, system iden-
tification, statistical learning.

I. INTRODUCTION

IN LARGE-SCALE control systems, the control policy is
often required to be decentralized, where different controllers

may only use partial state information, when designing their
local control policies. For example, a given controller may only
receive a subset of the global state measurements (e.g., [1]), and
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there may be a delay in receiving the measurements (e.g., [2]). In
general, finding a globally optimal control policy under informa-
tion constraints is NP-hard, even if the system model is known
at the controllers [3], [4], [5]. This has led to a large literature on
identifying tractable subclasses of the problem. For instance, if
the information structure describing the decentralized control
problem is partially nested [6], the optimal solution to the
state-feedback linear quadratic control problem can be solved
efficiently using dynamic programming [7]. Other conditions,
such as quadratic invariance [8], [9], have also been identified
as tractable subclasses of the problem.

However, the classical work in this field assumes the knowl-
edge of the system model at the controllers. In this work, we are
interested in the situation when the system model is not known a
priori [10]. In such a case, the existing algorithms do not apply.
Moreover, it is not clear whether subclasses, such as problems
with partially nested information patterns or where quadratic
invariance is satisfied are any more tractable than the general
decentralized control problem in this case.

In this article, we consider a decentralized infinite-horizon
state-feedback linear quadratic regulator (LQR) control problem
with a partially nested information structure [1], [7] and assume
that the controllers do not know the system model. We use
a model-based learning approach, where we first identify the
system model, and then use it to design a decentralized control
policy that satisfies the prescribed information constraints.

A. Related Work

Solving optimal control problems without prior system model
knowledge has receive much attention recently. One of the most
studied problems is the centralized LQR problem. For this prob-
lem, two broad classes of methods have been studied, i.e., model
based learning [11], [12], [13], and model-free learning [14],
[15], [16], [17]. In the model-based learning approach, a system
model is first estimated from observed system trajectories using
some system identification method. A control policy can then be
obtained based on the estimated system model. In the model-free
learning approach, the objective function in the LQR problem
is first viewed as a function of the control policies. Based on
zeroth-order optimization methods (e.g., [18], [19]), the optimal
solution can then be obtained using gradient descent, where the
gradient of the objective function is estimated from the data
samples from system trajectories. Moreover, the model-based
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learning approach has also been studied for the centralized linear
quadratic Gaussian control problem [20]. In general, compared
to model-free learning, model-based learning tends to require
less data samples in order to achieve a policy of equivalent
performance [21].

Most of the previous works on model-based learning for
centralized LQR build on recent advances in nonasymptotic
analyzes for system identification of linear dynamical systems
with full state observations (e.g., [22], [23], [24], [25], [26]).
Such nonasymptotic analyzes (i.e., sample complexity results)
relate the estimation error of the system matrices to the number
of samples used for system identification. In particular, it was
shown in [23] that when using a single system trajectory, the least
squares approach for system identification achieves the optimal
sample complexity up to logarithmic factors.

There are few results on solving decentralized linear quadratic
control problems with information constraints, when the system
model is unknown. In [27], the authors studied a decentralized
output-feedback linear quadratic control problem, under the as-
sumption that the quadratic invariance condition is satisfied. The
authors proposed a model-free approach and provided a sample
complexity analysis. They focused on a finite-horizon setting,
since gradient-based optimization methods may not converge to
the optimal controller for infinite-horizon decentralized linear
quadratic control problems with information constraints, even
when the system model is known [28], [29]. In [30], the authors
proposed a consensus-based model-free learning algorithm for
multiagent decentralized LQR over an infinite horizon, where
each agent (i.e., controller) has access to a subset of the global
state without delay. They showed that their algorithm converges
to a stationary point of the objective function in the LQR
problem. In [31], the authors studied model-based learning for
LQR with subspace constraints on the closed-loop responses.
However, those constraints may not lead to controllers that
satisfy the information constraints considered in this article
(e.g., [32]).

There is a line of research on online adaptive control for cen-
tralized LQR with unknown system models, using either model-
based learning [11], [26], [33], or model-free learning [34], [35].
The goal is to adaptively design a control policy online when new
data samples from the system trajectory become available, and
bound the corresponding regret.

B. Contributions

Here, we summarize our contributions and technical chal-
lenges in the article.

• In Section III, we provide a sample complexity result for
estimating the system model from a single system trajectory
using a least squares approach. Despite the existence of a sparsity
pattern in the system model considered in our problem, we adapt
the analyzes in [26] and [36] for least squares estimation of
general linear system models (without any sparsity pattern) to
our setting, and show that such a system identification method
for general system models suffices for our ensuing analyzes.

• In Section IV, based on the estimated system model, we
design a novel decentralized control policy that satisfies the
given information structure. Our control policy is inspired by [7],

which developed the optimal controller for the decentralized
LQR problem with a partially nested information structure and
known system model. The optimal controller therein depends
on some internal states, each of which evolves according to an
auxiliary linear system (characterized by the actual model of
the original system with a disturbance term from the original
system) and correlates with other internal states. Accordingly,
this complicated form of the internal states makes it challenging
to extend the design in [7] to the case when the system model
is unknown. To tackle this, we capitalize on the observation
that the optimal controller proposed in [7] can be viewed as a
disturbance-feedback control policy that maps the history of past
disturbances (affecting the original system) to the current control
input. Thanks to this viewpoint, we put forth a control policy that
uses the aforementioned estimated system model and maps the
estimates of past disturbances to the current control input via
some estimated internal states. More importantly, we show that
the proposed control policy can be implemented in a decentral-
ized manner that satisfies the prescribed information structure.

• In Section V-B, we characterize the performance guarantee
(i.e., suboptimality) of the control policy proposed in Section IV.
When we compare the performance of our control policy to
that of the optimal decentralized control policy in [7], both the
estimates of the past disturbances and the estimated internal
states contribute to the suboptimality of our control policy, which
creates the major technical challenge in our analyzes. We over-
come this challenge by carefully investigating the structure of
the proposed control policy, and we show that the suboptimality
gap between our control policy and the optimal decentralized
control policy (designed based on accurate knowledge of the
system model) provided in [7] can be decomposed into two
terms, both of which scale linearly with the estimation error
of the system model.

• In Section V-C, we combine the above results together and
provide an end-to-end sample complexity result for learning
decentralized LQR with a partially nested information structure.
Surprisingly, despite the existence of the information constraints
and the fact that the optimal controller is a linear dynamic con-
troller, our sample complexity result matches with that of learn-
ing centralized LQR without any information constraints [13].

An extended version of this article that includes all the omitted
proofs and details can be found on arXiv as [37].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation and Terminology

The sets of integers and real numbers are denoted as Z and
R, respectively. The set of integers (resp., real numbers) that
are greater than or equal to a ∈ R is denoted as Z≥a (resp.,
R≥a). The space of m-dimensional real vectors is denoted by
Rm, and the space of m× n real matrices is denoted by Rm×n.
For a matrix P ∈ Rn×n, let P$, Tr(P ), ρ(P ), and {σi(P ) :
i ∈ {1, . . . , n}} be its transpose, trace, spectral radius, and set
of singular values, respectively. Without loss of generality, let
the singular values of P be ordered as σ1(P ) ≥ · · · ≥ σn(P ).
Let ‖ · ‖ denote the #2 norm, i.e., ‖P‖ = σ1(P ) for a ma-
trix P ∈ Rn×n, and ‖x‖ =

√
x$x for a vector x ∈ Rn. Let

‖P‖F =
√

Tr(PP$) denote the Frobenius norm ofP ∈ Rn×m.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 16,2023 at 20:37:27 UTC from IEEE Xplore.  Restrictions apply. 



YE et al.: ON THE SAMPLE COMPLEXITY OF DECENTRALIZED LINEAR QUADRATIC REGULATOR 4843

A positive semidefinite matrix P is denoted by P ' 0, and
P ' Q if and only if P −Q ' 0. Let Sn+ (resp., Sn++) denote
the set of n× n positive semidefinite (resp., positive definite)
matrices. Let I denote an identity matrix whose dimension can
be inferred from the context. Given any integer n ≥ 1, we define
[n] = {1, . . . , n}. The cardinality of a finite set A is denoted
by |A|. Let N (µ,Σ) denote a Gaussian distribution with mean
µ ∈ Rm and covariance Σ ∈ Sm+ .

B. Decentralized LQR With Sparsity and Delay
Constraints

In this section, we sketch the method developed in [1] and
[7], which presents the optimal solution to a decentralized
LQR problem with a partially nested information structure [6],
when the system model is known a priori. First, let us consider
a networked system that consists of p ∈ Z≥1 interconnected
linear-time-invariant (LTI) subsystems, and let V = [p] be the
set that contains all the p subsystems. Letting the state, input,
and disturbance of the subsystem corresponding to node i ∈ [p]
be xi(t) ∈ Rni , ui(t) ∈ Rmi , and wi(t), respectively, the sub-
system corresponding to node i is given by

xi(t+ 1) =




∑

j∈Ni

Aijxj(t) +Bijuj(t)



+ wi(t) ∀i ∈ V

(1)
where Ni ⊆ [p] is the set of subsystems whose states and inputs
directly affect the state of subsystem i, Aij ∈ Rni×nj , Bij ∈
Rni×mj , and wi(t) ∈ Rni is a white Gaussian noise process
with wi(t) ∼ N (0,σ2

wI) for all t ∈ Z≥0, where σw ∈ R>0.1

For simplicity, we assume throughout this article that ni ≥ mi

for all i ∈ V . We can also write (1) as

xi(t+ 1) = AixNi(t) +BiuNi(t) + wi(t) ∀i ∈ V (2)

where Ai ! [Aij1 · · · Aij|Ni |
], Bi ! [Bij1 · · · Bij|Ni |

], xNi(t)

! [xj1(t) · · · xj|Ni |
(t)]$, and uNi(t) ! [uj1(t) · · · uj|Ni |

(t)]$,
with Ni = {j1, . . . , j|Ni|}. Further letting n =

∑
i∈V ni and

m =
∑

i∈V mi, and defining x(t) = [x1(t)$ · · · xp(t)$]$, u(t)
= [u1(t)$ · · · up(t)$]$, and w(t) = [w1(t)$ · · ·wp(t)$]$, we
can compactly write (1) into the following matrix form:

x(t+ 1) = Ax(t) +Bu(t) + w(t) (3)

where the (i, j)th block of A ∈ Rn×n (resp., B ∈ Rn×m), i.e.,
Aij (resp., Bij) satisfies Aij = 0 (resp., Bij = 0) if j /∈ Ni. We
assume that wi(t1) and wj(t2) are independent for all i, j ∈ V
with i ,= j and for all t1, t2 ∈ Z≥0. In other words, w(t) is a
white Gaussian noise process with w(t) ∼ N (0,σ2

wI) for all
t ∈ Z≥0. For simplicity, we assume that x(0) = 0 throughout
this article.2

Next, we use a directed graph G(V,A) with V = [p] to char-
acterize the (time-delayed) information flow among the subsys-
tems in [p] due to communication constraints on the subsystems.
Each node in G(V,A) represents a subsystem in [p], and we
assume that G(V,A) does not have self loops. We associate any

1The analysis can be extended to the case when wi(t) is assumed to be a
zero-mean white Gaussian noise process with covariance W ∈ Sni

++. In that
case, our analysis will depend on maxi∈V σ1(Wi) and mini∈V σn(Wi).

2The analysis can be extended to the case when x(0) is given by a zero-mean
Gaussian distribution, as one may view x(0) as w(−1).

edge (i, j) ∈ A with a delay of either 0 or 1, further denoted as
i

0−→ j or i 1−→ j, respectively.3 Then, we define the delay matrix
corresponding to G(V,A) as D ∈ Rp×p such that:

i) if i ,= j and there is a directed path from j to i inG(V,A),
then Dij is equal to the sum of delays along the directed
path from node j to node iwith the smallest accumulative
delay;

ii) if i ,= j and there is no directed path from j to i in
G(V,A), then Dij = +∞;

iii) Dii = 0 for all i ∈ V .
Here, we consider the scenario where the information (e.g.,

state information) corresponding to subsystem j ∈ V can propa-
gate to subsystem i ∈ V with a delay ofDij (in time), if and only
if there exists a directed path from j to i with an accumulative
delay of Dij . Note that as argued in [7], we assume that there
is no directed cycle with zero accumulative delay; otherwise,
one can first collapse all the nodes in such a directed cycle into
a single node, and equivalently consider the resulting directed
graph in the framework described earlier.

To proceed, we consider designing the control input u(t) for
the LTI system in (3). We focus on state-feedback control, i.e., we
can view u(t) as a policy that maps the states of the LTI system
to a control input. Moreover, we require that u(t) satisfy the
information structure according to the directed graph G(V,A)
and the delay matrix D ∈ Rp×p, described earlier. Specifically,
considering any i ∈ V and any t ∈ Z≥0, and noting that the con-
troller corresponding to subsystem i ∈ V provides the control
input ui(t) ∈ Rmi , the state information that is available to the
controller at i ∈ V is given by

Ii(t) = {xj(k) : j ∈ Vi, 0 ≤ k ≤ t−Dij} (4)

where Vi ! {j ∈ V : Dij ,= +∞}. In the sequel, we also call
Ii(t) the information set of controller i ∈ V at time t ∈ Z≥0.
Note that Ii(t) contains the states corresponding to the sub-
systems in V that have enough time to reach subsystem i ∈ V at
time t ∈ Z≥0, due to the sparsity and delay constraints described
earlier. Now, based on the information setIi(t), we further define
S(Ii(t)) to be the set that consists of all the policies that map
the states in Ii(t) to a control input at node i. The goal is then
to solve the following constrained optimization problem:

min
u(0),u(1),...

lim
T→∞

E

[
1

T

T−1∑

t=0

(x(t)$Qx(t) + u(t)$Ru(t))

]

s.t. x(t+ 1) = Ax(t) +Bu(t) + w(t)

ui(t) ∈ S(Ii(t)) ∀i ∈ V ∀t ∈ Z≥0

(5)

where Q ∈ Sn+ and R ∈ Sm++ are the cost matrices, and the ex-
pectation is taken with respect to w(t) for all t ∈ Z≥0. Through-
out this article, we always assume that the following assumption
on the information propagation pattern among the subsystems
in V holds (e.g., [7], [38]).

Assumption 1: For any i ∈ V , it holds that Ni = {j ∈ V :
Dij ≤ 1}, where Ni is given in (1).

Assumption 1 says that the state of subsystem i ∈ V is affected
by the state and input of subsystem j ∈ V , if and only if there is

3The framework described in this article can also be used to handle G(V,A)
with larger delays; see [7] for a detailed discussion.
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Fig. 1. Directed graph of Example 1. Node i ∈ V represents a subsys-
tem with state xi(t) and edge (i, j) ∈ A is labeled with the information
propagation delay from i to j.

a communication link with a delay of at most 1 from subsystem
j to i in G(V,A). As shown in [7], Assumption 1 ensures that
the information structure associated with the system given in
(1) is partially nested [6]. Assumption 1 is frequently used in
decentralized control problems (e.g., [1], [7] and the references
therein), and one can see that the assumption is satisfied in
networked systems where information propagates at least as fast
as dynamics. To illustrate our arguments above, we introduce
Example 1.

Example 1: Consider a directed graph G(V,A) given in
Fig. 1, where V = {1, 2, 3} and each directed edge is associated
with a delay of 0 or 1. The corresponding LTI system is then
given by




x1(t+ 1)

x2(t+ 1)

x3(t+ 1)



 =




A11 A12 A13

0 A22 A23

0 A32 A33








x1(t)

x2(t)

x3(t)





+




B11 B12 B13

0 B22 B23

0 B32 B33








u1(t)

u2(t)

u3(t)



+




w1(t)

w2(t)

w3(t)



 . (6)

Now, in order to present the solution to (5) given in, e.g., [7],
we need to construct an information graph P(U ,H). Consid-
ering any directed graph G(V,A) with V = [p], and the delay
matrix D ∈ Rp×p as we described earlier, let us first define
sj(k) to be the set of nodes in G(V,A) that are reachable from
node j within k time steps, i.e., sj(k) = {i ∈ V : Dij ≤ k}. The
information graph P(U ,H) is then constructed as

U = {sj(k) : k ≥ 0, j ∈ V}

H = {(sj(k), sj(k + 1)) : k ≥ 0, j ∈ V}.
(7)

Thus, we see from (7) that each node s ∈ U corresponds to a set
of nodes from V = [p] in the original directed graph G(V,A).
Using a similar notation to that for the graph G(V,A), if there is
an edge from s to r in P(U ,H), we denote the edge as s→ r.
Additionally, considering any si(0) ∈ U , we write wi −→ si(0)
to indicate the fact that the noisewi(t) is injected to node i ∈ V at
time t ∈ Z≥0.4 From the above construction of the information
graphP(U ,H), one can show that the following properties hold.

Lemma 1: [7, Prop. 1] Given a directed graph G(V,A) with
V = [p], the information graph P(U ,H) constructed in (7) sat-
isfies the following:

i) For every r ∈ U , there is a unique s ∈ U such that
(r, s) ∈ H, i.e., r −→ s;

ii) every path in P(U ,H) ends at a node with a self loop;

4Note that we have assumed that there is no directed cycle with zero accu-
mulative delay in P(U ,H). Hence, one can show that for any si(0) ∈ U , wi is
the only noise term such that wi → si(0).

Fig. 2. Information graph of Example 1. Each node in the information
graph is a subset of the nodes in the directed graph given in Fig. 1.

iii) n ≤ |U| ≤ p2 − p+ 1.
Remark 1: One can see from the construction of P(U ,H)

and Lemma 1 that P(U ,H) is a forest, i.e., a set of disconnected
directed trees, where each directed tree in the forest is oriented
to a node with a self loop in P(U ,H). Specifically, si(0) for
all i ∈ V are the leaf nodes in P(U ,H), and the nodes with self
loop are root nodes in P(U ,H).

The information graph P(U ,H) corresponding to Example 1
is given in Fig. 2. Note that the information graph P(U ,H) in
Fig. 2 contains two disconnected directed trees, one of which
is an isolated node {1} ∈ U with a self loop. Also notice that
s1(0) = {1}, s2(0) = {1, 2}, and s3(0) = {3}.

Throughout this article, we assume that the elements in
V = [p] are ordered in an increasing manner, and that the el-
ements in s are also ordered in an increasing manner for all
s ∈ U . Now, for any s, r ∈ U , we use Asr (or As,r) to denote
the submatrix of A that corresponds to the nodes in s and r.
For example, A{1},{1,2} = [A11 A12]. In the sequel, we will
also use similar notations to denote submatrices of B, Q, R
and the identity matrix I . We will make the following standard
assumptions (see, e.g., [7]).

Assumption 2: For any s ∈ U that has a self loop, the pair
(Ass, Bss) is stabilizable and the pair (Ass, Css) is detectable,
where Qss = C$ssCss.

Leveraging the partial nestedness of (5), the authors in [7]
obtained the optimal solution to (5).

Lemma 2: [7, Corollary 4] Consider the problem given in (5),
and let P(U ,H) be the associated information graph. Suppose
Assumption 2 holds. For all r ∈ U , define matrices Pr and Kr

recursively as

Kr = − (Rrr +B$srPsB
$
sr)
−1B$srPsAsr (8)

Pr = Qrr +K$r RrrKr

+ (Asr +BsrKr)
$Ps(Asr +BsrKr) (9)

where for each r ∈ U , s ∈ U is the unique node such that r → s.
In particular, for any s ∈ U that has a self loop, the matrix Ps is
the unique positive semidefinite solution to the Riccati equation
given by (9), and the matrixAss +BssKs is stable. The optimal
solution to (5) is then given by

ζs(t+ 1) =
∑

r→s

(Asr +BsrKr)ζr(t) +
∑

wi→s

Is,{i}wi(t)

(10)
and

u!
i (t) =

∑

r0i
I{i},rKrζr(t) (11)
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for all t ∈ Z≥0, where ζs(t) is an internal state initialized with
ζs(0) =

∑
wi→s Is,{i}xi(0) = 0 for all s ∈ U . The correspond-

ing optimal cost of (5), denoted as J!, is given by

J! = σ2
w

∑

i∈V
wi→s

Tr
(
I{i},sPsIs,{i}

)
. (12)

Let us use Example 1 to illustrate the results in Lemma 2. First,
considering node {1} ∈ U in the information graph P(U ,H)
given in Fig. 2, we have from (10) that

ζ1(t+ 1) = (A11 +B11K1)ζ1(t) +
∑

wi→{1}

I{1},{i}wi(t)

= (A11 +B11K1)ζ1(t) + w1(t).

Next, considering node 2 ∈ V in the directed graph G(V,A)
given in Fig. 1, we see from (11) and Fig. 2 that

u!
2(t) =

∑

r02
I{2},rKrζr(t) = I{2},{1,2}K{1,2}ζ{1,2}(t)

+ I{2},{1,2,3}K{1,2,3}ζ{1,2,3}(t)

where Kr is given by (8).
Remark 2: Obtaining the optimal policy u!

i (t), for any i ∈ V ,
given by Lemma 2 requires global knowledge of the system
matrices A and B, the cost matrices Q and R, and the directed
graph G(V,A) with the associated delay matrix D. Moreover,
u!(t) given in Lemma 2 is not a static state-feedback controller,
but a linear dynamic controller based on the internal states ζr(·)
for all r ∈ U . For any controller i ∈ V and for any t ∈ Z≥0,
the authors in [7] proposed an algorithm to determine ζr(t)
for all r ∈ U such that i ∈ r, and thus u!

i (t), using only the
memory maintained by the algorithm, the state information
contained in the information set Ii(t) defined in (4), and the
global information described earlier.

C. Problem Formulation and Summary of Results

We now formally introduce the problem that we will study in
this article. We consider the scenario where the system matrices
A and B are unknown. However, we assume that the directed
graph G(V,A) and the associated delay matrix D are known.
Similarly to, e.g., [13], [20], we consider the scenario where
we can first conduct experiments in order to estimate the un-
known system matrices A and B. Specifically, starting from
the initial state x(0) = 0, we evolve the system given in (3)
for N ∈ Z≥1 time steps using a given control input sequence
{u(0), u(1), . . . , u(N − 1)}, and collect the resulting state se-
quence {x(1), x(2), . . . , x(N)}. Based on {u(0), . . . , u(N −
1)} and {x(0), . . . , x(N)}, we use a least squares approach to
obtain estimates of the system matrices A and B, denoted as Â
and B̂, respectively. Using the obtained Â and B̂, the goal is
still to solve (5). Since the true system matrices A and B are
unknown, it may no longer be possible to solve (5) optimally,
using the methods introduced in Section II-B. Thus, we aim to
provide a solution to (5) using Â and B̂, and characterize its
performance (i.e., suboptimality) guarantees.

In the rest of this article, we first analyze the estimation error
of Â and B̂ obtained from the procedure described earlier. In

Algorithm 1: Least Squares Estimation of A and B.
Input: parameter λ > 0 and time horizon length N
1: Initialize x(0) = 0
2: For t = 0, . . . , N − 1 do
3: Play u(t)

i.i.d.∼ N (0,σ2
uI)

4: Obtain Θ̂(N) using (14)
5: Extract Â and B̂ from Θ̂(N)

particular, we show in Section III that the estimation errors ‖Â−
A‖ and ‖B̂ −B‖ scale as Õ(1/

√
N) with high probability.5

Next, in Section IV, we design a control policy û(·), based on Â
and B̂, which satisfies the information constraints given in (5).
Supposing ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0,
and denoting the cost of (5) corresponding to û(·) as Ĵ , we
show in Section V-B that

Ĵ − J! ≤ Cε

as long as ε ≤ C0, where J! is the optimal cost of (5) given by
(12), and C0 and C are constants that explicitly depend on the
problem parameters of (5). Finally, combining the abovemen-
tioned results together, we show in Section V-C that with high
probability and for large enough N , the following end-to-end
sample complexity of learning decentralized LQR with the
partially nested information structure holds

Ĵ − J! = Õ
(

1√
N

)
.

III. SYSTEM IDENTIFICATION USING LEAST SQUARES

As we described in Section II-C, we use a least squares
approach to estimate the system matrices A ∈ Rn×n and B ∈
Rn×m, based on a single system trajectory consisting of the con-
trol input sequence {u(0), . . . , u(N − 1)} and the system state
sequence {x(0), . . . , x(N)}, where x(0) = 0 and N ∈ Z≥1.
Here, we draw the inputs u(0), . . . , u(N − 1) independently
from a Gaussian distribution N (0,σ2

uI), where σu ∈ R>0. In

other words, we let u(t)
i.i.d.∼ N (0,σ2

uI) for all t ∈ {0, . . . ,
N − 1}. Moreover, we assume that the input u(t) and the
disturbance w(t) are independent for all t ∈ {0, . . . , N − 1}.
Note that we consider the scenario where the estimation of A
and B is performed in a centralized manner using a least squares
approach (detailed in Algorithm 1). However, we remark that
Algorithm 1 can be carried out without violating the informa-
tion constraints given by (4), since u(t)

i.i.d.∼ N (0,σ2
uI) is not a

function of the states in the information set defined in (4) for
any t ∈ {0, . . . , N − 1}. In the following, we present the least
squares approach to estimate A and B, and characterize the
corresponding estimation error.

A. Lest Squares Estimation of System Matrices

Let us denote

Θ = [A B] and z(t) = [x(t)$ u(t)$]$ (13)

5Throughout this article, we let Õ(·) hide logarithmic factors in N .
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where Θ ∈ Rn×(n+m) and z(t) ∈ Rn+m. Given the sequences
{z(0), . . . , z(N − 1)} and {x(1), . . . , x(N)}, we use regular-
ized least squares to obtain an estimate of Θ as

Θ̂(N) = arg minY ∈Rn×(n+m)

{
λ‖Y ‖2F

+
N−1∑

t=0

‖x(t+ 1)− Y z(t)‖2
}

(14)

where λ ∈ R>0 is the regularization parameter. We summarize
the above least squares approach in Algorithm 1.

B. Least Squares Estimation Error

For the analysis in the sequel, we will make the following as-
sumption, which is also made in related literature (see, e.g., [20],
[39], [40]).

Assumption 3: The system matrix A ∈ Rn×n is stable, and
‖Ak‖ ≤ κ0γk

0 for all k ∈ Z≥0, where κ0 ≥ 1 and ρ(A) <
γ0 < 1.

Note that for any stable matrix A, we have from the Gelfand
formula (e.g., [41]) that there exist κ0 ∈ R≥1 and γ0 ∈ R with
ρ(A) < γ0 < 1 such that ‖Ak‖ ≤ κ0γk

0 for allk ∈ Z≥0. In order
to characterize the estimation error of Θ̂(N) given by (14), we
combine ideas from [25], [26], [36], and show that the following
result holds.

Proposition 1: Suppose Assumption 3 holds, and ‖A‖ ≤ ϑ
and ‖B‖ ≤ ϑ, where ϑ ∈ R>0. Consider any δ > 0. Let the in-
put parameters to Algorithm 1 satisfy N ≥ 200(n+m) log 48

δ
and λ ≥ σ2/40, where σ = min{σw,σu}, and

zb =
5κ0

1− γ0
σ

√
(‖B‖2m+m+ n) log

4N
δ

where κ0 and γ0 are given in Assumption 3, and σ =
max{σw,σu}. Then, with probability at least 1− δ, it holds that
‖Â−A‖ ≤ ε0 and ‖B̂ −B‖ ≤ ε0, where Â and B̂ are returned
by Algorithm 1, and

ε0 = 4

√
160

Nσ2

(
2nσ2

w(n+m) log
N + z2b/λ

δ
+ λnϑ2

)
.

Proof: We provide a sketched proof here and defer the com-
plete proof to [37]. The general idea of the proof is to define a
probabilistic event E and show that several favorable properties
hold on the event E . By showing that the event E holds with
probability at least 1− δ, the result of the proposition follows.
Specifically, one can first show that under the event E , z(t)
defined in (13) satisfies that ‖z(t)‖ ≤ zb for all t ∈ {0, . . . , N −
1}. Then, using [26, Lemma 6] (which is a consequence of [25,
Th. 1]), one can then show that under the event E , Θ̂(N) returned
by Algorithm 2 satisfies that ‖Θ̂(N)−Θ‖ ≤ ε0, where Θ is
defined in (13). Since Algorithm 1 extracts Â and B̂ from
Θ̂(N), i.e., Θ̂(N) =

[
Â B̂

]
, one can show that ‖Â−A‖ ≤

‖Θ̂(N)−Θ‖ and ‖B̂ −B‖ ≤ ‖Θ̂(N)−Θ‖. "
Several remarks pertaining to Algorithm 1 and the result in

Proposition 1 are now in order. First, note that while considering
the problem of learning centralized LQR without any infor-
mation constraints, the authors in [13] proposed to obtain Â

and B̂ from multiple system trajectories using least squares,
where each trajectory starts from x(0) = 0. They showed that
‖Â−A‖ = O(1/

√
Nr) and ‖B̂ −B‖ = O(1/

√
Nr), where

Nr ∈ Z≥1 is the number of system trajectories. In contrast, we
estimate A and B from a single system trajectory, and achieve
‖Â−A‖ = Õ(1/

√
N) and ‖B̂ −B‖ = Õ(1/

√
N).

Second, note that we use the regularized least squares in
Algorithm 1 to obtain estimates Â and B̂. Although least squares
without regularization can also be used to obtain estimates Â
and B̂ from a single system trajectory with the same Õ(1/

√
N)

finite sample guarantee (e.g., [23]), we choose to use regularized
least squares considered in, e.g., [25], [26], [36]. The reason is
that introducing the regularization into least squares makes the
finite sample analysis more tractable (e.g., [26], [36]), which
facilitates the adaption of the analysis in [26] and [36] to our
setting described in this section; more details can be found
in [37]. Moreover, note that the lower bound on λ required in
Proposition 1 is merely used to guarantee that the denominator of
the abovementioned expression for ε0 contains the factor1/

√
N ;

choosing an arbitrary λ ∈ R>0 leads to a factor of 1/
√
N − 1.

In general, one can show that choosing any λ ∈ R>0 leads to
the same Õ(1/

√
N) finite sample guarantee.

Third, note that we do not leverage the block structure (i.e.,
sparsity pattern) of A and B described in Section II-B, when we
obtain Â and B̂ via Algorithm 1. Thus, the sparsity pattern of
Â and B̂ may potentially be inconsistent with that of A and B.
Nonetheless, such a potential inconsistency does not play any
role in our analysis later. The reason is that the control policy to
be proposed later in Section IV does not depend on the sparsity
pattern of Â and B̂. Moreover, when analyzing the suboptimality
of the proposed control policy in Section V, we only leverage the
fact that the estimation error corresponding to submatrices in Â
(resp., B̂) will be upper bounded by ‖Â−A‖ (resp., ‖B̂ −B‖).
Specifically, considering any nodes s, r in the information graph
P(U ,H) given by (7), one can show that ‖Âsr −Asr‖ ≤ ‖Â−
A‖.

Finally, we remark that one may also use system identification
schemes and the associated sample complexity analysis dedi-
cated to sparse system matrices (e.g., [42]). Under some extra
assumptions on A and B (e.g., [42]), one may then obtain Â and
B̂ that have the same sparsity pattern asA andB, and remove the
logarithmic factor in N in ε0 defined in Proposition 1. However,
the assumptions on A and B made in e.g., [42] can be restrictive
and hard to check in practice.

IV. CONTROL POLICY DESIGN

While the estimation of A and B is performed in a centralized
manner as we discussed in Section III-A, we assume that each
controller i ∈ V receives the estimates Â and B̂ after we conduct
the system identification step described in Algorithm 1. Given
the matrices Â, B̂, Q, and R, and the directed graph G(V,A)
(V = [p]) with the delay matrix D, in this section, we design
a control policy that can be implemented in a decentralized
manner, while satisfying the information constraints described
in Section II-B. To this end, we leverage the structure of the
optimal policy u!(·) given in Lemma 2 (when A and B are
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Algorithm 2: Control Policy Design for Node i ∈ V .

Input: estimates Â and B̂, cost matrices Q and R, directed
graph G(V,A) with V = [p] and delay matrix D, time
horizon length T

1: Construct the information graph P(U ,H) from (7)
2: Obtain K̂s for all s ∈ U from (8)
3: Initialize Mi ← M̄i

4: for t = 0, . . . T − 1 do
5: for s ∈ L(Ti) do
6: Find sj(0) ∈ U s.t. j ∈ V and sj(0) = s
7: Obtain ŵj(t−Dij − 1) from (25)
8: Obtain ζ̂s(t−Dij) from (24)
9: Mi ←Mi ∪ {ζ̂s(t−Dij)}

10: for s ∈ R(Ti) do
11: Obtain ζ̂s(t−Dmax) from (24)
12: Mi ←Mi ∪ {ζ̂s(t−Dmax)}
13: Play ûi(t) =

∑
r0i I{i},rK̂r ζ̂r(t)

14: Mi ←Mi \ ({ζ̂s(t− 2Dmax − 1) : s ∈ L(Ti)}
∪{ζ̂s(t−Dmax − 1) : s ∈ R(Ti)})

known). Note that the optimal policy u!(·) cannot be applied to
our scenario, since only Â and B̂ are available.

First, given the directed graph G(V,A) with V = [p] and the
delay matrix D, we construct the information graph P(U ,H)
given by (7). Recall from Remark 1 that P(U ,H) is a forest
that contains a set of disconnected directed trees. We then let L
denote the set of all the leaf nodes in P(U ,H), i.e.,

L = {si(0) ∈ U : i ∈ V}. (15)

Moreover, for any s ∈ U , we denote

Ls = {v ∈ L : v # s} (16)

where we write v # s if and only if there is a unique directed
path from node v to node s in P(U ,H). In other words, Ls is
the set of leaf nodes in P(U ,H) that can reach s. Moreover, for
any v, s ∈ U such that v # s, let lvs denote the length of the
unique directed path from v to s in P(U ,H); we let lvs = 0 if
v = s. For example, in the information graph (associated with
Example 1) given in Fig. 2, we have L = {{1}, {1, 2}, {3}},
L{1,2,3} = {{1}, {1, 2}}, and l{1}{1,2,3} = 1.

Next, in order to leverage the structure of the optimal policy
u!(·) given in (8)–(11), we substitute (submatrices of) Â and B̂
into the right-hand sides of (8) and (9), and obtain K̂r and P̂r

for all r ∈ U . Specifically, for all r ∈ U , we obtain K̂r, and P̂r

recursively as

K̂r = − (Rrr + B̂$srP̂sB̂
$
sr)
−1B̂$srP̂sÂsr (17)

P̂r = Qrr + K̂$r RrrK̂r

+ (Âsr + B̂srK̂r)
$P̂s(Âsr + B̂srK̂r) (18)

where for each r ∈ U , we let s ∈ U be the unique node such
that r → s, and Âsr (resp., B̂sr) is a submatrix of Â (resp.,
B̂) obtained in the same manner as Asr (resp., Bsr) described
earlier. Similarly to (10), we then use K̂r for all r ∈ U together
with Â and B̂ to maintain an (estimated) internal state ζ̂r(t) for

all r ∈ U and for all t ∈ {0, . . . , T − 1}, which, via a similar
form to (11), will lead to our control policy, denoted as ûi(t),
for all i ∈ V and for all t ∈ {0, . . . , T − 1}. Specifically, for all
i ∈ V in parallel, we propose Algorithm 2 to compute the control
policy

ûi(t) =
∑

r0i
I{i},rK̂r ζ̂r(t) ∀t ∈ {0, . . . , T − 1}. (19)

We now describe the notations used in Algorithm 2 and
hereafter. Let us consider any i ∈ V . In Algorithm 2, we let
Ti denote the set of disconnected directed trees in P(U ,H) such
that the root node of any tree in Ti contains i. Slightly abusing
the notation, we also let Ti denote the set of nodes of all the trees
in Ti. Moreover, we denote

L(Ti) = Ti ∩ L (20)

where L is defined in (15), i.e., L(Ti) is the set of leaf nodes
of all the trees in Ti. Letting R ⊆ U be the set of root nodes in
P(U ,H), we denote

R(Ti) = Ti ∩R (21)

where we recall from Lemma 1 that any root node in P(U ,H)
has a self loop. We then see from the information graphP(U ,H)
given in Fig. 2 that

L(T1) = {{1}, {1, 2}, {3}}, L(T2) = L(T3) = {{1, 2}, {3}}

R(T1) = {{1}, {1, 2, 3}}, R2(T2) = R(T3) = {1, 2, 3}.

Note that if any node s ∈ Ti is a leaf node with a self loop (i.e.,
s is an isolated node in P(U ,H)), we only include s in L(Ti)
(i.e., s ∈ L(Ti) but s ,∈ R(Ti)).

Remark 3: For any s, r ∈ L(Ti), let j1, j2 ∈ V be such that
sj1(0) = s and sj2(0) = r. In Algorithm 2, we assume that the
elements in L(Ti) are already ordered such that if Dij1 > Dij2 ,
then s comes before r in L(Ti). We then let the for loop in lines
5–9 in Algorithm 2 iterate over the elements in L(Ti) according
to the abovementioned order.

Furthermore, we denote

Dmax = max
i,j∈V
j!i

Dij (22)

where we write j # i if and only if there is a directed path
from node j to node i in G(V,A), and recall that Dij is the sum
of delays along the directed path from j to i with the smallest
accumulative delay. Finally, the memory Mi of Algorithm 2 is
initialized as Mi = M̄i with

M̄i =
{
ζ̂s(k) : k ∈ {−2Dmax − 1, . . . ,−Dij − 1

}
,

s ∈ L(Ti), j ∈ V, sj(0) = s
}

∪
{
ζ̂s(−Dmax − 1) : s ∈ R(Ti)

}
(23)

where we initialize ζ̂s(k) = 0 for all ζ̂s(k) ∈ M̄i.
Remark 4: Considering the scenario with only sparsity con-

straints (e.g., [1]), i.e., all the edges in G(V,A) have a zero
delay, we see thatDij = 0 for all i, j ∈ V such that j # i, which
implies via (22) that Dmax = 0.
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For any r 0 i, the dynamics of the internal state ζ̂r(t) is given
by

ζ̂r(t+ 1) =
∑

v→r

(Ârv + B̂rvK̂v)ζ̂v(t) +
∑

wj→r

Ir,{j}ŵj(t)

(24)
where ŵj(t) is an estimate of the disturbance wj(t) in (2)
obtained as

ŵj(t) =






0 if t < −1
xj(0) if t = −1
xj(t+ 1)− ÂjxNj (t)− B̂j ûNj (t) if t ≥ 0

(25)
where we replace Aj and Bj with the estimates Âj and B̂j in
(2), respectively, and ûNj (t) is the vector that collects ûj1(t)
for all j1 ∈ Nj , with Nj given in Assumption 1. We note from
(24) to (25) that ζ̂r(0) =

∑
wj→r Ir,{j}xj(0), where x(0) = 0

as we assumed previously. We emphasize that (24) and (25)
are the keys to our control policy design, and they also enable
our analyzes in Section V, where we provide a suboptimality
guarantee of our control policy. As we mentioned in Section I,
the motivation of the control policy û(·) given by (19), (24),
and (25) is that the optimal control policy given in Lemma 2
can be viewed as a disturbance-feedback controller. Since the
system matrices A and B are unknown, the control policy û(·)
constructed in (19), (24), and (25) maps the estimates of the past
disturbances given by (25) to the current control input via the
estimated internal states given by (24).

Observation 1: From the structure of the information graph
P(U ,H) defined in (7), the following hold.

(a) If r is not a leaf node in P(U ,H), (24) reduces to ζ̂r(t+
1) =

∑
v→r(Ârv + B̂rvK̂v)ζ̂v(t).

(b) If r is a leaf node in P(U ,H) that is not isolated, (24)
reduces to ζ̂r(t+ 1) =

∑
wj→r Ir,{j}ŵj(t).

(c) If r is an isolated node in P(U ,H), (24) reduces to ζ̂r(t+
1) = (Ârr + B̂rrK̂r)ζ̂r(t) +

∑
wj→r Ir,{j}ŵj(t).

We will show that in each iteration t ∈ {0, . . . , T − 1} of
the for loop in lines 4–14 of Algorithm 2, the internal states
ζ̂r(t) for all r ∈ U such that i ∈ r (i.e., for all r 0 i) can be
determined, via (24), based on the current memory Mi of the
algorithm and the state information contained in (a subset of) the
information set Ii(t) defined in (4). As we will see, Algorithm 2
maintains, in its current memory Mi, the internal states (with
potential time delays) for a certain subset of nodes in U , via the
recursion in (24). Given those internal states, ζ̂r(t) for all r 0 i
can be determined using (24). Moreover, the memory Mi of
Algorithm 2 is recursively updated in the for loop in lines 4–14
of the algorithm.

Proposition 2: Suppose any controller i ∈ V at any time step
t ∈ Z≥0 has access to the states in Ĩi(t) ⊆ Ii(t) defined as

Ĩi(t) = {xj(k) : j ∈ Vi, k ∈ {t−Dmax − 1, . . . , t−Dij}}
(26)

where Vi = {j ∈ V : Dij ,= +∞}, and Ii(t) is defined in (4).
Then, the following properties hold for Algorithm 2.
(a) The memory Mi of Algorithm 2 can be recursively
updated such that at the beginning of any iteration t ∈

{0, . . . , T − 1} of the for loop in lines 4–14 of the algorithm

Mi =
{
ζ̂s(k) : k ∈ {t− 2Dmax − 1, . . . , t−Dij − 1

}
,

s ∈ L(Ti), j ∈ V, sj(0) = s
}

∪
{
ζ̂s(t−Dmax − 1) : s ∈ R(Ti)

}
(27)

(b) The control input ûi(t) in line 13 can be determined using
(24) and the states in the memory Mi after line 12 (and before
line 14) in any iteration t ∈ {0, . . . , T − 1} of the for loop in
lines 4–14 of Algorithm 2.

Since the proof of Proposition 2 is technical and requires care-
ful investigations of the structures of the directed graph G(V,A)
and the information graph P(U ,H) described in Section II-B,
we use Example 1 to illustrate the steps of Algorithm 2 and the
results and proof ideas of Proposition 2. The complete proof can
be found in [37].

First, we note from Fig. 1 and (22) that Dmax = 1. Con-
sider Algorithm 2 with respective to node 2 in the directed
graph G(V,A) given in Fig. 1. We see that V2 = {j ∈ V :
Dij ,=∞} = {2, 3}, which implies via (26) that Ĩ2(t) =
{x2(t− 2), x2(t− 1), x2(t), x3(t− 2), x3(t− 1)} for all t ∈
{0, . . . , T − 1}. One can check that the initial memory M̄2 of
Algorithm 2 given by (23) satisfies (27) for t = 0, which implies
that the memory M2 satisfies (27) at the beginning of iteration
t = 0 of the for loop in lines 4–14.

To proceed, let us consider iteration t = 0 of the for loop in
lines 4–14 of the algorithm. Noting that L(T2) = {{3}, {1, 2}}
from Remark 3, Algorithm 2 first considers s = {3} in the
for loop in lines 5–9, which implies j = 3 in line 7. We
see from (25) that in order to obtain ŵ3(t− 2), we need to
know x3(t− 1), x3(t−2), x2(t−2), û3(t−2), and û2(t−2),
where x3(t− 1), x3(t− 2), x2(t− 2) ∈ Ĩ2(t), and û2(t− 2),
û3(t− 2) are given by (19). One can then check that the in-
ternal states ζ̂r(t′) that are needed to determine û2(t− 2) and
û3(t− 2) are available in the current memory M2 of Algo-
rithm 2 or become available via further applications of (24).
After ŵ3(t− 2) is obtained, we see from (24) that ζ̂{3}(t− 1)
can also be obtained. Algorithm 2 then updates its current
memory M2 in line 9 and finishes the iteration with respect to
s = {3} in the for loop in lines 5–9. Next, Algorithm 2 considers
s = {1, 2} in the for loop in lines 5–9, which implies j = 2 in
line 7. Following similar arguments to those above and noting
that the current memory M2 of Algorithm 2 has been updated,
one can show that ζ̂{1,2}(t) can be obtained from (24), based on
the current memory of the algorithm. Algorithm 2 again updates
its current memory M2 in line 9 and finishes the iteration with
respect to s = {1, 2} in the for loop in lines 5–9.

Now, recalling that R(T2) = {1, 2, 3} from Fig. 2, we see
that Algorithm 2 considers s = {1, 2, 3} in line 10. One can
also check that ζ̂{1,2,3}(t) can be obtained from (24), based
on the current memory of the algorithm. Finally, based on the
current memory M2 of Algorithm 2 after line 12, one can check
that the control input û2(t) can be determined from (19). Note
that Algorithm 2 removes certain internal states from its current
memory in line 14 that will no longer be used. One can check
that after the removal, the current memory M2 of Algorithm
2 will satisfy (27) at the beginning of iteration t+ 1 of the for
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loop in lines 4–14 of the algorithm, where t = 0. One can then
repeat the above arguments for iterations t = 1, . . . , T − 1.

Several remarks pertaining to Algorithm 2 are now in order.
First, since |L(Ti)| ≤ p and |R(Ti)| ≤ p, one can show via
the definition of Algorithm 2 that the number of the states in
the memory Mi of Algorithm 2 is always upper bounded by
(2Dmax + 2)p+ 2p, where we note that Dmax defined in (22)
satisfies Dmax ≤ p, and p is the number of nodes in the directed
graph G(V,A). Moreover, one can check that Algorithm 2 can
be implemented in polynomial time.

Second, it is worth noting that the control policy ûi(·) for
all i ∈ U that we proposed in (19) is related to the certainty
equivalence approach (e.g., [43]) that has been used for learning
centralized LQR without any information constraints on the
controllers (e.g., [12], [13], [36]). It is known that the optimal
solution to classic centralized LQR (i.e., problem (5) without
the information constraints) is given by a static state-feedback
controller u!(t) = Kx(t), where K can be obtained from the
solution to the Ricatti equation corresponding to A, B, Q, and
R (e.g., [44]). The corresponding certainty equivalent controller
simply takes the form û(t) = K̂x(t), where K̂ is obtained from
the solution to the Ricatti equation corresponding to Â, B̂, Q,
andR, with Â and B̂ to be the estimates ofA andB, respectively.
While we also leverage the structure of the optimal control policy
u!(·) given in (11), we cannot simply replace Kr with K̂r for
all r ∈ U in (11), where K̂r is given by the Ricatti equations
in (17)–(18). As we argued in Remark 2, this is because u!(·)
is not a static state-feedback controller, but a linear dynamic
controller based on the internal states ζr(·) for all r ∈ U , where
the dynamics of ζr(·) given by (10) also depends on A and B.
Thus, the control policy ûi(·) that we proposed in (19) is a linear
dynamic controller based on K̂r and the estimated internal states
ζ̂r(·) for all r ∈ U , where the dynamics of ζ̂r(·) given by (24)
depends on Â and B̂. Such a more complicated form of ûi(·) also
creates several challenges when we analyze the corresponding
suboptimality guarantees in the next section.

V. SUBOPTIMALITY GUARANTEES

In this section, we characterize the suboptimality guarantees
of the control policy û(·) proposed in Section IV. To begin with,
in order to explicitly distinguish the states of the system in (3)
corresponding to the control policies u!(·) and û(·) given by
(11) and (19), respectively, we let x̂(t) denote the state of the
system in (3) corresponding to the control policy û(·) given by
(19), for t ∈ Z≥0, i.e.,

x̂(t+ 1) = Ax̂(t) +Bû(t) + w(t) (28)

where we note from (19) that û(t) =
∑

s∈U IV,sK̂sζ̂s(t) with
K̂s and ζ̂s(t) given by (17) and (24), respectively, for all s ∈ U .
We let x(t) denote the state of the system in (3) corresponding
to the optimal control policy u!(t) given by (11), for t ∈ Z≥0,
i.e.,

x(t+ 1) = Ax(t) +Bu!(t) + w(t) (29)

where u!(t) =
∑

s∈U IV,sKsζs(t) with Ks and ζs(t) given by
(8) and (10), respectively, for all s ∈ U . In (28)–(29), we set
x̂(0) = x(0) = 0. Moreover, for our analysis in the sequel, we

introduce another control policy ũ(t) given by

ũi(t) =
∑

s0i
I{i},sK̂sζ̃s(t) ∀i ∈ V (30)

for t ∈ Z≥0, where for any s ∈ U , K̂s is given by (17), and ζ̃s(t)
is given by

ζ̃s(t+ 1) =
∑

r→s

(Asr +BsrK̂r)ζ̃r(t) +
∑

wi→s

Is,{i}wi(t)

(31)
with ζ̃s(0) =

∑
wi→s Is,{i}xi(0) = 0. We then let x̃(t) denote

the state of the system in (3) corresponding to ũi(·), for t ∈ Z≥0,
i.e.,

x̃(t+ 1) = Ax̃(t) +Bũ(t) + w(t) (32)

where ũ(t) =
∑

s∈U IV,sK̂sζ̃s(t) from (30), and we set x̃(0) =
x(0) = 0. Roughly speaking, the auxiliary control policy ũi(·)
and the corresponding internal state ζ̃s(·) introduced earlier
allow us to decompose the suboptimality gap Ĵ − J! of the
control policy û(·) into two terms that are due to K̂s and ζ̂s(·),
respectively, for all s ∈ V . We then have the following result; the
proof follows directly from [7, Lemma 14] and is, thus, omitted.

Lemma 3: For any t ∈ Z≥0, the following hold: (a)
E[ζ̃s(t)] = 0, for all s ∈ U ; (b) x̃(t) =

∑
s∈U IV,sζ̃s(t); (c)

ζ̃s1(t) and ζ̃s2(t) are independent for alls1, s2 ∈ U with s1 ,= s2.
Using the abovementioned notations, the cost of the optimiza-

tion problem in (5) corresponding to the control policy û(·) (i.e.,
Ĵ) can be written as

Ĵ = lim sup
T→∞

E

[
1

T

T−1∑

t=0

(
x̂(t)$Qx̂(t) + û(t)$Rû(t)

)
]

(33)

where we use lim sup instead of lim since the limit may not
exist. Furthermore, we let J̃ denote the cost of the optimization
problem in (5) corresponding to the control policy ũ(·) given in
(30)

J̃ = lim
T→∞

E

[
1

T

T−1∑

t=0

(
x̃(t)$Qx̃(t) + ũ(t)$Rũ(t)

)
]
. (34)

Now, we recall from Lemma 2 that for any s ∈ U that has
a self loop, the matrix Ass +BssKs is stable, where Ks is
given by (8). We then have from the Gelfand formula that
for any s ∈ U that has a self loop, there exist κs ∈ R≥1 and
γs ∈ R with ρ(Ass +BssKs) < γs < 1 such that ‖(Ass +
BssKs)k‖ ≤ κsγk

s for all k ∈ Z≥0. For notational simplicity,
let us denote

γ = max

{
max
s∈R

γs, γ0

}
, κ = max

{
max
s∈R

κs,κ0

}
(35)

where R ⊆ U denotes the set of root nodes in U , and κ0 ∈ R≥1
and γ0 ∈ R with ρ(A) < γ0 < 1 are given in Assumption 3.
Thus, we see from Assumption 3 and the abovementioned
arguments that ‖(Ass +BssKs)k‖ ≤ κγk for all s ∈ R and for
all k ∈ Z≥0, and ‖Ak‖ ≤ κγk for all k ∈ Z≥0, where κ ∈ Z≥1
and 0 < γ < 1. Moreover, we denote

Γ = max

{
‖A‖, ‖B‖,max

s∈U
‖Ps‖,max

s∈U
‖Ks‖

}

Γ̃ = Γ+ 1.

(36)

Assumption 4: The cost matrices R and Q in (5) satisfy that
σn(R) ≥ 1 and σm(Q) ≥ 1.
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Note that the abovementioned assumption is not more restric-
tive than assuming that R and Q are positive definite (e.g.,
[12], [13], [26]). Specifically, supposing R 5 0 and Q 5 0,
one can assume without loss of generality that σn(R) ≥ 1 and
σm(Q) ≥ 1. This is because one can check that scaling the
objective function in (5) by a positive constant does not change
Kr in the optimal solution to (5) provided in Lemma 2, for any
r ∈ U .

A. Perturbation Bounds on Solutions to Ricatti Equations

Supposing ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ εwith ε ∈ R>0, in
this section, we aim to provide upper bounds on the perturbations
‖P̂r − Pr‖ and ‖K̂r −Kr‖ for all r ∈ U , where Pr (resp., P̂r)
is given by (9) [resp., (18)], and Kr (resp., K̂r) is given by
(8) [resp., (17)]. First, we note from Lemma 2 that for any r ∈
U that has a self loop, (9) [resp., (18)] reduces to the Ricatti
equation in Pr (resp., P̂r). The following results characterize
the bounds on ‖P̂r − Pr‖ and ‖K̂r −Kr‖, for all r ∈ U . The
proofs can be found in [37], which use ideas from [12], and
algebraic manipulations based on (8)–(9) and (17)–(18).

Lemma 4: Suppose Assumptions 2 and 4 hold, and ‖Â−
A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0. Then, for any r ∈ U
that has a self loop, the following hold:

‖P̂r − Pr‖ ≤ 6
κ2

1− γ2
Γ̃5(1 + σ1(R

−1))ε ≤ 1

6
(37)

‖K̂r −Kr‖ ≤ 18
κ2

1− γ2
Γ̃8(1 + σ1(R

−1))ε ≤ 1 (38)

and

‖(Arr +BrrK̂r)
k‖ ≤ κ(

γ + 1

2
)k ∀k ≥ 0 (39)

under the assumption that

ε ≤ 1

768

(1− γ2)2

κ4
Γ̃−11(1 + σ1(R

−1))−2 (40)

where Pr (resp., P̂r) is given by (9) [resp., (18)], Kr (resp., K̂r)
is given by (8) [resp., (17)], γ and κ are defined in (35), and Γ̃
is defined in (36).

Lemma 5: Suppose Assumptions 2 and 4 hold, and ‖Â−
A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0. Then, for any r ∈ U
that does not have a self loop, the following hold:

‖K̂r −Kr‖ ≤
18κ2Γ̃8

1− γ2
(1 + σ1(R

−1))(20Γ̃9σ1(R))lrs−1ε ≤ 1

(41)
and

‖P̂r − Pr‖ ≤
6κ2Γ̃5

1− γ2
(1 + σ1(R

−1))(20Γ̃9σ1(R))lrsε ≤ 1

6
(42)

under the assumption that

ε ≤ (1− γ2)2

768κ4
Γ̃−11(1 + σ1(R

−1))−2(20Γ̃9σ1(R))−Dmax

(43)
where lrs is the length of the unique directed path from node r
to node s in P(U ,H) with s ∈ U to be the unique root node that
is reachable from r, and Dmax is defined in (22).

Consider any r ∈ U with a self loop and suppose (40) holds.
One can show via (39) and [12, Lemma 12] that K̂r given by (17)

is also stabilizing for the pair (Ârr, B̂rr), i.e., Ârr + B̂rrK̂r is
stable (see our arguments for (72) in the Appendix for more
details). Moreover, it is well-known (e.g., [44]) that a stabilizing
solution P̂r to the Ricatti equation in (18) exists if and only if
(Ârr, B̂rr) is stabilizable and (Ârr, Crr) (with Qrr = CT

rrCrr)
is detectable.6 The abovementioned arguments together also
imply that (Ârr, B̂rr) is stabilizable and (Ârr, Crr) (withQrr =
C$rrCrr) is detectable for all r ∈ U , under the assumption on ε
given by (40).

B. Perturbation Bounds on Costs

Suppose ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0.
In this section, we aim to provide an upper bound on Ĵ − J!,
where J! and Ĵ are given by (12) and (33), respectively. To this
end, we first provide upper bounds on J̃ − J! and Ĵ − J̃ , where
J̃ is given by (34), which will lead to the upper bound on Ĵ − J!.
We start with the following result; the proof can be found in the
Appendix.

Lemma 6: Suppose Assumptions 2 and 4 hold, and ‖Â−
A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0 satisfies (43). Then,
for any s ∈ U

lim
t→∞

E
[
ζ̃s(t)ζ̃s(t)

$
]
6 4pσ2

wΓ̃
4Dmaxκ2

1− γ2
I (44)

where p = |V|, κ, and γ are defined in (35), Γ̃ is defined in (36),
and Dmax is defined in (22).

For our analysis in the sequel, we further define P̃r recursively,
for all r ∈ U , as

P̃r = Qrr + K̂$r RrrK̂r+(Asr +BsrK̂r)
$P̃s(Asr+BsrK̂r)

(45)
where K̂r is given by (17), and s ∈ U is the unique node such
that r → s. We then have the following result, which gives an
upper bound on J̃ − J!.

Proposition 3: Suppose Assumption 2 and 4 hold, and ‖Â−
A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε ∈ R>0 satisfies (43). It
holds that

J̃ = σ2
w

∑

i∈V
wi→s

Tr
(
I{i},sP̃sIs,{i}

)
(46)

where J̃ is defined in (34). Moreover, consider the optimal cost
J! given by (12). For any ϕ ∈ R>0,

J̃ − J! ≤
72κ4σ2

wnpq

(1− γ2)2
Γ̃4Dmax+8(Γ3 + σ1(R))(1 + σ1(R

−1))

× (20Γ̃9σ1(R))Dmaxε+ ϕ (47)

where p = |V| and q = |U|, κ and γ are defined in (35), Γ̃ is
defined in (36), and Dmax is defined in (22).

Proof: First, since ε satisfies (43) [and thus (40)], we have
from (39) in Lemma 5 that Ass +BssK̂s is stable for any s ∈ U
that has a self loop. Now, using similar arguments to those for [7,
proofs of Theorem 2 and Corollary 4], and leveraging Lemma 3
and (30)–(31), (17), and (45), one can show that (46) holds.
Since the proof of (47) is more involved and technical, we defer it

6A solution P̂r to the Ricatti equation in (19) is said to be stabilizing if
Ârr + B̂rrK̂r [with K̂r given by (18)] is stable.
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to [37] in the interest of space. The proof idea is to first telescope
the summation on the right-hand side of (34) properly. Using
the telescoped summation corresponding to J̃ , one can leverage
Lemma 3 and [14, Lemma 12] and show that J̃ − J! satisfies
that

J̃ − J! ≤
4pσ2

wΓ̃
4Dmaxκ2

1− γ2
Tr

(
∑

r∈U
(Kr − K̂r)

$

× (Rrr +B$srPsBsr)(Kr − K̂r)

)
+ ϕ

for all ϕ > 0. Note that ε is assumed to satisfy (43). Moreover,
recalling |U| = q and ni ≥ mi for all i ∈ V as we assumed
previously, and the fact that ‖K̂r −Kr‖ ≤ 1 for all r ∈ U , one
can then use Lemmas 4–5 and show that (47) holds. "

Next, we aim to provide an upper bound on Ĵ − J̃ . We first
prove the following result. The proof can be found in [37], which
follows from Lemma 3 and similar arguments to those for the
proof of Lemma 6.

Lemma 7: Suppose Assumptions 2 and 4 hold, and ‖Â−
A‖ ≤ ε and ‖B̂ −B‖ ≤ ε, where ε satisfies (43). Then, for any
s ∈ U and for any t ∈ Z≥0

E
[
‖ζ̃s(t)‖2

]
≤ 4npσ2

wΓ̃
4Dmaxκ2

1− γ2
(48)

where ζ̃s(t) is given in (31), p = |V|, κ and γ are defined in (35),
Γ̃ is defined in (36), and Dmax is defined in (22). Moreover, for
any t ∈ Z≥0

E
[
‖x̃(t)‖2

]
≤ 4npq2σ2

wΓ̃
4Dmaxκ2

1− γ2
(49)

and

E
[
‖ũ(t)‖2

]
≤ 4npq2σ2

wΓ̃
4Dmax+2κ2

1− γ2
(50)

where x̃(t) and ũ(t) are given by (32) and (30), respectively, and
q = |U|.

For notational simplicity in the sequel, let us denote

ζb =

√
4npσ2

wΓ̃
4Dmaxκ2

1− γ2

ε̄ =
(1− γ)3

768κ4pq
(Γ̃+ 1)−2Γ̃−9(1 + σ1(R

−1))−2

× (20(Γ̃+ 1)2Γ̃7σ1(R))−Dmax .

(51)

We then have the following results; the proofs of Lemma 8 and
Proposition 4 are included in the Appendix.

Lemma 8: Suppose Assumptions 2–4 hold, and‖Â−A‖ ≤ ε̄
and ‖B̂ −B‖ ≤ ε̄. Then, for all t ∈ Z≥0,
√

E [‖û(t)− ũ(t)‖2] ≤ 58κ2(Γ̃+ 1)2Dmax+3p2q2

(1− γ)2
ζbε̄ (52)

and
√

E [‖x̂(t)− x̃(t)‖2] ≤ 58κ3Γ(Γ̃+ 1)2Dmax+3p2q2

(1− γ)3
ζbε̄ (53)

where û(t) and x̂(t) are given by (19) and (28), respectively.
The abovementioned result also implies the following.

Corollary 1: Suppose Assumptions 2–4 hold. and ‖Â−
A‖ ≤ ε̄ and ‖B̂ −B‖ ≤ ε̄. Then, for all t ∈ Z≥0,
√

E [‖x̂(t)‖2] ≤ 58κ3Γ(Γ̃+ 1)2Dmax+3p2q2

(1− γ)3
ζbε̄+ qζb (54)

and
√

E [‖û(t)‖2] ≤ 58κ2(Γ̃+ 1)2Dmax+3p2q2

(1− γ)2
ζbε̄+ qΓ̃ζb. (55)

Proposition 4: Suppose Assumptions 2–4 hold, and ‖Â−
A‖ ≤ ε̄ and ‖B̂ −B‖ ≤ ε̄. Then, for Ĵ and J̃ defined in (33)
and (34), respectively,

Ĵ − J̃ ≤ 696κ6σ2
wnp

4q3

(1− γ)4(1− γ2)
Γ̃4Dmax+2(Γ̃+ 1)2Dmax+3

× (σ1(Q) + σ1(R))ε̄ (56)

where κ and γ are defined in (35), p = |V| and q = |U|, Γ̃ is
defined in (36), and Dmax is defined in (22).

Suppose ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε with ε ∈ R>0. We
see from the results in Propositions 3–4 that Ĵ − J! ≤ Cε if ε ≤
C0, where C and C0 are constants that depend on the problem
parameters.

C. Sample Complexity Result

We are now in place to present the sample complexity result
for learning decentralized LQR with the partially nested infor-
mation structure described in Section II-B.

Theorem 1: Suppose Assumptions 2–4 hold, and Algorithm 1
is used to obtain Â and B̂. Moreover, suppose ‖A‖ ≤ ϑ and
‖B‖ ≤ ϑ, where ϑ ∈ R>0, and Dmax ≤ D, where Dmax is
defined in (22) andD is a universal constant. Consider any δ > 0.
Let the input parameters to Algorithm 1 satisfy N ≥ α/ε̄ and
λ ≥ σ2/40, where

zb =
5κ0

1− γ0
σ

√
(‖B‖2m+m+ n) log

4N
δ

and

α =
160

σ2

(
2nσ2

w(n+m) log
N + z2b/λ

δ
+ λnϑ2

)

where κ0 and γ0 are given in Assumption 3, σ = min{σw,σu},
σ = max{σw,σu}, and ε̄ is defined in (51). Then, with proba-
bility at least 1− δ

Ĵ − J! ≤ C1
κ6σ2

wnp
4q3

(1− γ2)2
Γ̃11D+5(Γ̃+ 1)2D+3

× (Γ3 + σ1(R) + σ1(Q))σ1(R)D
√

α

N
(57)

where Ĵ and J! are given in (33) and (12), respectively, C1 is a
universal constant, κ and γ are defined in (35), and Γ and Γ̃ are
defined in (36), p = |V|, and q = |U|.

Proof: Note that the results in Propositions 3–4 hold, if
‖Â−A‖ ≤ ε̄ and ‖B̂ −B‖ ≤ ε̄ with ε̄ given in (51). Thus,
letting N ≥ α

ε̄ and λ ≥ σ2/40, one can first check that N ≥
200(n+m) log 48

δ , and then obtain from Proposition 1 that with
probability at least 1− δ, Â and B̂ returned by Algorithm 1 sat-
isfy ‖Â−A‖ ≤ ε̄ and ‖B̂ −B‖ ≤ ε̄. Noting that Dmax ≤ D,
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where D is a universal constant, and setting ϕ = 1/
√
N in

Proposition 3, one can show via Propositions 3–4 that (57) holds
with probability at least 1− δ. "

Thus, we have shown a Õ(1/
√
N) end-to-end sample com-

plexity result for learning decentralized LQR with the par-
tially nested information structure. In other words, we relate
the number of data samples used for estimating the system
model to the performance of the control policy proposed in
Section IV. Note that our result in Theorem 1 matches with the
O(1/

√
N) sample complexity result (up to logarithm factors in

N ) provided in [13] for learning centralized LQR without any
information constraints. Also note that the sample complexity
for learning centralized LQR has been improved to O(1/N)
in [12]. Specifically, the authors in [12] showed that the gap
between the cost Ĵ corresponding to the control policy they
proposed and the optimal cost J! is upper bounded by O(ε2) if
ε is sufficiently small, where ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε.
Due to the additional challenges introduced by the information
constraints on the controllers (see our discussions at the end of
Section IV), we leave investigating the possibility of improving
our sample complexity result in Theorem 1 for future work.

VI. NUMERICAL RESULTS

In this section, we illustrate the sample complexity result
provided in Theorem 1 with numerical experiments, where
the numerical experiments are conducted based on Example 1.
Specifically, we consider the LTI system given by (6) with the
corresponding directed graph and information graph given by
Figs. 1 and 2, respectively. Under the sparsity pattern of A andB
specified in (6), we generate the nonzero entries inA ∈ R3×3 and
B ∈ R3×3 independently by the Gaussian distribution N (0, 1)
while satisfying Assumption 3. We set the covariance of the
zero-mean white Gaussian noise process w(t) to be I , and set
the cost matrices to be Q = 2I and R = 5I . Moreover, we set
the input sequence used in the system identification algorithm
(Algorithm 1) to beu(t) i.i.d.∼ N (0, I) for all t ∈ {0, . . . , N − 1}.
In order to approximate the value of Ĵ defined in (33), we
simulate the system using Algorithm 2 for T = 2000 and ob-
tain Ĵ ≈ 1

T

∑T−1
t=0 (x̃(t)

$Qx̃(t) + ũ(t)$Rũ(t)). Fixing the ran-
domly generated matricesA andB described earlier, the numer-
ical results presented in this section are obtained by averaging
over 100 independent experiments.

In Fig. 3(a), we plot the estimation error
∥∥[Â B̂]− [A B]

∥∥
corresponding to Algorithm 1 when we range the number of the
data samples used in Algorithm 1 from N = 20 to N = 280.
Similarly, in Fig. 3(b), we plot the curve corresponding to
the cost suboptimality Ĵ − J!, where J! is obtained by the
closed-form expression given in (12). According to Fig. 3, we
observe that the estimation error and the cost suboptimality share
a similar dependency pattern on N . The similar dependency on
N aligns with the results shown in Proposition 1 and Theorem 1
that both the estimation error and the cost suboptimality scale
as Õ(1/

√
N), which is a consequence of the results shown in

Propositions 3–4 that the cost suboptimality scales linearly with
the estimation error. The results presented in Fig. 3 then also
imply that our suboptimality results provided in Propositions

Fig. 3. Both the performance of Algorithm 1 and the performance of
Algorithm 2 are plotted against the number of data samples used for
estimating the system model, where shaded regions display quartiles.
(a) Estimation error versus N (b) Cost suboptimality versus N .

3–4 can be tight for certain instances of the problem. Finally,
we observe from the shaded regions in Fig. 3 that the cost
suboptimality is more sensitive to the randomness introduced
by the random input u(t) i.i.d.∼ N (0, I) for t ∈ {0, . . . , N − 1}
and the noise w(t)

i.i.d.∼ N (0, I) for t ∈ Z≥0, when we run
the 100 experiments described above. This is potentially due
to the fact that we approximated the cost suboptimality as
1
T

∑T−1
t=0 (x̂(t)

$Qx̂(t) + û(t)$Rû(t))− J! with T = 2000.

VII. CONCLUSION

In this article, we considered the problem of control policy
design for decentralized state-feedback linear quadratic control
with a partially nested information structure, when the system
model is unknown. We took a model-based learning approach
consisting of two steps. First, we estimated the unknown system
model from a single system trajectory of finite length, using
least squares estimation. Next, we designed a control policy
based on the estimated system model, which satisfies the desired
information constraints. We showed that the suboptimality gap
between our control policy and the optimal decentralized con-
trol policy (designed using accurate knowledge of the system
model) scales linearly with the estimation error of the system
model. Combining the above results, we provided an end-to-
end sample complexity of learning decentralized controllers for
state-feedback linear quadratic control with a partially nested
information structure.

APPENDIX
PROOFS FOR SUBOPTIMALITY GUARANTEES

Proof of Lemma 6

First, let us consider any s ∈ U that has a self loop. Noting
the construction of the information graph P = (U ,H) given in
(7), one can show that (31) can be rewritten as

ζ̃s(t+ 1) = (Ass +BssK̂s)ζ̃s(t)

+
∑

v∈Ls

H(v, s)
∑

wj→v

Iv,{j}wj(t− lvs) (58)

whereLs = {v ∈ L : v # s} is the set of leaf nodes inP(U ,H)
that can reach s, lvs is the length of the (unique) directed
path from node v to node s in P(U ,H) with lvs = 0 if v = s,
andH(v, s) ! (Asr1 +Bsr1K̂r1) · · · (Arlvs−1v +Brlvs−1vK̂v)
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with H(v, s) = I if v = s, where K̂r is given by (17) for all
r ∈ U , and v, rlvs−1, . . . , r1, s are the nodes along the directed
path from v to s in P(U ,H). Recalling from (31) that ζ̃s(0) =∑

wi→s Is,{i}xi(0) = 0, in (58), we set wj(t− lvs) = 0
if t− lvs < 0. Now, under the assumption on ε given in (43),
we see from (41) in Lemma 5 that ‖K̂r‖ ≤ Γ̃, which implies
that ‖Asr +BsrK̂r‖ ≤ Γ̃2, for all r ∈ U with r ,= s. Noting
that lvs ≤ Dmax from the construction of P(U ,H), we have
‖H(v, s)‖ ≤ Γ̃2Dmax , for all v ∈ Ls. Considering any t ∈ Z≥0
and denoting

ηs(t) =
∑

v∈Ls

H(v, s)
∑

wj→v

Iv,{j}wj(t− lvs) (59)

we have

E
[
ηs(t)ηs(t)

$] = E




∑

v∈Ls

∑

wj→v

H(v, s)Iv,{j}wj(t− lvs)

× wj(t− lvs)
$I{j},vH(v, s)$

]

where we use the fact from w(t) ∼ N (0,σ2
wI) that wj1(t) and

wj2(t) are independent for all j1, j2 ∈ V with j1 ,= j2, and the
fact that for any v ∈ U with sj(0) = v, wj is the only noise term
such thatwj → v (see Footnote 2). Moreover, we see that ηs(t1)
and ηs(t2) are independent for all t1, t2 ∈ Z≥0 with t1 ,= t2,
and that ηs(t) is independent of ζ̃s(t) for all t ∈ Z≥0. Now,
considering any k ∈ Z≥0 such that k − lvs ≥ 0 for all v ∈ Ls,
and noting that w(t) ∼ N (0,σ2

wI) for all t ∈ Z≥0, we have

E
[
ηs(k)ηs(k)

$]=σ2
w

∑

v∈Ls

∑

wj→v

H(v, s)Iv,{j}I{j},vH(v, s)$.

(60)
Let us denote the right-hand side of (60) as W̄s, and denote

L̃ss = Ass +BssK̂s.

Fixing any τ ∈ Z≥1 such that τ − lvs ≥ 0 for all v ∈ Ls, and
considering any t ≥ τ , one can then unroll (58) and show that

E
[
ζ̃s(t)ζ̃s(t)

$
]
= L̃t−τ

ss E
[
ζ̃s(τ)ζ̃s(τ)

$
]
(L̃$ss)

t−τ

+
t−τ−1∑

k=0

Lk
ssW̄s(L̃

$
ss)

k. (61)

Under the assumption on ε given in (43), one can obtain
from Lemma 4 that ‖L̃k

ss‖ ≤ κ(γ+1
2 )k for all k ≥ 0, where

0 < γ+1
2 < 1, which implies that L̃ss is stable. It follows that

lim
t→∞

E
[
ζ̃s(t)ζ̃s(t)

$
]
6 4‖W̄s‖κ2

1− γ2
I.

Noting that |Ls| ≤ p from the definition of P(U ,H) given in
(7), and that for any v ∈ U with sj(0) = v, wj is the only noise
term such that wj → v, as we argued above, we have from (60)
that

‖W̄s‖ ≤ σ2
wpmax

v∈Ls

‖H(v, s)‖2 ≤ σ2
wpΓ̃

4Dmax

where the second inequality follows from the fact that
‖H(v, s)‖ ≤ Γ̃2Dmax as we argued above. It then follows that
(44) holds.

Next, let us consider any s ∈ U that does not have a self loop.
Similarly to (58), one can rewrite (31) as

ζ̃s(t+ 1) =
∑

v∈Ls

H(v, s)
∑

wj→v

Iv,{j}wj(t− lvs).

Using similar arguments to those above, one can show that (44)
also holds. "

Proof of Lemma 8

Due to the space constraint, we omitted some technical details
in this proof; the complete proof can be found in [37].

For notational simplicity in this proof, we denote

δh = p(Γ̃+ 1)2Dmax−1, β = Γ̃2Dmax

Λ1 = qΓ̃

(
2κp(β + 1)

1− γ
+

32κ2p(Γ̃+ 1)

(1− γ)2

)(
1 +

κΓ

1− γ

)

and

Λ2 =
2pqΓ̃κ

1− γ

(
(β + 1)q(Γ̃+ 1) + δh

)
ζb

+
16κ2pqΓ̃(Γ̃+ 1)

(1− γ)2

(
2q(Γ̃+ 1) + 2

)
ζb.

We first prove (52). Note that κ
1−γ > 1, and that β + 1 ≤

Γ̃2Dmax+1 since Γ̃ = Γ+ 1 ≥ 2, where the inequality follows
from the fact via (9) and (36) that Γ ≥ σm(Q) ≥ 1. Based on
the abovementioned notations, one can then show that

1.1Λ2 ≤
58κ2(Γ̃+ 1)2Dmax+3p2q2

(1− γ)2
ζb. (62)

Thus, in order to show that (52) holds for all t ∈ Z≥0, it suf-
fices to show that E[‖u(t)− ũ(t)‖2] ≤ (1.1Λ2ε̄)2 holds for all
t ∈ Z≥0. To this end, we prove via an induction on t = 0, 1, . . . .
For any t ∈ Z≥0, we recall from (19) and (30) that ûi(t) =∑

r0i I{i},rK̂r ζ̂r(t) and ũi(t) =
∑

r0i I{i},rK̂r ζ̃r(t), respec-
tively, for all i ∈ V , where ζ̂r(t) and ζ̃r(t) are given by (24)
and (31), respectively, and K̂r is given by (17), for all r ∈ U .
As we argued before, in (24) and (31) we have ζ̂r(0) = ζ̃r(0) =∑

wi→r Ir,{i}xi(0) for all r ∈ U . Hence, we have û(0) = ũ(0),
which implies that (52) holds for t = 0, completing the proof of
the base step of the induction.

For the induction step, suppose E[‖û(k)− ũ(k)‖2] ≤
(1.1Λ2ε̄)2 holds for all k ∈ {0, . . . , t}. Now, considering any
k ∈ {0, . . . , t}, we can unroll the expressions of x̂(k) and x̃(k)
given by (28) and (32), respectively, and obtain

x̂(k) = Akx̂(0) +
k−1∑

k′=0

Ak−k′−1(Bû(k′) + w(k′))

x̃(k) = Akx̃(0) +
k−1∑

k′=0

Ak−k′−1(Bũ(k′) + w(k′))

where we note that x̂(0) = x̃(0) = x(0). It then follows that
√

E [‖x̂(k)− x̃(k)‖2]

≤
k−1∑

k′=0

√
E [‖Ak−k′−1B(û(k′)− ũ(k′))‖2]
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≤ Γ1.1Λ2ε̄
k−1∑

k′=0

‖Ak−k′−1‖ ≤ 1.1ΓΛ2ε̄
κ

1− γ
(63)

where the first inequality follows from [37, Lemma 14]. To
obtain the first inequality in (63), we use the induction hy-
pothesis. To obtain the second inequality in (63), we use the
fact that ‖Ak′ ‖ ≤ κγk′ (with 0 < γ < 1), for all k′ ∈ Z≥0, from
Assumption 3. Recalling from our arguments in Section IV
[particularly, (25)], one can show that

ŵ(k) = x̂(k + 1)− Âx̂(k)− B̂û(k)

where ŵ(k) =
[
ŵ1(k)$ · · · ŵp(k)$

]$
is an estimate of

w(k) in (3). From (28), we see that

w(k) = x̂(k + 1)−Ax̂(k)−Bû(k).

Recall from Lemma 7 that E[‖x̃(k)‖2] ≤ q2ζ2b and
E[‖ũ(k)‖2] ≤ q2Γ̃2ζ2b , for all k ∈ Z≥0. One can use (63)
and [37, Lemma 14] and show that

E
[
‖x̂(k)‖2

]
≤
(
1.1ΓΛ2κ

1− γ
ε̄+ qζb

)2

.

Moreover, noting the induction hypothesis, one can show that

E
[
‖û(k)‖2

]
≤ (1.1Λ2ε̄+ qΓ̃ζb)

2.

Combining the abovementioned arguments and using [37,
Lemma 14], one can now show that

E
[
‖ŵ(k)− w(k)‖2

]

≤
(
q(Γ̃+ 1)ζb +

1.1ΓΛ2κ

1− γ
ε̄+ 1.1Λ2

)2

ε̄2.

Denoting

δw = q(Γ̃+ 1)ζb +
1.1ΓΛ2κ

1− γ
ε̄+ 1.1Λ2ε̄ (64)

we have

E
[
‖ŵ(k)− w(k)‖2

]
≤ δ2wε̄

2 ∀k ∈ {0, . . . , t}.
Moreover, note that

E
[
‖w(k)‖2

]
= E

[
Tr(w(k)w(k)$)

]
= Tr

(
E
[
w(k)w(k)$

])

= nσ2
w ≤ ζ2b ∀k ∈ Z≥0.

To proceed, let us consider any s ∈ U that has a self loop.
Recalling the arguments in the proof of Lemmas 6, we can
rewrite (31) as

ζ̃s(t+ 1) = (Ass +BssK̂s)ζ̃s(t) + ηs(t) (65)

with

ηs(t) =
∑

v∈Ls

H(v, s)
∑

wj→v

Iv,{j}wj(t− lvs) (66)

whereLs = {v ∈ L : v # s} is the set of leaf nodes inP(U ,H)
that can reach s, lvs is the length of the (unique) directed path
from node v to node s in P(U ,H) with lvs = 0 if v = s, and

H(v, s) = (Asr1 +Bsr1K̂r1) · · · (Arlvs−1v +Brlvs−1vK̂v)

with H(v, s) = I if v = s. We also recall from the arguments
in the proof of Lemma 6 that ‖H(v, s)‖ ≤ β for all v ∈ Ls. We
then see from (60) in the proof of Lemma 6 and the definition

of ζb in (51) that

E
[
‖ηs(k)‖2

]
=E

[
Tr(ηs(k)ηs(k)$)

]
= Tr

(
E
[
ηs(k)ηs(k)

$])

≤ σ2
wnpβ

2 ≤ ζ2b ∀k ∈ Z≥0.
Similarly, one can rewrite (24) as

ζ̂s(t+ 1) = (Âss + B̂ssK̂s)ζ̂s(t) + η̂s(t) (67)

where

η̂s(t) =
∑

v∈Ls

Ĥ(v, s)
∑

wj → vIv,{j}ŵj(t− lvs)

where

Ĥ(v, s) = (Âsr1 + B̂sr1K̂r1) · · · (Ârlvs−1v + B̂rlvs−1vK̂v)

with Ĥ(v, s) = I if v = s. For any k ∈ {0, . . . , t}, one can then
show via the abovementioned arguments that
√

E [‖ηs(k)− η̂s(k)‖2] ≤ (δhζbε̄+ (δhε̄+ β)δw ε̄) (68)

and
√

E [‖η̂s(k)‖2] ≤ p (δhζbε̄+ (δhε̄+ β)δwε̄) + ζb. (69)

Now, let us denote L̃ss = Ass +BssK̂s and L̂ss = Âss +
B̂ssK̂s. Recalling that ζ̂s(0) = ζ̃s(0) =

∑
wi→s Is,{i}xi(0),

where x(0) = 0 as we assumed before, one can unroll (65) and
(67), and show that

ζ̂s(t+ 1)− ζ̃s(t+ 1) =
t∑

k=0

(
L̂t−k
ss η̂s(k)− L̃t−k

ss η̃s(k)
)
.

(70)
Since ‖Â−A‖ ≤ ε̄ and ‖B̂ −B‖ ≤ ε̄, where ε̄ satisfies (40),
as we argued above, we have from Lemma 4 that

‖L̃k
ss‖ ≤ κ

(
γ + 1

2

)k

∀k ∈ Z≥0 (71)

where κ ∈ R≥1 and γ ∈ R, with 0 < γ < 1. Moreover,
since ‖L̂ss − L̃ss‖ = ‖Âss −Ass + K̂s(B̂ss −Bss)‖ ≤ (Γ̃+
1)ε̄, one can use [12, Lemma 5] and prove that

‖L̂k
ss − L̃k

ss‖ ≤ kκ2

(
γ + 3

4

)k−1
(Γ̃+ 1)ε̄ ∀k ∈ Z≥0 (72)

based on the choice of ε̄ in (51). Combining (68)–(72), one can
then show that√

E
[
‖ζ̂s(t+ 1)− ζ̃s(t+ 1)‖2

]
≤ 2κp

1− γ
((β + 1)δw

+δhζb) ε̄+
16κ2(Γ̃+ 1)p

(1− γ)2
(2δw + 2ζb) ε̄. (73)

Now, substituting (64) into the right-hand side of (73), one can
show that√

E
[
‖ζ̂s(t+ 1)− ζ̃s(t+ 1)‖2

]
≤ 1

qΓ̃
(Λ1(1.1Λ2ε̄) + Λ2) ε̄

(74)
where we note that Λ1 > 0 and Λ2 > 0 by their definitions.

Next, considering any s ∈ U that does not have a self loop,
we have from the arguments in the proof of Lemma 6 that (31)
can be rewritten as ζ̃s(t+ 1) = ηs(t), where ηs(t) is defined in
(66). Using similar arguments to those above, one can then show
that (74) also holds.
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Further recalling (19) and (30), we know that û(t+ 1) =∑
s∈U IV,sK̂sζ̂s(t+ 1) and ũ(t+ 1) =

∑
s∈U IV,sK̂sζ̃s(t+ 1).

Using (74), one can show that
√

E [‖û(t+ 1)− ũ(t+ 1)‖2] ≤ (Λ1(1.1Λ2ε̄) + Λ2) ε̄.

Moreover, one can prove that ε̄ given in (51) satisfies that 0 <
ε̄ ≤ 1

11Λ1
, which further implies that

Λ1(1.1Λ2ε̄)ε̄+ Λ2ε̄ ≤ 1.1Λ2ε̄

completing the induction step.
Next, using similar arguments to those for (63), we have√
E[‖x̂(t)− x̃(t)‖2] ≤ 1.1ΓΛ2κ

1−γ ε̄ for all t ∈ Z≥0. It then follows
from (62) that (53) holds for all t ∈ Z≥0. "

Proof of Proposition 4

For notational simplicity in this proof, we denote

Λ =
58κ2(Γ̃+ 1)2Dmax+3p2q2

(1− γ)2
. (75)

For all t ∈ Z≥0, we then see from Lemma 8 that

E
[
‖û(t)− ũ(t)‖2

]
≤ (Λζbε̄)

2

and

E
[
‖x̂(t)− x̃(t)‖2

]
≤
(

κΓ

1− γ
Λζbε̄

)2

where û(k) (resp., ũ(k)) is given by (19) [resp., (30)], x̂(k)
(resp., x̃(k)) is given by (28) [resp., (32)], and ζb is defined in
(51). Similarly, we see from Corollary 1 that

E
[
‖x̂(t)‖2

]
≤
(

κΓ

1− γ
Λζbε̄+ qζb

)2

and

E
[
‖û(t)‖2

]
≤ (Λζbε̄+ qΓ̃ζb)

2

for all t ∈ Z≥0. To proceed, we have the following

Ĵ − J̃ = lim sup
T→∞

E

[
1

T

T−1∑

t=0

(
x̂(t)$Qx̂(t)− x̃(t)$Qx̃(t)

+û(t)$Rû(t)− ũ(t)$Rũ(t)
)
]
. (76)

Now, considering any term in the summation on the right-hand
side of (76), and dropping the dependency on t for notational
simplicity, we have the following:

E
[
x̂$Qx̂− x̃$Qx̃

]

≤ E [‖Qx̂‖‖x̂− x̃‖] + E [‖x̂− x̃‖‖Qx̃‖]

≤
√

E [‖Qx̂‖2]E [‖x̂− x̃‖2] +
√

E [‖x̂− x̃‖2]E [‖Qx̃‖2]

≤ σ1(Q)

(
κΓΛζb
1− γ

ε̄+ qζb

)
κΓΛζb
1− γ

ε̄+ σ1(Q)
κΓΛζb
1− γ

ε̄qζb

= σ1(Q)

(
κΓΛζb
1− γ

ε̄+ 2qζb

)
κΓΛζb
1− γ

ε̄ (77)

where the first two inequalities follow from the Cauchy–
Schwartz inequality, and the third inequality follows from the

upper bounds on E[‖x̂‖2], E[‖x̂− x̃‖2], and E[‖x̃‖2] given
above and in Lemma 7. Similarly, one can prove that

E
[
û$Rû− ũ$Rũ

]
≤ σ1(R)(Λζbε̄+ 2qΓ̃ζb)Λζbε̄. (78)

Combining (77) and (78) together, we obtain from (76) that

Ĵ − J̃ ≤ σ1(Q)

(
κΓΛζb
1− γ

ε̄+ 2qζb

)
κΓΛζb
1− γ

ε̄

+ σ1(R)(Λζbε̄+ 2qΓ̃ζb)Λζbε̄

≤
(

κΓ̃ζb
1− γ

)2

(Λ2ε̄+ 2qΛ)(σ1(Q) + σ1(R))ε̄

≤
(

κΓ̃ζb
1− γ

)2

3Λpq(σ1(Q) + σ1(R))ε̄ (79)

where the second inequality follows from the fact that κΓ̃
1−γ ≥ 1.

To obtain (79), one can show that Λ2ε̄ ≤ Λpq. Finally sub-
stituting the expressions for ζb and Λ given in (51) and (75),
respectively, we obtain from (79) that (56) holds. "
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