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ABSTRACT

We present DINoMoO, a novel key-value store for disaggregated
persistent memory (DPM). DiNnomo is the first key-value store for
DPM that simultaneously achieves high common-case performance,
scalability, and lightweight online reconfiguration. We observe that
previously proposed key-value stores for DPM had architectural
limitations that prevent them from achieving all three goals simul-
taneously. DINOMO uses a novel combination of techniques such as
ownership partitioning, disaggregated adaptive caching, selective
replication, and lock-free and log-free indexing to achieve these
goals. Compared to a state-of-the-art DPM key-value store, DINnomo
achieves at least 3.8X better throughput at scale on various work-
loads and higher scalability, while providing fast reconfiguration.
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1 INTRODUCTION

Large cloud providers operate at a much larger scale than traditional
enterprise data centers and aim to optimize their infrastructures
for high utilization. However, recent work indicates that resources
in cloud data centers remain underutilized [30, 52, 69, 74]. In the
face of dynamic and bursty workloads, scheduling tasks such that
resource utilization is high proves challenging [90]. For example,
memory utilization can be as low as 60% [15, 74, 76].

One promising way to increase resource utilization is to disaggre-
gate resources [4, 24, 36, 49]. In a disaggregated cluster, resources
such as CPU, memory, and storage are each collected into a separate
central network-attached pool. By sharing these resources across
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users and applications, utilization can be increased significantly.
Furthermore, each resource can be scaled up or down indepen-
dently of the others: for example, memory can be added without
the need to also add CPU or storage. Such disaggregation has long
been practiced for storage in the form of network-attached storage
(NAS) [25] and Storage Area Networks (SAN) [7]. In this work,
we take the idea one step further and consider a cluster where
Persistent Memory is disaggregated.

Persistent Memory (PM) is a new memory technology that pro-
vides durability like traditional storage, with performance close to
DRAM [32, 56, 86]. Since PM has much higher cost per GB than
conventional storage [3], it is critical to achieve high utilization in
PM deployments. Similar to traditional storage, the utilization of
PM would increase from disaggregation. However, the DRAM-like
latencies of PM make disaggregation challenging, since the network
latency is an order of magnitude higher than PM latency.

Disaggregated Persistent Memory (DPM) is still under active
research and development, and hence there are different kinds of
DPM to build upon. In this work, we assume that DPM is available
as a centralized, reliable pool accessible via the network [37]. We
further assume that DPM includes some limited computational ca-
pability, as prior work shows such capability is critical for achieving
good performance [54, 75, 89].

We are interested in using DPM to build persistent key-value
stores (KVSs), which are critical pieces of software infrastructure.
The KVS consists of a number of KVS nodes (KNs) equipped with
general-purpose processors, a relatively small amount of local
DRAM, and high-performance network primitives like RDMA to
access DPM over the network [79]. An ideal KVS for DPM would
have a number of properties: high common-case performance, scal-
ability, and quick reconfiguration that allows handling failures,
bursty workloads, and load imbalance efficiently.

Building a KVS that achieves all the goals simultaneously is
challenging. First, KNs incur expensive network round trips (RTs)
for accessing data and metadata in DPM. Despite these overheads,
the KVS must provide high performance. Second, to benefit from
independent scaling of KNs and PM, the KVS must be elastic and
support lightweight reconfiguration of resources. Finally, the KVS
must provide scalable performance without bottlenecks due to load
imbalance at KNs or from non-uniform workload patterns.

Prior DPM KVSs [54, 75] make design trade-offs that make
these goals difficult to satisfy simultaneously. For example, Asym-
NVM [54] achieves high performance by adopting a shared-nothing



architecture to enable high cache locality at KNs. However, expen-
sive data reorganization is needed when changing the number of
KN or rebalancing their load, thus limiting elasticity and efficient
load balancing. Similarly, Clover [75] supports straightforward load
balancing and high elasticity using a shared-everything architec-
ture where data is shared across KNs, and any KN can handle any
request. However, performance and scalability suffer as a result of
poor cache locality and consistency overheads (including cache co-
herence, contention, and synchronization overheads due to sharing)
in the common case [65].

In this work, we present DINomo, the first DPM KVS that simul-
taneously achieves high common-case performance, scalability, and
lightweight online reconfiguration. DINoMo also provides lineariz-
able reads and writes. To achieve these goals, DiNomo carefully
adapts techniques from the storage research community, including
caching, ownership partitioning, selective replication, and lock-free
and log-free PM indexing.

Data organization on DPM (§3.2). Dinomo stores data and meta-
data on DPM to enable concurrent and consistent access by all KNs.
Because DPM is shared among all KN, it functions as the source
of ground truth in the system. To enable consistent updates, data
is written to DPM in the form of log entries by the KNs. These log
entries are asynchronously merged in order into the metadata index
by the processors at DPM. For its metadata index, DPM uses a con-
current PM index [46] which provides lock-free reads and log-free
in-place-writes; the lock-free reads allow us to eliminate synchro-
nization overheads between KNs and log-free in-place-writes allow
DPM processors to concurrently update the metadata.

Disaggregated Adaptive Caching (DAC) (§3.3). Similar to other
disaggregated systems, Dinomo reduces network RTs by caching
data and metadata in the local DRAM of each KN. Data is cached
by storing the key-value pair, and metadata is cached by storing a
pointer to the data on DPM (termed shortcuts [75]). To determine
how best to divide the cache space between data and metadata,
Dinomo uses DAC, a novel adaptive caching policy that actively
maintains the right balance between caching values and shortcuts
based on the workload patterns and available memory at KNs. DAC
allows DinoMo to make efficient use of the DRAM at KNs without
making any assumptions about the workload.

Ownership Partitioning (OP) (§3.4). While caching at the KNs
can reduce network RTs, it can incur significant consistency over-
heads when KNs can share the same data. To handle this concern,
Dinomo partitions the ownership of data across KNs, while data
and metadata are shared via DPM. This provides three benefits.
First, it allows KNs to cache the data they own, thus providing
high cache locality without consistency overheads. Second, by shar-
ing the data and metadata, OP supports changing the number of
KNs or rebalancing their load by repartitioning only the owner-
ship of data among KNs, without expensive data reorganization
at DPM. Finally, since each key is only accessed by one KN at any
given point, combined with our principled reconfiguration proto-
col, DiNoMo achieves linearizable reads and writes. Similar ideas
have been proposed before in other contexts [1, 7, 13, 80], but we
are the first to adapt it for DPM. With OP, Dinomo achieves high
performance/scalability from locality-preserving KN-side caching

without consistency overheads and high elasticity from lightweight
reconfiguration.

Selective Replication (§3.4). Ownership partitioning, however,
may experience performance or scalability bottlenecks at KNs due
to load imbalance under highly skewed workloads (i.e., the max-
imum throughput for requests on a single key is limited by the
processing capacity of a single KN). To avoid this issue and pro-
vide scalable performance for highly skewed workloads, Dinomo
selectively replicates the ownership of hot keys across multiple KNs.
Dinomo has a separate monitoring/management node that iden-
tifies hot keys, initiates their ownership replication to other KN,
and thus balances the load from hot keys across available KNs.

Alleviate network and CPU bottlenecks (§3.6). Dinomo’s data
path uses one-sided RDMA operations with asynchronous post pro-
cessing. All reads to DPM by KNs use one-sided RDMA operations
on a shortcut hit or a cache miss. DiNomo writes multiple log
entries in a batch in the critical path using a one-sided RDMA op-
eration, and delegates the merging of the writes into the metadata
index to the DPM processors asynchronously. Asynchronous post-
processing reduces write latency and amortizes DPM processing
utilization across multiple writes, reducing how much DPM com-
puting power is needed in the critical path. These optimizations
decrease the network messages per operation and alleviate the pro-
cessing bottleneck from DPM, increasing the efficiency of Dinomo
in addition to techniques like DAC and OP.

Limitations. Our work has a number of limitations. First, while we
address the challenge of scaling KNs, we do not tackle how to make
DPM reliable or scalable. Second, DiNomo targets key-value store
functionality for DPM systems. Many of its ideas may be equally
applicable for a broader range of DPM-based storage systems as
well as disaggregated DRAM systems, but we have not explored
this. Finally, while our work provides mechanisms for scaling KNs,
it does not tackle the policies for when KNs should be scaled. We
consider these areas ripe for future work.

Evaluation. We implement DiNnomo in 10K lines of C++ code. We
compare the end-to-end performance and scalability of Dinomo
with Clover [75], a state-of-the-art DPM KVS. Our experiments
show that DiNoMo achieves both better common-case performance
and scalability than Clover. Dinomo’s throughput scales to 16 KNs,
while Clover’s throughput does not scale beyond 4 KNs. With 16
KNs, Dinomo outperforms Clover by at least 3.8 on all workloads
we evaluate. We also show that Dinomo elastically scales out KN,
balances the load across KNs, and handles KN failures quickly.
In summary, this paper makes the following contributions:

o We present DinoMmo, the first DPM key-value store that
simultaneously achieves high performance, scalability, and
lightweight online reconfiguration (§3).

e We present DAC, a novel adaptive caching policy that helps
utilize the KN-side memory effectively without any assump-
tions on workload patterns (§3.3).

o We adapt OP for DPM KVSs to achieve high performance,
scalability, and lightweight reconfiguration (§3.4).

o We experimentally show that Dinomo can efficiently react
to both KN failures and load imbalance, and automatically
scale the number of KNs by capturing load dynamics (§5).



2 BACKGROUND AND MOTIVATION

We describe persistent memory (PM) and how it can be used in dis-
aggregated settings. We then discuss prior key-value stores (KVSs)
for disaggregated PM (DPM) and motivate the need for a new KVS.

2.1 Persistent Memory and Disaggregation

PM is a non-volatile memory technology with unique character-
istics [32, 86]. PM is connected directly to the memory bus — it
is byte addressable, and has performance close to DRAM. It has
high capacity: Intel’s Optane DC PM is available up to 512GiB per
NVDIMM [56]. The per-GB cost of PM is higher than high-end solid
state drives, but less than DRAM [3]. To improve cost efficiency
and PM utilization, prior work proposes DPM [38, 51, 54, 75, 79, 89].
We note that our work is agnostic to the choice of PM technology
and specific PM product (e.g., PCM [83], STT-MRAM [5], Memris-
tor [87], Optane DC PM [56], Memory-Semantic CXL SSD [21]).

Disaggregated PM. In disaggregated settings, PM is available as
a central, reliable pool of memory accessible over a network. KVS
nodes (KNs) are used to access the data in DPM; KNs have limited
DRAM and use network primitives like RDMA to access the PM
pool over a fast interconnect such as InfiniBand [4], PMoF [26, 28],
or Gen-Z [16]. Disaggregation allows independent scaling of PM
and KNs and introduces separate failure domains, where KN failures
do not cause DPM failures.

DPM can be classified as active or passive. Active DPM has small
processing units such as ARM SOCs, ASICs, or FPGAs, with high-
bandwidth network ports. In active DPM, DPM compute capacity
is used for local processing, including network, application-level,
and data store processing [39, 54, 70]. Prior work has proposed
data stores for active DPM that leverage this limited computational
power [29, 51, 54, 75, 89]. In contrast, passive DPM has no computa-
tional abilities at the DPM pool. KNs can use only one-sided RDMA
operations to access and modify the data in DPM. Data stores for
passive DPM [75] have poor performance and scalability due to
the limited functionality of the one-sided network primitives [2],
showing that active DPM is a more practical deployment.

2.2 DPM Key-Value Stores

Previously proposed DPM key-values stores differ based on how
they handle data, metadata, and ownership. Metadata is information
used to locate and access data (like an index). Ownership determines
if a data item can be read or written.

AsymNVM. AsymNVM [54] adopts a shared-nothing architecture.
Data in DPM is partitioned, and each partition is exclusively ac-
cessed by a single KN. Every KN uses its local memory to cache
data from its partition (Table 1); caching helps reduce expensive
network round trips to DPM. As KNs have exclusive ownership
over data, their caches can preserve locality and can be consistent
without incurring additional consistency overheads. Thus, shared-
nothing architectures provide high performance and scalability
in the common case by effectively using KN caches to process re-
quests. However, reconfiguring the number of KNs or balancing
load across KNs requires physical reorganization of data and meta-
data [9, 30, 41, 54]. For example, adding a new KN may require
the metadata of a partition to be split, resulting in expensive data

Table 1: Design choices and properties of different DPM KVS

KVS property Dinomo  Clover AsymNVM
Data shared shared  partitioned
Metadata shared shared  partitioned
Ownership of data partitioned  shared  partitioned
High performance v X v
Scalability v X v
Lightweight reconfiguration v v X

Table 2: Dinomo goals and design techniques

Goals ‘ Dinomo techniques

High performance ‘ Ownership partitioning, DAC

Lightweight reconfiguration

and scalability Ownership partitioning

Linearizable reads and writes ‘ Shared DPM, Ownership partitioning

copies at DPM. Thus, AsymNVM offers performance at the expense
of elasticity and fast reconfiguration.

Clover. Clover [75] adopts a shared-everything architecture. All
KNs share the ownership of data in DPM, and every KN can ac-
cess and modify all data and metadata (Table 1). KNs can use local
memory to cache data. However, due to sharing, KNs have poor
cache locality and need to keep their caches consistent, incurring
significant consistency overheads that reduce the common-case
performance and scalability [65]. Nevertheless, Clover can sup-
port lightweight reconfiguration without re-partitioning data or
metadata and allow straightforward load balancing across KNs.
Overall, Clover offers elasticity and lightweight reconfiguration at
the expense of high common-case performance and scalability.

In summary, prior DPM key-value stores sacrifice one of high
common-case performance, scalability, or lightweight reconfigura-
tion for the other two (Table 1). This motivates our design for a new
DPM key-value store, Dinomo, which achieves the three properties
simultaneously.

3 DINOMO

We now present DINoMo, a key-value store (KVS) for DPM. We
first describe its API, target workloads, goals, and the guarantees it
provides. Then, we explain how Dinomo achieves its goals (Table 2).

API. Dinomo allows applications to perform insert(key, value),
update(key, value), lookup(key), or delete(key) on variable-
sized key-value pairs. We refer to the lookup operations as reads,
and the insert, update, and delete operations as writes.

Target workloads. DiNnoMo targets applications with dynamic
working sets and sizes, and non-uniform workloads with varying
skew [60, 67, 84]. Large variations in workloads require DPM KVSs
to allow the elastic deployment of resources (e.g., KNs) in response
to those dynamics [12, 90].

Goals. DiNoMo aims to achieve the following goals:

e High common-case performance, in the absence of failures or
reconfiguration
e Scalability of performance when the number of KNs increases
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e Lightweight online reconfiguration to effectively handle KN
failures, bursty workloads, and load imbalance on available KNs
e Linearizable reads and writes

Guarantees. DINOMO guarantees that once committed, data will
not be lost or corrupted regardless of KN failures. It also ensures
data remains available if at least one KN and DPM are available.

3.1 Architecture

Figure 1 shows the high-level architecture of Dinomo. DiNoMO
consists of clients, routing nodes (RNs), KVS nodes (KNs), DPM,
and a monitoring/management node (M-node). We describe these
components and how a request flows between them.

Applications and users interact with Dinomo through clients.
RN are the client-facing tier that provides cluster membership and
isolates clients from the internal variation of the KVS cluster. A
client first contacts an RN to obtain cluster membership and caches
the mapping of key ranges to various KNs. The client contacts the
appropriate KN, which will then perform the read or write operation
on its behalf. Each KN is equipped with general-purpose processors
and a small amount of DRAM relative to the DPM capacity. The
KN uses one-sided or two-sided RDMA primitives to access DPM
over the interconnect [4]; note that the one-sided RDMA primitive
can read or write data without involving the DPM processors. DPM
has the large shared PM pool and limited computational power
relative to KNs [54, 75, 89]. This asymmetry is deliberate: KNs are
intended to run complex operations in the critical path, whereas
DPM is intended to execute lightweight tasks outside the critical
path, while keeping the cost of provisioning DPM low. The KN
caches the data it fetches from DPM in its local DRAM, and responds
to client requests. The M-node observes KN statuses and workload
characteristics to detect KN failures, load imbalance, or workload
skew, and triggers a suitable reconfiguration.

Note that we separately deploy the different functional compo-
nents of DINOMO to enable us to independently scale them up and
down as required. It is also possible to co-locate some components
at the expense of reducing the efficiency of policy decisions when
scaling resources.

Assumptions. We assume all components in the Dixomo cluster
are inter-connected through a reliable local network (either over
TCP/IP or RDMA RC). The interconnect bandwidth between KNs
and DPM is lower than the memory bandwidth of the PM itself,
usually making network the bottleneck [3, 33]. KN failures are
fail-stop and independent of DPM failures; when an KN fails, its
DRAM contents are lost. DPM has internal mechanisms or hardware
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| P ————————— e
—-Cached log segments._I
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Figure 2: DinoMmo data plane

support to ensure high availability [38, 47, 54, 75, 91] and hardware-
level memory protection [59, 72, 78, 88]. The M-node is always alive;
this can be ensured via consensus and replication [43, 44, 63]. As the
M-node deals with infrequent lightweight tasks, using consensus
does not introduce performance bottlenecks.

3.2 Data organization on DPM

Figure 2 shows the data-plane components in Dinomo. DinomO
stores data (key-value pairs) and metadata (indexing structures) in
DPM for providing durability and as the source of ground truth.

Storing data in logs. In response to a write request, a KN writes
data to an exclusive log on DPM. This write is performed with
a single one-sided write operation in the critical path. The log is
broken into a series of segments. Since each KN handles requests
on exclusive logical data partitions (§3.4), two KNs will never log
a write for the same key. The DPM processors asynchronously
merge the write operations in a log segment in order into the
metadata index. Logs of different KNs may be merged into the
index simultaneously.

Metadata index. The metadata index in DPM must satisfy the
following requirements. First, KNs should not hold locks while
performing index traversals; locks cause cross-node synchroniza-
tion overheads. Next, even if a KN fails while performing an index
traversal, other KNs should be able to make progress. Finally, the
index should support concurrent and consistent updates, allow-
ing DPM threads to perform non-conflicting updates in parallel.
Most state-of-the-art concurrent PM indexes satisfy these require-
ments [6, 14, 31, 46, 53]; these PM indexes provide lock-free reads
and log-free in-place writes. Thus, with such PM indexes, Dinomo
provides a globally consistent view of data in a scalable manner,
independent of the number of KNs.

Consistency. DINoMo guarantees linearizability, the strongest con-
sistency level for non-transactional stores [77]. DINOMO ensures
that a successful write request commits the data atomically in DPM,
and that subsequent reads return the latest committed value. To
satisfy linearizability, Dinomo merges data logs in request order to
the metadata index. Other core design decisions like ownership par-
titioning across KNs (§3.4), and using indirect pointers for selective
replication (§3.4), help provide linearizability. Before reconfigura-
tion or after failure, Dinomo merges all pending logs from the KNs
involved before allowing the other KNs to serve reads.



3.3 Disaggregated Adaptive Caching

It would be prohibitively expensive for KNs to do network round
trips (RTs) for every read operation. To avoid these overheads, KNs
use local DRAM to cache data and metadata. Because KNs have
limited memory, efficient caching is crucial for high common-case
performance. We introduce Disaggregated Adaptive Caching (DAC),
a novel caching scheme to efficiently use DRAM at KNs.

Motivation. As DPM is directly accessible to KNs via one-sided
RDMA operations with low latency owing to its byte addressability,
KN can cache not only data in the form of values but also metadata
in the form of shortcuts. A value entry keeps the entire copy of a
DPM value, so the KN can access everything locally. A shortcut entry
keeps a fixed 64-bit pointer to the value in DPM; accessing the data
incurs a one-sided operation to DPM. If neither value nor shortcut
are cached, accessing the value incurs significant overhead: the KN
needs to traverse a metadata structure in DPM to find the value’s
location and then access the value. Traversing metadata structures
like trees, skip lists, or chaining lists in hash tables, requires multiple
RTs to DPM or remote procedures in DPM, both of which have much
higher overheads than a single one-sided operation [2, 81, 92, 93].
Caching values improves performance relative to caching short-
cuts, but requires more cache space. This raises an interesting ques-
tion: is it better to cache a few values with no overheads upon cache
hits, or a larger number of shortcuts with fixed hit overheads?
The answer is simple in extreme cases: in highly skewed work-
loads, where a small number of hot key-value pairs can fit in the
cache, storing values is better. When workloads are close to uniform
distribution with total size larger than the cache, storing shortcuts
is better. Unfortunately, most workloads fall between these two
extremes and offer no clear answer. A simple static caching policy
may reserve some fixed ratio of cache space for storing values and
devote the rest to shortcuts. What should this ratio be? We observe
that the efficient ratio is dependent on workload patterns and ag-
gregate memory available for caching. In a disaggregated system
like DinoMo that has autoscaling, neither workload patterns nor
memory available is known ahead of time, ruling out static policies.

Adaptive Policy. We introduce DAC, a novel caching policy that
dynamically selects the ratio of values to shortcut entries as needed.
This policy automatically adapts to the changes in workload pat-
terns and to the changes in the aggregate memory space for caching
at KN due to cluster reconfiguration, as shown in Figure 2.

Insight. DAC is based on the following insight. Performance is
highly correlated with the number of network RTs, so we seek
to minimize that. Caching a shortcut reduces RTs from M (where
M is the cost of an index lookup) to one, while caching a value
instead of a shortcut reduces RTs from one to zero. Thus, caching
shortcuts provides the bigger gain. We treat value caching as an
optimization on top of shortcut caching. Value caching is used when
we have spare space in the cache, or when we observe that storing
a value can serve more requests than storing an equivalent number
of shortcuts. Table 3 details the policy.

In DAC, values can be demoted to shortcuts and shortcuts can
be evicted. Shortcuts can also be promoted to values.

Demotions. Demotions occur on cache misses to make space for
a new cache entry. To demote a value to a shortcut, we pick the

Table 3: Summary of the adaptive caching policy

Disaggregated Adaptive Caching

BEGIN We start with an empty cache; start caching values
OnaMISS  We cache the shortcut; if we need to make space
for the shortcut, we DEMOTE a value (if present)
or evict a least frequently used shortcut

We check if we can PROMOTE this shortcut to
value; we check if the benefits from caching the
value instead of shortcut outweigh the benefits
from evicting a suitable number of shortcuts
EVICT Always evict the least frequently used shortcut
PROMOTE Promote only if the benefits outweigh the costs
DEMOTE  Demote if we incur cache misses

On HIT

least-recently-used key, leveraging temporal locality. To evict a
shortcut, we pick the least-frequently-used key, in order to preserve
frequently used keys in the cache and cater to skewed workloads.

Promotions. Promotions depend on whether the benefits from
caching a value outweigh the benefits from caching a suitable num-
ber of shortcuts. To determine if a shortcut P needs to be promoted
to a value, we use the following calculation. If at least N least-
frequently-used shortcuts need to be evicted to make space for
caching one value, then the shortcut P needs to satisfy the follow-
ing relation to be promoted:

Hits(P) x Avg. shortcut hit RTs >
< (1)
Z Hits(Shortcut;) X Avg. cache miss RTs

i=1

This formula accounts for the two elements of the trade-off: the
differences in the value and shortcut sizes, and the differences
in the cost of a value miss and a shortcut miss. The left side of
the inequality is the number of round-trips saved if we promote
shortcut P to a value; the right side is the number of additional
round-trips incurred if we evict N shortcuts to make space for the
promotion of P. We promote if the savings are greater than the
penalty. Note that the Avg. shortcut hit RT is always one, but the
Avg. cache miss RT needs to be determined experimentally, which
is done by keeping a moving average of past requests.

3.4 Ownership Partitioning

If multiple KNs cached the same value, this would incur consistency
overheads (e.g., cache invalidation) from ensuring linearizability.
Dinowmo sidesteps this via ownership partitioning (OP). Owing to the
DPM architecture, where KNs are disaggregated from the shared
PM pool, data access and ownership can be independent considera-
tions: it is possible to partition ownership while sharing access to
data. This insight motivates OP, which strikes a balance between
shared everything and shared nothing. OP allows KNs to cache
unique data, avoid consistency overheads, and thereby achieve
high scalability. Although similar ideas have been previously used
in other contexts [1, 7, 13, 80], we are the first to adapt it for DPM.

Central Idea. KNs have exclusive but temporary ownership of
logical, disjoint partitions of data. At any time, a partition is accessed
by only one KN—its designated owner. OP allows KNs to scale
without reorganizing data and metadata.



Partitioning the ownership. Routing nodes maintain the map-
ping of key ranges to their owner KNs. Clients’ requests are routed
to the appropriate owner KN. The owner KN can use its local DRAM
to cache data and metadata with high cache locality and provide
good read performance. DiNomo does not require cache coherence
protocols at KNs, as KNs have exclusive access to their partitions.
As scaling KNs increases the total DRAM available for caching, OP
scales performance by utilizing the DRAM cache effectively (no
redundant copies) and avoiding consistency overheads.

Ownership metadata. DINomo uses consistent hashing to as-
sign the primary owners for key ranges; DINoMmo is compatible
with other (e.g., key-range or hash-based) partitioning algorithms.
Within a KN, a key range is further partitioned among its various
threads. Both KNs and RNs maintain the partitioning metadata in a
global hash ring, which stores key-to-KVS node-IP mappings, and
a local hash ring, which stores key-to-thread mappings.
Whenever the mapping changes, RNs are updated together with
KNs. Clients cache routing information; when the mapping changes,
the KN they contact will direct them to a routing node to get the
latest mapping information. Each KN always knows the key range it
is supposed to handle, and will refuse requests for other key ranges.

Benefits. Ownership partitioning provides multiple benefits:

High performance. DINoMo achieves high performance in the com-
mon case by partitioning the ownership across KNs, allowing mul-
tiple KNs to cache unique data partitions with high cache locality.

Scalability. By avoiding the overhead for maintaining consistency
at KN caches, DINoMo achieves scalability.

Lightweight reconfiguration. DINomo can quickly change the num-
ber of KNs without physically reorganizing data or metadata; the
current owner empties its cache, completes outstanding operations,
hands ownership to the new KN, and the new owner begins serving
requests. If a KN fails, partitions owned by the failed KN can be
assigned to new owners that can immediately serve data.

Selective replication. Partition-based systems may suffer from
load imbalance with highly skewed workloads. In these circum-
stances, adding more KNs does not distribute the load across avail-
able KNs. Even if a popular key’s value is cached in a KN, perfor-
mance is bottlenecked by that KN’s processing or network capacity.
DiNnoMo recognizes such scenarios and shares the ownership of
highly popular keys across multiple KN, effectively replicating
such keys to provide scalability beyond a single node’s abilities. The
replication metadata is stored along with the mapping information
at RNs and KNs and handled similarly. Clients cache and use this
metadata to route requests to primary and secondary owners.

DiNomo uses indirect pointers to allow KNs to share ownership
and read or write the shared key-value pairs consistently. An indi-
rect pointer points to a location in DPM that stores a pointer to the
value instead of the value itself, and the KNs access the shared value
with one-sided CAS operations on the indirect pointers to ensure
the linearizable access. Due to the sharing with indirect pointers,
Dinomo incurs consistency overheads to balance the load across
KNs. Dinomo limits these consistency overheads by using indirect
pointers only for hot keys.

When a key becomes shared, DiNomo installs an indirect pointer
to the key’s value in DPM. When a KN updates a shared key, it writes

Table 4: Policy violations and M-node action

SLO KN occupancy Key access freq. Action
Satisfied Low - Remove KN
Violated High - Add new KN
Violated Normal High Replicate key

Satisfied Normal Low De-replicate key

the value at a new location and atomically updates the indirect
pointer. A KN reading a shared key has to first read the indirect
pointer and then read the value; thus, shared keys pay a cost that
is avoided by default. Removing sharing from the key requires the
KN that own the shared key to invalidate it in their caches. Once
the invalidation is done, the indirect pointer is removed in DPM.

3.5 Reconfiguration

The M-node triggers reconfigurations to improve performance
when SLOs are violated, to release under-utilized resources, or
to tolerate KN failures. We first present those policy details and
then explain our principled reconfiguration protocol.

Policy engine. The policy engine in the M-node governs when
and what kind of reconfigurations to trigger. Our policy engine
follows prior autoscaling work [84], with simplifications for D1-
NoMmo; for example, memory consumption is not a consideration
in scaling KN since the memory in a KN is used as a cache with-
out overflow. The policy engine allows the configuration of the
following parameters: average/tail latency SLOs, over-utilization
lower bound, under-utilization upper bound, key hotness lower bound,
and key coldness upper bound. The M-node periodically collects
latency information from clients, the average KN occupancy (i.e.,
CPU working time per monitoring-epoch interval), and the average
access frequency for keys from KNs. It then proactively detects
the latency SLO violations and corrects them dynamically. Table 4
summarizes the reconfiguration scenarios.

Cluster membership changes. In DinoMo, cluster membership
is changed under the following scenarios. First, the M-node may
detect a KN failure and notify the alive nodes. Second, the M-node
may detect a latency SLO violation (average or tail latency SLO)
and find that all the KN are over-utilized (the minimum occupancy
of all KN is larger than the over-utilization lower bound), which
triggers the addition of a new KN. Third, the M-node may detect
that there is an under-utilized KN (its occupancy is lower than the
under-utilization upper bound); if the latency SLOs are not violated,
this triggers that KN’s removal. While ownership mapping is be-
ing redistributed due to the membership changes, clients’ request
latencies can briefly increase. To prevent the policy engine from
over-reacting during the ownership redistribution, Dinomo adds or
removes at most one node per decision epoch and applies a grace
period to allow the system to stabilize before the next decision.

Ownership replication changes. If the M-node detects an SLO
violation and notices that all KNs are not over-utilized, then the M-
node identifies highly popular keys and increases their replication
factor. In detail, the M-node considers a key to be highly popular if
its average access frequency is greater than the key hotness lower
bound. DINOMO increases the replication factor R (the number of



secondary owners) of a hot key, based on the ratio between the
average latency of the hot key and the average latency SLO. The
M-node considers a key to be cold if its access frequency is below
the key coldness upper bound. If the latency SLOs are met and none
of the KNs are under-utilized (the M-node cannot remove any KN),
the M-node identifies cold keys with high replication factors (R > 1)
and dereplicates them (R=1).

Fault tolerance. DPM is the source of ground truth in DiNomo; it
persistently stores data (key-value pairs), metadata (indexing data
structures), and other policy information (ownership/replication
metadata). KNs and RNs store soft state that can be reconstructed
if a node fails. When a KN or RN fails, it retrieves the up-to-date
policy information from DPM and rebuilds the ownership mapping
of key ranges before resuming. Unlike RNs, a KN failure changes the
ownership mapping among the alive KNs. The M-node ensures that
the ownership mapping is corrected before allowing the failed KN
to resume. After detecting a KN failure, the M-node picks one of the
alive KNss; this KN sends a request to DPM to complete the pending
operations in the log segments from the failed KN. Upon completion,
the M-node broadcasts the failure to all DiNoMo components. On
receiving a failure message, KNs and RNs repartition the ownership
mapping by updating their hash rings.

Reconfiguration steps. We now describe how DiNomo performs
reconfigurations. Broadly, the following steps occur:

(1) KNs participating in the reconfiguration are identified (KNs for

which the ownership mapping changes)

(2) The KNs become unavailable

(3) DPM synchronously merges the data in logs for these KNs

(4) The KNs get their new mapping information

(5) The KNs become available, and the cluster continues operation

(6) The mapping information in the remaining KNs (not partici-

pating in the reconfiguration) is updated asynchronously

(7) The RNs are asynchronously updated with the new mapping
information

The cluster can continue operation at step five because KNs will
reject requests for key ranges they do not own. Thus, other KNs can
be updated without blocking the nodes undergoing reconfiguration.
In certain special cases, DINomo can perform reconfiguration with-
out blocking any KNs. This can happen when a new partition is
being added to DiNnomoO (no previous owner to race with) or when
a KN fails and its partitions are being redistributed. Note that there
is no expensive data copying or movement during reconfiguration.
This is the key property that enables lightweight reconfiguration
for DiNOMO.

3.6 Optimizations

Dinomo includes optimizations in its data path to reduce CPU
bottlenecks and network utilization from DPM.

One-sided & asynchronous post processing. To minimize the
CPU bottlenecks and network utilization, DINoM0O’s data path
uses one-sided operations with asynchronous post processing. With
a one-sided operation (e.g., RDMA read, write, and atomic verbs),
a KN executes directly on DPM without involving the DPM pro-
cessor. One-sided operations have lower latency and higher band-
width than two-sided operations (e.g., RDMA send and receive

verbs) [20, 34, 57, 61, 82], but one-sided operations are limited in
functionality [2]. For the best performance, DINoMoO uses one-sided
operations in the data path and delegates the post-processing of
writes to the DPM processors asynchronously.

One-sided reads. For reads, an KN directly returns the value from
its cache upon a value hit. On a shortcut hit, it performs a single
one-sided operation to retrieve the value in DPM from the shortcut
pointer. On a cache miss, the KN performs multiple one-sided oper-
ations to find the address of the value (index traversals), and uses
another one-sided operation to fetch the value from that address.

Asynchronous post processing of writes. DINomo batches multiple
log entries into a log segment unit and writes them to DPM using a
one-sided RDMA write operation. With OP, DiNoMo can batch the
writes for the keys in the same partition without consistency con-
cerns. The post processing to merge the writes into the metadata
index is asynchronously handled by DPM processors off the critical
path. Dinomo’s KNs cache the committed log segments to aid the
subsequent reads to be served locally at the KNs without expen-
sive network RTs to read the large log segments remotely. These
optimizations have two benefits. First, they reduce the latency as
well as network costs per operation. Second, they amortize the
merging operation across all the write operations in a log segment
(typically several megabytes in size). Because the merging is done
asynchronously, the DPM processors can have lower computing
power without significantly affecting Dinomo performance.

4 IMPLEMENTATION

We implement DiNnomo in 10K lines of C++ code. We use the stan-
dard C++ library and several open-source libraries including Ze-
roMQ [66], Google Protocol Buffers [10], libibverbs [18], and the
PMDK library [40]. This section discusses DiNnomo’s DPM data
structures, DAC implementation, and cluster management.

DPM metadata index. Dinomo uses RECIPE’s P-CLHT (Persistent
Cache Line Hash Table) [46], which supports lock-free reads and
log-free in-place writes, as its metadata index in DPM. P-CLHT is a
chaining hash table aimed at minimizing the CPU-cache coherence
and persistence overheads on PM. Each bucket in P-CLHT has the
size of a single cache line and holds three key-value pairs [19].
The design allows each access/update to the hash table to incur
only a single cache-line access/flush in the common case. For lock-
free reads, P-CLHT employs atomic snapshots of key-value pairs.
We modify the index to use RDMA reads for lookups. On hash
collisions, KNs may have to perform multiple one-sided RDMA
reads to traverse the hash chain and read the value. The cacheline-
conscious bucket design of P-CLHT, cache-coherent DMA [20, 34],
and out-of-place value updates allow us to avoid memory-access
races [57, 71] between the updates by DPM processors and one-
sided RDMA reads by KNs.

DPM log segments. DinoMo implements 8 MB log segments and
handles variable length key-value pairs. KNs proactively preallocate
log segments for their own use using two-sided operations. KNs
log write operations into DPM log segments and cache them; upon
cache misses in DAC, KNs have to search cached log segments to
find the latest value. DiNoMo implements Bloom filters atop cached
log segments for quick membership queries. DINomo maintains the



following invariant: unmerged log segments are cached in the KNs
that wrote them. Due to OP, other KNs will not access these log
segments, thus eliminating the need for read operations to check
the unmerged log segments on other nodes. KNs can add a new
log segment to DPM without blocking until their unmerged log-
segment length reaches a certain threshold (default is 2); when the
threshold is reached, the critical write paths are blocked until the
DPM processors complete merging below the threshold. Dinomo
logs write operations with commit-markers (e.g., a seal byte at the
end of the entry [20, 50]) to DPM log segments to ensure crash
consistency and to aid recovery. The DPM index directly points to
the values stored in the log entries. Since KNs know the address
of the log segments they write (and therefore where values are
stored), they can produce and locally cache shortcuts to values
in DPM without an extra round trip. To garbage collect stale log
segments, DINOMO maintains per-log-segment counters that reflect
the number of valid and invalid values in each log segment. Once
the number of invalid values matches the total number of values in
a log segment, a DPM processor garbage collects the log segment.

DPM persistence. While merging log segments, Dinomo’s DPM
processing threads persist all the writes to the DPM index struc-
ture using CLWB, sfence, and non-temporal store instructions [68].
RDMA currently does not support durable RDMA writes. How-
ever, the proposed durable write in the IETF standards working
document [73] behaves similar to a non-durable write, requiring
one network round trip. Our implementation currently uses non-
durable writes, and we plan to update these to durable writes once
they become available [39].

DAC. DAC is implemented using standard C++ libraries. DAC uses
two unordered maps to store values and shortcuts. Least recently
used values and least frequently used shortcuts are evicted. The key
access frequency is tracked using a multimap. The shortcut entries
contain a pointer to a DPM value, and the DPM value length. The
value entries have two more extra fields, an access count and a copy
of the DPM value. Demoted values are cached as shortcuts, and
shortcuts being promoted inherit their access counts to preserve
their access history.

Cluster management. DiNomo uses Kubernetes [27] for cluster
orchestration. Pods are the smallest deployable units in Kubernetes.
Each DinoMo component is instantiated in a separate Kubernetes
pod with a corresponding Docker [23] container. DINOMO uses
Kubernetes to add/remove KN pods and restart failed pods. The
M-node pod is colocated with the Kubernetes master. The M-node’s
policy engine adds/removes KN pods by running simple bash scripts
executing kubectl [62] commands to the Kubernetes master. The
Kubernetes master keeps track of pod status using heartbeats, and
the M-node uses this information to detect failures in KN pods.

5 EVALUATION

We evaluate the performance of Dinomo and study the breakdown
of the benefits from Ownership Partitioning (OP), Disaggregated
Adaptive Caching (DAC), and selective replication. We design our
experiments to answer the following questions:

e Does DAC help reduce network round trips? How does it fare
against other caching policies?

e How much does the DPM compute capacity impact DINOMO’s
overall throughput?

e How does DiNomo fare against the state-of-the-art in terms of
performance and scalability?

e What fraction of DINOMO’s benefits can be attributed to the
OP architecture and the DAC caching?

e How elastic and responsive is Dinomo while handling bursty
workloads, load imbalance, and KN failures?

Comparison points. As our baseline, we use Clover [75], a state-of-
the-art and open-source key-value store designed for DPM. Clover
has a shared-everything architecture with a shortcut-only cache
at its KNs. KNs perform out-of-place updates to the data in DPM,
and incur additional overheads to provide strong consistency. For
example, stale cached entries require KNs to walk through a chain
of versions to find the most recent data in DPM.

Besides Clover, we compare DINoMo with two variants, DINomo-
S and Dinomo-N. DiNoMo uses three techniques: DAC, OP, and
selective replication. DINoMO-S caches only shortcuts; it is other-
wise identical to DiNoMo. As the source code of AsymNVM [54]
is not publicly available, we implement DiNoMO-N to compare
DiNnomo with a shared-nothing counterpart; it uses DAC but parti-
tions data and metadata in DPM, where each partition is exclusively
accessed by a single KN without selective replication.

Comparing Dinomo-S with Clover highlights the benefits of par-
titioning ownership in OP, and comparing DiNnomo with DiNomo-S
shows the benefits from DAC. We also investigate the trade-off
from sharing data in OP by comparing DiNomo with DiNnomo-N.

Experiment setup. We use Kubernetes pods to represent all of the
node instances in the DiNomo cluster. We restrict the host resources
assigned to the pods depending on the node types’ features to emu-
late the asymmetric DPM architecture (i.e., KNs have more-capable
computation but smaller memory than DPM). Each individual pod
is pinned to a separate server for resource isolation purposes.

We deploy Dinomo on the Chameleon Cloud [35], an experimen-
tal large-scale testbed for cloud research. We use InfiniBand-enabled
(IB-enabled) servers as hosts for KNs and DPM; each two-socket
server has Intel Xeon E5-2670v3 processors, 24 cores at 2.30 GHz
in total, and 128 GB DRAM. The shared DPM uses a maximum of
4 threads and 110 GB of DRAM as a proxy for the PM, which is
registered to be RDMA-accessible. Each KN uses a maximum of 8
threads and 1 GB of DRAM for caching (1% of the DPM size). DPM
and the KN are connected by Mellanox FDR ConnectX-3 adapters
with 56 Gbps per port. We emulate PM using DRAM, as perfor-
mance is constrained by the network rather than PM or DRAM:
network latency (1-20 us) is at least 10X higher than DRAM or PM
latencies (100s of ns); network bandwidth (7GB/s) is lower than PM
bandwidth (32GB/s Read / 11.2GB/s Write) [3, 33].

The external servers that run application workloads, henceforth
termed client nodes, and the routing service do not need a high-
speed interconnect with the KNs or DPM. Hence, for client nodes
and routing nodes (RNs), we use two-socket servers with AMD
EPYC 7763 processors, 128 cores at 2.45 GHz in total, 256 GB of
DRAM, and a 10 Gbps Ethernet NIC. Each client node uses 64
threads to run a closed-loop workload with one or more outstanding
requests per thread. We use a single RN with 64 threads. The same
routing layer is used across all KVS variants in our evaluation. In
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Figure 3: Performance comparison of cache policies

addition to the data plane components (KNs and DPM), DiNnomo,
Dinomo-N, and DiNnoMo-S use a control-plane instance for the M-
node, which is deployed on a server (same server configuration as
the RNs) with a single thread. For Clover, we use an extra IB-enabled
server (same server configuration of the KNs) for its metadata server
with 6 threads (4 workers, 1 epoch thread, 1 GC thread).

Workloads and configurations. We use YCSB-style workloads [17,
84] with five request patterns: read-only (100% reads), read-mostly
(95% reads/5% updates and 95% reads/5% inserts), and write-heavy
(50% reads/50% updates and 50% reads/50% inserts). These work-
loads use 8B keys and 1KB values and the following Zipfian coeffi-
cients: 0.99 (the YCSB-default value) for moderate skew, 2 for high
skew, and 0.5 for low skew (close to uniform). For each experiment,
we first load 32 GB of data (key-value pairs) and then write up
to 100GB of data during the workload including inserts. With 16
KNs, each equipped with a 1GB cache, the KNs can cache up to 50%
of the loaded dataset. We generate the workload from the client
nodes and measure system throughput and other profiling metrics,
averaging them over a 10-second interval.

5.1 Microbenchmark

We use micro-benchmarks to investigate several issues. We first
consider whether DAC is an effective caching strategy. Next, we
explore how much compute capacity DPM requires to prevent the
asynchronous merging of writes from becoming the bottleneck;
based on the results, we also discuss how using DRAM to emulate
PM affects our results.

DAC. The KN caches can be used to store values, shortcut point-
ers, or a mix of both. To evaluate DAC against different caching
strategies, we use a single KN with 16 threads. We first load 30M
key-value pairs into Dinomo with 8B keys and 64B values. We then
run a read-only workload with a working set of 1.5M uniformly-
distributed keys (5% of the dataset) to evaluate performance. We
generate the workload locally and measure the peak throughput
within the KN by varying the available DRAM for caching from
1%-16% of the dataset size. We configure Dinomo to use differ-
ent caching policies (Figure 3). The static-X policies reserve X% of
their cache size for storing values; the rest of the cache is used for
shortcuts. All non-DAC policies use LRU to evict entries.

Figure 3 shows the read throughput obtained with the different
cache policies. With an aggregate cache size of 2% of the dataset, a
shortcut-only cache performs best, whereas with a cache size 4x as
large, a value-only cache performs best. The aggregate cache size
is dependent on the number of active KNs, which may dynamically
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Figure 4: Performance impact of DPM compute capacity. The
log-write throughput approaches the max with 4 threads on DRAM,
while requiring more threads on PM.

change with cluster reconfiguration or KN failures. Therefore, a
static caching policy is not a good fit. The right policy depends
upon the workload patterns and aggregate cache size.

Despite not knowing the workload patterns or the aggregate
cache size, DAC is within 16% of the best performing policy, in all
settings. With a medium-sized cache that is 4% of the dataset size,
DAC exceeds the performance of both shortcut-only and value-only
caching policies by taking advantage of both.

Asynchronous post processing. A delay in merging log segments
due to the limited compute capacity in DPM can block the critical
path of KNs writing logs. To evaluate this impact from the worst-
case scenario in our setup, we run an insert-only workload using 16
KNs and 8 client nodes; this is the most compute-intensive workload,
as it incurs structural changes to the DPM index (e.g., resizing
hash table). We first load 32GB of data and then run the workload
writing up to 100GB of data into DPM with 8B keys and 1KB values.
We measure the peak throughput of log writing and merging for
different DPM thread counts. For the log-write throughput, we
collect the aggregate throughput across 16 KNs every 10 seconds for
30 seconds and average them; the log-write max is the maximum
throughput the KNs can obtain if they never wait for DPM to
merge logs. To measure the merge throughput, we pre-generate
log segments locally on DPM for the dataset and then measure the
performance of merging those log segments. As our testbed has no
IB-enabled PM machines, we measure the merge throughput on
PM using a local PM machine (Intel Xeon Silver 4314 CPU with 16
cores at 2.4GHz and 512GB Intel Optane DC PM on 4 NVDIMMs)
to estimate the impact from using PM for DPM.

We make a number of observations based on the results in Fig-
ure 4. First, we observe that to write logs at the maximum rate,
DPM should have enough computing capability to merge at the
log-write max rate; four or more threads are required for our setup.
Second, we observe that because of PM’s higher access latency, PM
merge throughput is lower than DRAM; when using four threads,
the lower PM merge throughput can become the bottleneck. Third,
we confirm despite in-DIMM write amplifications [33, 86], merge
operations consume PM write bandwidth only up to 2GB/s (moni-
tored by PCM [64]); 9.2GB/s out of the maximum (11.2GB/s) is still
available to absorb incoming writes from the KNs over the network,
making the network (7GB/s) the bottleneck rather than PM.

We conclude that, in some scenarios, using PM instead of DRAM
requires a higher number of DPM threads to prevent the merging
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delay from becoming the bottleneck. However, even in this worst-
case scenario, PM merge throughput with 4 threads was only 16%
lower than log-write max; for more realistic scenarios with a mix
of read and write operations (as used in our following end-to-end
experiments), DPM should be able to operate with the same number
of threads (4 threads or more) on both PM and DRAM for 16 KNs.

5.2 Performance and Scalability

We now compare the end-to-end performance and scalability of
Dinomo, Dinomo-S (Dinomo with a shortcut-only cache), Dinomo-
N (Dinomo with DAC and data/metadata partitioning), and Clover.
We use workloads with moderate skew (Zipf 0.99) to observe the
performance and scalability in the common case. We use 8 client
nodes to run these workloads and measure the peak throughput by
increasing the outstanding requests per client thread until the KNs’
CPUs are saturated. After a 1-minute warm-up period, we collect the
aggregate throughput across KNs every 10 seconds for 40 seconds
and average them. In this experiment, the number of KN is fixed,
and hence there is no reconfiguration. However, the overhead to
monitor system statistics (which are used to trigger reconfiguration)
is reflected in the measurement of DiNomo and its variants. We
profile the workload and collect metrics such as aggregate cache hit
ratio and the average number of network round trips per operation
(RTs/op) across all KNs. Due to space constraints, the full profiling
numbers are omitted but can be found in our technical report [45].

As shown in Figure 5, Dinomo’s throughput scales to 16 KNs.
In contrast, Clover’s throughput does not scale beyond 4 KNs due
to either a network bottleneck or the CPU bottleneck from its
metadata server. With 16 KNs, Dinomo outperforms Clover by at
least 3.8% across all workloads. DiNnomo-S does not scale beyond 8
KNs in read-dominated workloads because of network bottlenecks.
The performance of Dinomo and Dinomo-N is almost on par (max
difference is 11%). We observe that both Dinomo and DiNomo-
N achieve high performance due to high cache locality at KNs
resulting from partitioning. While partitioning data and metadata

in Dinomo-N also reduces synchronization overheads, we did not
notice significant benefit due to this in the tested workloads.

OP enables scalable performance. We observe that increasing
the number of KNs from 1 to 16 reduces the cache hit ratio in Clover
across all workloads. This performance drop is counterintuitive, as
the DRAM available for caching increases with the number of KNs.
However, in shared-everything architectures KNs can handle any
request, so multiple KNs may incur cache misses on the same key.
With more KNs, even with moderate skew, the redundant cache
misses increase. In summary, shared-everything architectures do
not provide good cache locality and prevent the efficient use of KN-
side memory for caching. In contrast, OP partitions the ownership
of keys across KNs, providing high cache locality for requests and
eliminating redundant shortcuts at multiple KNs. Note that, for
these workloads, DINOMO-S sees a 100% hit ratio across all KNs and
with any number of KNs.

DAC boosts performance and scalability. Dinomo has a higher
cache hit rate (from values) with more KNs and takes fewer RTs/op,
compared to both Dinomo-S and Clover. DiNomo-S has higher
network costs: up to 10X more RTs/op than Dinomo. Clover is
even worse: from 4X to 87X more RTs/op than Dinomo, due to
shortcut-only caching and a lack of locality that results in consis-
tency overheads and redundant caching. The aggregate memory
available for caching increases with KN for all systems. However,
DAC helps KNs cache more values (as opposed to shortcuts), and
thus incur fewer round trips to DPM per operation. In DiNoMmo,
the cache hit % from values increases from 52% with 1 KN up to
88% with 16 KNs across all workloads. With 1 KN, Dinomo caches
more shortcuts, incurring 1 RT at a cache hit, while with 16 KN,
Dinomo caches more values, and hence takes fewer RTs/op (0.1
RTs/op across all workloads). Dinomo has fewer RTs/op in write-
heavy workloads on average than read-dominated workloads, as
KN persist multiple write operations in a batch with 1 RT on DPM.
Overall, we see that DAC is effective in reducing RTs to DPM.

5.3 Elasticity

We now demonstrate DiNoMo can elastically scale the number of
KNs, balance loads across KNs, and tolerate failures. We use a work-
load with 50% reads and 50% updates with three different skew
distributions. When a reconfiguration is triggered in this workload,
any pending writes must be merged to DPM before the reconfig-
uration can proceed. We run a client node with one outstanding
request per thread at a time.

Policy variables. We set the parameters of the policy engine (§3.5)
and design the experiments to trigger various forms of reconfigura-
tion. We use an average latency SLO of 1.2ms and a tail latency SLO
(99-percentile latency) of 16ms. The over-utilization lower bound is
configured to be 20% KN occupancy, and the under-utilization upper
bound is set to 10% KN occupancy. Furthermore, we configure the
key-hotness lower bound to 3 standard deviations above the mean
key access frequency and the key-coldness upper bound to 1 standard
deviation below the mean. Note that the goal of the experiments
is to study the elasticity of DiNoMo under various scenarios; we
chose these policy parameters as simple triggers for these scenarios,
not as an indication of the best policies.
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Auto scaling. We evaluate Dinomo with bursty, irregular work-
loads and compare its elasticity in scaling KNs with Dinomo-N.
We were unable to run Clover for this experiment because Clover
has no implementation for auto-scaling KNs. We produce scenarios
where a new KN is required or an existing KN is no longer needed.
Recall that Dinomo adds new KNs automatically only if a latency
SLO is violated, the KNs are over-utilized, and an additional KN
is available. DiNoMo automatically evicts a KN only if the latency
SLOs are met and the KN is underutilized. The grace period after
each reconfiguration is configured to 90 seconds.

To produce a bursty workload, we start running the workload
with low skew (Zipf 0.5) on DiNoMo using 1 client node for 20
seconds. We then increase the load on Dinomo by 7x by adding 7
additional client nodes. We observe the performance of Dinomo
for a few minutes until it stabilizes, and at the 230-second mark, we
remove 7 client nodes to lower the load by 7x again. Figure 6 shows
the behavior of Dinomo and DiNnoMo-N during this experiment.

Dinomo and Dinomo-N meet the latency SLOs until the load
increases at 30 seconds, when the M-node detects a latency SLO vi-
olation: the tail latency SLO is exceeded. The M-node then observes
that KNs are over-utilized (the minimum KN occupancy in DiNnoMmo
is about 35%), and hence corrects the situation by adding a new KN.
Once the new KN comes online at 40-50 seconds, DiNnomo shows a
brief latency increase and throughput dip, as the nodes update their
hash rings. However, DiNnoMmo-N experiences a 40-second latency
spike and throughput dip at 60 seconds, where the throughput
drops to 0 due to the processing delay during data reorganization.
After a 90-second grace period, although the average latency SLO
is met, the tail latency SLO is still violated. Dinomo and Dinomo-N
react to the situation by adding another KN. Again, DiNomo only
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Figure 7: Latency and throughput of Dinomo, Dinomo-N, and
Clover over time while running a highly-skewed workload

sees a brief increase in latency, while Dinomo-N’s latency increases
for 30 seconds. After the grace period, as both latency SLOs are
met, DiNomo and DinoMo-N do not take any further actions.

At 230 seconds, the load is suddenly reduced. In the next 10
seconds, the M-node detects an under-utilized KN with lower than
10% occupancy. As the latency SLOs are met, the policy engine
triggers the KN eviction. While removing the under-utilized KN,
DiNoMo sees a brief rise in average and tail latency without violat-
ing SLOs. However, DinoMo-N shows a 20-second throughput dip
and latency spike before stabilizing.

Overall, we see that DiNoMo is more responsive with fewer
throughput and latency disruptions than Dinomo-N and can auto-
matically scale KNs as required by changes in load.

Load balancing. We now describe how Dinomo handles non-
uniform load on its KNs and scales its throughput for hot spots, in
comparison to DiNomo-N and Clover. To handle these scenarios,
recall that DiNomo uses selective replication; this mechanism is
triggered only if a latency SLO is violated due to a few hot keys
and the KNs are not over-utilized.

For these experiments, we use a skewed workload with 8 client
nodes and 16 KNs. We start the experiments with a low-skew work-
load (Zipf 0.5) and then switch to a highly-skewed workload (Zipf 2).
Dinomo’s policy engine checks that the KNs are not over-utilized
(the minimum KN occupancy is lower than 10%) and identifies that
the latency SLO is violated due to 4 hot keys. As a result, the pol-
icy engine triggers the selective replication of the 4 keys. Figure 7
shows the KVSs’ behavior during the experiment.
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Figure 8: Throughput of Dinomo, Dinomo-N, and Clover over
time while handling a KN failure

Initially, all the KVSs meet the latency SLO and balance the load
across KNs. At 20 seconds, the workload switches to the highly
skewed pattern, resulting in latency SLO violations and an increase
in load imbalance between KNs. Dinomo gradually increases the
replication factor of the 4 keys between 30 and 90 seconds. During
this period, DiNnomo experiences brief tail latency spikes due to the
additional delay for clients to retrieve the up-to-date ownership
mapping of replicated keys from the RN, but throughput gradually
increases. At 90 seconds, Dinomo fully replicates the hot keys
across all available KNs, and the throughput stabilizes. The latency
SLOs are also met. DiINoMO was the only system to satisfy the SLOs;
both Clover and DinomMo-N constantly violate the SLOs for the
highly-skewed workload.

Clover initially outperforms Dinomo without selective replica-
tion and DiNnomo-N by almost 4X on the highly-skewed workload.
However, once we enable selective replication in DiNnomo, hot keys
start becoming shared by multiple KNs at about 30-40 seconds; once
all the hot keys are completely replicated, DiNnomo’s performance
stabilizes in about 1 minute and it outperforms Clover by almost
1.6x and DiNoMO-N up to 5.6X. Selectively replicating hot keys
in Dinomo allows multiple KNs to access DPM for the hot keys,
increasing the overall throughput. Our use of indirect pointers in ac-
cessing hot keys restricts KNs from caching values. Hence, DinoMmo
selectively replicates only the hottest keys while restricting KNs to
cache only their shortcuts; KNs maintain exclusive ownership over
non-hot keys and continue to cache their values adaptively.

Overall, our experiments highlight the benefits of selective repli-
cation with OP for load balancing across KNs and for handling hot
spots as a better alternative to shared-everything.

Fault tolerance. Finally, we induce a KN failure to compare the
resilience and elasticity of Dinomo, Dinomo-N and Clover. In a
cluster with 16 KNs, we run a moderate skew (Zipf 0.99) workload
for 2 minutes using 8 client nodes, and simulate a KN failure at
around 40 seconds. We simulate the failure by eliminating a ran-
domly selected KN. User requests are set to time out after 500ms.
We observe that Dinomo quickly recovers from the KN failure (Fig-
ure 8). We notice that the throughput briefly drops by 45%, average
latency increases by 1.2x (0.8 ms), and the tail latency increases by
1.5X (1.4 ms). Upon detecting the failure, DINoMO merges the pend-
ing log segments from the failed KN and redistributes ownership
across other alive KNs. These steps take less than 109 ms.
Dinomo-N, on the other hand, experiences a 20-second dip in
performance at 50 seconds, where the throughput drops to 0 as it
stops serving requests while reshuffling data. The time to reorganize

data takes more than 11 seconds in Dinomo-N. Clover tolerates the
KN failure elastically, showing a brief 55% drop in its throughput.
Clover only needs to update the cluster membership of alive KNs in
RN after failures (without any data reorganization) to allow clients
to retrieve the new membership after timeouts. The time to update
RN takes less than 68 ms.

Overall, compared to Dinomo-N, Dinomo recovers from KN
failure faster since it is not required to reorganize data owing to
the data sharing in OP. Similar to Clover, DiNomo stabilizes its
performance quickly, and satisfies all SLOs.

6 RELATED WORK
We place our contributions in the context of relevant prior work.

DPM architectures. OP follows the idea that just because you
can share, it does not mean you should share. This observation
has been made before in other contexts. Storage Area Networks
provide storage disaggregation in a data center [7], where volumes
could be shared among hosts, but often they are not [13]. Key-
value stores provide storage disaggregation in the cloud, where
data can be shared among nodes, but applications may choose
not to [80]. Fine-grained logical partitioning has been proposed
to support live reconfigurations in in-memory key-value stores [1,
42], in-memory databases [22], and graph processing [85]. Even
multiprocessor shared-memory systems sometimes forgo sharing of
data structures among threads, choosing instead to partition data [8,
11, 48]. Our work demonstrates that partitioning logical ownership
while sharing physical data and metadata in DPM provides high
performance and lightweight reconfigurability.

DAC. Adaptive caching policies have been explored in other con-
texts, illustrating how a single cache can be used for multiple pur-
poses or how a replacement policy can consider multiple behav-
iors. For example, the Sprite operating system shared its mem-
ory between the file system buffer cache and the virtual memory
system [58]. The Adaptive Replacement Cache (ARC) uses a re-
placement policy that balances between recency and frequency of
accesses [55]. In contrast to these systems, which use fixed-size
cache entries with uniform miss penalties, DAC manages a cache
where different types of entries (e.g., values vs. shortcuts) have dif-
ferent sizes and varying miss penalties. The novelty of our scheme
arises from a new setting (DPM) where adaptivity is essential.

7 CONCLUSION

DPM is a promising new architecture for building KVSs. Prior DPM
KVSs have had to sacrifice at least one of three desirable character-
istics: high common-case performance, scalability, and lightweight
reconfiguration. We present the Dinomo KVS, which uses a novel
combination of techniques to achieve these properties simultane-
ously, which we demonstrate through empirical evaluation.
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