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A B S T R AC T

We present a simple method for rotationally broadening broad wavelength ranges of high-dispersion spectra.
The broadening is rapid and scales linearly with the length of the spectrum array. For large wavelength ranges, the
method is much faster than the popular convolution-based broadening. We provide the code implementation of
this method in a publicly accessible repository.
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1. INTRODUCTION

As faster and more intricate techniques for fitting and mod-
eling high-dispersion spectra develop, one step in the calcu-
lation that is often overlooked is the rotational broadening of
templates or models. A  popular technique to rapidly broaden a
small region of a spectrum is to convolve the spectrum by the
kernel prescribed in Gray (2005).

Unfortunately this method typically relies on a wavelength
grid that is sampled at constant d and computes the Doppler
shifts in wavelength space. This is only valid for a small re-
gion of the spectrum, v  3000 km s 1, where the wave-length
dependence of the Doppler shift is small and can be ignored.

In order to apply the method to larger wavelength ranges
accurately, the spectrum must be separated into many smaller
v  3000 km s 1 arrays which are each broadened then
reassembled into a single broadened spectrum. Even a sin-
gle echelle order on Keck/HIRES or other similar high-
dispersion spectrographs must be separated into at least two
segments for accurate convolutional broadening.

In this note we present a simple code which directly in-
tegrates the stellar (or planetary) disk, allowing for accurate
rotational broadening across a broad wavelength range.

2. BROADENING B Y  DIRECT INTEGRATION

Rotational broadening by direct integration is relatively
simple and the time taken for the broadening depends mainly
linearly on the length of the vector being broadened.

We compute the broadening by projecting the spherical
stellar surface onto the two-dimensional sky. We first seg-
ment the disk into polar coordinates, r  and , with r  2  [0; 1].
The radial grid size is given by Nr ,  with the corresponding
spacing dr =  1=Nr , and the maximum number of  steps in the
outermost ring is given by N. At each radial point, the
number of  steps n(r) =  r N, rounded to the nearest inte-

ger, and d =  (2)=n. At each r;  point, we then define the
projected area by

dA(r; ) =  
(r  +  dr=2)2      (r       dr=2)2 

: (1)

We also incorporate the a linear limb-darkening law, defined
by the parameter , which ranges from 0 to 1, by rescaling the
areas such that

dA =  dA(r; )  (1       +  cos(arcsin(r))): (2)

We then compute the projected velocity by v(r; )     =  v r
sin(). To incorporate differential rotation, we adopt a solar-
like differential rotation law by scaling the projected velocity
according to:

v̂ =  v(r; )  1   
2 

  
2 

cos(2 arccos(r cos())) (3)

We can then integrate the disk by:
Z 1 Z 2

ŝ() = s((v̂ (r; )))dA(r; ); (4)
0        0

where s((v̂ (r; ))) is the spectrum interpolated onto the
wavelength scale that has been Doppler shifted to the new
velocity v̂. We then normalize by

Z 1 Z 2

A  = dA(r; ); (5)
0        0

to account for any under or over estimation of the disk area.
We provide the code implementation of this method in 1.

The accuracy of the method is a function of the resolution
used in the disk integration (Nr  and N) and the length of

1 https://github.com/Adolfo1519/RotBroadInt
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the spectrum being broadened. We provide in the code the
default Nr ,  N  values for which the broadening is computed
accurately but still rapidly in most cases.

We show the result of broadening a Te      =  5500 K
PHOENIX (Husser et al. 2013) atmosphere model spec-
trum using direct integration versus convolution in Figure 1.
We use the convolutional broadening code in the pack-age
PyAstronomy (Czesla et al. 2019) for this example. For the
sake of comparing the accuracy of the methods across broad
wavelength ranges, we use the ”fast” version of convo-lution,
wherein the spectrum is not subdivided. We do this to
demonstrate the inaccurate results it produces for regions of
the spectrum far from the central wavelength adopted in the
convolution.

For the smaller  shown in Figure 1, the convolutional
broadening produces an identical result to direct integration.
In this case, the  is small enough to be valid for the ker-nel
approximation and the ”fast” convolution is essentially the
same as the ”slow” convolution. For the larger , the ”fast”
convolution is insufficient to accurately reproduce the
rotational broadening.

We also compare the computation times for direct integra-
tion compared with the more properly done ”slow” convolu-
tion (subdividing the spectrum into smaller wavelength bins).
For a fixed resolution, the computation time of integration

scales approximately linearly with the length of the spectrum.
This compares quite favorably with the exponential increase
in computation time for convolution.

For a high-dispersion spectrum sampled at d <  0:1, a
wavelength range of   2000 A  has  20000 points. The
computation time of the convolutional broadening for an input
this long is several minutes. While this may be accept-able for
a single demonstration, it makes broadband fitting
impossible.

An additional benefit of our implementation of the direct
integration is that it does not reply on having an evenly sam-
pled wavelength grid. The convolution method requires that
the spectrum being convolved has a constant  throughout.
However, this is not possible if the spectra are sampled at
constant v. If representing the data at a consistent resolu-tion
(R  =  =) across a broadband spectrum is important, the
convolution method should not be used.

3. CONCLUSION

We encourage the use of our public, open-source rota-
tional broadening code for anyone doing broadband high-
dispersion spectroscopy. The method is simple but powerful
and effective.
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Figure 1. Results from rotationally broadening spectra using the two methods, direct integration and convolution. Left: A  5500 K  PHOENIX
(Husser et al. 2013) atmosphere model, broadened to 30 km s     1  using the two methods and assuming a limb darkening coefficient of 0.6. We
show a small piece of spectrum to better distinguish the individual line profiles. The wavelength ranges () and mean wavelengths () of each
spectrum are given in the legend. Notice the ”fast” convolution matches the direct integration almost perfectly when the wavelength range is small
and the region of interest is near the center of that range. In that case, the result is the same as using the ”slow” method. However, for the larger
wavelength range, where we are now far from the mean central wavelength, the broadening accuracy is much worse. The direct integration case
is computed on the  =  2800 A  case. Right: The times for the two broadening method as a function of the length of the array being broadened.
Notice the rapid increase in time for the convolution method compared to integration. The spectra shown are sampled at d  0:01, so  =  1000 is a
105 element array. The grid used for the integration has N r  =  10 and N  =  100, the default values for our function.


