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Abstract. In this paper, we explore the prospect of accelerating tree-
based genetic programming (TGP) by way of modern field-programmable
gate array (FPGA) devices, which is motivated by the fact that FP-
GAs can sometimes leverage larger amounts of data/function paral-
lelism, as well as better energy efficiency, when compared to general-
purpose CPU/GPU systems. In our preliminary study, we introduce a
fixed-depth, tree-based architecture capable of evaluating type-consistent
primitives that can be fully unrolled and pipelined. The current prim-
itive constraints preclude arbitrary control structures, but they allow
for entire programs to be evaluated every clock cycle. Using a variety of
floating-point primitives and random programs, we compare to the recent
TensorGP tool executing on a modern 8nm GPU, and we show that our
accelerator implemented on a 14nm FPGA achieves an average speedup
of 43x. When compared to the popular baseline tool DEAP executing
across all cores of a 2-socket, 28-core (56-thread), 14nm CPU server, our
accelerator achieves an average speedup of 4,902x. Finally, when com-
pared to the recent state-of-the-art tool Operon executing on the same
2-processor CPU system, our accelerator executes about 2.4x slower on
average. Despite not achieving an average speedup over every tool tested,
our single-FPGA accelerator is the fastest in several instances, and we
describe five future extensions that could allow for a 32—-144x speedup
over our current design as well as allow for larger program depths/sizes.
Overall, we estimate that a future version of our accelerator will consti-
tute a state-of-the-art GP system for many applications.

Keywords: Tree-based genetic programming - Field-programmable gate
arrays - Hardware acceleration

1 Introduction

During any given time, the development of AI has been constrained and in-
fluenced by the computing technologies available [9, 10, 27]. Nevertheless, novel
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applications of pre-existing technologies still happen, and they can drive re-
search fields in whole new directions, occasionally prompting some form(s) of
widespread adoption. For instance, the massive adoption of deep neural networks
in the past decade was clearly enabled by developments regarding GPUs [9, 10,
27]. In this instance, computing advancements markedly extended the practi-
cal reach of neural networks, which then kickstarted a wave of popularity and
research ventures. Importantly, in this domain and many others, the demands
of ever-increasing performance and energy efficiency has now manifested into
the broad development of domain-specific hardware accelerators [9]. However,
in the wide-ranging domain of genetic programming (GP), there seems to exist
only a few instances of specialized hardware accelerators [7,8, 15, 16, 22], which
is especially surprising given that GP is an “embarrassingly parallel” procedure.

Generally speaking, although general-purpose CPU/GPU systems can be
made to effectively exploit some of the parallelism opportunities inherent to GP
(e.g., by evaluating multiple data points, multiple operations, or multiple candi-
date solutions in parallel), the frequent, dynamic changes in control flow caused
by GP (e.g., when evaluating different operations within a single program) gen-
erally limits how effective a general-purpose computing platform can perform [3,
4,21]. Within this paper, we focus on the original tree-based GP (TGP) [12], and
we explore how we may overcome the aforementioned limitations of CPU/GPU
systems by way of an accelerator specialized to the evaluation phase of TGP,
implemented with a modern field-programmable gate array (FPGA). In brief,
FPGAs are programmable computing systems in which specialized digital cir-
cuitry can be synthesized from different levels of abstraction, without recourse
to integrated circuit development.

Overall, as depicted in Fig. 1, our preliminary accelerator leverages a special-
ized, full tree of generic computing resources to compute any program relevant
to a GP primitive set, as long as the depth of the program is not larger than
the depth of the tree, the latter of which is defined by the user. By then pipelin-
ing the generic resources, the accelerator can generate an output for an entire
program expression every clock cycle after some initial latency. To further in-
crease throughput, the accelerator also dynamically compiles programs for the
tree while evaluating, so that the tree may switch between programs within a
single clock cycle. Importantly, such forms of parallelism have not been achieved
via general-purpose CPU/GPU architectures.

We compare the performance of our architecture with the evaluation engines
given by three actively maintained, open-source tree-based GP software tools:
DEAP [6], TensorGP [1], and Operon [3].! From each tool, we use the evaluation
engine—and no evolution engine—to execute a large set of randomly generated
programs for various amounts of fitness cases (i.e., sample points), and we esti-
mate evaluation performance in terms of node evaluations per second (NEPS).
For each software-based tool, we utilize a dual-socket server populated with two
2.6 GHz (3.7 GHz Turbo), 14-core (28 thread), 14nm Intel Xeon Gold 6132
CPU packages, and we additionally use an 8nm Nvidia RTX 3080 GPU (10 GB)

! Software: https://github.com /christophercrary/conference-eurogp-2023.
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Fig.1: A portrayal of how our GP accelerator can parallelize the evaluation of
different data points and different solutions every clock cycle via a reconfigurable
tree pipeline. Each node of the pipeline can perform any function within the GP
primitive set, as well as a bypass, which allows for arbitrary program shapes.

for TensorGP. To implement our hardware accelerator, we utilize a 14nm Intel
Stratix 10 SX 1SX280HN2F43E2VG FPGA provided by an Intel Programmable
Acceleration Card (PAC) through the Intel FPGA DevCloud service. We compile
the accelerator by way of Quartus Pro 19.2.0, Build 57.

When compared to DEAP [6], a popular baseline for GP software tools, our
accelerator achieves an average speedup of 4,902x. Compared to TensorGP [1], a
recent general-purpose GP software tool targeting both CPU and GPU systems,
our architecture achieves an average speedup of 61.5x in regard to CPU execu-
tion and 43x in regard to GPU execution. Finally, when compared to Operon [3],
a recent state-of-the-art GP tool tailored to symbolic regression [13], our single-
FPGA accelerator executes about 2.4x slower on average when compared to
the same 2-processor CPU system, although there are several instances in which
our accelerator performs the fastest. Despite not achieving an average speedup
over every tool tested, we describe five future extensions that could allow for a
32-144x speedup over our current design. Separately, we note that it has been
widely shown that FPGAs can often provide power and energy improvements
when compared to CPU/GPU systems, sometimes by multiple orders of mag-
nitude [18, 20, 23, 24]. Although we do not provide power or energy estimates in
this paper, if we can experience any of such improvements when compared to
other GP tools, this should enable us to implement more energy-efficient (and,
thus, potentially more cost-effective) GP systems than what has been presented
in previous work [25]. Overall, we estimate that a future version of our accelerator
will constitute a state-of-the-art GP system for many applications.



4 C. Crary et al.

The remainder of the paper is organized as follows. Section 2 describes re-
lated work. Section 3 details our architecture. Section 4 describes our design of
experiments. Section 5 presents results for our experiments. Section 6 discusses
limitations of our current architecture and planned future extensions that should
address the limitations and allow for state-of-the-art performance. Finally, Sec-
tion 7 presents conclusions.

2 Related Work

In the context of CPU/GPU systems, there exist numerous works that discuss
mechanisms for accelerating tree-based GP—see [5] for a recent review, as well
as [1-4, 14, 21]—although there are comparatively few works that consider the
use of FPGA devices [7,22]. Compared to prior work [7,22], our accelerator has
several important contributions. Most significantly, our system dynamically com-
piles programs from a compressed prefix notation into configuration data for a
reconfigurable pipeline, whereas previous work used a simpler, less flexible mech-
anism by which larger, fixed-size programs must be compiled. Ultimately, our
compressed prefix notation allows for significantly reduced communication times
as well as significantly reduced size requirements for on-chip RAM. Also, with
the ability to dynamically compile arbitrary expressions directly on the target
device, future extensions of our design can accelerate other GP stages without
continued hardware/software communication. Besides dynamic compilation, we
also explore the use of a higher-end FPGA device, multiple primitive sets, a
range of fitness case amounts, different tree sizes, and 32-bit floating point, all
while comparing to a range of modern GP tools.

Apart from tree-based GP, there exists some prior work on the FPGA ac-
celeration of certain GP variants, e.g., Linear GP [15], Cartesian GP [16], and
Geometric Semantic GP [8], although we note that the differences in evaluation
schemes warrants a separate architecture dedicated to tree-based GP. Lastly,
we note that the application area of evolvable hardware [28] has also leveraged
FPGA devices, although this has been with the primary intention of evolving
circuits, rather than accelerating the GP procedure via a single circuit.

3 Accelerator Architecture

In this section, we detail our accelerator architecture for the evaluation phase
of tree-based GP. We focus on evaluation since it is the primary bottleneck for
TGP. Eventually, we will investigate acceleration of the entire GP process.

The accelerator architecture currently consists of four major components, as
shown in Figure 2. The program memory (Section 3.1) stores candidate program
solutions, where each candidate is encoded in a language defined by the speci-
fication of a particular primitive set. The program compiler (Section 3.2) reads
program expressions from program memory and dynamically compiles them into
configuration information for the program evaluator, which we implement as a
reconfigurable function tree pipeline (Section 3.3). This function tree pipeline
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executes a compiled expression for all relevant fitness cases, resulting in a new
output for the entire program every clock cycle after some initial latency. Fi-
nally, the fitness evaluator (Fig. 2d) compares the output of a current program
to the relevant target data by way of some metric (root-mean-square error in
this paper), which allows for other stages of GP to optimize the individual.
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Fig. 2: High-level overview of the accelerator architecture. The accelerator stores
programs (e.g., sin(vy) + 1.0) in (a) program memory, which are dynamically
compiled by (b) the program compiler into configuration data for (c) the program
evaluator. The program evaluator uses a reconfigurable function tree pipeline to
execute a compiled expression for a set of fitness cases, resulting in a set of
outputs to which (d) the fitness evaluator compares a set of desired outputs.

3.1 Program Memory

The architecture currently implements program memory with on-chip RAM re-
sources and memory-mapped I/O. For a primitive set P = F UV U C, with
function set F', variable terminal set V', and a set of 32-bit constant terminals C'
(e.g., all single-precision floating-point values), we define a 64-bit machine code
for program nodes as follows:

1. The most-significant 16 bits of the machine code represent an opcode which
specifies either the type of primitive or the null word, the latter of which
is used to indicate the end of a program expression within memory. The
null word is assigned opcode 0, each function is assigned an opcode in the
range [1, |F|], each constant is assigned opcode |F|+ 1, and each variable is
assigned an opcode in the range [|F|+ 1+ 1,|F|+ 1+ |V]].

2. The least-significant 32 bits of the machine code specify a constant value,
which is only relevant if the opcode indicates that the node is a constant.
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3. The remaining 16 bits specify the depth of a node within the context of a
program, which is relevant to the program compiler (Section 3.2).

We encode program expressions via a prefix (i.e., Polish) notation. In essence,
such a representation flattens tree-based programs into a linear structure [19].
For example, Fig. 2a shows how our architecture could support the program
sin(vy) + 1.0 by way of a simple primitive set consisting of addition (+), sine
(sin), two variable terminals (vy and vy), and the set of all single-precision floats.

3.2 Program Compiler

The program compiler reads program expressions from program memory and
dynamically compiles them into configuration information for the program eval-
uator. Currently, the program compiler is implemented as a finite-state machine
(FSM) that continually writes configuration information into a configuration
buffer, which is omitted from Fig. 2 due to space constraints. Such buffering en-
ables the program compiler to generate configurations for a program in advance
while the program evaluator is processing fitness cases for an existing program.

The program compiler’s configuration data contains three major components
(Fig. 2b,c): 1) function select values that configure individual function units
within the function tree of the program evaluator (Section 3.3), terminal select
values that dictate whether a variable or constant terminal is connected to the
corresponding function tree input, and 3) constant values that specify the bits
of any constant terminals feeding into the tree.

To compile a program, the program compiler conducts a pre-order traversal
on a model of the relevant function tree, so that compilation can happen in
parallel to program evaluation. We determine a model for the tree at compile
time, based on the specified depth and branching factor of the tree, the latter of
which is determined by the maximum function arity of the chosen primitive set.

Ultimately, depending on the shapes/sizes of programs being compiled and
the number of fitness cases that are to be streamed into a function tree, the
cost of compiling a program may be completely amortized such that there is no
dead cycles in between evaluating consecutive programs. Fortunately, for any
function tree structure, there will always be some threshold for the number of
fitness cases such that, for any number of fitness cases above this threshold,
compilation will be completely amortized. Separately, since the program com-
piler FSM needs relatively few resources (currently, less than 2% of all area for
our target device), we can extend our architecture to support multiple com-
piler instantiations. With this ability, multiple programs could be compiled in
parallel—perhaps to effectively support multiple function trees, or perhaps to
ensure that the cost of compiling a single tree can be completely amortized. For
the experiments in this paper, we support the compilation of one program at a
time, and we incorporate a multiple-buffering approach, following the above.
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3.3 Program Evaluator

The program evaluator (Fig. 2¢) is a reconfigurable function tree that serves two
purposes: 1) provide configurable resources that enable the program compiler to
implement arbitrary expressions specified by program memory; and 2) provide
a pipeline that enables streaming of fitness case data such that program outputs
can be computed every clock cycle.

The motivation behind the function tree is that, with tree-based GP, every
program expression is represented as a tree. Therefore, if the accelerator provides
a function tree containing pipelined generic resources capable of computing the
functions of the relevant primitive set (i.e., a function unit), then the function
tree can produce outputs for entire program expressions every clock cycle after
some initial latency. In this paper, we consider a single tree structure, but we
plan to support multiple tree structures in future work.

For the program evaluator, the user must specify the relevant primitive set
and the depth of the underlying function tree, which define 1) the maximum
function arity, 2) the operations supported by each function unit, and 3) the
possible program shapes/sizes. A function tree with depth d can compute ar-
bitrary programs that adhere to both 1) a maximum depth of d + 1—where
the extra level accounts for terminal nodes—and 2) the syntax of the relevant
primitive set. To be able to implement any program not represented by a full
tree, a special bypass function is used to feed the leftmost input of a function
unit directly to its output whenever that node within the tree is not to be used
by a program. In regard to function primitives, we currently support any form
of computation that can be unrolled and pipelined.

In addition to a function tree, the program evaluator also contains variable
memories, which support variable terminals. The variable memories store fitness
cases for every feature of the relevant training data. The particular data for each
variable can be set at runtime, using memory-mapped I1/0.

4 Design of Experiments

In this section, we detail our design of experiments, where the overall goal of these
experiments was to compare our architecture (Section 3) with the core evaluation
engines given by three tree-based GP software tools: DEAP [6], TensorGP [1],
and Operon [3]. The computing technologies we used are listed in Section 1.

4.1 Comparison Metrics

We estimate and compare median node evaluations per second (NEPS)? values
for each evaluation engine in the context of different combinations of program
sizes, numbers of fitness cases, and primitive sets. For each software tool and for

2 Frequently, the statistic of GP operations per second (GPops) is used when compar-
ing the runtime performance of GP tools, but we use NEPS to emphasize that our
runtimes do not include time taken for evolution.
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each combination of parameters (detailed below), we conducted an experiment in
which we evaluated 32 program bins, each consisting of 512 distinct random pro-
grams, and we estimated a median runtime for each program bin by measuring a
certain number of evaluation runtimes and then taking the sample median. With
a sample median runtime, we calculated an estimate for the true median NEPS
value by dividing the total number of node evaluations for an experiment by the
sample median runtime. Due to time constraints and significant performance
differences between each of the GP tools, we used a different total number of
executions for some tools when calculating sample median runtime. For Operon
and TensorGP, the two fastest software tools, we ran the set of experiments 11
times. However, for DEAP, in which the set of experiments executed in about
44 hours (due to poor scaling at larger numbers of fitness cases), we ran each
experiment just once. Running each DEAP experiment once seemed justified by
the fact that any fluctuations in runtime due to other system processes were
likely insignificant when compared to the processes used by the experiments, as
indicated by the narrow 751 /25t percentile regions for the runtimes of Ten-
sorGP, given below. Lastly, we note that it was unnecessary for the accelerator
experiments to be run more than once, since the circuitry created for the system
had deterministic behavior.

4.2 Primitive Sets

Three distinct primitive sets were chosen. These primitive sets were inspired
by recent work from Nicolau et al. [17], and, as such, were respectively named
nicolau_a, nicolau_b, and nicolau_c. The first primitive set contained functions
with the self-explanatory names add, sub, and mul, as well as a function by
the name of aq, for “analytical quotient,” defined by aq(z1,xs) = z1/4/1 + 23,
which is meant to behave similarly to divide, but without the asymptotic condi-
tions at zero [17]. The second primitive set contained the same functions as the
first, but also included sin and tanh. Lastly, the third primitive set contained
the same functions as the second, but also included exp, log, and sqrt, where
log and sqrt were “protected” in the typical GP sense [12,19]. We chose these
specific primitive sets since they are relevant to symbolic regression [12, 13, 19],
our primary target domain.

For a primitive set containing function set F', |F'| — 1 terminal variables and
one ephemeral random constant were employed so that the program generator
(Section 4.3) would consistently construct programs in which the proportion of
functions/terminals was approximately 0.5, so that the average runtime of a
particular primitive set was not dictated by having more of one primitive type.

4.3 Program Generation

For each primitive set, a set of 32 program bins was constructed, each containing
512 random programs with sizes in some fixed range, where the particular range
was dependent on the bin and primitive set, as described further below. The
maximum possible program depth/size was chosen to be the largest that the
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target FPGA could support while also supporting up to 100,000 fitness cases
for each of the relevant variable terminal memories (Section 3.3). To determine
these values, the maximum possible function tree depth for each primitive set
was manually determined through multiple hardware compilations—ultimately,
depth values 8, 6, and 6 were respectively chosen for nicolau_a, nicolau_b, and
nicolau_c. For a maximum possible function tree depth d, it was possible to
support a program depth of up to d + 1 (Section 3.3), which corresponded to a
maximum possible program size of 2412 — 1, since every primitive set contained
functions with arity of at most two. For a maximum size s, the range of program
sizes [1, s] was subdivided into 32 bins.

To randomly generate program expressions for each set of bins—which were
kept the same for each GP tool—we utilized DEAP [6]. We chose DEAP for this
task because it was simple to extend. DEAP offered, by default, several classic
GP program initialization algorithms: full, grow, and ramped half-and-half [12,
19]. Unfortunately, via the original version of these algorithms, the size of a
generated program was completely random beyond a specified depth constraint,
which made it too cumbersome to generate 512 distinct random programs for
the bin structures established above. To circumvent this issue, we created a
modified version of the grow method that allowed for the specification of a
minimum /maximum program size, from which a random value was chosen in a
uniform manner. Overall, choosing 512 distinct random programs for each bin
structure meant that 16,384 programs were used to evaluate each of the three
primitive sets, which corresponded to a total of 49,152 random programs.

4.4 Fitness Cases

For each primitive set, we used five amounts of fitness cases: 10, 100, 1,000,
10,000, and 100,000. For each number of fitness cases, we randomly generated
input/target data in the range [0, 1), and we used the same data for each of the
evaluation engines. We note that using random data should elucidate the fact
that our performance results are relevant to any GP application that can utilize
the 1) chosen primitive sets, 2) maximum number of variables, and 3) maximum
number of fitness cases, which, as shown in [13], allows for many.

5 Results

Figure 3 compares the performance of each evaluation engine in terms of sample
median NEPS values, for six of the fifteen combinations of primitive set and
number of fitness cases. For each combination, we plot results for five GP tool
setups: 1) DEAP, 2) TensorGP with CPU, 3) TensorGP with GPU, 4) Operon,
and 5) our FPGA-based hardware accelerator. More specifically, for each plot
representing a GP tool, a sample median NEPS value is marked for each program
bin containing 512 programs, with the particular number of fitness cases used for
each program changing between sub-figures. In addition, for the tools in which
experiments were run more than once (i.e., TensorGP and Operon), the 75" and
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250 percentiles for runtime are plotted above/below each sample point; only a
few of such percentile regions are noticeable, meaning that most runtimes vary
little between multiple runs. Overall, due to space constraints, we include plots
for just six experiments, but we chose these six in particular since they best
conveyed the most important general trends for our accelerator, detailed below.
Overall, our accelerator mostly performed second-best behind Operon, but in
several instances our accelerator obtained the highest performance, e.g., for the
larger programs and larger number of fitness cases with the nicolau_a primitive
set (Fig. 3a,b), and for the smaller programs and smaller numbers of fitness cases
across all primitive sets (e.g., Fig. 3c,e). In some other instances, our accelerator
performed very similarly to Operon, e.g., for the medium-sized programs and
medium-sized numbers of fitness cases with nicolau_b (Fig. 3d). In general, the
speedups we achieved stemmed from the fact that our accelerator had constant
throughput once programs were compiled for the program tree. For larger num-
bers of fitness cases (e.g., 10K and 100K), compilation was completely amortized
after the first program (Section 3.2), which allowed for maximal throughput. In-
terestingly, although the program tree structures for primitive sets nicolau_b
and nicolau_c utilized the same depths/sizes—which should potentially allow
for identical runtime—the hardware synthesis tool had to utilize a lower clock
frequency for nicolau_c in order to support more complex primitives, which al-
lowed for nicolau_b to have better performance. A similar discrepancy in clock
frequency also explains why Fig. 3a lists better performance than Fig. 3b.

Average FPGA Speedup
Tool
Fitness Case TensorGP = TensorGP
Threshold (<

reshold (<) DEAP (CPU) (GPU) Operon
10 569x 1210x% 1408x 0.375x%
100 741x 1197x% 1384x 0.357x%
1,000 2372x% 1039x 1123x 0.290x
10,000 4611x 312.0x 318.5% 0.432x
100,000 4902 x 61.5% 43.0% 0.423x%

Table 1: Average NEPS speedups for various fitness case thresholds. For a given
threshold value, the average is calculated from all results regarding thresholds
less than or equal to this value. The last row represents an overall average.

Beyond Operon, our accelerator was able to consistently outperform a mod-
ern GPU system running TensorGP, where our results for TensorGP align with
results previously listed [1]. Interestingly, DEAP sometimes performed better
than TensorGP for the smallest number of fitness cases (e.g., Fig. 3e), although
TensorGP scaled much better with larger numbers of fitness cases. All in all, we
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Fig.3: Sample median node evaluations per second (NEPS) vs. program bin
number and maximum program size, for six different combinations of primitive
set and number of fitness cases. For Operon and TensorGP plots, the 75 /25"
percentiles for runtime are plotted above/below each sample point, which are
noticeable in only a few instances; for example, see the first bin of (a). Note that
the legend from (a) applies to all sub-figures. Also, note the use of a log scale.
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note from the given plots that a single, pipelined program tree by way of our
accelerator could keep up with and sometimes outpace a two-socket, 28-core, 56-
thread CPU system running the state-of-the-art Operon tool, and we consistently
outperformed a modern GPU system running the recent, high-performance Ten-
sorGP tool. On average, across all fifteen experiments and all random programs,
the FPGA was 4,902 x faster than DEAP, 61.5x faster than TensorGP executing
with the CPU, 43x faster than TensorGP executing with the GPU, and 2.4x
slower than Operon. For some more specific trends in regard to number of fitness
cases, Table 1 presents an average NEPS speedup for the FPGA in the context
of all experiments with 1) 10 fitness cases, 2) 100 fitness cases or less, 3) 1,000
fitness cases or less, 4) 10,000 fitness cases or less, and 5) 100,000 fitness cases
or less, where the values provided by 5) are used to represent an overall average
for the conducted experiments, already listed above. To calculate one of these
averages for a particular tool and fitness case threshold, we first divided a sum
of node evaluations by a sum of median runtimes, with the values in each sum
stemming from all experiments regarding the particular tool and fitness case
threshold. Then, to compute the relevant speedup, we divided a corresponding
average for the FPGA by the average computed for the relevant tool. Note that
using the median runtime from each bin in these calculations was appropriate,
given that we wanted to establish a typical runtime value for each bin of each
experiment. For more details, please refer to our code.

6 Current Limitations and Potential Optimizations

Below, we list three limitations of our initial accelerator architecture, and then
we present five potential optimization strategies that could alleviate the three
limitations and allow for an updated accelerator to achieve a speedup over our
current design by 32-144x as well as support for larger program depths/sizes.

6.1 Current Limitations

Comprehensive Support For a function tree (Section 3.3) to be able to sup-
port arbitrary programs, every function unit must support all function primitives
defined by the primitive set. Therefore, depending on the number of function
primitives and the types of low-level device resources utilized for these primi-
tives, the maximum depth/size of function trees—and, thus, programs—can be
restricted. For our experiments that utilized primitives relying on floating-point
operations, we were ultimately constrained by the number of floating-point DSP
and embedded memory resources available within the target FPGA device.

Exponential Growth For an m-ary function tree (where m is the maximum
function arity of the primitive set) with m > 1, the amount of area needed to

implement the tree grows exponentially with increasing tree depth. Namely, for
l_md+1
1-m

m > 1 and a function tree depth of d, generic function units are needed

for the tree, which can prevent up to %% of some device resource(s) from being

used when maximizing d. (For m = 1, only d + 1 function units are needed.)
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Low Resource Utilization If each function unit in the tree is capable of com-
puting every function primitive, then for |F| function primitives, the utilization
of each function unit in terms of these high-level primitives is ﬁ The utiliza-

tion of low-level device primitives (e.g., floating-point DSPs) can be significantly
lower, depending on the function primitive implementations.

6.2 Potential Optimizations

We note that the following five optimizations are independent from one another?,
and, thus, if all could be achieved simultaneously, a speedup between 2-2-2-2-2 =
32x and 2-6-3-2-2 = 144x could be achieved over our current accelerator.

Use Compacted Trees To be able to more effectively leverage device resources
as well as support larger program depths/sizes, we plan to explore various “com-
pacted tree” architectures. Ideally, such an architecture would allow for the use of
all resources that are currently unused due to exponential growth in area—either
through the use of a single, more efficient compute engine or through multiple
compute engines—and such an architecture would also offer native support for
larger depths/sizes. One option may be to construct a unified parallel/sequential
tree structure, similar to what has been developed for tree-based accumulators
[26]. Another possibility may be to design a linear architecture that natively
handles flattened tree (e.g., prefix/postfix) representations. If either option could
result in a fully-pipelined architecture, the latter may be able to more effectively
map flattened programs onto function unit resources, but such an architecture
would seemingly require state memory (e.g., a temporary stack) to be included
in the pipeline in order to maximize throughput, which would likely infer signif-
icantly more memory resources than a spatially parallel tree representation.
For the current study, if we could leverage all resources not currently used,
we could improve upon our performance results by upwards of 2x (Section 6.1).

Multiplex Function Unit Resources Function unit primitives experience
poor utilization due to the fact that they are implemented with independent IP
blocks. This issue could be improved upon by implementing a function unit via a
single IP block that multiplexes a minimal amount of some devices resource(s),
e.g., floating-point DSPs. Such an “overlay” could free up a significant amount
of resources, allowing for further parallelization of program evaluation. For ex-
ample, in the context of the most complex primitive set used for this paper,
nicolau_c, the most expensive primitive was tanh, which utilized g ~ 31% of
all DSPs allocated for each function unit. Thus, with an appropriate overlay,
29

75 ~ 69% of all DSPs for function units could be recovered. Carrying out a

similar process for all primitive sets used in this paper, about 50% of all DSPs

3 A possible exception could occur when dealing with timing optimization, since the
resulting clock frequency may unexpectedly get better or worse with design changes.
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utilized for function units could be recovered on average, which could trans-
late into an average speedup by up to 2x. However, in general, for a primitive
set containing |F| functions, an optimal overlay could allow for up to an |F|x
speedup if all functions were to utilize the same amount of low-level resources.
Therefore, in our case, where we currently utilize an average of approximately
six functions, we estimate that we could achieve a speedup of 2-6x by using
optimized (or alternate) functions.

Design for Higher Clock Frequencies For our accelerator, throughput (i.e.,
performance) is directly proportional to clock frequency. With modern FPGAs,
it is not uncommon for designs to achieve clock frequencies in the range 400-
850 MHz after optimizing for timing [18, 23, 24]. Our current accelerator has not
been fully optimized, and, as such, we achieved an average clock frequency of
178 MHz across the fifteen hardware compilations performed for this paper. We
estimate that we can achieve up to a 2-3x higher average clock frequency once
we further optimize for timing (and potentially move to a newer device), which
would allow for an average speedup over our current design by up to 2-3x.

Use a Higher-End FPGA Device With a more modern, higher-end FPGA
implemented on newer process-node technology (e.g., [11]), we should be able to
support at least 2x more floating-point DSP resources and 1.5x more embedded
memory resources, in addition to higher clock frequencies. With 2x more DSP
resources, we expect that we can further parallelize our current floating-point
computations by up to 2x, which should allow for up to a 2x speedup.

Double-buffer GP Runs When our accelerator enters the context of a full
GP system, including evolution, we expect that we can execute two GP runs
simultaneously, by evolving one population whilst evaluating another. Such an
optimization would generally not make sense for a typical GP system (with
exception to possibly a combined CPU/GPU system), since any additional com-
pute cores would likely be used to further parallelize program evaluation. If the
total time taken for evolution and device communication can be less than the to-
tal time taken for evaluation, then this optimization should allow our accelerator
to achieve an additional speedup by up to 2x.

7 Conclusion

In this paper, we leveraged a modern FPGA device to implement a hardware
accelerator that more closely aligns with the computing model of tree-based GP
when compared to CPU/GPU solutions. Specifically, the presented architecture
dynamically compiles program trees onto a reconfigurable function tree pipeline
that can generate outputs for entire program expressions every clock cycle and
transition between separate programs within a single cycle.
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We showed that our accelerator on a 14nm FPGA achieves an average speedup

of 43x when compared to a recent open-source GPU solution implemented on
8nm process-node technology, and an average speedup of 4,902 x when compared
to a popular baseline GP software tool running parallelized across all cores of a
2-socket, 28-core (56-thread), 14nm CPU server. Despite our single-FPGA accel-
erator being 2.4x slower on average when compared to a recent state-of-the-art
GP software tool executing on the same 2-processor CPU system, we described
future extensions that could provide a 32-144x speedup over our current design.
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