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Abstract—Generating wind power scenarios is very important
for studying the impacts of multiple wind farms that are intercon-
nected to the grid. We develop a graph convolutional generative
adversarial network (GCGAN) approach by leveraging GAN’s
capability in generating large number of realistic scenarios
without using statistical modeling. Unlike existing GAN-based
wind power data generation approaches, we design GAN’s hidden
layers to match the underlying spatial and temporal character-
istics. We advocate the use of graph filters to embed the spatial
correlation among multiple wind farms, and a one-dimensional
(1D) convolutional layer to represent the temporal feature filters.
The proposed graph and feature filter design significantly reduce
the GAN model complexity, leading to improvements in training
efficiency and computation complexity. Numerical results using
real wind power data from Australia demonstrate that the
scenarios generated by the proposed GCGAN exhibit more
realistic spatial and temporal statistics than other GAN-based
outputs.

Index Terms—Wind power scenario, Graph Convolutional
Network, Generative adversarial network, Spatio-temporal data
generation.

I. INTRODUCTION

The growth of wind generation and other carbon-free
sources increasingly challenges power system operations with
high uncertainty and variability [1]. Due to the dependence
on weather and atmospheric conditions, accurate predictions
of wind speed and direction are difficult to achieve [2],
critically affecting the integration of wind power generation.
It is imperative to improve the modeling and understanding
of wind farm outputs at specific geo-locations for attaining
reliable and economic power system operations and planning.

To generate synthetic wind power scenarios, a generative
adversarial network (GAN) approach has been recently ad-
vocated that can eliminate the need of statistical assumptions.
Traditional time-domain statistical models, such as autoregres-
sive moving average (ARMA) [3] and generalized dynamic
factor [4], require numerical and structural assumptions, and
thus they may fail to capture all possible underlying factors
that contribute to wind power variability. Meanwhile, the GAN
approach generates fake datasets by directly imitating the
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original data and their marginal distributions via the interactive
improvements between a generator and discriminator [5]. The
work [6] first explored the use of GAN for generating wind
and solar power scenarios, whereas the vanilla model structure
therein was unable to fully capture the intrinsic characteristics
of renewable sources. The sequence GAN was developed by
[7] using a special temporal filter design. Convolutional neural
network (CNN) was used in [8], with the goal of attaining the
correct spatial correlation among multiple wind farms. While
the spatial convolution based on a rigid 2-dimensional (2D)
grid of CNN is useful to match the local correlation with
neighboring nodes, it could unfortunately fail to represent the
global correlation among any pair of wind farms.

In this paper, we suggest an enhancement of the GAN-based
wind power generation approach by using graph convolutional
network (GCN) to produce the correct spatial relations among
multiple wind farms. GCN uses graph filters to mix the
input features among a network of nodes, and this graph
convolution can efficiently incorporate the underlying node
connectivity and graph embedding [9], [10]. By viewing the
power system as a graph, GCN has successfully incorporated
the grid topology in solving the problems of predicting the
electricity market prices [11], locating line faults [12], and
learning the optimal power flow solutions [13]. To develop
the proposed GCGAN approach, we model the hidden layers
of GAN’s generator and discriminator to consist of both graph
filters in spatial dimension and feature filters in temporal
dimension. To match with the spatial correlation of given
wind farms, the graph filter weights are obtained from the
correlation coefficients through an exponential relation. This
filter design can guide the GAN training process to recognize
both strong and weak correlations among wind farms. Due to
the high-dimensionality of the scenario generation window, the
temporal feature filter of GCGAN is simplified by using a one-
dimensional (1D) convolutional layer. This design can greatly
reduce the number of trainable weight parameters and thus
reduce the computation needs of training GCGAN. In order
to implement the proposed GCGAN approach, we use real
wind power data from multiple wind farms in Australia. We
perform numerical comparisons to validate its effectiveness in
terms of producing consistent spatial correlation and temporal
variability.
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Our contributions are as follows:
1) We build a wind power scenario generation scheme that

accounts for the spatial and temporal characteristics of
wind farm outputs;

2) Our proposed graph and temporal feature filters are
greatly simplified to attain good computational efficiency.

The rest of the paper is organized as follows. Section II
provides an overview of the generative adversarial network
(GAN) based wind power scenario generation framework.
In Section III, we develop the graph convolutional GAN
(GCGAN) model and discuss the design of its graph and
feature filters that are consistent with the spatial and temporal
characteristics of wind data. Section IV presents the numerical
comparisons and validations for the proposed scheme, along
with some concluding remarks.

II. WIND SCENARIO GENERATION USING GAN

We provide an overview of the generative adversarial net-
work (GAN) model used for developing the proposed scenario
generation framework. Several factors need to be considered
when generating wind power scenarios. First, the power output
data of an individual wind farm exhibit unique temporal
characteristics due to the wind speed variability and other plant
operating conditions. Second, the spatial correlation among
multiple wind farms is important to maintain especially for
considering their joint impact on the interconnected power
grid. It is important to account for these complicated char-
acteristics in the design of wind power scenario generation
methods.

The GAN model [5] is powerful in generating synthetic data
with similar characteristics as the given real dataset, without
the need of explicitly modeling the underlying data statistics.
Although it was mainly developed for generating fake images
or videos, this method could also be used for generating
synthetic time series in power systems. The GAN architecture
consists of a generator G and a discriminator D, both of
which are essentially neural networks (NNs). The generator
G outputs the synthetic data samples, while the discriminator
D determines whether they are realistic or not using the given
real data samples. This resultant binary classification output
will be further incorporated by the generator G to improve
the data generation performance. Note that the discriminator D
performs a classification by using the input real data samples
as a supervised learning task. In contrast, the generator G does
not have direct access to the real data input.

The gist of GAN prediction is to gradually improve the
data generation performance through the interaction between
G and D. While D tries to maximize its own performance
in classifying fake data from real data, G instead intends
to reduce this classification performance by producing more
realistic data. Therefore, the overall problem can be cast as a
min-max problem that iteratively updates the NN parameters
of G and D until an equilibrium is attained. Suppose we want
to generate the wind power scenarios for N wind farms and
T time steps. The generator G produces a fake data sample

X̂ ∈ RN×T using a random noise matrix Z ∈ RN×K , as
given by

X̂ = G(Z). (1)

The noise matrix Z is sampled from a known probability
distribution PZ , such as Gaussian distribution or Laplace
distribution. The dimension K of input noise is chosen to be
much smaller than T . The goal is for the generated sample
X̂ to approach the probability distribution of the real data
samples, as denoted by PX . Accordingly, the discriminator
classifies on the authenticity of X̂ . Its output D(X̂) = 1 if
the discriminator decides it is real data; and 0 otherwise. Based
on the cross-entropy loss, the objective for G is to minimize

LG = EZ∼PZ log[1−D(G(Z))] (2)

where E denotes the expected operator. Clearly, if the discrim-
inator D is more likely to misclassify the generated sample X̂
as real data, then the term LG becomes smaller. Meanwhile,
for the classification task of D, the objective is to maximize

LD = EX∼PX log[D(X)]

+ EZ∼PZ log[1−D(G(Z))]. (3)

By combining these two individual objectives, the generator
G and discriminator D jointly solves the following min-max
problem, as

min
G

max
D

EX∼PX log[D(X)]

+ EZ∼PZ log[1−D(G(Z))]. (4)

By using gradient updates, this min-max problem can be
solved to obtain the NN parameters for G and D.

The design of GAN’s hidden layer structures is important
for attaining consistent characteristics with the real data sam-
ples. It is possible to use 2D CNN that lead to correlated
outputs from multiple locations [8]. Specifically, by assigning
the wind farms to the locations on a 2D grid, the convolutional
filters aggregate the input data from adjacent locations and can
create correlated outputs within the local regions. Nonetheless,
the local patterns produced by CNN-based scenario generation
approaches could fail to capture the globally correlated rela-
tions among all wind farm locations, due to the limitations
on the 2D filter size. For example, the level of correlation
between two wind farms is difficult to maintain if they are
not adjacent to each on the 2D grid. Thus, the ensuing section
will develop a graph convolutional layer based approach to
improve the consistency spatial correlation in the wind power
scenarios generated by GAN.

III. GRAPH CONVOLUTIONAL GAN (GCGAN)
The key of GCGAN lies in using a graph convolutional

network (GCN) approach to model the layers in the GAN’s
generator and discriminator, as illustrated in Fig. 1. The GCN
is a special type of NNs that can effectively predict nodal
signals that have a graph-based dependence. Specifically, each
layer of GCN uses a graph filter that embeds the underlying
dependence among the set of nodes that can aggregate the
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Fig. 1. The structure of the proposed graph convolutional generative adver-
sarial network (GCGAN).

input signals from other connected nodes. This way, the output
data of GCN would exhibit strong correlation among the nodes
that are connected to each other. We will design the graph filter
A ∈ RN×N later on to match the actual spatial correlation
among the N wind farms.

Let L denote the total number of hidden layers in the
generator, and X(!) ∈ RN×K! represent the input data matrix
with K! features per layer ! ∈ {1, . . . , L}. The input to
the first layer is essentially the random noise matrix; i.e.,
X(1) = Z and K1 = K. Note that we set K!+1 > K! in
order to gradually increase the temporal dimension. For each
layer !, using the matrix W (!) ∈ RK!×K!+1 as the trainable
feature filter parameters, we can represent it as

X(!+1) = σ(AX(!)W (!)), ! = 1, . . . , L (5)

where σ(·) denotes the nonlinear activation function. We can
pick ReLU as the activation function of most layers, while
the last layer L uses the hyperbolic tangent function tanh
to produce output values within [−1, 1] as wind power data.
Clearly, the graph filter A in (5) plays the important role of
aggregating the nodal features such that the rows of the final
layer’s output X(L+1) = X̂ can exhibit the needed correlation
pattern.

As for the layers of discriminator, they are constructed very
similarly to (5), with the first layer using X̂ as the input. A
difference is that the number features K! decreases with !,
as this is a binary classification task and the last layer outputs
the binary decision. As for its activation functions, most of the
layers use Leaky ReLU, and for the last layer the sigmoid
function is selected to produce values within [0, 1] for binary
classification.

A. Graph Filter for Spatial Dimension
The choice of GCN’s graph filter A can critically affect

the spatial correlation of the generated data X̂ . Note that
some GCN-based approaches, such as [13], have included
the graph filters as trainable parameters for attaining high
prediction accuracy, but this setting may increase the com-
putation complexity and possibly lead to overfitting. As the
correlation matrix C can be estimated accurately from the
given real wind data, we will use C to fix the graph filter
weights throughout all layers. For example, earlier work on
using GCN for forecasting wind and solar generation [14] has

directly used the absolute value of correlation coefficients by
setting A = |C|, and similarly in other GCN work [15]. Albeit
simple, this choice could be subpar for attaining the actual
spatial correlation. This is because the weak correlation level
(0∼0.3) and strong correlation one (0.7∼1.0) cannot be easily
differentiated based on the absolute value itself.

To this end, we propose to use an exponential transformation
on the correlation coefficients, by setting the (i, j)-th entry of
the graph filter as

Ai,j =

(
e|Ci,j | − 1

e− 1

)
(6)

where the fractional term is normalized to be within [0, 1]. As
shown in [16], this exponential transformation could enhance
the significance of filter weights between strongly correlated
locations. Our proposed graph filter design turns out effective
in matching with the pairwise correlation for the wind farms.

B. Feature Filter for Temporal Dimension

The large size of temporal feature filters {W (!)} makes
it inefficient to train all these parameters during the GAN
training process. This is because wind power scenarios are
typically generated for a month or even a year, and thus the
feature dimension K! would eventually be very large. Thus,
it is necessary to simplify the temporal filter design in order
to prevent data overfitting.

To this end, we design the feature filter by utilizing the
underlying temporal correlation in the wind power time series.
By using a 1D convolutional filter that sequentially strides
the input features, we can significantly reduce the number
of parameters while maintaining the temporal correlation. To
implement this idea, consider the matrix multiplication term
X̃(!) = X(!)W (!) in (5) as the output of feature filtering.
Instead of having a full matrix W (!), we use a 1D convolution
filter of length (2M! + 1) with trainable weight coefficients
{W (!)

−M , . . . ,W (!)
0 , . . . ,W (!)

M }. This way, the j-th column of
matrix X̃(!) can be formed by

X̃(!)
:,j =

M!∑

m=−M!

X(!)
:,j−mW (!)

m , (7)

and this filter output is used to construct each GCGAN layer
as X(!+1) = σ(AX̃(!)). This way, the full filter matrix is
reduced to a small 1D filter of fixed length. The latter is
still able to match the temporal correlation patterns of the
wind power scenarios while reducing the complexity burden
of training process. This completes the design of our proposed
GCGAN-based wind power scenario generation scheme.

IV. NUMERICAL RESULTS

We have implemented the proposed GCGAN scheme using
historical wind power data from N = 20 wind farms that
have registered with the Australian Energy Market Operator
(AEMO). The wind power outputs of each wind farm were
collected at 5-minute intervals from 2012 to 2017. The nu-
merical implementation has been performed in PyTorch on a
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TABLE I
COMPARISON OF THE TRAINING TIME PER EPOCH AND THE TOTAL

TRAINING TIME FOR CONVERGENCE.

DCGAN GCGAN full GCGAN

Training Time
per epoch 6.21 s 4.17 s 1.31 s

Convergence Time 594.7 s 414.2 s 68.3 s

regular laptop with Intel® CPU @ 2.70 GHz, 32 GB RAM,
and NVIDIA® RTX 3070 Ti GPU @ 8GB VRAM.

To demonstrate the efficiency of the proposed 1D feature
filter, we also consider the GCGAN model with the full
matrices W ’s as feature filters, termed as GCGAN full. In
addition, a CNN-based model using deep convolutional GAN
(DCGAN) has been implemented by arranging the 20 wind
farms into a 2D grid based on the latitude and longitude and
trained as a 3D CNN model. For all models, the scenario
is generated for a 10-day duration of T = 2880 time steps.
The GAN input noise dimension is K = 5, and number
of hidden layers for either the generator or discriminator
is L = 4. The generator of the GCGAN models has
K! = {5, 180, 720, 2880} features at each layer !, and the
discriminator has K! = {2880, 720, 180, 5} features. The size
parameter for GCGAN’s 1D temporal feature filters is set to
M! = {12, 72, 144, 144}, corresponding to the dynamics at
1-hour, 6-hour, or 12-hour intervals.

We first compare the computational time for the proposed
GCGAN with the other two GAN-based models. Table I
lists the training time per epoch and the total training time
for convergence. Clearly, the proposed GCGAN based on
temporal filter is significantly faster than GCGAN full using
fully-connected feature filters. Moreover, both of them are
faster than the CNN-based DCGAN scheme. The proposed
GCGAN model also takes less time for convergence compared
to other GAN-based models. It is true that there is a possi-
bility of underfitting due to a small number of parameters
in GCGAN. But we have ensured to maintain the spatial
and temporal characteristics by carefully designing graph and
feature filters while attaining an accelerated convergence time.
We will further demonstrate the improvement of GCGAN in
both spatial and temporal domains.

A. Spatial Correlation
We compare the spatial correlation of the data generated

by each GAN model with that of the actual historical data.
Fig. 2 plots the correlation matrices with the entry values lying
within [0, 1], as all correlation coefficients turn out to be non-
negative. For the actual data, the nearly-red diagonal blocks
show several clusters of highly-correlated wind farms. The
wind farms within each cluster are geographically much closer
to each other than to those in other clusters.

For the scenario generated by each GAN-based model, the
proposed GCGAN shows the highest similarity in recovering
the actual correlation. In particular, GCGAN can maintain the

(a) Actual data (b) DCGAN

(c) GCGAN full (d) GCGAN

Fig. 2. Comparison of the correlation matrices of the actual and
generated scenarios by different GAN models.

Fig. 3. Comparison of sample wind power scenarios generated by
DCGAN (left) and GCGAN (right) for two selected wind farms that
are geographically close and highly correlated.

correlation level for wind farms that are either strongly or
weakly correlated. As for the DCGAN one, the correlation
level has significantly increased for some weakly correlated
wind farms or those not in the same cluster. This is likely due
to the 2D convolutional layer design which has created some
unnecessary correlation between certain pairs of wind farms.
The same observation holds for the GCGAN full one, which
shows the correlation level could be excessively high. We
believe this is because of its learning inefficiency as a result of
using the high-dimensional feature filters. Different from these
two models, the proposed GCGAN achieves a good balance
to maintain both strong and weak correlation levels among
the wind farms. As an example, Fig. 3 compares sample daily
outputs generated by DCGAN and GCGAN for two selected
wind farms whose geographical proximity has led to a high
level of correlation at 0.925. While the DCGAN outputs show
an opposite trend at certain hours, the GCGAN ones maintain
high similarity throughout the day. While there could be some
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TABLE II
COMPARISON OF THE STATISTICAL PROPERTIES OF THE ACTUAL DATA

AND GCGAN GENERATED SCENARIOS.

Types Time
Interval

Actual
Data

Generated
Scenarios

Variability
Peak

15-min 0.1546 0.2051

30-min 0.1046 0.0835

60-min 0.0764 0.0720

Variability
Variance

15-min 3.019e-04 5.686e-04

30-min 1.577e-04 1.544e-04

60-min 1.055e-04 1.302e-04

Plant CF 35.2% 35.3%

Weibull
Parameter (0.3281, 2.92) (0.3614, 2.98)

space for improvement, the proposed exponential rule-based
graph filter design turns out useful to produce the correct
spatial correlation, which the simple temporal filter has made
the optimization of GAN parameters very effective.

B. Temporal Variability

Furthermore, the temporal variability of the generated sce-
narios by each GAN model is compared with that of the actual
data. Basically, this characteristic represents the change rate of
a wind farm output, as defined by the wind power difference
between the beginning and end of a fixed time interval. We
have picked the 15-min, 30-min, and 60-min variability values
for comparison, with the statistics listed in Table II for both
the proposed GCGAN generated data and the actual data.
The variability values of wind farm output typically follow
a Laplace distribution, and thus we have compared the peak
value and variance of the variability distribution. While both
statistics for the 15-min variability are slightly higher than
the actual values, there is a pretty good match between the
generated scenario and actual data. Therefore, the proposed
scenario generation method creates scenarios with similar
variability to the actual data.

In addition to the variability statistics, Table II further
compares the plant capacity factor (CF) and distribution pa-
rameters, both related to the wind farm’s annual production
pattern. They are very important for using the generated wind
scenarios in power system planning studies. Given the total
annual power generation of P , the plant CF is defined by:

αC = P/(C ∗ 24 ∗ 365) (8)

where C denotes its installed capacity. In general, the CF
ratio is between 25% and 40% [17], and shows that the
generated data has a CF of 35.3% which very matches the
actual value at 35.2%. Furthermore, as the wind power output
typically follows a Weibull distribution, we have estimated the
corresponding distribution parameters consisting of shape and

scale through data fitting. Clearly, these two parameter values
are also pretty close for the generated data. All these results
have demonstrated that the generated data for each wind farm
shares very similar characteristics as the actual data.

To sum up, this paper presented a wind power scenario
generation approach based on GAN that can better incorporate
the spatial correlation among multiple wind farms. Our future
research directions include using the generated scenarios in
power system operations and planning tasks, as well as extend-
ing to develop scenario generation schemes for other energy
resources.
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