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A B S T R A C T

Metabolic limitations within the brain frequently arise in the context of aging and disease. As the largest
consumers of energy within the brain, ion pumps that maintain the neuronal membrane potential are the
most affected when energy supply becomes limited. To characterize the effects of such limitations, we analyze
the ion gradients present in a conductance-based (Morris–Lecar) neural mass model. We show the existence
and locations of Neimark–Sacker and period-doubling bifurcations in the sodium, calcium, and potassium
reversal potentials and demonstrate that these bifurcations form physiologically relevant bounds of ion gradient
variability. Within these bounds, we show how depolarization of the gradients causes decreased neural activity.
We also show that the depolarization of ion gradients decreases inter-regional coherence, causing a shift in
the critical point at which the coupling occurs and thereby inducing loss of synchrony between regions. In
this way, we show that the Larter-Breakspear model captures ion gradient variability present at the microscale
level and propagates these changes to the macroscale effects such as those observed in human neuroimaging
studies.

1. Introduction

Although by mass the brain is relatively small, it consumes roughly
20% of the body’s energy [1]. The majority of this energy is expended
by neuronal ion pumps maintaining the ion gradients necessary for
action potentials [1,2]. Thus, the brain is particularly affected by
metabolic energy deficits [3–5]. Recent work has pointed to metabolic
energy deficits as causing brain network instability [5] and steepening
cognitive decline in the context of aging [4]. Conversely, providing ac-
cess to energy acutely (e.g., via ketone delivery) can have a stabilizing
effect, underlining the crucial role of energy regulation in preserving
homeostasis of neuronal computation [5,6].

As the largest consumers of energy in the brain, ion pumps are
one of the cellular functions most susceptible to metabolic deficits [1–
3,7,8]. Ion pumps, and the ion gradients they generate across the cell
membrane, are subject to tight regulation [9] and provide signal feed-
back to metabolic centers within the cell to ensure energy production
meets demand [1]. Incorporation of ion gradients in computational
neuron models is essential, as they drive the ability to fire action
potentials [10,11]; however, the perturbation of ion gradients caused
by metabolic constraints has only been a feature of more recent single
neuron models [2,11].
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Single neuron models have proven invaluable in understanding the
effects of ion gradient depletion, but they remain challenging to scale
to whole-brain dynamical systems. The Larter-Breakspear neural mass
model [12,13], a multi-network extension of the Morris–Lecar equa-
tions [10], provides a computational unit that estimates the mean firing
rates and membrane voltages of many neurons simultaneously. This
makes it computationally feasible to produce a whole-brain simulation
comprising many of these regions [14]. Crucially, the Larter-Breakspear
model also retains explicit ion gradient dynamics, allowing manip-
ulation of the gradients to simulate metabolic constraints without
requiring single neuron scale computation.

In this work, we present a bifurcation analysis of the ion gradients
for sodium, calcium, and potassium in the Larter-Breakspear model.
Bifurcation analyses have been used to analyze the oscillations of many
chaotic systems [15,16], encompassing both neural models [17–21]
and other biological systems [22,23]. As the Larter-Breakspear model
is a chaotic system [12,13], bifurcation analysis allows us to rigorously
analyze the ion gradients for critical points and thereby establish limits
of physiologically relevant variability for future simulations. Having
derived these boundaries, we then demonstrate how the mean mem-
brane voltage of the neural mass is sensitive to each gradient. We
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Fig. 1. Microscale neurobiological components are used to construct the Larter-Breakspear model. A. Illustration of the ion transporters and channels used in the Larter-
Breakspear model. Each of the relevant reversal potentials (𝑉Na, 𝑉K, 𝑉Ca and 𝑉L) are used to build two types of neuron populations: excitatory (pink) and inhibitory (purple). B.
Each neural mass in the model is comprised of an excitatory subnetwork and an inhibitory subnetwork, coupled together by various weights as shown (𝑎𝑒𝑒, 𝑎𝑒𝑖, and 𝑎𝑖𝑒). Subcortical
input 𝐼0 is received by both populations, while coupling between neural masses is done via the excitatory pathway only. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

show lengthened refractory periods (in the case of sodium/calcium
hyperpolarization or potassium depolarization), increased degenerate
oscillations (in the case of sodium/calcium depolarization), and in-
creased oscillation frequency (in the case of potassium hyperpolariza-
tion). Finally, we show how the variability in the ion gradients alters
the coupling between two different regions, altering the critical point
where regions transition from chaotic to coupled oscillations, with
depolarization of ion gradients causing reduced synchrony.

2. Model motivation and design

2.1. Neurobiology of the Larter-Breakspear model

The Larter-Breakspear model is constructed to extend ion dynamics
from single neuron modeling to a neural network, allowing for greater
scalability [13,24]. There are several kinds of ion pumps and channels
within a neuron (Fig. 1a). In this model, we are most concerned with
those that require energy to function, such as the Na+/K+ ATP-ase [8],
which generates a net positive sodium potential 𝑉Na and a net negative
potassium potential 𝑉K, and the plasma membrane Ca

2+ ATP-ase [25],
which generates a net positive calcium potential 𝑉Ca. There are also
non-energetically active ion leak channels that allow several ion species
to travel down their electrochemical gradients; these are considered in
bulk as the potential 𝑉L.

Utilizing these ion transporters as building blocks, the Larter-
Breakspear model connects two subnetworks of neurons together to
form a single mass: a population of excitatory neurons with mean
membrane potential 𝑉 and a population of inhibitory neurons with
mean membrane potential 𝑍. The excitatory subnetwork feeds back
on itself (𝑎𝑒𝑒) and projects to the inhibitory subnetwork (𝑎𝑒𝑖), while
also receiving feedback from the inhibitory neurons (𝑎𝑖𝑒). Subcortical
input 𝐼0 is received by both the excitatory (𝑎𝑛𝑒) and inhibitory (𝑎𝑛𝑖)
subnetworks. Finally, two regions (each comprised of their own excita-
tory and inhibitory subnetworks) can be coupled together (𝑐) through
interactions between their excitatory subnetworks.

2.2. Larter–Breakspear model — single neural mass

Using the previous neurobiology to inform the model, the Larter-
Breakspear equations are constructed as a system of three variables:
mean excitatory membrane voltage 𝑉 (𝑡), mean inhibitory membrane
voltage 𝑍(𝑡), and the proportion of potassium channels open at a given
time 𝑊 (𝑡). Note that while 𝑉 (𝑡), 𝑍(𝑡), and 𝑊 (𝑡) are all time-dependent,
we omit this dependence in the following equations for ease of reading.
Given this understanding, the Larter-Breakspear model is defined as:

𝑑𝑉

𝑑𝑡
= −{𝑔Ca + 𝑟NMDA𝑎𝑒𝑒𝑄𝑉 }𝑚Ca(𝑉 − 𝑉Ca)

− {𝑔Na𝑚Na + 𝑎𝑒𝑒𝑄𝑉 }(𝑉 − 𝑉Na)

− 𝑔K𝑊 (𝑉 − 𝑉K) − 𝑔L(𝑉 − 𝑉L)

− 𝑎𝑖𝑒𝑍𝑄𝑍 + 𝑎𝑛𝑒𝐼0

(1)

𝑑𝑍

𝑑𝑡
= 𝑏(𝑎𝑛𝑖𝐼0 + 𝑎𝑒𝑖𝑉 𝑄𝑉 ) (2)

𝑑𝑊

𝑑𝑡
= 𝜙

𝑚K −𝑊

𝜏K
(3)

In these equations, 𝑄𝑉 and 𝑄𝑍 are the mean firing rates for excita-
tory and inhibitory cell populations, respectively. These are computed
as

𝑄𝑉 = 0.5𝑄𝑉max

(

1 + tanh
𝑉 − 𝑉𝑇

𝛿𝑉

)

(4)

𝑄𝑍 = 0.5𝑄𝑍max

(

1 + tanh
𝑉 − 𝑉𝑍

𝛿𝑍

)

(5)

The individual ion channel gating functions (𝑚Na, 𝑚K and 𝑚Ca) take
the form

𝑚ion = 0.5

(

1 + tanh
𝑉 − 𝑇ion

𝛿ion

)

(6)

where 𝑚ion is the fraction of voltage-dependent channels open at any
given time. Default values and descriptions for all constants in these
equations are given in Table 1. Note that parameter values are unit-
less to scale to a reasonable modeling range (i.e., 𝑉 ,𝑄 ∈ (−1, 1) and
𝑊 ∈ (0, 1)), and the integration time step 𝑑𝑡 is in milliseconds.

We note that the three ions of interest are modeled in three dif-
ferent manners. Sodium serves as the dominant shape determinant
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of the neural mass spiking activity as it has the highest net positive
conductance coupled to its ion channel gating function. Calcium serves
as a secondary support of the spiking activity, providing some of the
amplitude to the spiking activity. However, because the calcium gating
function is also coupled to the excitatory population firing rate and the
ratio of NMDA/AMPA receptors, calcium more importantly provides
feedback to the neural mass firing rate. Finally, due to its unique
modeling as a separate differential equation, potassium plays a unique
role in determining the frequency of spiking activity (at larger reversal
potentials) and the duration of the refractory period (at smaller reversal
potentials). As a consequence of this extra modeling step, potassium
also has a different ion gradient landscape than sodium and calcium
(discussed below).

While the excitatory (pyramidal) cell population 𝑉 (𝑡) is modeled
using the ion dynamics described above, the inhibitory population 𝑍(𝑡)

is a purely phenomenological model, receiving only the excitatory input
via 𝑎𝑒𝑖 and a background current via 𝑎𝑛𝑖. Although this serves to model
the relationship between inhibitory interneurons and the excitatory
pyramidal cells (as Larter et al. [12] discussed originally), it does imply
a caveat when interpreting the effects of altered ion gradients.

Since the model is a hybrid of a biophysically detailed excita-
tory neuron population and a phenomenological inhibitory population,
claims regarding how closely this model resembles true biological
neurons are necessarily constrained. However, the advantage of the
Larter-Breakspear model is that it produces physiologically interesting
dynamics (e.g., burst-spiking) that are more common in next gener-
ation neural mass models [26] than traditional (e.g., Wilson–Cowan)
oscillatory models.

2.3. Larter–Breakspear model — coupled neural masses

Eqs. (1)–(3) describe a single neural mass comprised of two subnet-
works. Coupling between pairs of neural masses (𝑖 and 𝑗) can also be
achieved through connection terms:

𝑐𝑄network
𝑖

= 𝑐

∑

𝑗 𝑢𝑖,𝑗𝑄𝑉𝑗
∑

𝑢𝑖,𝑗
(7)

Here, 𝑐 is the coupling constant, 𝑄𝑉𝑗
is the mean excitatory firing

rate of region 𝑗, and 𝑢𝑖,𝑗 is the strength of connection between regions
𝑖 and 𝑗. To ensure that the overall input current is approximately
constant, the balancing between interregional and self coupling takes
the form of competitive agonism, where 𝑐 is the weight of interregional
coupling and (1 − 𝑐) is self-coupling. The associated multi-regional
Larter–Breakspear equations are then given by:

𝑑𝑉𝑖

𝑑𝑡
= −{𝑔Ca + 𝑟NMDA𝑎𝑒𝑒[(1 − 𝑐)𝑄𝑉

+ 𝑐𝑄network
𝑖

]}𝑚Ca(𝑉𝑖 − 𝑉Ca)

− {𝑔Na𝑚Na + 𝑎𝑒𝑒[(1 − 𝑐)𝑄𝑉 + 𝑐𝑄network
𝑖

]}(𝑉𝑖 − 𝑉Na)

− 𝑔K𝑊𝑖(𝑉𝑖 − 𝑉K) − 𝑔L(𝑉𝑖 − 𝑉L)

− 𝑎𝑖𝑒𝑍𝑖𝑄𝑍 + 𝑎𝑛𝑒𝐼0

(8)

𝑑𝑍𝑖

𝑑𝑡
= 𝑏(𝑎𝑛𝑖𝐼0 + 𝑎𝑒𝑖𝑉𝑖𝑄𝑉 ) (9)

𝑑𝑊𝑖

𝑑𝑡
= 𝜙

𝑚K −𝑊𝑖

𝜏K
(10)

In this work, we use Eqs. (1)–(3) to probe the activity of individual
neural masses (Section 3) and Eqs. (7)–(10) to explore the dynamics of
two coupled regions (Section 4).

3. Codimension 1 bifurcations in the Larter–Breakspear model

3.1. Neimark-Sacker and period-doubling bifurcations

In this analysis, we show the existence and the significance of
codimension 1 bifurcations (bifurcations that occur as a single pa-
rameter is varied) that exist in the sodium, calcium and potassium
ion gradients in the Larter–Breakspear model. We specifically consider

Table 1
Default constant values in the Larter-Breakspear model. In Sections 3 and 4, we
explore changes in the first three ion gradients, altering the reversal potentials 𝑉Na, 𝑉K,
and 𝑉Ca.

Parameter Description Default value

Nernst potentials

𝑉Na Na+ reversal potential 0.53
𝑉K K+ reversal potential −0.7
𝑉Ca Ca2+ reversal potential 1.0
𝑉L Leak channels reversal potential −0.5

Channel conductances

𝑔Na Na+ conductance 6.70
𝑔K K+ conductance 2.00
𝑔Ca Ca2+ conductance 1.00
𝑔L Leak channels conductance −0.50

Channel voltage thresholds

𝑇Na Na+ channel threshold 0.30
𝑇K K+ channel threshold 0.00
𝑇Ca Ca2+ channel threshold −0.01

Channel voltage threshold variances

𝛿Na Na+ channel threshold variance 0.15
𝛿K K+ channel threshold variance 0.30
𝛿Ca Ca2+ channel threshold variance 0.15

Excitatory & inhibitory population parameters

𝑉𝑇 Excitatory neuron threshold voltage 0.00
𝑍𝑇 Inhibitory neuron threshold voltage 0.00
𝛿𝑉 ,𝑍 Variance of excitatory/inhibitory thresholds 0.66a

𝑄𝑉max
Excitatory population maximum firing rate 1.00

𝑄𝑍max
Inhibitory population maximum firing rate 1.00

𝑎𝑒𝑒 Excitatory → excitatory synaptic strength 0.36
𝑎𝑒𝑖 Excitatory → inhibitory synaptic strength 2.00
𝑎𝑖𝑒 Inhibitory → excitatory synaptic strength 2.00
𝑎𝑛𝑒 Non-specific → excitatory synaptic strength 1.00
𝑎𝑛𝑖 Non-specific → inhibitory synaptic strength 0.40

Other parameters

𝐼0 Subcortical excitatory input 0.30
𝑏 Time scaling factor 0.10
𝜙 Temperature scaling factor 0.70
𝜏K K+ relaxation time 1.00
𝑟NMDA NMDA/AMPA receptor ratio 0.25
𝑐 ROI-to-ROI coupling constant 0.1b

aThe selection of 𝛿𝑉 ,𝑍 has been the subject of much prior work; see Appendix A for a
more detailed consideration.
bThis is the coupling constant needed to achieve marginal stability in a 2-ROI system.
See Section 4 for a more complete consideration of coupling constant range.

the Neimark–Sacker (or torus) bifurcation and the period-doubling
(or flip) bifurcation. Torus bifurcations arise when a fixed point of
the system (here the ion reversal potential) changes stability, and are
characteristic of quasi-periodic oscillations of chaotic systems [21]. Flip
bifurcations give rise to a dramatic shift in the period of the system as
they are crossed (hence the term period-doubling) and form a plausible
boundary of the ion gradients considered here. Proceeding beyond the
flip bifurcation in an ion gradient typically causes a dramatic loss of
frequency, with corresponding lengthening of refractory period that is
no longer physiological. In spiking neuron models, the space between a
torus and a flip bifurcation has been shown to exhibit rapidly changing
frequency and quasi-periodicity, both features retained in the spaces
we demonstrate below [21,27].

Although the detection of codimension 1 bifurcations is possible
analytically, in complex systems such as the Larter–Breakspear model
it is often more feasible to establish their locations through numerical
analysis [16]. To find the torus and flip bifurcations present in the
Larter–Breakspear model, we employed the MatCont software package
available for MATLAB [28]. This software allows for numerical detec-
tion of critical points, as well as the detection of limit cycle families
and bifurcations. MatCont employs an implementation of the Moore–
Penrose continuation near critical points; for further details on the
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Fig. 2. Torus and flip bifurcations in the sodium gradient alter refractory period and neuronal population spiking. A. Family of local limit cycle continuations originating
at the sodium gradient Hopf point (𝑉Na ≈ 0.24). The local limit cycle continuations corresponding to the torus (Neimark–Sacker, labeled NS) bifurcation at 𝑉Na ≈ 0.40 and the flip
(period-doubling, labeled PD) bifurcation at 𝑉Na ≈ 0.60 are highlighted in red. B. Mean excitatory voltage 𝑉 waveforms under three conditions: hyperpolarized just above the flip
bifurcation (𝑉Na = 0.68), baseline physiological reversal potential (𝑉Na = 0.53), and depolarized just below the torus bifurcation (𝑉Na = 0.38). C. Attractors plotted in 𝑊 −𝑍 phase
space at each of the three 𝑉Na values listed in B (see legend in B for colors). Crossing the flip bifurcation into the physiologically relevant space between the two bifurcations
(yellow to blue) shrinks the refractory period and induces more chaotic activity (i.e., the outer cycle fills more of phase-space). Crossing the torus bifurcation from this space (blue
to orange) reduces all activity to chaotically orbiting the basin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

computation of limits and detection of bifurcation points see Dhooge
et al. [28] and Kuznetsov [29]. In Fig. 2a, 3a, and 4a, we plot the
local limit cycle continuations originating at the Hopf point in each
gradient (discussed below) to demonstrate the local equilibria as the
gradients are varied. These closed curves are local representations of
the nonlinear limit cycles, and the fact that they remain closed as the
gradient varies demonstrates that the bifurcations we show preserve
the oscillatory nature of the dynamics.

3.2. Bifurcations in the sodium ion gradient

We first consider the bifurcations arising as the sodium reversal
potential 𝑉Na is varied. As previously mentioned, this reversal potential
is determined by the ion gradient maintained by the energy-dependent
Na+∕K+ ATP-ase in the neuron cell membrane, with a net positive
charge induced by a surplus of sodium ions outside the cell. Physio-
logically, this reversal potential is 68 mV [2], which corresponds to a
resting reversal potential of 0.53 (hereafter referred to as baseline) in
the Larter–Breakspear re-scaled parameters.

Initiating a search for critical points near the equilibrium point of
the system, we find that there is a Hopf point in the sodium gradient at
𝑉Na ≈ 0.2432, significantly depolarized relative to the baseline reversal
potential. (For consideration of the other points discovered using this
method, see Appendix B). Using Moore–Penrose continuation to detect
the family of periodic orbits originating at the Hopf point, we gradually
increase the value of 𝑉Na, producing the family of orbits shown in
Fig. 2a. Highlighted in red are the two local limit cycle continuations
corresponding to the torus and flip bifurcations (labeled NS and PD,
respectively). The torus bifurcation occurs at 𝑉Na ≈ 0.401, while the
flip bifurcation occurs at 𝑉Na ≈ 0.603.

Hypothesizing that the space between these bifurcations is the
physiologically relevant range of the sodium ion gradient, we probe
the dynamic response of the neural mass to variations just beyond each
bifurcation and analyze the change in dynamics of the mean excitatory
membrane potential 𝑉 (Fig. 2b). Hyperpolarization of 𝑉Na just beyond
the flip bifurcation leads to peaks in 𝑉 of greater amplitude, a sig-
nificantly prolonged recovery time, and decreased oscillatory activity
immediately prior to the peaks. In stark contrast, depolarization of 𝑉Na
just below the torus bifurcation leads to a complete loss of sharp peaks,
with only small, noisy oscillations occurring sporadically.

To clearly demonstrate the changes in dynamics induced by crossing
these bifurcations, we show the attractor shapes in 𝑊 −𝑍 phase-space
in Fig. 2c. Crossing the flip bifurcation into physiologically realistic
sodium reversal potentials causes a shift from well-defined limit cycles
to more chaotic activity. This shift is noticeably smaller than the one
observed in sodium, which corresponds to the much more modest
effect calcium has on the refractory period. As seen in the sodium
plots, both above and below the flip bifurcation (but above the torus

bifurcation), we observe the existence of two time scales of limit cycles:
a small, high-frequency basin and a large, lower frequency outward
perturbation. Crossing the torus bifurcation again destroys the large
outward cycles, leaving only the smaller, chaotic basin as the remaining
possible activity.

3.3. Bifurcations in the calcium ion gradient

Next, we consider the bifurcations in the calcium reversal potential
𝑉Ca. The resting reversal potential of calcium is roughly 140 mV [11],
giving a 𝑉Ca = 1.0 at rest in the Larter–Breakspear model. Similar
to the sodium results, when initiating a critical point scan near the
equilibrium point we find a Hopf point at 𝑉Ca ≈ 0.9098 (see Appendix
B for other critical points). Detecting the family of periodic orbits
originating from this point (Fig. 3a), we observe a torus bifurcation at
𝑉Ca ≈ 0.959 and a flip bifurcation at 𝑉Ca ≈ 1.024 (labeled NS and PD,
respectively). Notably, this dynamic range is significantly smaller than
that of 𝑉Na.

Again taking the space between these two bifurcations as the range
of physiological interest, we probed the dynamic response of 𝑉 in
response to crossing these bifurcations (Fig. 3b). We observe that
hyperpolarization by crossing the flip bifurcation in the 𝑉Ca gradi-
ent produces a markedly milder effect on the peak activity, with
only a slight increase in the refractory period compared to a similar
perturbation in 𝑉Na. However, we still observe a marked change in
𝑉 dynamics crossing the torus bifurcation (depolarization 𝑉Ca), with
the spikes subsiding into constant, high frequency, low amplitude
oscillatory activity.

The changes in attractor shape induced by crossing these bifur-
cations are plotted in 𝑊 − 𝑍 phase-space in Fig. 3c. Crossing the
flip bifurcation into physiologically realistic calcium reversal potentials
causes a shift from well-defined limit cycles to more chaotic activity
(i.e., orbits will occupy more of the phase space as trajectories become
more chaotic). Both above and below the flip bifurcation (but above
the torus bifurcation), we see the existence of two time scales of
limit cycles: a small, high-frequency basin and a large, low-frequency
outward perturbation. Crossing the torus bifurcation destroys the large
outward cycles (corresponding to large population activity spikes),
leaving only the small, chaotic basin with fast, low-amplitude orbits.

3.4. Bifurcation in the potassium ion gradient

Since potassium dynamics are computed with a separate differential
equation in the Larter–Breakspear model, the same numerical analy-
ses performed in the cases of sodium and potassium fails to find a
Hopf point in the gradient, discovering only the other critical points
(discussed further in Appendix B). However, we know from analytical
observations that the change in dynamics is too steep to be continuous.
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Fig. 3. Torus and flip bifurcations in the calcium gradient alter neuronal activity spiking with minimal effect on refractory period. A. Family of local limit cycle
continuations originating at the calcium gradient Hopf point (𝑉Ca ≈ 0.91). The local limit cycle continuations corresponding to the torus (Neimark–Sacker, labeled NS) bifurcation
at 𝑉Ca ≈ 0.96 and the flip (period-doubling, labeled PD) bifurcation at 𝑉Ca ≈ 1.02 are highlighted in red. B. Mean excitatory voltage 𝑉 waveforms under three conditions: baseline
reversal potential (𝑉Ca = 1.0), depolarized just over the torus bifurcation (𝑉Ca = 0.949), and hyperpolarized just over the flip bifurcation (𝑉Ca = 1.084). C. Attractors plotted in 𝑊 −𝑍

phase space at each of the three 𝑉Ca values listed in B (see legend in B for colors). Crossing the flip bifurcation into the physiologically relevant space between the two bifurcations
(yellow to blue) only modestly shrinks the refractory period, but importantly induces more chaotic activity (increased filling of phase space by the trajectories). Crossing the torus
bifurcation from this space (blue to orange) reduces all activity to chaotically orbiting the basin. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Flip bifurcation in the potassium ion gradient lengthens refractory period. A. Family of local limit cycle continuations originating at the potassium gradient Hopf point
(𝑉K ≈ −1.102). Unlike the sodium and calcium gradients, there is no torus (Neimark–Sacker) bifurcation between the Hopf point and the flip (period-doubling) bifurcation, which
here occurs at 𝑉K ≈ −0.61 (shown in red and labeled PD). B. Mean excitatory voltage 𝑉 waveforms under three conditions: baseline reversal potential (𝑉K = −0.7), depolarized just
over the torus bifurcation (𝑉K = −0.59), and significantly hyperpolarized (𝑉K = −1.0). C. Attractors plotted in 𝑊 − 𝑍 phase space at each of the three 𝑉K values listed in B (see
legend in B for colors). Crossing the flip bifurcation into the physiologically relevant space below (yellow to blue) only shrinks the refractory period and induces more chaotic
activity (increased filling of phase space by the trajectories). Moving further from the flip bifurcation (i.e., the gradient is more hyperpolarized, shown as blue to orange) increases
the chaotic activity, but because there is no torus bifurcation the orbits do not collapse to a basin as seen in sodium and calcium. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The issue in discovering the critical point arises from the fact that
the landscape of 𝑊 is too smooth for the numerical computation to
successfully identify a Hopf point. To make the landscape slightly more
rough to assist the computation, we reduced the K+ relaxation time to
𝜏K = 0.9, which allowed us to proceed with the numerical discovery.
The resting reversal potential of potassium is roughly −80 mV [2],
which corresponds to 𝑉K = −0.7 in the Larter–Breakspear system. In
our slightly modified regime, a Hopf point is present at 𝑉K ≈ −1.102.
Detecting the family of periodic orbits originating from this point
(Fig. 4a), we observe only a single flip bifurcation at 𝑉k ≈ −0.610

(labeled PD) - and notably an absence of any torus bifurcation in the
hyperpolarizing gradient direction.

Since there is no direct range of physiological values lying between
two bifurcations to choose, we probed the dynamics of 𝑉 at the rest-
ing reversal potential level, depolarized just over the flip bifurcation,
and hyperpolarized by an arbitrary amount (but still below the limit
point). We observe (Fig. 4b) that crossing the flip bifurcation induces
a significantly delayed refractory period, similar to what is observed in
hyperpolarization of sodium. Hyperpolarizing 𝑉K leads to a shortened
refractory period, accompanied by significantly increased oscillation
frequency without a distortion of spike shape.

Fig. 4c shows the altered attractor shapes (plotted in 𝑊 −𝑍 phase-
space) as the potassium gradient is varied. As seen in both the sodium
and calcium gradients, crossing the flip bifurcation into physiologically
realistic potassium reversal potentials causes a shift from well-defined
limit cycles to more chaotic activity. Unlike sodium and calcium,
however, there exist two time scales of limit cycles throughout the
phase-space. The lack of a torus bifurcation in the potassium gradient
prevents the collapse of trajectories into a single basin; instead, as the
potassium gradient is further hyperpolarized, the oscillations simply

shrink in size and increase in frequency, continuing to become more
chaotic (i.e., fill more of phase-space).

4. Synchronization in varying ion regimes

To explore the relevance of these ion gradient bifurcation points
in networks of coupled neural masses, we set up a system of two
connected ROIs using Eqs. (7)–(10) above. Given prior work on the
effects of metabolic constraints on brain network stability [4,5], we
hypothesized that depolarization of the membrane potentials – towards
the torus bifurcation in the sodium and calcium gradients, and towards
the flip bifurcation in the potassium gradient – would lead to an
observable decrease in coupling between regions. To test this, we chose
a coupling constant 𝑐 near the zone of marginal stability (i.e., where
the coupled system will alternate between chaotic and synchronized
activity; see Breakspear et al. [13]) and varied the ion gradients across
the physiologically relevant ranges identified in Section 3. We chose the
covariance between the excitatory membrane voltages 𝑉1(𝑡) and 𝑉2(𝑡)

as our measure of coherence; similar effects were observed using the
Pearson correlation.

As shown in Fig. 5, the coherence between two regions increased as
sodium (Fig. 5a) and calcium (Fig. 5b) were hyperpolarized, providing
greater synchronization between regions without varying the coupling
constant 𝑐. Similarly, as sodium and calcium potentials were depo-
larized, inter-regional coherence decreased, leading to less synchrony
between regions. We observed a similar pattern in potassium (Fig. 5c),
where the depolarization of the potassium ion gradient leads to greater
synchronization (due to significantly slower oscillations as the refrac-
tory period lengthens). The effects of potassium are noticeably smaller
than those of sodium and calcium, likely due to a smoother gradient
with the lack of the torus bifurcation.
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Fig. 5. Coherence is poised at a critical point of both ion reversal potentials and inter-region coupling. Coherence (measured as covariance) between coupled neural masses
as a function of coupling constant 𝑐 and ion gradients. The color bars show the covariance of the neural time series. All center points have a 𝑐 = 0.1. A. Coherence between two
neural masses as a function of 𝑉Na, where baseline sodium potential is shown at the cross (𝑉Na = 0.53). B. Coherence between two neural masses as a function of 𝑉Ca, where
baseline calcium potential is shown at the cross (𝑉Ca = 1.0). C. Coherence between two neural masses as a function of 𝑉K, where baseline potassium potential is shown at the cross
(𝑉K = −0.7).

The crosses in Fig. 5 show the location of the baseline coupling
between neuronal masses. These are located at the intersection of the
physiological ion reversal potentials and the marginally stable coupling
coefficient. We observe that these are poised at critical points, where
a change in either ion gradient or coupling coefficient induces a sharp
change in coherence between regions. As sodium and calcium reversal
potentials are depolarized, the coupling coefficient must increase to
compensate (i.e., less synchrony is observed for a given coupling
constant value 𝑐 when the ion gradient is depleted). Conversely, the
hyperpolarization of sodium and calcium allowed for a smaller coupling
constant to achieve the same synchrony, indicating greater synchrony
between regions induced by the neuronal dynamics stabilized by in-
creased ion gradients. Changes in potassium exhibited similar, though
smaller, deviations from the critical point as well. Hyperpolarization of
potassium required an increase in the coupling constant, while depo-
larization of potassium allowed a lower coupling constant to achieve
the same synchronization.

5. Discussion

5.1. Physiological relevance of bifurcations in ion gradients

In this work, we have demonstrated the existence and location of
torus and flip bifurcations in the sodium ion gradient of the Larter–
Breakspear model. While the model is well established [12,13,24], the
manipulation of ion gradients has not been examined in prior literature.
Physiologically, sodium serves to depolarize the neuron membrane
when an action potential is fired [1,2]. In this way, sodium governs
the amplitude of the action potential (reflected in the neural mass
model as the amplitude of population spikes), which in turn determines
the length of the refractory period (i.e., higher amplitude requires
a longer refractory period to recover). The torus bifurcation in the
sodium gradient occurs depolarized relative to the baseline reversal
potential. As the torus is crossed, we observe a loss of peaks in the
membrane potential 𝑉 , meaning depolarization has become so severe
that the neural mass is incapable of firing normal population spikes.
Instead, they settle on small amplitude noisy oscillations that no longer
resemble functional neuronal activity. In this model, this is captured
by the collapse of larger, slower orbits into a small, chaotic basin.
This is consistent with single neuron studies that show under severe
metabolic constraints, the loss of sodium reversal potential leads to a
lack of neuronal activity [2,11]. Conversely, the flip bifurcation in the
sodium gradient occurs hyperpolarized relative to the baseline reversal
potential. Crossing the flip bifurcation causes a significant increase
in the amplitude of peaks in 𝑉 , which in turn leads to a prolonged
refractory period. Crossing the flip bifurcation also induces a shift away
from chaos, where the orbits no longer occupy as much of phase-space
and instead follow a more uniform trajectory.

We have also shown the existence and location of torus and flip
bifurcations in the calcium ion gradient. Under homeostatic conditions,

calcium serves to aid sodium in the depolarization needed to fire
an action potential, while also serving as an intracellular signaling
molecule [11,25]. Crossing the torus bifurcation leads to a significant
depolarization in the calcium gradient, causing a loss of population
spikes and a collapse into a single chaotic basin similar to that observed
in sodium depolarization. Crossing the flip bifurcation, however, causes
only a very modest increase refractory time, while still importantly
reducing the chaotic nature of the orbits and condensing them into a
more uniform trajectory. While calcium is required to fire an action
potential (and population spikes in the neural mass model), it does not
contribute to the amplitude in the same way as sodium [8], and so
hyperpolarization with calcium does not exhibit as marked an effect
on the refractory period after spiking.

In the case of potassium, we have shown the existence and location
of only a flip bifurcation in the ion gradient. Mathematically, this is due
to the unique modeling of potassium as a third differential equation in
the Larter–Breakspear system. Physiologically, this is done to capture
the importance of potassium as the main ion responsible for repolariza-
tion after an action potential is fired [9,12]. When the flip bifurcation is
crossed and the potassium reversal potential is depolarized, there is a
significant increase in the refractory period, reflecting the additional
work that must be done to restore the membrane potential without
a robust potassium gradient. As seen in the sodium and potassium
gradients, this flip bifurcation also determines the level of chaos present
in the oscillations, where further hyperpolarization (i.e., movement
away from the bifurcation) causes the orbits to increasingly fill phase-
space. There is no torus bifurcation in the potassium ion gradient as
it is hyperpolarized. Physiologically, this is manifested as an increase
in oscillatory frequency with no significant change in the shape of the
peaks. In this model, this corresponds to an increased frequency of
chaotic orbits without a collapse into a basin. This increased frequency
is due to the presence of additional potassium, allowing for more rapid
repolarization after population spiking.

The existence of codimension 1 (and occasionally codimension 2)
bifurcations has been previously reported in both neural mass models
and networks of spiking neurons [18,19,21,26,30]. Significantly, in net-
works of coupled neurons (rather than neural masses), quasi-periodic
behavior such as that observed in actual neurons was observed to exist
in a space lying between torus and flip bifurcations [21,27]. This is sim-
ilar to the torus and flip bifurcations we propose as the physiologically
relevant boundaries in the Larter–Breakspear model, giving us greater
confidence that these are, indeed, reflecting underlying neurobiological
constraints.

5.2. Effects of ion gradient variability on inter-region coupling

Having derived these bifurcations, we then show that they are
useful in examining the dynamics of coupled neural masses. Syn-
chrony between brain regions is required for neurological function
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and deteriorates when metabolic constraints become too severe [4,5].
At the neuronal level, these metabolic constraints cause the deteri-
oration of the ion gradients needed for neural activity [2,11]. We
show that the depolarization of sodium and calcium ion potentials
causes decreased coherence between coupled regions, effectively re-
ducing their synchrony as though they were more loosely coupled.
Similarly, hyperpolarization of sodium and calcium gradients produced
greater inter-regional coherence, thereby promoting synchrony. We
also demonstrate that depolarizing the potassium reversal potential
increases inter-region coherence, while the hyperpolarization of potas-
sium decreases coherence (due to increased oscillation frequency).
Taken together, these results highlight the importance of stabilizing
ion gradients to promote network synchrony, which has been shown
in recent metabolic studies as well [5,6].

We demonstrate that the coupled regions exist at a critical point
between the ion gradients and coupling constant, with a small varia-
tion in either causing a large shift in the synchrony between regions.
Operation at a critical point has been demonstrated to be a key feature
of neuronal dynamics [31]. Brain regions exist in marginally stable
coupling, allowing for individual oscillations within regions while re-
taining periodic synchronization across regions [13,24]. Operating at
a critical point may allow neuronal systems greater flexibility to re-
spond most effectively to physiological perturbations [13,31]. When
depolarizing the sodium and calcium ion gradients (or hyperpolarizing
the potassium ion gradient), we showed a perturbation from the critical
point, requiring a greater coupling constant to achieve a similar level of
synchrony. Physiologically, the new coupling constant will be difficult
to achieve, and so the loss of an ion gradient will correspond to
a decrease in synchrony between regions, as has been observed in
metabolically constrained networks [4,5].

5.3. Limitations and future directions

The primary limitation of this work is the lack of purely analyt-
ical derivation of the bifurcation points. While analytical discovery
of bifurcations is preferable, the complexity of the Larter–Breakspear
model is such that the derivation of exact solutions would be extremely
difficult. The numerical analysis of bifurcations is also well-established
characterizing chaotic dynamics [16,20,28], and has become a standard
means of analyzing complex systems.

Perhaps the most useful extension of this work would be the analysis
of bifurcations when there is time-delayed coupling between regions.
There has already been work [24,32] demonstrating that time-delays
and the refractory period in neural mass models can model the propaga-
tion of electrical waves throughout the brain. There has also been prior
work on how the introduction of time delays in chaotic systems [18],
including neural mass models [33], can introduce novel bifurcation
points.

6. Conclusion

We present here a detailed characterization of the ion gradients in
the Larter–Breakspear model, an aspect of the model that has not been
explored in prior works. We show the existence and location of torus
and flip bifurcations in the sodium and calcium ion gradients, and a
single flip bifurcation in the potassium ion gradient. These bifurcations
correspond to physiologically relevant limits, with depolarization or hy-
perpolarization beyond these bifurcations causing significant alteration
in the shape and frequency of neural mass spiking patterns. We also
demonstrate that in a system of coupled neural masses, depolarization
of the sodium and calcium ion gradients leads to decreased inter-region
coherence, while hyperpolarization increases inter-region coherence.
These results further emphasize the role of metabolism in maintaining
network stability within the brain, and the model parameters explored
here can be used in future modeling to build multi-scale simulations
that probe the functional correlates of metabolic constraints.
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Appendix A. Notes on selection of 𝜹𝑽 ,𝒁

The range of the excitatory and inhibitory membrane threshold

(𝛿𝑉 ,𝑍 ) has been the subject of much prior work in the Larter–Breakspear

model [12–14]. The range of the parameter is fairly narrow; 𝛿𝑉 ,𝑍 <

0.59 fails to produce oscillations and instead results in a model that

immediately converges to an equilibrium point, while 𝛿𝑉 ,𝑍 > 0.7

produces non-physiological dynamics [14]. We set 𝛿𝑉 ,𝑍 = 0.66 in this

work as it achieves consistently useful results. Selecting a different

value may shift the exact thresholds we discuss here, but remaining

within its operational range does not change quality of the ion gradient

landscapes we discuss.

https://github.com/agchesebro/larter-breakspear-bifurcation
https://github.com/agchesebro/larter-breakspear-bifurcation
https://github.com/agchesebro/larter-breakspear-bifurcation
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https://sourceforge.net/projects/matcont/
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Table B.2
Critical points in the ion gradients.

Parameter Limit point Neutral saddle
equilibrium

𝑉Na −1.312 2.432
𝑉Ca −1.196 1.552
𝑉K −1.242 0.321

Appendix B. Other critical points in the ion gradients

For all three ions, we found that in additional to the Hopf points
considered above, there also exist a neutral saddle equilibrium point
above and a limit point below the Hopf points. These are presented
in Table B.2 for completeness; however, we note that they are so far
beyond the physiologically relevant limits discussed in this text that
they are more of theoretical interest than practical value. We also noted
that in most cases they produce degenerate orbits (i.e., the values are
too far removed from equilibrium to even induce cycling and tend to
converge on a nonsense value). The one exception to this is the limit
point of potassium which, although physiologically improbable, still
produces discernible periodic orbits. This is most likely due to the lack
of a torus bifurcation in the potassium gradient.
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