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Abstract

This paper studies the fundamental problem of learn-
ing multi-layer generator models. The multi-layer gener-
ator model builds multiple layers of latent variables as a
prior model on top of the generator, which benefits learn-
ing complex data distribution and hierarchical represen-
tations. However, such a prior model usually focuses on
modeling inter-layer relations between latent variables by
assuming non-informative (conditional) Gaussian distribu-
tions, which can be limited in model expressivity. To tackle
this issue and learn more expressive prior models, we pro-
pose an energy-based model (EBM) on the joint latent space
over all layers of latent variables with the multi-layer gen-
erator as its backbone. Such joint latent space EBM prior
model captures the intra-layer contextual relations at each
layer through layer-wise energy terms, and latent variables
across different layers are jointly corrected. We develop
a joint training scheme via maximum likelihood estima-
tion (MLE), which involves Markov Chain Monte Carlo
(MCMC) sampling for both prior and posterior distribu-
tions of the latent variables from different layers. To ensure
efficient inference and learning, we further propose a varia-
tional training scheme where an inference model is used to
amortize the costly posterior MCMC sampling. Our experi-
ments demonstrate that the learned model can be expressive
in generating high-quality images and capturing hierarchi-
cal features for better outlier detection.

1. Introduction

Deep generative models (a.k.a, generator models) have
made promising progress in learning complex data distri-
butions and achieved great successes in image and video
synthesis [22, 35, 38, 40] as well as representation learn-
ing [5,49]. Such models usually consist of low-dimensional
latent variables together with a top-down generation model
that maps such latent factors to the observed data. The
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latent factors can serve as an abstract data representation,
but it is often modelled via a single latent vector with non-
informative prior distribution which leads to limited model
expressivity and fails to capture different levels of abstrac-
tions. Learning an informative prior model for hierarchical
representations is needed, yet research in this direction is
still under-developed.

A principled way to learn such a prior model is by learn-
ing the generator models with multiple layers of latent vari-
ables. However, the learning of multi-layer generator model
can be challenging as the inter-layer structural relation (i.e.,
latent variables across different layers) and the intra-layer
contextual relation (i.e., latent units within the same layer)
have to be effectively modelled and efficiently learned. Var-
ious methods have been proposed [5,29,33,36,41], but they
only focused on inter-layer modeling by assuming the con-
ditional Gaussian distribution across different layers while
ignoring the intra-layer contextual modeling as the latent
units are conditional independent within each layer.

The energy-based models (EBMs), on the other hand, are
shown to be expressive and proved to be powerful in cap-
turing contextual and non-structural data regularities. No-
tably, [34] considers the EBM in the latent space for the
non-hierarchical generator model, where the energy func-
tion is considered as a correction of the non-informative
Gaussian prior. The low dimensionality of the latent space
makes EBM effective in capturing regularities in the data.
However, a single latent vector in [34] is infeasible for cap-
turing the patterns at multiple layers of abstractions, which
limits its model capacity.

In this paper, we propose to combine the strengths of
the latent space EBM and the generator with multiple lay-
ers of latent variables for better hierarchical representations
and a more expressive prior model. Specifically, we in-
troduce layer-wise energy terms to exponentially tilt the
non-informative Gaussian conditional at each layer, and la-
tent variables across different layers are modelled jointly
through EBM with the multi-layer generator model as its
backbone. Such a joint EBM prior model seamlessly in-
tegrates the intra-layer contextual modeling via layer-wise
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energy terms and inter-layer structural modeling with multi-
layer latent variables.

The joint EBM prior model can be learned by maxi-
mum likelihood estimation (MLE). Each learning iteration
involves Markov chain Monte Carlo (MCMC) sampling of
latent variables in each layer from both the prior and pos-
terior distributions. The prior sampling can be efficiently
done due to the low dimensionality of the latent variables
and, more importantly, the lightweight networks for energy
functions, while the posterior sampling can be less effi-
cient. Therefore, we further develop the variational train-
ing scheme where an additional inference model is used for
posterior approximation and is jointly trained with the joint
EBM prior model.
Contributions: 1) We propose a joint latent space EBM
prior model for the generator model with multiple layers
of latent variables; 2) We develop the maximum likelihood
learning algorithm that learns the joint EBM prior model
based on MCMC prior and posterior sampling across differ-
ent layers. We further propose the variational joint training
scheme for efficient learning and inference; 3) We provide
strong empirical results through extensive experiments.

2. Background
In this section, we present the background of multi-layer

latent variable model and latent space EBM prior model,
which shall serve as the foundation of the proposed model.

2.1. Multi-layer latent variable model

Let x be the high-dimensional observed example, and z
be the low-dimensional latent variables. The latent variable
generative model, or generator model, factorizes a joint dis-
tribution of (x, z) as

pβ(x, z) = pβ0
(x|z)pβ>0

(z) (1)

where pβ0
(x|z) is the generation model with parameter β0

that maps from latent space to data space, and pβ>0(z) is the
prior distribution over latent variables with parameter β>0.
β = {β0, β>0}.
Gaussian prior model: For non-hierarchical models [13,
24], pβ>0(z) is defined on single layer of latent variables
and is typically assumed to be uniform or unit Gaussian.
For hierarchical models with multiple layers of latent vari-
ables [33,36], pβ>0

(z) can be further decomposed into con-
ditional distributions between consecutive layers of latent
variables as

pβ>0(z) =
L−1∏
i=1

pβi
(zi|zi+1)p(zL) (2)

where pβi
(zi|zi+1) ∼ N (µβi

(zi+1), σ
2
βi
(zi+1)) and is pa-

rameterized by a network with parameter βi, and p(zL) is

chosen to be a simple distribution, such as uniform or unit
Gaussian.
Maximum likelihood learning: Learning such latent vari-
able generative models can be done using maximum like-
lihood estimation (MLE). The marginal distribution is
pβ(x) =

∫
pβ(x, z)dz with the gradient:

∇β log pβ(x) = Epβ(z|x)[∇β log pβ(x, z)] (3)

where the expectation can be approximated via Monte Carlo
sampling from the posterior distribution pβ(z|x). The MLE
can then be accomplished through gradient ascent using
such gradients. The posterior sampling usually requires the
Markov Chain Monte Carlo (MCMC) such as Langevin dy-
namics [14, 33]
Variational learning: To alleviate the computational bur-
den of MCMC, variational approach [4] introduces an ad-
ditional inference model qω(z|x) with a separate set of pa-
rameters ω = (ω1, . . . , ωL) for posterior approximation,

qω(z|x) = qω1(z1|x)
L−1∏
i=1

qωi+1(zi+1|zi) (4)

where qω1(z1|x) and qωi+1(zi+1|zi) are usually assumed
as conditional Gaussian distributions, forming a “bottom-
up” inference structure. The generator and inference model
can be jointly learned via maximizing the evidence lower
bound (ELBO), i.e., maxβ,ω ELBO(β, ω), where ELBO
is defined as ELBO(β, ω) = Eqω(z|x)[log pβ0

(x|z)] −
DKL(qω(z|x)||pβ>0(z)).

2.2. Latent space energy-based model

The energy-based model (EBM) offers a flexible ap-
proach for learning the data distribution and is shown to be
expressive in capturing data regularities [8,9,11,32,44,46].
Most existing works focus on learning the EBM on data
space, which is high-dimensional and can be challenging.
To tackle this challenge, [2, 6, 34] propose to learn latent
space EBM as an informative prior model. With low-
dimensional latent space, learning the EBM can be more ef-
ficient and effective, which in turn benefits the expressivity
of the whole model. Specifically, [34] considers the latent
space energy-based prior model on a single layer of latent
variables,

pα(z) =
1

Z(α)
exp [fα(z)]p0(z) (5)

where −fα(z) is the energy function, Z(α) is the normaliz-
ing constant, i.e., Z(α) =

∫
exp [fα(z)]p0(z)dz, and p0(z)

is the reference distribution assumed to be unit Gaussian.
Compared to data space EBMs in which the energy function
needs to support the entire high-dimensional space, such ex-
ponential tilting latent space EBMs can be more efficient in
capturing data regularities.
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3. Model and Learning
3.1. Joint latent space EBM prior model

For generator models with multi-layer latent variables
(or multi-layer generator model), consecutive layers are
modelled by conditional Gaussian distributions (see Eqn.2),
which essentially assumes the conditional independence for
latent units within the i-th layer given the (i + 1)-th layer
of latent variables. Such a conditional independence as-
sumption limits the model capacity as the contextual rela-
tion between latent units within each layer is largely ignored
(see Fig.1), and needs to be improved for informative condi-
tional modeling and better model expressivity. In this paper,
we propose the joint EBM prior for multi-layer generator
models,

pα,β>0
(z) =

1

Zα,β>0

exp [fα(z)]pβ>0
(z) (6)

=
1

Zα,β>0

exp

[
L∑

i=1

fαi
(zi)

]
L−1∏
i=1

pβi
(zi|zi+1)p(zL)

where we denote α = (α1, ..., αL) for EBM parame-
ters and z = (z1, ..., zL) for latent variables in differ-
ent layers with layer L being the top layer. Zα,β>0

=∫
exp [fα(z)]pβ>0(z)dz is the normalizing constant regard-

ing latent variables for all layers. Thus, the latent variables
across different layers are jointly corrected via EBM prior
as in Eqn.6, where fα(z) is the energy function for latent
variables from all layers.

In this paper, we consider a simple factorized layer-wise
parameterization, i.e., fα(z) =

∑L
i=1 fαi(zi), but other pa-

rameterizations are also feasible, which we will explore in
future work. With such energy parameterization, it’s worth
noting that the un-normalized prior model can be viewed as
layer-wise exponential tilting,

exp

[
L∑

i=1

fαi
(zi)

]
︸ ︷︷ ︸

Energy correction

L−1∏
i=1

pβi
(zi|zi+1)p(zL)︸ ︷︷ ︸

Gaussian prior

=exp [fαL
(zL)] p(zL)︸ ︷︷ ︸

Correction on top layer

L−1∏
i=1

exp [fαi
(zi)]pβi

(zi|zi+1)︸ ︷︷ ︸
Correction on intermediate layer

(7)

See Fig.1 for an illustration and comparison with multi-
layer generator model with Gaussian prior.
Joint vs. conditional EBM prior: Besides the proposed
joint modeling, it is also tempting to consider EBM prior
for layer-wise Gaussian conditional, i.e., p̃αi,βi

(zi|zi+1) =
1

Z(zi+1)
exp [fαi(zi)]pβi(zi|zi+1), and form the overall

prior pα,β>0
(z) =

∏L
i=1 p̃αi,βi

(zi|zi+1)p(zL). Such a
scheme is closely related to autoregressive energy machine
[10] and is adopted in NCP-VAE [2]. However, the nor-
malizing constant Z(zi+1) in p̃αi,βi

(zi|zi+1) involves the

Figure 1. Left panel: Gaussian prior model. Right panel: Joint
EBM prior model. Black solid lines with arrow: inter-layer rela-
tions modelling. Red solid lines: intra-layer contextual relations
modelling. Blue dashed lines: joint modelling upon all layers.

latent variable zi+1 from the upper layer which can be in-
tractable and needs an additional inner-loop for sampling
or optimization. The proposed joint EBM prior couples the
latent variables across different layers via energy function
and can be learned effectively and efficiently.

3.2. Maximum Likelihood Estimation

Our joint EBM prior model can be trained using MLE.
Let θ = (α, β) denotes the model parameters and θ can
be learned by maximizing the log-likelihood on n training
observations

L(θ) =

n∑
i=1

log pθ(xi) =

n∑
i=1

log

∫
pβ0(x|z)pα,β>0(z)dz

When n becomes sufficiently large, maximizing
the above log-likelihood is equivalent to minimiz-
ing the Kullback-Leibler (KL) divergence between
model distribution and empirical data distribution, i.e.,
minθ DKL(pdata(x)||pθ(x)).

To update the parameter θ, we can compute the the gra-
dient of log-likelihood ∇θ log pθ(x) as

∇θ log pθ(x) = Epθ(z|x)[∇θ log pθ(x, z)]

= Epθ(z|x)[∇θ log pβ0
(x|z)]

+ Epθ(z|x)[∇θ log pα,β>0
(z)]

(8)

With such a gradient, we can learn θ using gradient ascent.
Learning generation model β0: pβ0

(x|z) is assumed to
be Gaussian distribution, i.e., pβ0

(x|z) ∼ N (gβ0
(z), σ2I),

with generation network gβ0
with parameter β0 and

pre-specified σ2 for simplicity. The learning gradient
∇β0 log pθ(x) can then be expressed as

∇β0
log pθ(x) = Epθ(z|x)[∇β0

log pβ0
(x|z)] (9)

= Epθ(z|x)

[
−∇β0

||x− gβ0
(z)||2

2σ2

]
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Learning prior model α, β>0: Learning αi can be done by
computing the gradient ∇αi log pθ(x) as

∇αi
log pθ(x) = Epθ(z|x)[∇αi

fαi
(zi)] (10)

− Epα,β>0
(z)[∇αi

fαi
(zi)]

For updating β>0, the gradient ∇βi
log pθ(x) is

∇βi log pθ(x) = Epθ(z|x)[∇βi log pβi(zi|zi+1)] (11)
− Epα,β>0

(z)[∇βi log pβi(zi|zi+1)]

Sampling: Both Eqn.10 and Eqn.11 require sampling from
the posterior and prior distribution, which can be done via
Langevin dynamic (LD) [27]. Given a target distribution
p(z), Langevin dynamic samples z ∼ p(z) by computing
the gradient ∇z log p(z) and iteratively update z as

zt = zt−1 + s∇z log p(zt−1) +
√
2sϵt−1 (12)

where t indexes the time step, s is the step size, and ϵ is the
Gaussian noise for each time step.
Prior sampling: By replacing target p(z) with pα,β>0

(z),
the prior sampling computes ∇z log pα,β>0

(z) as

∇z

[
L∑

i=1

fαi
(zi) +

L−1∑
i=1

log pβi
(zi|zi+1) + log p(zL)

]
(13)

Posterior sampling: By replacing p(z) with pθ(z|x),
where pθ(z|x) ∝ pβ0

(x|z)pα,β>0
(z), the posterior sam-

pling computes ∇z log pθ(z|x) as

∇z log pθ(z|x) = ∇z[log pβ0(x|z) + log pα,β>0(z)] (14)

Notice that posterior sampling can be computationally
inefficient as ∇z[log pβ0

(x|z)] requires back-propagation
through the deep generation model.

3.3. Variational Learning

For efficient posterior sampling, an inference model
qω(z|x) with a separate set of parameters ω can be used
for the posterior approximation. In this paper, we use the
bottom-up inference model as Eqn.4 for amortizing the
costly posterior MCMC sampling. Particularly, instead of
KL minimization between marginal distributions as in MLE
(see Sec.3.2), we consider the KL optimization between
two joint densities, one for generator model density, i.e.,
pθ(x, z) = pβ0

(x|z)pα,β>0
(z), and one for data density,

i.e., qω(x, z) = pdata(x)qω(z|x). We propose joint learn-
ing through KL minimization, denoting the objective to be
L(θ, ω), i.e.,

min
θ

min
ω

L(θ, ω) = min
θ

min
ω

DKL(qω(x, z)||pθ(x, z)) (15)

Learning generation model β0: For learning β0, we can
compute the gradient as

−∇β0
L(θ, ω) = Epdata(x)Eqω(z|x)[∇β0

log pβ0
(x|z)] (16)

Learning prior model α, β>0: For learning αi, the gradi-
ent is computed as

−∇αi
L(θ, ω) = Epdata(x)Eqω(z|x)[∇αi

fαi
(zi)]

− Epα,β>0
(z)[∇αi

fαi
(zi)]

(17)

For learning β>0, we compute the gradient as

−∇βi
L(θ, ω) = Epdata(x)qω(z|x)[∇βi

log pβi
(zi|zi+1)]

− Epα,β>0
(z)[∇βi

log pβi
(zi|zi+1)]

(18)
Learning inference model ω: For learning ωi, the gradient
is

−∇ωi
L(θ, ω) = ∇ωi

Epdata(x)[Eqω(z|x) log pβ0
(x|z)

−DKL(qω(z|x)||pβ>0
(z))

+ Eqω(z|x)[
L∑

i=1

fαi
(zi)]]

(19)

We refer to detailed derivation in Appendix.A.
Divergence Perturbation. The KL joint minimization
(Eqn.15) can be viewed as a surrogate of the MLE objec-
tive with the KL perturbation term,

DKL(qω(x, z)||pθ(x, z))
= DKL(pdata(x)||pθ(x)) +DKL(qω(z|x)||pθ(z|x))

where the perturbation term DKL(qω(z|x)||pθ(z|x)) mea-
sures the KL-divergence between inference distribution and
generator posterior. The inference model is learned to di-
rectly match the posterior distribution of the generator with-
out expensive posterior sampling. In fact, such KL min-
imization in the joint space is closely related to evidence
lower bound (ELBO) with the joint EBM as the prior model.

4. Related Work
Hierarchical VAEs: Variational auto-encoder (VAE) [24]
proposes variational learning by introducing an approxi-
mation of the true intractable posterior, which allows a
tractable bound on log-likelihood to be formed. But the
non-hierarchical structure can be limited in model expres-
sivity and fails to capture different levels of abstraction. Hi-
erarchical VAEs (HVAEs) [5, 29, 36, 41] consist of multiple
layers of latent variables on top of the generator as a prior
model, which can be used for learning complex data dis-
tribution and hierarchical representations. However, such
models still focus on layer-wise relations while ignoring the
intra-layer contextual relations at each layer.
Energy-based models: The energy-based models receive
attention for being expressive and powerful in capturing
contextual data regularities. The majority of existing works
focus on the pixel space [8, 9, 11, 15, 16, 44–46]. Learning
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such EBMs can be done using MLE, where MCMC sam-
pling is typically required in each learning iteration which
can be computationally expensive upon data space. In-
stead, [34] proposes to build EBM on latent space where
the energy function is considered as a correction of the non-
informative Gaussian prior. The low dimensionality of the
latent space makes EBM effective in capturing data regular-
ities and can alleviate the burden of MCMC sampling.
Generator models with informative prior: For genera-
tor models, the assumed Gaussian or uniform prior distri-
bution can be non-informative and less expressive. To ad-
dress this problem, recent works [2, 7, 12, 34, 39, 43] pro-
pose to learn generator models with an informative prior,
where RAE [12] constructs priors using rejection sampling,
and Two-stage VAE [7] propose to train an extra model for
simple prior at the second stage to match the aggregated
posterior distribution, while LEBM [34] and NCP-VAE [2]
instead learn EBMs on latent space to improve the expres-
sivity of generator models.

5. Experiments
To demonstrate the proposed method, we present ex-

tensive experiments, including (i) latent visualization, (ii)
image synthesis, (iii) hierarchical representations, and (iv)
analysis of latent space. To better understand the proposed
model, we conduct various ablation studies based on the
proposed EBM prior in Sec.5.5. The parameter complexity
is discussed in Sec.5.6.

5.1. Latent Visualization

We examine the expressivity of our EBM prior model by
latent visualization. We pick MNIST data with only digit
classes ‘1’ and ‘0’ available, on which we train our 2-layer
model with the latent dimension of each layer set to be 2 for
better visualization. We train with k = 40 steps for prior
sampling and visualize the transition of Langevin dynamics
on each layer for every 10 steps in Fig.2. It can be seen that
the latent variables are first initialized from Gaussian noise
and then can be tilted to match the multi-modal posterior,
for which the standard Gaussian prior can be infeasible.

5.2. Image Synthesis

Generator models with informative prior. We evaluate
the generation performance of the proposed joint model. If
the model is well-trained, the multi-layer EBM prior model
should render an expressive prior distribution leading to re-
alistic synthesis. We benchmark our model against other
generator models that assume standard Gaussian prior, such
as VAE [24], Alternating Back-propagation (ABP) [14],
Ladder VAE (LVAE) [36], and Short-run Inference (SRI)

Our project page is available at https://jcui1224.github.
io/hierarchical-joint-ebm-proj.

Figure 2. Langevin transition on latent codes (bottom: z1, top:
z2). Blue color indicates the transition of Langevin prior sam-
pling. Orange color indicates latent codes inferred from inference
model.

[33], as well as other generator models using informative
prior, such as RAE [12], Two-stages VAE (2s-VAE) [7],
NCP-VAE [2], and LEBM [34], where LEBM builds EBM
for single layer latent variables, while ours contains a multi-
layer structure.

We train our model on SVHN [30], CIFAR-10 [25] and
CelebA-64 [28] and use Fréchet Inception Distance (FID)
[18] to quantitatively evaluate the generation quality. To
make fair comparisons, we follow the standard protocol as
in [34] and use the same generation model with convolu-
tional structures. We use Langevin posterior sampling for
the training, and the generation model is jointly learned (the
result for variational learning is shown in Ablation Studies).
The comparisons are shown in Tab.1, where the superior
generation performance indicates the effectiveness of our
model in learning a more expressive prior.

Model SVHN CelebA-64 CIFAR-10

VAE [24] 46.78 65.75 106.37
LVAE (L=5) [36] 39.26 53.40 -
ABP [14] 49.71 51.50 -
SRI (L=5) [33] 35.32 47.95 -

RAE [12] 42.02 40.95 74.16
2s-VAE [7] 42.81 44.40 72.90
NCP-VAE [2] 33.23 42.07 78.06
LEBM [34] 29.44 37.87 70.15
Ours (L=2) 26.81 33.60 66.32

Table 1. FID(↓) for our model and baselines on SVHN, CelebA
(64 x 64), and CIFAR-10.

Toward deep hierarchical models. We then consider the
modern deep hierarchical structures as our multi-layer gen-
erator and explore the potential of the joint EBM prior for
better generation. We adopt the two-stage training [2, 44]
where the deep multi-layer generator pβ>0

(z) and inference
model qω(z|x) are trained in the first stage by maximizing
the ELBO as in VAEs, with the pre-trained models, our joint
EBM prior model can then be learned in the second stage
where the posterior samples are directly obtained from the

5
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Figure 3. Generated samples on CelebA-HQ-256 . FID = 9.89.

Figure 4. Generated samples on LSUN-Church-64. FID = 8.38.

pre-trained inference model qω(z|x) and prior samples can
be obtained via Langevin sampling with change of variable
on the generator pβ>0(z) (see details in Appendix.A.3).

We consider NVAE [41], a modern hierarchical VAE,
for the first stage training, and we train our joint EBM
prior in the second stage. For prior sampling in the sec-
ond stage training, we employ similar reparametrized sam-
pling scheme as in [44] via provided code1 in order to bet-
ter traverse the deep hierarchical latent space with different
scales. We examine our model on CIFAR-10, CelebA-HQ-
256 [20], and LSUN-Church-64 [47]. The qualitative re-
sults for CelebA-HQ-256 and LSUN-Church-64 are shown
in Fig.3 and Fig.4. For CelebA-HQ-256, we synthesize
with adjusted batch-normalization as used in [2, 44]. We
also visualize the Langevin transition on CIFAR-10 in Fig.5
where the quality of synthesis improves as the Langevin
progresses. We refer to more results in Appendix.D

The quantitative results are shown in Tab.2 and Tab.3.
We consider the baseline models, including NCP-VAE [2]
and VAEBM [44], which also recruit NVAE as their back-
bone model, and other powerful deep generative models,
such as GANs [3, 21], score-based models [19, 37] and
EBMs [8,9,15,46] on data space. Compared to NVAE back-
bone model, our joint EBM prior model can significantly
improve the fidelity of generated samples while only ac-
counting for negligible overhead (see Parameter Efficiency
in Sec.5.6). In comparison with other powerful deep gen-
erative models, we also achieve competitive generation per-
formance.

5.3. Hierarchical Representations

Hierarchical sampling. To examine our model in learning
hierarchical representation, we employ hierarchical sam-
pling to illustrate the learned representation at different lay-
ers. In particular, we first sample one group of latent vectors

1https://github.com/NVlabs/VAEBM

Figure 5. Langevin transitions on CIFAR-10. FID = 11.34.

Method IS FID

NVAE∗ [41] 5.30 37.73
Ours 8.99 11.34

NCP-VAE [2] - 24.08
VAEBM [44] 8.43 12.19

Other EBMs
IGEBM [9] 6.78 38.2
ImprovedCD [8] 7.85 25.1
Divergence Triangle [15] - 30.10
Adv-EBM [46] 9.10 13.21

Other Likelihood Models
GLOW [23] 3.92 48.9
PixelCNN [42] 4.60 65.93

GANs+Score-based Models
BigGAN [3] 9.22 14.73
StyleGANv2 w/o ADA [21] 8.99 9.9
NCSN [37] 8.87 25.32
DDPM [19] 9.46 3.17

Table 2. IS(↑) and FID(↓) for our model and baselines on CIFAR-
10. Model∗ indicates our backbone model.

Model CelebA-HQ-256 LSUN-Church-64

NVAE∗ [41] 30.25 38.13
Ours 9.89 8.38

NCP-VAE [2] 24.79 -
VAEBM [44] 20.38 13.51

Adv-EBM [46] 17.31 10.84
GLOW [23] 68.93 59.35
PGGAN [20] 8.03 6.42

Table 3. FID(↓) for our model and baselines on CelebA-HQ-256
and LSUN-Church-64. Model∗ indicates backbone model.

from EBM prior and hold them as fixed constants, then we
randomly sample multiple groups of latent vectors to re-
place the fixed latent vectors at different layers. This allows
us to visualize the variation in representation across layers.
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Figure 6. Histograms of density of L>k
EBM with AUROC(↑) and AUPRC(↑) for CIFAR-10 (in) / SVHN (out).

Figure 7. Hierarchical sampling for Gaussian prior model
(bottom) and EBM prior model (top). From left panel to right
panel, latent vectors are sampled from the bottom layers to the
top layers. Detailed sampling method can be referred in Figure 3
in [49].

We apply our joint EBM prior to BIVA [29] on CelebA-
64. For training, we reuse the two-stage training scheme,
where we recruit BIVA2 for the first stage training and train
our EBM prior model in the second stage by using the
reparametrized sampling [44] method (similar as deep hier-
archical models in Sec.5.2). We show the results of hierar-
chical sampling in Fig.7 and observe that BIVA presents mi-
nor changes at the bottom and middle layers, while the pro-
posed joint EBM prior model can show variations of differ-
ent levels. Note that it is a challenging task for conditional
hierarchical models [49], on which the improvement thus
suggests that the proposed method is capable of learning hi-
erarchical representations for multi-layer generator models.
Additional results are referred to Appendix.B.1.
Out-of-distribution detection. Next, we conduct out-of-
distribution (OOD) detection to further evaluate the hierar-
chical representations. Typically, low-level representations
(e.g., edges, corners) can be shared across data which in
turn leads to high-confidence reconstructions for OOD ex-
amples, while high-level semantic ones have fewer correla-
tions across different data and shall be more discriminative
for OOD detection. Inspired by [17], we consider an un-
normalized log-posterior as the decision function for EBM
prior model, which is defined as

2https://github.com/vlievin/biva-pytorch

L>k
EBM = Ez>k∼qω(z|x),z≤k∼pβ>0,α(z)[log pβ0

(x|z)

+ log pβ>0
(z) +

L∑
i=1

fαi
(zi)] (20)

where latent codes above the k-th layer are inferred from
inference model and kept fixed, and those below the k-th
layer are sampled from EBM prior via the reparametrized
sampling3 [44] with fixed inferred latent codes. With k = 0,
all layers of latent vectors are inferred from qω(z|x). With
a higher value of k, less inferred low-level representations
are used, which should render better performance in OOD
detection. In addition, we can also compute a subtraction
between L>0

EBM and L>k
EBM as a surrogate of the likelihood-

ratio which is shown to be effective for OOD detection [17].
We compute the subtraction as

LLR>k
EBM = L>0

EBM − L>k
EBM (21)

We follow standard protocols and apply our EBM prior
model with BIVA on CIFAR-10 and use SVHN as OOD
data for testing. In Fig.6, we show the density of in-
distribution and OOD data by computing the unnormal-
ized log-posterior with increased k, and we use AUROC,
AUPRC to quantitatively evaluate the performance. It can
be seen that as k increases, relatively lower log-likelihoods
are assigned to OOD data, which in turn renders better de-
tection performance (higher AUROC and AUPRC). More
importantly, we observe that the backbone model BIVA
achieves the best detection performance of 0.885 for AU-
ROC, while our models achieve 0.927 with the adapted de-
cision function. This further verifies that the hierarchical
representations can be learned within our multi-layer struc-
ture.

5.4. Analysis of Latent Space

Long-run langevin transition. In this section, we examine
the energy landscape of our joint EBM prior model. If the
EBM is well-learned, the energy prior should naturally ren-
der local modes of the energy function, and traversing these
local modes should present realistic synthesized examples
and steady-state energy scores. Existing EBMs typically

3https://github.com/NVlabs/VAEBM

7



have oversaturated images via long-run Langevin dynamics
as observed in [31]. Training an EBM that learns steady-
state energy scores over realistic images can be useful but
challenging.

Figure 8. Trajectory in data space and energy profile in Langevin
transition. Top: Langevin transition with 100 steps. Bottom:
Langevin transition with 2500 steps.

We train our model on CelebA-64 using Langevin dy-
namic for 40 steps. We then run 100 and 2500 Langevin
steps to examine the learned energy landscape. We show the
synthesis and corresponding energy profile in Fig.8. It can
be seen that generated examples become sharper for the first
40 steps as it starts from the referenced distribution pβ>0(z)
toward the learned energy prior pβ>0,α(z), and the energy
fluctuates around some constant. For long-run 2500 steps,
it is worth noting that our EBM prior model delivers diverse
and realistic synthesis, and it does not exhibit the oversat-
urated phenomenon. This suggests that the learned EBM
could mix well between different local modes of the learned
energy prior.
Anomaly Detection. We further evaluate how our joint
EBM prior model could benefit the anomaly detection (AD)
task. Different from OOD detection, AD requires one class
(e.g., one-digit class from MNIST) of data to be held out
as anomaly for training, and both normal (e.g., other nine-
digit classes from MNIST) and anomalous data are used for
testing.

The proposed prior model is built on the joint of all lay-
ers of latent variables. If it is well learned, the posterior
qω(z|x) could form a discriminative joint latent space that
has separated probability densities for normal and anoma-
lous data. We use un-normalized log-posterior L>0

EBM as our
decision function and train our model on MNIST with each
class held out as an anomalous class. We consider the base-
line models that also adopt an inferential mechanism, such
as VAE [24], MEG [26], BiGAN-σ [48], OT-SRI [1], and
LEBM [34] which assumes single-layer latent space and is
closely related to our method. Tab.4 shows the results of
AUPRC scores averaged over the last 10 epochs to account

for the variance. To make fair comparisons, we follow the
protocols in [1, 26, 34, 48].

Heldout Digit 1 4 5 7 9
VAE [24] 0.063 0.337 0.325 0.148 0.104
MEG [26] 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.290 ± 0.040 0.342 ± 0.034

BiGAN-σ [48] 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028
OT-SRI [1] 0.353 ± 0.021 0.770 ± 0.024 0.726 ± 0.030 0.550 ± 0.013 0.555 ± 0.023
LEBM [34] 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010

Ours 0.470 ± 0.009 0.941 ± 0.001 0.964 ± 0.003 0.815 ± 0.004 0.796 ± 0.004

Table 4. AUPRC scores for unsupervised anomaly detection.

5.5. Ablation Studies.

Informative prior vs. complex generator: We examine
the expressivity endowed with the joint EBM prior by com-
paring it to hierarchical Gaussian prior model. We use the
same experimental setting as reported in Tab.5 in main text
and increase the complexity of generator model for hierar-
chical Gaussian prior. The FID results are shown in Tab.5,
in which the Gaussian prior models exhibit an improve-
ment in performance as the generator complexity increases.
However, even with eight times more parameters, hierarchi-
cal Gaussian prior models still have an inferior performance
compared to our joint EBM prior model.

Ours same generator 2x parameters 4x parameters 8x parameters

28.60 42.03 39.82 37.75 36.10

Table 5. Comparison on Gaussian prior and our EBM prior.

Complexity of EBM. The energy function fαi
(zi) is pa-

rameterized by a small multi-layer perceptron. To better
understand the effectiveness of our EBM, we fix the gen-
erator network pβ0

(z|x) and increase hidden units (nef) of
energy functions. We train our model on CIFAR-10 with
nef increasing from 10 to 100. The results are shown in
Tab.6. The larger capacity of the EBM could in general ren-
der better model performance.

nef nef = 10 nef = 20 nef = 50 nef = 100

FID 69.73 68.45 67.88 66.32

Table 6. FID for increasing hidden units (nef) of EBM

MCMC sampling vs. Inference model. Two posterior
sampling schemes using MCMC and inference model are
compared in Tab.7 in terms of FID and wall-clock training
time (per-iteration). The MCMC posterior sampling renders
better FID as it is more accurate in inference [14, 33], but it
can be computationally heavy. While the inference model
is efficient in learning but can be less accurate. For deep hi-
erarchical structures, the variational learning with inference
model is preferred due to its efficiency.
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MCMC / Inf SVHN CelebA-64 CIFAR-10

FID 26.81 / 28.60 33.60 / 36.12 66.32 / 68.45
Time(s) 0.478 / 0.232 0.920 / 0.246 0.568 / 0.256

Table 7. FID and training time for MCMC posterior sampling and
variational learning.

Figure 9. Generated images on CIFAR-10. Left: HVAE. FID =
79.57 Right: Ours. FID = 49.50

Langevin steps. We explore the different number of
Langevin steps in prior sampling for training on CIFAR-
10. The results of FID and corresponding training time are
shown in Tab.8. We observe that the Langevin step k in-
creasing from 10 to 40 can improve the generation quality,
while for steps more than 40, it only has minor impacts on
the improvement but with increased training overhead. We
thus report the result of k = 40 in Tab.1.

steps k k = 10 k = 20 k = 40 k = 80 k = 100

FID 69.42 67.58 66.32 66.03 65.86
Time(s) 0.312 0.480 0.568 0.741 0.837

Table 8. FID and training time for increasing MCMC steps in prior
sampling.

Other backbone models: We also examine the generation
performance of our joint EBM prior on other multi-layer
generator models, such as BIVA and HVAE. We implement
the HVAE and BIVA using the provided codes45. We show
the image synthesis and corresponding FID scores in Fig.9
and Fig.10. It can be seen that the proposed method is ex-
pressive in generating sharp image synthesis and can be ap-
plied to different multi-layer generator models.

5.6. Parameter Efficiency

It is crucial to analyze the parameter complexity when
comparing the generation performance. In Tab.1, we build
our model with two layers of latent variables on top of the
generator used in [34]. The additional layer accounts for
only 1% overhead in total parameter complexity compared
to LEBM [34]. For deep hierarchical models, we apply our
joint EBM prior model on latent space which brings mini-
mum overhead. The parameter complexity of the backbone
NVAE and our EBM model is shown in Tab.9.

4https://github.com/JakobHavtorn/hvae-oodd
5https://github.com/vlievin/biva-pytorch

Figure 10. Generated images on CIFAR-10. Left: BIVA. FID =
66.37 Right: Ours. FID = 25.87

NVAE / EBM CIFAR-10 CelebA-HQ-256 LSUN-Church-64

FID 39.73 / 11.34 30.25 / 9.89 38.13 / 8.38
Parameters 257M / 9M (3%) 375M / 18M (4%) 65M / 5M (7%)

Table 9. FID and parameter complexity for backbone model and
EBM.

NVAE with Gaussian decoder: In addition, we also con-
sider NVAEs with a Gaussian decoder. Note that the dis-
crete logistic decoder aims to conditionally models the pix-
els of images between different channels, while Gaussian
decoder is a statistical simple model that predicts pixels
independently. We use the NVAE that has 30 groups on
CIFAR-10 and 20 groups on CelebA-HQ-256 as used in
[2, 44]. The results of FID and parameter complexity are
shown in Tab.10, where our EBM prior still can largely im-
prove the generation performance while only accounting for
very small overhead in parameter complexity.

NVAE / EBM FID Parameters NVAE Group

CIFAR10 52.45 / 14.92 130M / 10M (7.6%) 30
CelebA HQ 256 46.32 / 22.86 365M / 9M (2.4%) 20

Table 10. Parameter complexity and FID results based on NVAE
with Gaussian decoder.

6. Conclusion
we propose a joint EBM prior for multi-layer generator

models, which can effectively capture the intra-layer rela-
tions at each layer and jointly correct the latent variables
from all layers. We present a joint training scheme via MLE
and further develop a variational learning scheme for effi-
cient inference. Our comprehensive experiments demon-
strate the effectiveness of the proposed method.
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A. Theoretical Derivations

A.1. Maximum Likelihood Estimation

Recall that ∇θ log pθ(x) = Epθ(z|x)[∇θ log pβ0
(x|z)] +

Epθ(z|x)[∇θ log pα,β>0
(z)], where θ = (α, β0, β>0). For

the learning gradient of prior model (αi, β>0), we compute
Epθ(z|x)[∇αi,β>0 log pα,β>0(z)] as

∇αi
log pθ(x) = Epθ(z|x)[∇αi

log pα,β>0
(z)] (22)

= Epθ(z|x)[∇αi
fαi

(zi)]−∇αi
log Zα,β>0

∇βi
log pθ(x) = Epθ(z|x)[∇βi

log pα,β>0
(z)] (23)

= Epθ(z|x)[∇βi
log pβi

(zi|zi+1)]−∇βi
log Zα,β>0

where Zα,β>0 =
∫
exp [fα(z)]pβ>0(z)dz. Therefore, for

∇αi
log Zα,β>0

, we have

∇αi
log Zα,β>0

(24)

=
1

Zα,β>0

∫
∇αi exp [

L∑
i=1

fαi(zi)]pβ>0(z)dz

=

∫
pα,β>0

(z)∇αi
fαi

(zi)dz

= Epα,β>0
(z)[∇αi

fαi
(zi)]

For ∇β>0 log Zα,β>0 , we have

∇βi
log Zα,β>0

(25)

=
1

Zα,β>0

∫
exp [fα(z)]∇βi

L−1∏
i=1

pβi(zi|zi+1)p(zL)dz

=

∫
pα,β>0

(z)∇βi
log pβi

(zi|zi+1)dz

= Epα,β>0
(z)[∇βi

log pβi
(zi|zi+1)]

By applying Eqn.24 to Eqn.22, we have

∇αi
log pθ(x) = Epθ(z|x)[∇αi

fαi
(zi)] (26)

− Epα,β>0
(z)[∇αi

fαi
(zi)]

By applying Eqn.25 and Eqn.23, we have

∇βi
log pθ(x) = Epθ(z|x)[∇βi

log pβi
(zi|zi+1)] (27)

− Epα,β>0
(z)[∇βi

log pβi
(zi|zi+1)]

A.2. Variational Learning

Recall that L(θ, ω) = DKL(qω(x, z)||pθ(x, z)). We
can view such joint KL as a surrogate of the MLE ob-
jective with the KL perturbation term, i.e., L(θ, ω) =
DKL(pdata(x)||pθ(x)) +DKL(qω(z|x)||pθ(z|x)). Specifi-
cally, we have

DKL(pdata(x)||pθ(x)) +DKL(qω(z|x)||pθ(z|x))
= −Epdata

[log pθ(x)] +DKL(qω(z|x)|pθ(z|x)) + C

= Epdata

[
Eqω(z|x)

(
log

qω(z|x)
pθ(z|x)

)
− log pθ(x)

]
+ C

= Epdata

[
−Eqω(z|x)

[
pθ(x, z)

qω(z|x)

]]
+ C

= Epdata
[−L̃(θ, ω)] + C

where C ≡ −H(pdata(x)) is the entropy of the empirical
data distribution and can be treated as constant. L̃(θ, ω)
is a lower bound of the log-likelihood log pθ(x) typically
known as ELBO [24]. Notice that, with the joint EBM prior
model, we consider the KL optimization between the ag-
gregate posterior and EBM prior model, i.e., L̃(θ, ω) =
Eqω(z|x)[log pβ0(x|z)] − DKL(qω(z|x)||pα,β>0(z)), while
VAEs compute DKL(qω(z|x)||pβ>0

(z)), where pβ>0
(z) is

the Gaussian prior model.
Therefore, we can compute the gradient ∇θ,ωL̃(θ, ω)

to jointly update the inference, generator and EBM prior
model. Learning the prior model (αi, β>0) involves com-
puting the derivative of log Zα,β>0

, which can be referred to
Eqn.24 and Eqn.25.

A.3. Change of Variable

We observe that using Langevin dynamic on latent
space for deep hierarchical structures can be heterogeneous,
where latent variables may be formed in different shapes
(e.g., spatial variables and vectors) and can rely on the
distribution that has a high variance. Therefore, we fur-
ther consider ϵz-space, which has a unit variance and can
make the prior sampling more efficient and effective. For
brevity, we take a two-layer structure as an example, i.e.,
z = (z1, z2), where for L layers, the derivation is the same.
Deterministic transformation Tβ>0 : For generator model
pβ>0

(z1, z2), z1 follows conditional Gaussian distribution
as p(z1|z2) ∼ N (µβ1

(z2), σβ1
(z2)), while p(z2) is as-

sumed to be unit Gaussian, such that p(z2) ∼ N (0, Id).
Let (ϵz1

, ϵz2
) be the re-parametrization variables, we have

Tβ>0 defined as

z2 = T z2

β>0
(ϵz2) = ϵz2 (28)

z1 = T z1

β>0
(ϵz1

, ϵz2
) = µβ1

(z2) + σβ1
(z2) · ϵz1

(29)

T z2

β>0
(ϵz2

) and T z1

β>0
(ϵz1

, ϵz2
) are invertible and usually re-

ferred as reparameterization trick used in VAEs. Thus, the
re-parametrization variables (ϵz1 , ϵz2) can be independently
drawn from Gaussian noise, i.e., (ϵz1 , ϵz2) ∼ pϵ(ϵz1 , ϵz2),
where pϵ(ϵz1

, ϵz2
) = pϵ1(ϵz1

)pϵ2(ϵz2
) and pϵi(ϵzi

) ∼
N (0, I||ϵzi ||).
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Toward ϵz-space pα,β>0(ϵz1 , ϵz2): With invertible trans-
formation Tβ>0 , we can apply change of variable rule as

pβ>0
(z1, z2) = pϵ(ϵz1

, ϵz2
)|det(JT−1

β>0

)| (30)

pϵ(ϵz1
, ϵz2

) = pβ>0
(z1, z2)|det(JTβ>0

)| (31)

where JTβ>0
is the Jacobian of Tβ>0 .

For brevity, we denote ϵz = (ϵz1 , ϵz2), then pβ>0(z) =
pϵ(ϵz)|det(JT−1

β>0

)| and pϵ(ϵz) = pβ>0(z)|det(JTβ>0
)|.

Recall that the proposed joint EBM prior model is defined
as pα,β>0

(z). With change of variable, pα,β>0
(ϵz) is

pα,β>0
(ϵz) = pα,β>0

(z)|det(JTβ>0
)|

=
1

Zα,β>0

exp fα(Tβ>0(ϵz))pβ>0(z)|det(JTβ>0
)|

=
1

Zα,β>0

exp fα(Tβ>0
(ϵz))pϵ(ϵz)

Therefore, sampling from pα,β>0
(z) can be done by

first sampling ϵz from pα,β>0
(ϵz) and then using deter-

ministic transformation Tβ>0
to obtain z as Eqn.28 and

Eqn.29. Compared to latent space pα,β>0(z), the ϵz-space
pα,β>0(ϵz) independently draws samples from the same
Gaussian distribution, and such distribution has a unit vari-
ance allowing us to use the fixed step size of Langevin
dynamic to efficiently and effectively explore the latent
space at different layers for deep hierarchical structures.
For experiments with backbone model BIVA [29] or NVAE
[41], we adopt similar reparametrized sampling scheme as
VAEBM [44] via public code6.

B. Additional Experiments

B.1. Hierarchical Representations

Hierarchical reconstruction. To examine the hierarchical
representation, we further conduct hierarchical reconstruc-
tion by replacing the inferred latent vectors at the bottom
layers with the ones from the prior distribution. We use
BIVA [29] as our backbone model for multi-layer genera-
tor and inference model, and we use Langevin dynamic for
prior sampling. Specifically, we run prior Langevin sam-
pling for the latent codes at lower layers (e.g., zi≤k) with
the latent codes at top layers (from BIVA inference model)
remaining fixed (using Eqn.20 in main text). We train our
model on CelebA-64 and show hierarchical reconstructions
in Fig.12.

We observe that the details in reconstructions can be
gradually replaced by common features as more layers of
latent variables are sampled from the prior distribution. For
example, the sunglass first becomes a more common glass

6https://github.com/NVlabs/VAEBM

Figure 11. Hierarchical sampling with NVAE backbone on
CelebA-HQ-256.

and then eventually disappears. This concurs with the ob-
servation in [17], suggesting that our model carries differ-
ent levels of abstract representations within the hierarchical
structure.

(a) Example. (b) Sampling from bottom layer to top layer.

Figure 12. Hierarchical reconstruction

Additional results for OOD detection: In addition, we
compute AUROC, AUPRC and FPR80 for BIVA and our
EBM prior model in OOD detection. We use the log-
likelihood L>k and a ratio type LLR>k [17] as the deci-
sion functions for BIVA. If the low-level representations are
well-learned at the bottom layers, using decision function
with higher k should render better detection performance
for reducing impact of shared low-level features. The re-
sults are shown in Tab.11.

BIVA / Ours AUROC↑ AUPRC↑ FPR80↓

L>0 / L>0
EBM 0.066 / 0.087 0.339 / 0.319 0.997 / 0.999

L>3 / L>3
EBM 0.307 / 0.324 0.427 / 0.438 0.970 / 0.972

L>6 / L>6
EBM 0.436 / 0.449 0.514 / 0.528 0.942 / 0.942

L>9 / L>9
EBM 0.866 / 0.870 0.855 / 0.858 0.230 / 0.227

LLR>9 / LLR>9
EBM 0.885 / 0.927 0.876 / 0.918 0.200 / 0.113

Table 11. AUROC, AUPRC and FPR80 for BIVA and our EBM
prior model on CIFAR10(in) / SVHN(out).
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C. Experiment Details
Fréchet Inception Distance: We compute FID scores with
30,000 generated images for CelebA-HQ-256 and 50,000
generated images for other data.
Implementations: For comparisons in generator models
with informative prior, we train our model on SVHN (32
x 32), CIFAR-10 (32 x 32), and CelebA-64 (64 x 64),
where we use full training split of SVHN and CIFAR-10
and 40,000 cropped training examples of CelebA-64 fol-
lowing the protocol in [34]. All training images are resized
and scaled to [-1, 1]. For applying to NVAE backbone mod-
els, we train our joint EBM prior on latent variables of all
layers. The implementations of models on CelebA-64 and
EBMs for NVAE backbone are shown in Tab.12. We denote
the operation of convolution and transposed convolution as
conv(k, c, s) and convT(k, c, s), where k is the kernel size,
c is the channel number and s is the stride number, and we
denote LeakyReLU as LReLU.

D. Additional qualitative results:
We show additional image synthesis for CIFAR-10,

LSUN-Church-64 and CelebA-HQ-256 in Fig.13, Fig.15,
Fig.17 and Fig.18. The additional visualizations of langevin
transition that starts from pβ>0

(z) toward the learned EBM
prior distribution pα,β>0(z) are shown in Fig.14, Fig.16 and
Fig.19.

Layers In-Out Size

EBM fαi
(zi) for NVAE backbone

Input: zi (h x w x c)
N x conv (4, 64, 2), LReLU (4 x 4 x 64)
N x Linear (200), LReLU 200

Linear (1) 1

Generator Model pβ1(z1|z2)
Input: z2 100

Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (200) 200
Split for µz1and log σz1 100, 100

Generator Model pβ0(x|z)
Input: z1 (1 x 1 x 100)

convT (4, 1024, 1), LReLU (4 x 4 x 1024)
convT (4, 512, 2), LReLU (8 x 8 x 512)
convT (4, 256, 2), LReLU (16 x 16 x 256)
convT (4, 128, 2), LReLU (32 x 32 x 128)

convT (4, 3, 2), Tanh (64 x 64 x 3)

Inference Model qω2
(z2|z1)

Input: z1 100
Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (200) 200
Split for µz2

and log σz2
100, 100

Inference Model qω1
(z1|x)

Input: x (64 x 64 x 3)
conv (4, 128, 2), LReLU (32 x 32 x 128)
conv (4, 256, 2), LReLU (16 x 16 x 256)
conv (4, 512, 2), LReLU (8 x 8 x 512)

conv (4, 1024, 2), LReLU (4 x 4 x 1024)
conv (4, 200, 1) (1 x 1 x 200)

Split for µz1
and log σz1

100, 100

EBM fα1
(z1)

Input: z1 100
Linear (200), LReLU 200
Linear (200), LReLU 200
Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (1) 1

EBM fα2(z2)

Input: z2 100
Linear (100), LReLU 100
Linear (100), LReLU 100

Linear (1) 1

Table 12. Network structures for generation, inference and EBMs
on CELEBA-64 and EBM structure for NVAE backbone models.
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Figure 13. Generated images on CIFAR-10. Samples are uncurated.

Figure 14. Langevin transition on CIFAR-10.
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Figure 15. Generated images on LSUN-Church-64. Samples are uncurated.

Figure 16. Langevin transition on LSUN-Church-64.
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Figure 17. Generated images on CelebA-HQ-256 (temperature t=0.7). Samples are uncurated.

Figure 18. Generated images on CelebA-HQ-256 (temperature t=1.0). Samples are uncurated.
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Figure 19. Langevin transition on CelebA-HQ-256. (temperature t=1.0).
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