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ABSTRACT

We present Dinomo, a novel key-value store for disaggregated

persistent memory (DPM). Dinomo is the �rst key-value store for

DPM that simultaneously achieves high common-case performance,

scalability, and lightweight online recon�guration. We observe that

previously proposed key-value stores for DPM had architectural

limitations that prevent them from achieving all three goals simul-

taneously. Dinomo uses a novel combination of techniques such as

ownership partitioning, disaggregated adaptive caching, selective

replication, and lock-free and log-free indexing to achieve these

goals. Compared to a state-of-the-art DPM key-value store,Dinomo

achieves at least 3.8× better throughput at scale on various work-

loads and higher scalability, while providing fast recon�guration.
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1 INTRODUCTION

Large cloud providers operate at a much larger scale than traditional

enterprise data centers and aim to optimize their infrastructures

for high utilization. However, recent work indicates that resources

in cloud data centers remain underutilized [30, 52, 69, 74]. In the

face of dynamic and bursty workloads, scheduling tasks such that

resource utilization is high proves challenging [90]. For example,

memory utilization can be as low as 60% [15, 74, 76].

One promising way to increase resource utilization is to disaggre-

gate resources [4, 24, 36, 49]. In a disaggregated cluster, resources

such as CPU, memory, and storage are each collected into a separate

central network-attached pool. By sharing these resources across
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users and applications, utilization can be increased signi�cantly.

Furthermore, each resource can be scaled up or down indepen-

dently of the others: for example, memory can be added without

the need to also add CPU or storage. Such disaggregation has long

been practiced for storage in the form of network-attached storage

(NAS) [25] and Storage Area Networks (SAN) [7]. In this work,

we take the idea one step further and consider a cluster where

Persistent Memory is disaggregated.

Persistent Memory (PM) is a new memory technology that pro-

vides durability like traditional storage, with performance close to

DRAM [32, 56, 86]. Since PM has much higher cost per GB than

conventional storage [3], it is critical to achieve high utilization in

PM deployments. Similar to traditional storage, the utilization of

PM would increase from disaggregation. However, the DRAM-like

latencies of PMmake disaggregation challenging, since the network

latency is an order of magnitude higher than PM latency.

Disaggregated Persistent Memory (DPM) is still under active

research and development, and hence there are di�erent kinds of

DPM to build upon. In this work, we assume that DPM is available

as a centralized, reliable pool accessible via the network [37]. We

further assume that DPM includes some limited computational ca-

pability, as prior work shows such capability is critical for achieving

good performance [54, 75, 89].

We are interested in using DPM to build persistent key-value

stores (KVSs), which are critical pieces of software infrastructure.

The KVS consists of a number of KVS nodes (KNs) equipped with

general-purpose processors, a relatively small amount of local

DRAM, and high-performance network primitives like RDMA to

access DPM over the network [79]. An ideal KVS for DPM would

have a number of properties: high common-case performance, scal-

ability, and quick recon�guration that allows handling failures,

bursty workloads, and load imbalance e�ciently.

Building a KVS that achieves all the goals simultaneously is

challenging. First, KNs incur expensive network round trips (RTs)

for accessing data and metadata in DPM. Despite these overheads,

the KVS must provide high performance. Second, to bene�t from

independent scaling of KNs and PM, the KVS must be elastic and

support lightweight recon�guration of resources. Finally, the KVS

must provide scalable performance without bottlenecks due to load

imbalance at KNs or from non-uniform workload patterns.

Prior DPM KVSs [54, 75] make design trade-o�s that make

these goals di�cult to satisfy simultaneously. For example, Asym-

NVM [54] achieves high performance by adopting a shared-nothing



architecture to enable high cache locality at KNs. However, expen-

sive data reorganization is needed when changing the number of

KNs or rebalancing their load, thus limiting elasticity and e�cient

load balancing. Similarly, Clover [75] supports straightforward load

balancing and high elasticity using a shared-everything architec-

ture where data is shared across KNs, and any KN can handle any

request. However, performance and scalability su�er as a result of

poor cache locality and consistency overheads (including cache co-

herence, contention, and synchronization overheads due to sharing)

in the common case [65].

In this work, we present Dinomo, the �rst DPM KVS that simul-

taneously achieves high common-case performance, scalability, and

lightweight online recon�guration. Dinomo also provides lineariz-

able reads and writes. To achieve these goals, Dinomo carefully

adapts techniques from the storage research community, including

caching, ownership partitioning, selective replication, and lock-free

and log-free PM indexing.

Data organization on DPM (§3.2). Dinomo stores data and meta-

data on DPM to enable concurrent and consistent access by all KNs.

Because DPM is shared among all KNs, it functions as the source

of ground truth in the system. To enable consistent updates, data

is written to DPM in the form of log entries by the KNs. These log

entries are asynchronously merged in order into the metadata index

by the processors at DPM. For its metadata index, DPM uses a con-

current PM index [46] which provides lock-free reads and log-free

in-place-writes; the lock-free reads allow us to eliminate synchro-

nization overheads between KNs and log-free in-place-writes allow

DPM processors to concurrently update the metadata.

Disaggregated Adaptive Caching (DAC) (§3.3). Similar to other

disaggregated systems, Dinomo reduces network RTs by caching

data and metadata in the local DRAM of each KN. Data is cached

by storing the key-value pair, and metadata is cached by storing a

pointer to the data on DPM (termed shortcuts [75]). To determine

how best to divide the cache space between data and metadata,

Dinomo uses DAC, a novel adaptive caching policy that actively

maintains the right balance between caching values and shortcuts

based on the workload patterns and available memory at KNs. DAC

allows Dinomo to make e�cient use of the DRAM at KNs without

making any assumptions about the workload.

Ownership Partitioning (OP) (§3.4). While caching at the KNs

can reduce network RTs, it can incur signi�cant consistency over-

heads when KNs can share the same data. To handle this concern,

Dinomo partitions the ownership of data across KNs, while data

and metadata are shared via DPM. This provides three bene�ts.

First, it allows KNs to cache the data they own, thus providing

high cache locality without consistency overheads. Second, by shar-

ing the data and metadata, OP supports changing the number of

KNs or rebalancing their load by repartitioning only the owner-

ship of data among KNs, without expensive data reorganization

at DPM. Finally, since each key is only accessed by one KN at any

given point, combined with our principled recon�guration proto-

col, Dinomo achieves linearizable reads and writes. Similar ideas

have been proposed before in other contexts [1, 7, 13, 80], but we

are the �rst to adapt it for DPM. With OP, Dinomo achieves high

performance/scalability from locality-preserving KN-side caching

without consistency overheads and high elasticity from lightweight

recon�guration.

Selective Replication (§3.4). Ownership partitioning, however,

may experience performance or scalability bottlenecks at KNs due

to load imbalance under highly skewed workloads (i.e., the max-

imum throughput for requests on a single key is limited by the

processing capacity of a single KN). To avoid this issue and pro-

vide scalable performance for highly skewed workloads, Dinomo

selectively replicates the ownership of hot keys across multiple KNs.

Dinomo has a separate monitoring/management node that iden-

ti�es hot keys, initiates their ownership replication to other KNs,

and thus balances the load from hot keys across available KNs.

Alleviate network and CPU bottlenecks (§3.6). Dinomo’s data

path uses one-sided RDMA operations with asynchronous post pro-

cessing. All reads to DPM by KNs use one-sided RDMA operations

on a shortcut hit or a cache miss. Dinomo writes multiple log

entries in a batch in the critical path using a one-sided RDMA op-

eration, and delegates the merging of the writes into the metadata

index to the DPM processors asynchronously. Asynchronous post-

processing reduces write latency and amortizes DPM processing

utilization across multiple writes, reducing how much DPM com-

puting power is needed in the critical path. These optimizations

decrease the network messages per operation and alleviate the pro-

cessing bottleneck from DPM, increasing the e�ciency of Dinomo

in addition to techniques like DAC and OP.

Limitations. Our work has a number of limitations. First, while we

address the challenge of scaling KNs, we do not tackle how to make

DPM reliable or scalable. Second, Dinomo targets key-value store

functionality for DPM systems. Many of its ideas may be equally

applicable for a broader range of DPM-based storage systems as

well as disaggregated DRAM systems, but we have not explored

this. Finally, while our work provides mechanisms for scaling KNs,

it does not tackle the policies for when KNs should be scaled. We

consider these areas ripe for future work.

Evaluation. We implement Dinomo in 10K lines of C++ code. We

compare the end-to-end performance and scalability of Dinomo

with Clover [75], a state-of-the-art DPM KVS. Our experiments

show that Dinomo achieves both better common-case performance

and scalability than Clover. Dinomo’s throughput scales to 16 KNs,

while Clover’s throughput does not scale beyond 4 KNs. With 16

KNs, Dinomo outperforms Clover by at least 3.8× on all workloads

we evaluate. We also show that Dinomo elastically scales out KNs,

balances the load across KNs, and handles KN failures quickly.

In summary, this paper makes the following contributions:

• We present Dinomo, the �rst DPM key-value store that

simultaneously achieves high performance, scalability, and

lightweight online recon�guration (§3).

• We present DAC, a novel adaptive caching policy that helps

utilize the KN-side memory e�ectively without any assump-

tions on workload patterns (§3.3).

• We adapt OP for DPM KVSs to achieve high performance,

scalability, and lightweight recon�guration (§3.4).

• We experimentally show that Dinomo can e�ciently react

to both KN failures and load imbalance, and automatically

scale the number of KNs by capturing load dynamics (§5).



2 BACKGROUND AND MOTIVATION

We describe persistent memory (PM) and how it can be used in dis-

aggregated settings. We then discuss prior key-value stores (KVSs)

for disaggregated PM (DPM) and motivate the need for a new KVS.

2.1 Persistent Memory and Disaggregation

PM is a non-volatile memory technology with unique character-

istics [32, 86]. PM is connected directly to the memory bus – it

is byte addressable, and has performance close to DRAM. It has

high capacity: Intel’s Optane DC PM is available up to 512GiB per

NVDIMM [56]. The per-GB cost of PM is higher than high-end solid

state drives, but less than DRAM [3]. To improve cost e�ciency

and PM utilization, prior work proposes DPM [38, 51, 54, 75, 79, 89].

We note that our work is agnostic to the choice of PM technology

and speci�c PM product (e.g., PCM [83], STT-MRAM [5], Memris-

tor [87], Optane DC PM [56], Memory-Semantic CXL SSD [21]).

Disaggregated PM. In disaggregated settings, PM is available as

a central, reliable pool of memory accessible over a network. KVS

nodes (KNs) are used to access the data in DPM; KNs have limited

DRAM and use network primitives like RDMA to access the PM

pool over a fast interconnect such as In�niBand [4], PMoF [26, 28],

or Gen-Z [16]. Disaggregation allows independent scaling of PM

and KNs and introduces separate failure domains, where KN failures

do not cause DPM failures.

DPM can be classi�ed as active or passive. Active DPM has small

processing units such as ARM SOCs, ASICs, or FPGAs, with high-

bandwidth network ports. In active DPM, DPM compute capacity

is used for local processing, including network, application-level,

and data store processing [39, 54, 70]. Prior work has proposed

data stores for active DPM that leverage this limited computational

power [29, 51, 54, 75, 89]. In contrast, passive DPM has no computa-

tional abilities at the DPM pool. KNs can use only one-sided RDMA

operations to access and modify the data in DPM. Data stores for

passive DPM [75] have poor performance and scalability due to

the limited functionality of the one-sided network primitives [2],

showing that active DPM is a more practical deployment.

2.2 DPM Key-Value Stores

Previously proposed DPM key-values stores di�er based on how

they handle data, metadata, and ownership. Metadata is information

used to locate and access data (like an index). Ownership determines

if a data item can be read or written.

AsymNVM. AsymNVM [54] adopts a shared-nothing architecture.

Data in DPM is partitioned, and each partition is exclusively ac-

cessed by a single KN. Every KN uses its local memory to cache

data from its partition (Table 1); caching helps reduce expensive

network round trips to DPM. As KNs have exclusive ownership

over data, their caches can preserve locality and can be consistent

without incurring additional consistency overheads. Thus, shared-

nothing architectures provide high performance and scalability

in the common case by e�ectively using KN caches to process re-

quests. However, recon�guring the number of KNs or balancing

load across KNs requires physical reorganization of data and meta-

data [9, 30, 41, 54]. For example, adding a new KN may require

the metadata of a partition to be split, resulting in expensive data

Table 1: Design choices and properties of di�erent DPM KVS

KVS property Dinomo Clover AsymNVM

Data shared shared partitioned

Metadata shared shared partitioned

Ownership of data partitioned shared partitioned

High performance ✓ × ✓

Scalability ✓ × ✓

Lightweight recon�guration ✓ ✓ ×

Table 2: Dinomo goals and design techniques

Goals Dinomo techniques

High performance Ownership partitioning, DAC

Lightweight recon�guration

and scalability
Ownership partitioning

Linearizable reads and writes Shared DPM, Ownership partitioning

copies at DPM. Thus, AsymNVM o�ers performance at the expense

of elasticity and fast recon�guration.

Clover. Clover [75] adopts a shared-everything architecture. All

KNs share the ownership of data in DPM, and every KN can ac-

cess and modify all data and metadata (Table 1). KNs can use local

memory to cache data. However, due to sharing, KNs have poor

cache locality and need to keep their caches consistent, incurring

signi�cant consistency overheads that reduce the common-case

performance and scalability [65]. Nevertheless, Clover can sup-

port lightweight recon�guration without re-partitioning data or

metadata and allow straightforward load balancing across KNs.

Overall, Clover o�ers elasticity and lightweight recon�guration at

the expense of high common-case performance and scalability.

In summary, prior DPM key-value stores sacri�ce one of high

common-case performance, scalability, or lightweight recon�gura-

tion for the other two (Table 1). This motivates our design for a new

DPM key-value store, Dinomo, which achieves the three properties

simultaneously.

3 DINOMO

We now present Dinomo, a key-value store (KVS) for DPM. We

�rst describe its API, target workloads, goals, and the guarantees it

provides. Then, we explain howDinomo achieves its goals (Table 2).

API.Dinomo allows applications to perform insert(key, value),

update(key, value), lookup(key), or delete(key) on variable-

sized key-value pairs. We refer to the lookup operations as reads,

and the insert, update, and delete operations as writes.

Target workloads. Dinomo targets applications with dynamic

working sets and sizes, and non-uniform workloads with varying

skew [60, 67, 84]. Large variations in workloads require DPM KVSs

to allow the elastic deployment of resources (e.g., KNs) in response

to those dynamics [12, 90].

Goals. Dinomo aims to achieve the following goals:

• High common-case performance, in the absence of failures or

recon�guration

• Scalability of performance when the number of KNs increases





3.3 Disaggregated Adaptive Caching

It would be prohibitively expensive for KNs to do network round

trips (RTs) for every read operation. To avoid these overheads, KNs

use local DRAM to cache data and metadata. Because KNs have

limited memory, e�cient caching is crucial for high common-case

performance. We introduce Disaggregated Adaptive Caching (DAC),

a novel caching scheme to e�ciently use DRAM at KNs.

Motivation. As DPM is directly accessible to KNs via one-sided

RDMA operations with low latency owing to its byte addressability,

KNs can cache not only data in the form of values but also metadata

in the form of shortcuts. A value entry keeps the entire copy of a

DPMvalue, so the KN can access everything locally. A shortcut entry

keeps a �xed 64-bit pointer to the value in DPM; accessing the data

incurs a one-sided operation to DPM. If neither value nor shortcut

are cached, accessing the value incurs signi�cant overhead: the KN

needs to traverse a metadata structure in DPM to �nd the value’s

location and then access the value. Traversing metadata structures

like trees, skip lists, or chaining lists in hash tables, requires multiple

RTs to DPMor remote procedures in DPM, both of which havemuch

higher overheads than a single one-sided operation [2, 81, 92, 93].

Caching values improves performance relative to caching short-

cuts, but requires more cache space. This raises an interesting ques-

tion: is it better to cache a few values with no overheads upon cache

hits, or a larger number of shortcuts with �xed hit overheads?

The answer is simple in extreme cases: in highly skewed work-

loads, where a small number of hot key-value pairs can �t in the

cache, storing values is better. When workloads are close to uniform

distribution with total size larger than the cache, storing shortcuts

is better. Unfortunately, most workloads fall between these two

extremes and o�er no clear answer. A simple static caching policy

may reserve some �xed ratio of cache space for storing values and

devote the rest to shortcuts. What should this ratio be? We observe

that the e�cient ratio is dependent on workload patterns and ag-

gregate memory available for caching. In a disaggregated system

like Dinomo that has autoscaling, neither workload patterns nor

memory available is known ahead of time, ruling out static policies.

Adaptive Policy. We introduce DAC, a novel caching policy that

dynamically selects the ratio of values to shortcut entries as needed.

This policy automatically adapts to the changes in workload pat-

terns and to the changes in the aggregate memory space for caching

at KNs due to cluster recon�guration, as shown in Figure 2.

Insight. DAC is based on the following insight. Performance is

highly correlated with the number of network RTs, so we seek

to minimize that. Caching a shortcut reduces RTs from" (where

" is the cost of an index lookup) to one, while caching a value

instead of a shortcut reduces RTs from one to zero. Thus, caching

shortcuts provides the bigger gain. We treat value caching as an

optimization on top of shortcut caching. Value caching is used when

we have spare space in the cache, or when we observe that storing

a value can serve more requests than storing an equivalent number

of shortcuts. Table 3 details the policy.

In DAC, values can be demoted to shortcuts and shortcuts can

be evicted. Shortcuts can also be promoted to values.

Demotions. Demotions occur on cache misses to make space for

a new cache entry. To demote a value to a shortcut, we pick the

Table 3: Summary of the adaptive caching policy

Disaggregated Adaptive Caching

BEGIN We start with an empty cache; start caching values

On a MISS We cache the shortcut; if we need to make space

for the shortcut, we DEMOTE a value (if present)

or evict a least frequently used shortcut

On HIT We check if we can PROMOTE this shortcut to

value; we check if the bene�ts from caching the

value instead of shortcut outweigh the bene�ts

from evicting a suitable number of shortcuts

EVICT Always evict the least frequently used shortcut

PROMOTE Promote only if the bene�ts outweigh the costs

DEMOTE Demote if we incur cache misses

least-recently-used key, leveraging temporal locality. To evict a

shortcut, we pick the least-frequently-used key, in order to preserve

frequently used keys in the cache and cater to skewed workloads.

Promotions. Promotions depend on whether the bene�ts from

caching a value outweigh the bene�ts from caching a suitable num-

ber of shortcuts. To determine if a shortcut % needs to be promoted

to a value, we use the following calculation. If at least # least-

frequently-used shortcuts need to be evicted to make space for

caching one value, then the shortcut % needs to satisfy the follow-

ing relation to be promoted:

�8CB (%) × Avg. shortcut hit RTs ≥

#∑

8=1

�8CB ((ℎ>AC2DC8 ) × Avg. cache miss RTs
(1)

This formula accounts for the two elements of the trade-o�: the

di�erences in the value and shortcut sizes, and the di�erences

in the cost of a value miss and a shortcut miss. The left side of

the inequality is the number of round-trips saved if we promote

shortcut % to a value; the right side is the number of additional

round-trips incurred if we evict # shortcuts to make space for the

promotion of % . We promote if the savings are greater than the

penalty. Note that the Avg. shortcut hit RT is always one, but the

Avg. cache miss RT needs to be determined experimentally, which

is done by keeping a moving average of past requests.

3.4 Ownership Partitioning

If multiple KNs cached the same value, this would incur consistency

overheads (e.g., cache invalidation) from ensuring linearizability.

Dinomo sidesteps this via ownership partitioning (OP). Owing to the

DPM architecture, where KNs are disaggregated from the shared

PM pool, data access and ownership can be independent considera-

tions: it is possible to partition ownership while sharing access to

data. This insight motivates OP, which strikes a balance between

shared everything and shared nothing. OP allows KNs to cache

unique data, avoid consistency overheads, and thereby achieve

high scalability. Although similar ideas have been previously used

in other contexts [1, 7, 13, 80], we are the �rst to adapt it for DPM.

Central Idea. KNs have exclusive but temporary ownership of

logical, disjoint partitions of data. At any time, a partition is accessed

by only one KN—its designated owner. OP allows KNs to scale

without reorganizing data and metadata.



Partitioning the ownership. Routing nodes maintain the map-

ping of key ranges to their owner KNs. Clients’ requests are routed

to the appropriate owner KN. The owner KN can use its local DRAM

to cache data and metadata with high cache locality and provide

good read performance. Dinomo does not require cache coherence

protocols at KNs, as KNs have exclusive access to their partitions.

As scaling KNs increases the total DRAM available for caching, OP

scales performance by utilizing the DRAM cache e�ectively (no

redundant copies) and avoiding consistency overheads.

Ownership metadata. Dinomo uses consistent hashing to as-

sign the primary owners for key ranges; Dinomo is compatible

with other (e.g., key-range or hash-based) partitioning algorithms.

Within a KN, a key range is further partitioned among its various

threads. Both KNs and RNs maintain the partitioning metadata in a

global hash ring, which stores key-to-KVS node-IP mappings, and

a local hash ring, which stores key-to-thread mappings.

Whenever the mapping changes, RNs are updated together with

KNs. Clients cache routing information; when themapping changes,

the KN they contact will direct them to a routing node to get the

latest mapping information. Each KN always knows the key range it

is supposed to handle, and will refuse requests for other key ranges.

Bene�ts. Ownership partitioning provides multiple bene�ts:

High performance. Dinomo achieves high performance in the com-

mon case by partitioning the ownership across KNs, allowing mul-

tiple KNs to cache unique data partitions with high cache locality.

Scalability. By avoiding the overhead for maintaining consistency

at KN caches, Dinomo achieves scalability.

Lightweight recon�guration. Dinomo can quickly change the num-

ber of KNs without physically reorganizing data or metadata; the

current owner empties its cache, completes outstanding operations,

hands ownership to the new KN, and the new owner begins serving

requests. If a KN fails, partitions owned by the failed KN can be

assigned to new owners that can immediately serve data.

Selective replication. Partition-based systems may su�er from

load imbalance with highly skewed workloads. In these circum-

stances, adding more KNs does not distribute the load across avail-

able KNs. Even if a popular key’s value is cached in a KN, perfor-

mance is bottlenecked by that KN’s processing or network capacity.

Dinomo recognizes such scenarios and shares the ownership of

highly popular keys across multiple KNs, e�ectively replicating

such keys to provide scalability beyond a single node’s abilities. The

replication metadata is stored along with the mapping information

at RNs and KNs and handled similarly. Clients cache and use this

metadata to route requests to primary and secondary owners.

Dinomo uses indirect pointers to allow KNs to share ownership

and read or write the shared key-value pairs consistently. An indi-

rect pointer points to a location in DPM that stores a pointer to the

value instead of the value itself, and the KNs access the shared value

with one-sided CAS operations on the indirect pointers to ensure

the linearizable access. Due to the sharing with indirect pointers,

Dinomo incurs consistency overheads to balance the load across

KNs. Dinomo limits these consistency overheads by using indirect

pointers only for hot keys.

When a key becomes shared, Dinomo installs an indirect pointer

to the key’s value in DPM.When a KNupdates a shared key, it writes

Table 4: Policy violations and M-node action

SLO KN occupancy Key access freq. Action

Satis�ed Low - Remove KN

Violated High - Add new KN

Violated Normal High Replicate key

Satis�ed Normal Low De-replicate key

the value at a new location and atomically updates the indirect

pointer. A KN reading a shared key has to �rst read the indirect

pointer and then read the value; thus, shared keys pay a cost that

is avoided by default. Removing sharing from the key requires the

KNs that own the shared key to invalidate it in their caches. Once

the invalidation is done, the indirect pointer is removed in DPM.

3.5 Recon�guration

The M-node triggers recon�gurations to improve performance

when SLOs are violated, to release under-utilized resources, or

to tolerate KN failures. We �rst present those policy details and

then explain our principled recon�guration protocol.

Policy engine. The policy engine in the M-node governs when

and what kind of recon�gurations to trigger. Our policy engine

follows prior autoscaling work [84], with simpli�cations for Di-

nomo; for example, memory consumption is not a consideration

in scaling KNs since the memory in a KN is used as a cache with-

out over�ow. The policy engine allows the con�guration of the

following parameters: average/tail latency SLOs, over-utilization

lower bound, under-utilization upper bound, key hotness lower bound,

and key coldness upper bound. The M-node periodically collects

latency information from clients, the average KN occupancy (i.e.,

CPU working time per monitoring-epoch interval), and the average

access frequency for keys from KNs. It then proactively detects

the latency SLO violations and corrects them dynamically. Table 4

summarizes the recon�guration scenarios.

Cluster membership changes. In Dinomo, cluster membership

is changed under the following scenarios. First, the M-node may

detect a KN failure and notify the alive nodes. Second, the M-node

may detect a latency SLO violation (average or tail latency SLO)

and �nd that all the KNs are over-utilized (the minimum occupancy

of all KNs is larger than the over-utilization lower bound), which

triggers the addition of a new KN. Third, the M-node may detect

that there is an under-utilized KN (its occupancy is lower than the

under-utilization upper bound); if the latency SLOs are not violated,

this triggers that KN’s removal. While ownership mapping is be-

ing redistributed due to the membership changes, clients’ request

latencies can brie�y increase. To prevent the policy engine from

over-reacting during the ownership redistribution, Dinomo adds or

removes at most one node per decision epoch and applies a grace

period to allow the system to stabilize before the next decision.

Ownership replication changes. If the M-node detects an SLO

violation and notices that all KNs are not over-utilized, then the M-

node identi�es highly popular keys and increases their replication

factor. In detail, the M-node considers a key to be highly popular if

its average access frequency is greater than the key hotness lower

bound. Dinomo increases the replication factor ' (the number of



secondary owners) of a hot key, based on the ratio between the

average latency of the hot key and the average latency SLO. The

M-node considers a key to be cold if its access frequency is below

the key coldness upper bound. If the latency SLOs are met and none

of the KNs are under-utilized (the M-node cannot remove any KN),

the M-node identi�es cold keys with high replication factors (' > 1)

and dereplicates them ('=1).

Fault tolerance. DPM is the source of ground truth in Dinomo; it

persistently stores data (key-value pairs), metadata (indexing data

structures), and other policy information (ownership/replication

metadata). KNs and RNs store soft state that can be reconstructed

if a node fails. When a KN or RN fails, it retrieves the up-to-date

policy information from DPM and rebuilds the ownership mapping

of key ranges before resuming. Unlike RNs, a KN failure changes the

ownership mapping among the alive KNs. The M-node ensures that

the ownership mapping is corrected before allowing the failed KN

to resume. After detecting a KN failure, the M-node picks one of the

alive KNs; this KN sends a request to DPM to complete the pending

operations in the log segments from the failed KN. Upon completion,

the M-node broadcasts the failure to all Dinomo components. On

receiving a failure message, KNs and RNs repartition the ownership

mapping by updating their hash rings.

Recon�guration steps. We now describe how Dinomo performs

recon�gurations. Broadly, the following steps occur:

(1) KNs participating in the recon�guration are identi�ed (KNs for

which the ownership mapping changes)

(2) The KNs become unavailable

(3) DPM synchronously merges the data in logs for these KNs

(4) The KNs get their new mapping information

(5) The KNs become available, and the cluster continues operation

(6) The mapping information in the remaining KNs (not partici-

pating in the recon�guration) is updated asynchronously

(7) The RNs are asynchronously updated with the new mapping

information

The cluster can continue operation at step �ve because KNs will

reject requests for key ranges they do not own. Thus, other KNs can

be updated without blocking the nodes undergoing recon�guration.

In certain special cases, Dinomo can perform recon�guration with-

out blocking any KNs. This can happen when a new partition is

being added to Dinomo (no previous owner to race with) or when

a KN fails and its partitions are being redistributed. Note that there

is no expensive data copying or movement during recon�guration.

This is the key property that enables lightweight recon�guration

for Dinomo.

3.6 Optimizations

Dinomo includes optimizations in its data path to reduce CPU

bottlenecks and network utilization from DPM.

One-sided & asynchronous post processing. To minimize the

CPU bottlenecks and network utilization, Dinomo’s data path

uses one-sided operations with asynchronous post processing. With

a one-sided operation (e.g., RDMA read, write, and atomic verbs),

a KN executes directly on DPM without involving the DPM pro-

cessor. One-sided operations have lower latency and higher band-

width than two-sided operations (e.g., RDMA send and receive

verbs) [20, 34, 57, 61, 82], but one-sided operations are limited in

functionality [2]. For the best performance, Dinomo uses one-sided

operations in the data path and delegates the post-processing of

writes to the DPM processors asynchronously.

One-sided reads. For reads, an KN directly returns the value from

its cache upon a value hit. On a shortcut hit, it performs a single

one-sided operation to retrieve the value in DPM from the shortcut

pointer. On a cache miss, the KN performs multiple one-sided oper-

ations to �nd the address of the value (index traversals), and uses

another one-sided operation to fetch the value from that address.

Asynchronous post processing of writes. Dinomo batches multiple

log entries into a log segment unit and writes them to DPM using a

one-sided RDMA write operation. With OP, Dinomo can batch the

writes for the keys in the same partition without consistency con-

cerns. The post processing to merge the writes into the metadata

index is asynchronously handled by DPM processors o� the critical

path. Dinomo’s KNs cache the committed log segments to aid the

subsequent reads to be served locally at the KNs without expen-

sive network RTs to read the large log segments remotely. These

optimizations have two bene�ts. First, they reduce the latency as

well as network costs per operation. Second, they amortize the

merging operation across all the write operations in a log segment

(typically several megabytes in size). Because the merging is done

asynchronously, the DPM processors can have lower computing

power without signi�cantly a�ecting Dinomo performance.

4 IMPLEMENTATION

We implement Dinomo in 10K lines of C++ code. We use the stan-

dard C++ library and several open-source libraries including Ze-

roMQ [66], Google Protocol Bu�ers [10], libibverbs [18], and the

PMDK library [40]. This section discusses Dinomo’s DPM data

structures, DAC implementation, and cluster management.

DPMmetadata index.Dinomo uses RECIPE’s P-CLHT (Persistent

Cache Line Hash Table) [46], which supports lock-free reads and

log-free in-place writes, as its metadata index in DPM. P-CLHT is a

chaining hash table aimed at minimizing the CPU-cache coherence

and persistence overheads on PM. Each bucket in P-CLHT has the

size of a single cache line and holds three key-value pairs [19].

The design allows each access/update to the hash table to incur

only a single cache-line access/�ush in the common case. For lock-

free reads, P-CLHT employs atomic snapshots of key-value pairs.

We modify the index to use RDMA reads for lookups. On hash

collisions, KNs may have to perform multiple one-sided RDMA

reads to traverse the hash chain and read the value. The cacheline-

conscious bucket design of P-CLHT, cache-coherent DMA [20, 34],

and out-of-place value updates allow us to avoid memory-access

races [57, 71] between the updates by DPM processors and one-

sided RDMA reads by KNs.

DPM log segments. Dinomo implements 8 MB log segments and

handles variable length key-value pairs. KNs proactively preallocate

log segments for their own use using two-sided operations. KNs

log write operations into DPM log segments and cache them; upon

cache misses in DAC, KNs have to search cached log segments to

�nd the latest value. Dinomo implements Bloom �lters atop cached

log segments for quick membership queries. Dinomomaintains the



following invariant: unmerged log segments are cached in the KNs

that wrote them. Due to OP, other KNs will not access these log

segments, thus eliminating the need for read operations to check

the unmerged log segments on other nodes. KNs can add a new

log segment to DPM without blocking until their unmerged log-

segment length reaches a certain threshold (default is 2); when the

threshold is reached, the critical write paths are blocked until the

DPM processors complete merging below the threshold. Dinomo

logs write operations with commit-markers (e.g., a seal byte at the

end of the entry [20, 50]) to DPM log segments to ensure crash

consistency and to aid recovery. The DPM index directly points to

the values stored in the log entries. Since KNs know the address

of the log segments they write (and therefore where values are

stored), they can produce and locally cache shortcuts to values

in DPM without an extra round trip. To garbage collect stale log

segments, Dinomo maintains per-log-segment counters that re�ect

the number of valid and invalid values in each log segment. Once

the number of invalid values matches the total number of values in

a log segment, a DPM processor garbage collects the log segment.

DPM persistence. While merging log segments, Dinomo’s DPM

processing threads persist all the writes to the DPM index struc-

ture using CLWB, sfence, and non-temporal store instructions [68].

RDMA currently does not support durable RDMA writes. How-

ever, the proposed durable write in the IETF standards working

document [73] behaves similar to a non-durable write, requiring

one network round trip. Our implementation currently uses non-

durable writes, and we plan to update these to durable writes once

they become available [39].

DAC. DAC is implemented using standard C++ libraries. DAC uses

two unordered maps to store values and shortcuts. Least recently

used values and least frequently used shortcuts are evicted. The key

access frequency is tracked using a multimap. The shortcut entries

contain a pointer to a DPM value, and the DPM value length. The

value entries have two more extra �elds, an access count and a copy

of the DPM value. Demoted values are cached as shortcuts, and

shortcuts being promoted inherit their access counts to preserve

their access history.

Cluster management. Dinomo uses Kubernetes [27] for cluster

orchestration. Pods are the smallest deployable units in Kubernetes.

Each Dinomo component is instantiated in a separate Kubernetes

pod with a corresponding Docker [23] container. Dinomo uses

Kubernetes to add/remove KN pods and restart failed pods. The

M-node pod is colocated with the Kubernetes master. The M-node’s

policy engine adds/removes KN pods by running simple bash scripts

executing kubectl [62] commands to the Kubernetes master. The

Kubernetes master keeps track of pod status using heartbeats, and

the M-node uses this information to detect failures in KN pods.

5 EVALUATION

We evaluate the performance of Dinomo and study the breakdown

of the bene�ts from Ownership Partitioning (OP), Disaggregated

Adaptive Caching (DAC), and selective replication. We design our

experiments to answer the following questions:

• Does DAC help reduce network round trips? How does it fare

against other caching policies?

• How much does the DPM compute capacity impact Dinomo’s

overall throughput?

• How does Dinomo fare against the state-of-the-art in terms of

performance and scalability?

• What fraction of Dinomo’s bene�ts can be attributed to the

OP architecture and the DAC caching?

• How elastic and responsive is Dinomo while handling bursty

workloads, load imbalance, and KN failures?

Comparison points. As our baseline, we use Clover [75], a state-of-

the-art and open-source key-value store designed for DPM. Clover

has a shared-everything architecture with a shortcut-only cache

at its KNs. KNs perform out-of-place updates to the data in DPM,

and incur additional overheads to provide strong consistency. For

example, stale cached entries require KNs to walk through a chain

of versions to �nd the most recent data in DPM.

Besides Clover, we compareDinomowith two variants,Dinomo-

S and Dinomo-N. Dinomo uses three techniques: DAC, OP, and

selective replication. Dinomo-S caches only shortcuts; it is other-

wise identical to Dinomo. As the source code of AsymNVM [54]

is not publicly available, we implement Dinomo-N to compare

Dinomo with a shared-nothing counterpart; it uses DAC but parti-

tions data and metadata in DPM, where each partition is exclusively

accessed by a single KN without selective replication.

Comparing Dinomo-S with Clover highlights the bene�ts of par-

titioning ownership in OP, and comparing Dinomo with Dinomo-S

shows the bene�ts from DAC. We also investigate the trade-o�

from sharing data in OP by comparing Dinomo with Dinomo-N.

Experiment setup. We use Kubernetes pods to represent all of the

node instances in theDinomo cluster. We restrict the host resources

assigned to the pods depending on the node types’ features to emu-

late the asymmetric DPM architecture (i.e., KNs have more-capable

computation but smaller memory than DPM). Each individual pod

is pinned to a separate server for resource isolation purposes.

We deploy Dinomo on the Chameleon Cloud [35], an experimen-

tal large-scale testbed for cloud research.We use In�niBand-enabled

(IB-enabled) servers as hosts for KNs and DPM; each two-socket

server has Intel Xeon E5-2670v3 processors, 24 cores at 2.30 GHz

in total, and 128 GB DRAM. The shared DPM uses a maximum of

4 threads and 110 GB of DRAM as a proxy for the PM, which is

registered to be RDMA-accessible. Each KN uses a maximum of 8

threads and 1 GB of DRAM for caching (≈1% of the DPM size). DPM

and the KNs are connected by Mellanox FDR ConnectX-3 adapters

with 56 Gbps per port. We emulate PM using DRAM, as perfor-

mance is constrained by the network rather than PM or DRAM:

network latency (1–20 us) is at least 10× higher than DRAM or PM

latencies (100s of ns); network bandwidth (7GB/s) is lower than PM

bandwidth (32GB/s Read / 11.2GB/s Write) [3, 33].

The external servers that run application workloads, henceforth

termed client nodes, and the routing service do not need a high-

speed interconnect with the KNs or DPM. Hence, for client nodes

and routing nodes (RNs), we use two-socket servers with AMD

EPYC 7763 processors, 128 cores at 2.45 GHz in total, 256 GB of

DRAM, and a 10 Gbps Ethernet NIC. Each client node uses 64

threads to run a closed-loopworkload with one or more outstanding

requests per thread. We use a single RN with 64 threads. The same

routing layer is used across all KVS variants in our evaluation. In
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