
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{N}\mathrm{U}\mathrm{M}\mathrm{E}\mathrm{R}. \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}

\mathrm{V}\mathrm{o}\mathrm{l}. 61, \mathrm{N}\mathrm{o}. 2, \mathrm{p}\mathrm{p}. 973--994

VALUE-GRADIENT BASED FORMULATION OF OPTIMAL
CONTROL PROBLEM AND MACHINE LEARNING ALGORITHM*

ALAIN BENSOUSSAN\dagger \ddagger , JIAYUE HAN\ddagger ,

SHEUNG CHI PHILLIP YAM\S , AND XIANG ZHOU\ddagger \P

Abstract. Optimal control problem is typically solved by first finding the value function through
the Hamilton--Jacobi equation (HJE) and then taking the minimizer of the Hamiltonian to obtain the
control. In this work, instead of focusing on the value function, we propose a new formulation for the
gradient of the value function (value-gradient) as a decoupled system of partial differential equations
in the context of a continuous-time deterministic discounted optimal control problem. We develop an
efficient iterative scheme for this system of equations in parallel by utilizing the fact that they share
the same characteristic curves as the HJE for the value function. For the theoretical part, we prove
that this iterative scheme converges linearly in L2

\alpha
sense for some suitable exponent \alpha in a weight

function. For the numerical method, we combine a characteristic line method with machine learning
techniques. Specifically, we generate multiple characteristic curves at each policy iteration from an
ensemble of initial states and compute both the value function and its gradient simultaneously on
each curve as the labeled data. Then supervised machine learning is applied to minimize the weighted
squared loss for both the value function and its gradients. Experimental results demonstrate that
this new method not only significantly increases the accuracy but also improves the efficiency and
robustness of the numerical estimates, particularly with less characteristics data or fewer training
steps.

Key words. optimal control, value function, Hamilton--Jacobi equation, machine learning, char-
acteristic curve

MSC codes. 65K05, 93-08

DOI. 10.1137/21M1442838

1. Introduction. It is well known that the study of the Hamilton--Jacobi
equation (HJE) is one of the core topics in optimal control theory for controlling
continuous-time differential dynamical systems via the principle of dynamical pro-
gramming [26, 12, 25, 10]. This equation is a first-order nonlinear partial differential
equation (PDE) for the value function which maps an arbitrary given initial state to

*

Received by the editors August 30, 2021; accepted for publication (in revised form) October 13,
2022; published electronically April 26, 2023.

https://doi.org/10.1137/21M1442838
Funding: The work of the first author was supported by National Science Foundation grant

DMS-1905449 ,grant HKSAR-GRF grant 14301321 and grant NSF-DMS 2204795. The work of
the second author was supported by the HKUGC for Ph.D. candidates; part of the current work
contributes to the partial fulfillment of her Ph.D. dissertation. The work of the third author was
partially supported by HKGRF grant 14300319 with the project title ``Shape-constrained Inference:
Testing for Monotonicity"" and HKGRF grant 14301321 with the project title ``General Theory for
Infinite Dimensional Stochastic Control: Mean Field and Some Classical Problems"" awarded by
Hong Kong RGC. The work of the fourth author was supported by Hong Kong RGC GRF grants
11307319, 11308121, and 11318522.

\dagger
Naveen Jindal School of Management, University of Texas at Dallas, Richardson, TX 75080-3021

USA (axb046100@utdallas.edu).
\ddagger
School of Data Science, City University of Hong Kong, Kowloon, Hong Kong SAR (jyhan5-

c@my.cityu.edu.hk, xizhou@cityu.edu.hk, axb046100@utdallas.edu).
\S
Department of Statistics, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR

(scpyam@sta.cuhk.edu.hk).
\P
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR

(xizhou@cityu.edu.hk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

973

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

974 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

the optimal value of the cost function. Once this HJE solution is known, it can be
used to construct the optimal control by taking the minimizer of the Hamiltonian.
Such an optimal control is the feedback control, and it does not depend on knowledge
of initial conditions.

Although theoretically welldeveloped, numerical methods for the problem are
yet to be studied because only a few optimal control problems, such as the linear
quadratic problem (LQ) [10], have analytical solutions. Solving the PDE given by
the HJE is not easy, even for the LQ case, in which the HJE is converted into a
Riccati equation. Moreover, since the dimension of the HJE is the dimension d of
state variable x in the dynamical system, the size of the state-discretized problems
in solving HJE increases exponentially with d. This ``curse of dimensionality"" has
been the long-standing challenge in solving high-dimensional HJE, but recently there
have appeared rapid and abundant developments for mitigating this challenge by
combining optimal control algorithms with machine learning algorithms, particularly
reinforcement learning and deep neural networks [50, 13, 49, 11].

In the literature, there exists extensive research on various numerical methods
for finding the approximate solution to the HJEs. One important idea attracting a
considerable amount of attention is termed the successive approximation method [4, 5,
6], which aims to handle the nonlinearity in the HJE. The successive approximation
method reduces the nonlinear HJE to an iterative sequence of linear PDEs called
the generalized Hamilton--Jacobi equation (GHJE) and the pointwise optimization
of taking the minimizer of the Hamiltonian. The GHJE is linear since the feedback
control is given from the previous iteration. Therefore traditional numerical PDE
methods, such as the Galerkin spectral method (successive Galerkin approximation
[4]) for small d can be applied to solve these GHJEs. If the dimension is moderately
large, various methods based on low-dimensional ansatz, such as polynomial or low-
rank tensor product [28, 33, 45], usually work in many applications. For very high
dimensional settings, the use of deep neural networks is prevalent. This two-step
procedure in the successive approximation follows exactly the same idea as policy

iteration in reinforcement learning [50, 13].
When the Hamiltonian minimization has a closed form, the HJE can be solved

directly by using grids and finite difference discretization, e.g., Dijkstra-type meth-
ods such as level set [44], fast marching [53], fast sweeping [52], and semi-Lagrangian
approximation [24]. But these grid-based methods suffer from the curse of dimen-
sionality, i.e., they generally scale up exponentially with increases in dimension in the
space. There have been tremendous advances in numerical methods and empirical
tests for high- dimensional PDEs, taking advantage of neural networks to represent
high-dimensional functions. For the HJE in deterministic optimal control problems,
various approaches have been proposed, and most are based on certain forms of La-
grangian formulation equivalent to the HJE. For example, under certain conditions
(such as convexity) on the Hamiltonian or the terminal cost, the inspiring work of
[16, 17, 18, 22, 41] relies on the generalized Lax and Hopf formulas to transform the
computation of the value function at an arbitrarily given space-time point into an op-
timization problem for the terminal value of the Lagrangian multiplier p1 , subject to
the characteristics equation of a Hamiltonian ordinary differential equation (ODE) for
(x, p). In a similar style, [34] worked with the Pontryagin maximum principle (PMP)
by considering the characteristic equations of the state x(t) and the costate \lambda (t) as
a two-point boundary value problem (BVP). The optimal feedback control, the value

1also called costate or adjoint variable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 975

function, and the gradient of the value function on the optimal trajectories are com-
puted first by solving the BVP numerically. With the data generated from the BVP
on characteristic trajectories, the HJE solution is then interpolated at any point by
either using sparse grid interpolants [35] or minimizing the mean square errors [32, 42,
43]. This step is the standard form of supervised learning, and the numerical accuracy
is determined by the quality of the interpolant and the amount of training data. For
a very large d, the curse of dimensionality is mitigated by the supreme power of deep
neural networks in deep learning. For a review on solving high-dimensional PDEs,
including the HJE, we refer the reader to the recent review paper [23].

We also state both the connection and the difference between our method and
other deep learning based methods for optimal control problems. The authors of
[20] provide a network architecture for time-related HJE; it digs deep into network
design and numerical experiments. References [2] and [31] solve stochastic optimal
control problems through various reinforcement learning related methods, for example,
NNContPI, ClassifPI, and Hybrid-LaterQ. Studies [21, 15, 14, 19] can be considered
as a series of works that apply the Lax--Oleinik formula for optimal control problems.
Compared with them, our work is designed more from a control perspective and
follows a totally different path: we directly obtain PDEs for the value function and
value-gradient from the HJE and then solve them through an iterative method.

Meanwhile, since the introduction of deep Q-learning [30] in 2016, Q-iteration
has been used to solve optimal control problems; see [37, 39, 36, 46]. These works
approximate Q-function Q(x,a\ast (x)) instead of the value function \Phi (x). The value
function can be considered as the Q-function under the optimal action, i.e., \Phi (x) =
Q(x,a\ast (x)), where a\ast (x) is the optimal control. Since the optimal control should be
obtained together with the value function, our method could be more direct than using
the Q-function. Among the works mentioned above, [37] also applies the gradient of
the Q-function; however, the ``gradient"" in that work is not the same as ours; that
gradient refers to the gradient of Q with respect to control a, which is mainly used
for updating the control a. There is no PDE for \nabla Qa or \nabla Qx in [37] which can help
calculate the Q-function more efficiently; the presence of a supremum taking in their
formulation makes the derivation of PDEs from this equation difficult. However, in
our paper, we have a decoupled PDE system (see (3.8) in our paper) for the gradient
of the value function. This PDE system enables us to obtain the value function and
the value-gradient simultaneously, which can ensure the robustness of the numerical
method, as we have already demonstrated in the experiments.

In the present paper, we shall develop a new formulation as an alternative to
the HJE for the optimal control theory. This formulation focuses on the gradient
of the value function instead of the value function itself. For brevity, we call this
vector-valued gradient function a value-gradient function. One of our motivations is
the fact that in practical applications, the optimal feedback control, or the optimal
policy, is the ultimate goal of the decision maker, and this optimal policy is completely
determined by the value-gradient in minimizing the Hamiltonian. Another motivation
for investigating this value-gradient function comes from the training step, where we
want to provide the data not only for the value function but also for its gradient to
enhance the accuracy of the interpolation. Our new formulation has the following
nice properties: (1) The proposed method has a linear convergence rate. (2) It is a
closed system of PDEs for components of vector-valued value-gradient functions. (3)
The system is essentially decoupled in each component and is perfectly suitable for
parallel computing in policy iteration. (4) Each PDE in the system has exactly the
same characteristics equation as the original HJE for the value function. (5) After

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

976 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

simulating characteristics curves, we obtain the results of the value function and the
value-gradient function simultaneously on the characteristics curves to train the value
function in the whole space.

We demonstrate our novel method by focusing on the infinite-horizon discounted
deterministic optimal control problem. This setup will simplify our presentation since
the HJE is stationary in time. In addition, we assume the value functions of concern
are sufficiently smooth, at least C2, which can be guaranteed by imposing appropriate
conditions on the state dynamics and the running cost functions. So, we can interpret
the system of PDEs for value-gradient functions in the classical sense.

We develop the numerical algorithm based on the policy iteration [50] and the
method of characteristics [40]. Under an assumption on the dynamics and the pay-
off function, we show by mathematical induction that the value-gradient function at
each iteration and its corresponding control are uniformly bounded by linear growth
functions, while the gradients of these two functions are uniformly bounded by con-
stants. With Lemmas 3.1 and 3.2, this algorithm is proved to converge linearly in
L2
\alpha sense (see Theorem 3.5) for some suitable exponent \alpha in a weight function. As

for the algorithm, in each policy iteration, only linear equations are solved on the
characteristics curves starting from a collection of initial states. The interpolation, or
the training step, is to minimize the convex combination of the mean squared errors
of both the value function and the value-gradient function. One prominent benefit
of our algorithm is that we can combine the data from both the value and value-
gradient since they share the same characteristics. So, the output of our algorithm
is still the value function, which is approximated by any type of nonparametric func-
tions, such as radial basis functions or neural networks. The value-gradient function
is obtained by automatic differentiation. Our extensive numerical examples confirm
that the accuracy and the robustness are both significantly improved in comparison
to only solving the HJE in the same policy iteration method. Finally, we remark that
a preliminary idea in this paper has appeared in the authors' recent handbook [11] on
a review of machine learning and control theory. Here we present the full development
and propose detailed numerical methods based on machine learning, with emphasis
on theoretical proof of L2

\alpha convergence.
The paper is organized as follows. Section 2 presents the problem setup for the

optimal control problem and a review of HJE and the Pontryagin maximum principle
(PMP), with their connections to the theory of optimal control. Section 3 gives our
new formulation in terms of the value-gradient function, with the convergence analysis
of the iterative scheme. Section 4 presents our main algorithms, and section 5 intro-
duces our numerical examples. Section 6 includes some discussions on generalization
and ends with a brief conclusion.

2. Problem formulation and review of HJE.

2.1. Discounted deterministic control problem in infinite horizon. The
optimal control problem in our study aims at minimizing the cost function with a
discount factor \rho \geq 0: as the following:

(2.1) Jx(u(\cdot)) :=

\int +\infty

0

e - \rho t l(x(t), u(t))dt

subject to the state equation

(2.2)

\Biggl\{
dx(t) = g(x(t), u(t))dt,

x(0) = x,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 977

where x(\cdot) : \BbbR \rightarrow \BbbR
d is the state variable, u(\cdot) : \BbbR \rightarrow \BbbR

p is the control function such
that

\int +\infty

0
e - \rho t| l(x(t), u(t))| dt <\infty , and u(t)\in \scrU ad a.e. t, in which \scrU ad is a nonempty

closed convex subset of \BbbR p.
A feedback control u means there is a function a(\cdot) in the state variable x: \BbbR d\rightarrow

\BbbR
p, such that the control u(t) = a(x(t)) with x(t) satisfying the ODE (2.2) in the

autonomous form: dx(t) = g(x(t), a(x(t)))dt. Throughout the paper, we shall use
g(x,a) and g(x,u) interchangeably for the function g. Also, g(\cdot , \cdot) :\BbbR d\times \BbbR

p\rightarrow \BbbR
d and

l(\cdot , \cdot) :\BbbR d \times \BbbR
p\rightarrow \BbbR carry the following assumptions [10].

Assumption 2.1. There exist some positive constants \=g, \=g2, \=l, \=l1, \=l2, c0, cs and a
matrix c in \BbbR

p\times p with its norm \| c\| = \=c, such that

A1. g(x,a) = g1(x) + c\top a :\BbbR d \times \BbbR
p\rightarrow \BbbR

d and

\| g(x,a)\| \leq \=g (1 + \| x\| + \| a\|) ;\| Dxg(x,a)\| \leq \=g;
d\sum

i=1

\| Dx(\partial xi
g(x,a))\| \leq

\=g2
1 + \| x\|

,
(2.3)

where xi is the ith component of x.
A2. l(x,a) :\BbbR d \times \BbbR

p\rightarrow \BbbR is strictly convex and satisfies

| l(x,a)| \leq \=l
\bigl(
1 + \| x\| 2 + \| a\| 2

\bigr)
;

| l(x,a) - l(x\prime , a\prime)| \leq \=l
\bigl(
(1 +max(\| x\| ,\| x\prime \|) +max(\| a\| ,\| a\prime \|))

(\| x - x\prime \| + \| a - a\prime \|)
\bigr)
;

\| \nabla al(x,a)\| \geq \=l1\| a\| - c0;
\bigm\| \bigm\| (\nabla a\nabla

\top
a)l(x,a)

\bigm\| \bigm\| \geq cs,

(2.4)

and the norm of all the second-order derivatives,
i.e., \| (\nabla x\nabla

\top
a)l(x,a)\| \| (\nabla a\nabla

\top
x)l(x,a)\| , and \| (\nabla x\nabla

\top
x)l(x,a)\| are bounded by

\=l2 from above.

The value function \Phi (x) is defined by

(2.5) \Phi (x) = inf
a(\cdot)\in \scrU ad

Jx(a(\cdot)).

Note that \Phi (x) also refers to the solution of the HJE in our paper; however, it can be
shown by the verification theorem that the solution of the HJE is the value function
(see Theorem 3.4). So, for the sake of simplicity we do not distinguish between these
two with different notation .

Notation. \nabla and (\nabla \nabla \top) refer to the gradient and Hessian matrix, respectively, of
a scalar function. In general, D is used for the derivatives of a vector-valued function,
i.e., the Jacobi matrix. For example, Dxg(x,a) refers to the Jacobi matrix in the x
variable with (i, j) entry \partial gi

\partial xj
(x,a). DT

xg means the transpose of the Jacobi matrix
Dxg.

2.2. Hamilton--Jacobi equation. By the theory of dynamic programming, the
value function \Phi (\cdot) of (2.5) satisfies the (stationary) HJE

(2.6) \rho \Phi (x) = g(x, \^a(x)) \cdot \nabla \Phi (x) + l(x, \^a(x)),

where the optimal policy is

(2.7) \^a(x)\in argmina [g(x,a) \cdot \nabla \Phi (x) + l(x,a)].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

978 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

We drop the possible constraint a \in \scrU ad under argmin or min for convenience. The
first equation, (2.6), is a linear stationary hyperbolic PDE with advection velocity
field g(x, \^a(x)). It is the convention to introduce the Hamiltonian

H(x,\lambda , a) := g(x,a) \cdot \lambda + l(x,a),

and the HJE can be written as

(2.8) \rho \Phi (x) =min
a
H(x,\nabla \Phi , a).

2.3. The Pontryagin maximum principle. The PMP generally refers to the
first-order necessary optimality conditions for problems of optimal control [47]. For
the optimal control problem specified in section 2.1, the PMP takes the form

d

dt
x\ast (t) =H\lambda (x

\ast , \lambda \ast , u\ast) = g(x\ast , u\ast);(2.9a)

d

dt
(e - \rho t\lambda \ast (t)) = - e - \rho tHx(x

\ast , \lambda \ast , u\ast)

= - e - \rho t[\nabla xl(x
\ast , u\ast) +DT

xg(x
\ast , u\ast)\lambda \ast];(2.9b)

d

dt
(e - \rho tv\ast (t)) = - e - \rho tl(x\ast , u\ast),(2.9c)

where u\ast (t)\in \scrU ad is as defined by \^a(x\ast (t)) in (2.7), i.e.,

u\ast (t) = argmin
u

H(x\ast (t), u,\lambda \ast (t)).

\lambda \ast (t) is the costate or adjoint variable, and v\ast (t) is the cost. Note that (2.9a) has
the initial condition x\ast (0) = x, while (2.9b) and (2.9c) have the terminal conditions
vanishing at infinity: e - \rho t\lambda \ast (t)\rightarrow 0 and e - \rho tv\ast (t)\rightarrow 0.

2.4. Value iteration and policy iteration for the HJE. Based on (2.6)
and (2.7) as a fixed-point problem for the pair \Phi and \^a, many iterative computa-
tional methods have been developed [7, 8, 29]. They can roughly be divided into
two categories: value iteration and policy iteration, which are central concepts in
reinforcement learning [50].

In our model of (2.8), the value iteration, roughly speaking, refers to the sequence
of functions recursively defined by

(2.10) \Phi (k+1)(x) := \rho - 1min
a

\Bigl[
g(x,a) \cdot \nabla \Phi (k)(x) + l(x,a)

\Bigr]
\forall x.

By contrast, the policy iteration requires one to solve the so-called generalized HJE.
It starts with an initial policy function a(0) and runs the iteration from a(k) to a(k+1)

as in Algorithm 2.1.

Step 1 is usually referred to as policy evaluation. Step 2 is usually referred to as
policy improvement, and a(k+1) is the greedy policy .

The policy iteration is known to have superlinear convergence in many cases,
provided the initial guess is sufficiently close to the solution and generally behaves
better than the value iteration [1]. The convergence of policy iteration can be found
in [48].

3. Formulation for value-gradient functions. We start by presenting our
main theoretic results and deriving the new system of PDEs for the gradient of the
value function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 979

Algorithm 2.1 Policy iteration (successive approximation) for the HJE.

1. Solve the linear PDE (2.6) for the value function \Phi (k+1) with the given policy
\^a= a(k):

(2.11) \rho \Phi (k+1)(x) = g(x,a(k)(x)) \cdot \nabla \Phi (k+1)(x) + l(x,a(k)(x)).

This linear equation is referred to as generalized HJE.
2. Then, a(k+1) is obtained from the optimization subproblem (2.7) pointwisely

for each x:

a(k+1)(x) := argmin
a

[g(x,a) \cdot \nabla \Phi (k+1)(x) + l(x,a)].

3.1. Equation for the value-gradient functions. Define the value-gradient

function

\lambda (x) =\nabla \Phi (x);

then the HJE (2.6) reads

(3.1) \rho \Phi (x) = g(x, \^a(x)) \cdot \lambda (x) + l(x, \^a(x)),

where x= (x1, . . . , xd)\in \BbbR
d. Now differentiating both sides w.r.t. xi, we have

\rho \lambda i(x) =
\sum

n

\lambda n(x)

\left\{

\left(
 \partial

\partial xi
+
\sum

j

\partial \^aj
\partial xi

\partial

\partial aj

\right)
 gn(x, \^a(x))

\right\}

+
\sum

n

gn(x, \^a(x))
\partial \lambda n
\partial xi

(x) +

\left(
 \partial

\partial xi
+
\sum

j

\partial \^aj
\partial xi

\partial

\partial aj

\right)
 l(x, \^a(x)),

where \lambda i and \^ai are the ith components of \lambda and \^a, respectively. We assume that
the Hamiltonian minimization (2.7) has the unique minimizer \^a(x) which is continu-
ously differential. Then the minimizer \^a(x) satisfies the following first-order necessary
condition:

(3.2)
\sum

n

\partial gn
\partial aj

(x, \^a)\lambda n(x) +
\partial l

\partial aj
(x, \^a) = 0 \forall j.

With both of the above equalities, we have that \lambda (x) = (\lambda 1, . . . , \lambda d) satisfies the system
of linear hyperbolic PDEs

\rho \lambda i =
\sum

n

gn
\partial \lambda n
\partial xi

+
\sum

n

\lambda n
\partial gn
\partial xi

+
\partial l

\partial xi
,(3.3)

or in the compact form,

\rho \lambda (x) = DT\lambda (x)g(x, \^a(x)) +DT

xg(x, \^a(x))\lambda (x) +\nabla xl(x, \^a(x)),(3.4)

and \^a(x) defined by (2.7) can now be written as

(3.5) \^a(x) = argmina [g(x,a) \cdot \lambda (x) + l(x,a)].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

980 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

Equations (3.4) and (3.5) are coupled as (2.6) and (2.7) in the HJE and serve as the
foundation for the new development of the algorithms, based on the policy iteration
method.

Given a policy \^a, the system of coupled PDEs (3.4) is a closed form involving
only the dynamic function g and the running cost function l; it does not need other
information, such as the value function. It plays a role similar to the generalized
HJE (2.6) for the value function \Phi . Equations (3.4) and (3.5) together can replace
the traditional dynamic programming in the form of HJE if \Phi is sufficiently smooth.
The main focus of our work is how to develop efficient numerical methods from this
formulation of the gradient of the value function.

Since \lambda (x) is the gradient of the value function \Phi , D\lambda (x) = \nabla 2\Phi (x) should be
symmetric, i.e., D\lambda =DT\lambda . Then the value-gradient satisfies

\rho \lambda i(x) =\nabla \lambda i(x) \cdot g(x, \^a(x)) +
\sum

n

\partial gn
\partial xi

\lambda n(x) +
\partial l

\partial xi
(x, \^a(x))(3.6)

or

\rho \lambda (x) = (D\lambda)g+ (DT

xg)\lambda (x) +\nabla xl,(3.7)

where \^a(x) is defined, as in (3.5), as the unique minimizer of the Hamiltonian
H(x,\lambda (x)). In addition, if \lambda (x) satisfies the systems of PDEs (3.6), then for x\ast as
the optimal trajectory satisfying the characteristics equation (2.9a), \lambda \ast (t) := \lambda (x\ast (t))
satisfies (2.9b). The conclusion that \lambda \ast (t) := \lambda (x\ast (t)) satisfies (2.9b) follows from the
fact that

d

dt
\lambda (t) = (D\lambda)g= \rho \lambda \ast (t) -

\bigl[
(DT

xg)\lambda (x
\ast) +\nabla xl

\bigr]
.

The advantage of (3.6) over (3.3) is that the advection terms D\lambda i \cdot g are now
decoupled for each component i and are the same as in the GHJE (2.6). This property
will allow us to develop a fully parallel iterative method.

3.2. Policy iteration for the value-gradient. The natural idea for solving
the PDEs for (3.6) and the minimization for \^a in (3.5) is to use the policy iteration
by recursively solving (3.6) and (3.5) as the policy iteration for the value function
dictated in section 2.4, that is, start with an initial policy function a(0) with k= 0:

1. Solve the system (3.6) with the given policy \^a= a(k) to have \lambda (k+1);
2. a(k+1) is obtained from the optimization subproblem (2.7).

This iteration will produce a sequence of pairs (a(k), \lambda (k)), k\geq 1. The main task is
then to solve (3.6) (or (3.7)), the system of linear PDEs for \lambda (x), with a given policy
a. We will first propose the method for this system of linear PDEs; more details are
given in section 4. We summarize our main algorithm, policy iteration based on
\lambda (PI-lambda), below.

The merit of (3.8) is that the components of \lambda (k+1)(x) are completely decoupled
and can be solved in parallel. Each equation of these d components is in exactly the
same form as the GHJE (2.11) for the value function. So the method of characteristics,
which will be detailed in the next section, can be applied to both the GHJE (2.11)
and the system (3.8).

3.3. Convergence analysis for PI-lambda. In this subsection, we will state
and prove our main theorem, Theorem 3.5, which states that the PI-lambda algorithm
converges linearly in the L2

\alpha sense (see (3.13)) for a suitable choice of exponent \alpha

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 981

Algorithm 3.1 PI-lambda: policy iteration based on \lambda .

1. For i= 1, . . . , d, solve the PDE for each \lambda
(k+1)
i in parallel,

\rho \lambda
(k+1)
i (x) - D\lambda

(k+1)
i (x) \cdot g(x,a(k)(x))

=
\sum

n

\partial gn
\partial xi

\lambda (k)n (x) +
\partial l

\partial xi
(x,a(k)(x)),(3.8)

with the given policy \^a= a(k) having \lambda (k+1) = (\lambda
(k+1)
1 , . . . , \lambda

(k+1)
d);

2. a(k+1) is obtained from the optimization subproblem (2.7):

a(k+1)(x) = argmin
a

[g(x,a) \cdot \lambda (k+1)(x) + l(x,a)].

in a weight factor. The proof will need two important lemmas, Lemmas 3.1 and
3.2, which are proved in the supplementary material (ex supplement.pdf [local/web
1.84MB]). \lambda (k)(x) and a(k)(x) stand for the value-gradient and control function of
the kth iteration in PI-lambda, respectively.

Lemma 3.1. Under Assumptions 2.1, at the kth iteration of the value-gradient,

if there exist constants \=\lambda (k), \=\lambda \prime (k), \=a(k), \=a\prime (k) such that

\| \lambda (k)(x)\| \leq \=\lambda (k)(1 + \| x\|),
\bigm\| \bigm\| \bigm\| D\lambda (k)(x)

\bigm\| \bigm\| \bigm\| \leq \=\lambda \prime (k),

\| a(k)(x)\| \leq \=a(k)(1 + \| x\|),
\bigm\| \bigm\| \bigm\| Da(k)(x)

\bigm\| \bigm\| \bigm\| \leq \=a\prime (k),

and if

\rho > \=g(1 + \=a(k)) + \=c\=a\prime (k),

then

\| \lambda (k+1)(x)\| \leq \=\lambda (k+1)(1 + \| x\|),
\bigm\| \bigm\| \bigm\| D\lambda (k+1)(x)

\bigm\| \bigm\| \bigm\| \leq \=\lambda \prime (k+1),

\| a(k+1)(x)\| \leq \=a(k+1)(1 + \| x\|),
\bigm\| \bigm\| \bigm\| Da(k+1)(x)

\bigm\| \bigm\| \bigm\| \leq \=a\prime (k+1),

where the constants

\=\lambda (k+1) =
\=l+\=l\=a(k) + \=g\=\lambda (k)

\rho - \=g(1 + \=a(k))
> 0,(3.9)

\=\lambda \prime (k+1) =
\=l2 +\=l2\=a

\prime (k) + \=g2\=\lambda
(k) + \=g\=\lambda \prime

(k)

\rho - (\=g+ \=c\=a\prime
(k)

)
> 0,(3.10)

\=a(k+1) =
\=c\=\lambda (k+1) + c0

\=l1
,(3.11)

\=a\prime
(k+1)

=
\=l2 + \=c\=\lambda \prime (k+1)

cs
.(3.12)

Lemma 3.2. There exists a constant \rho 1 such that the sequence \{ \=a(k)\} , \{ \=a\prime (k)\} ,
\{ \=\lambda (k)\} , \{ \=\lambda \prime (k)\} in Lemma 3.1 are uniformly bounded by constants C1, C2, C3, C4,
respectively, if \rho > \rho 1 and the initial seed satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

982 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

\| \lambda (0)(x)\| \leq C3(1 + \| x\|),
\bigm\| \bigm\| \bigm\| D\lambda (0)(x)

\bigm\| \bigm\| \bigm\| \leq C4,

where the constants are

C1 =

\sqrt{}
\=c\=l(1 + c0

\=l1
)

\=g\=l1
+
c0
\=l1
; C2 =

1

cs

\left(
 \=l2 +

\sqrt{}
cs\=l2 +\=l22 + \=g2

\sqrt{}
cs(\=l2 + c0\=l)

\=g

\right)
 ;

C3 =

\sqrt{}
\=l1\=l(1 +

c0
\=l1
)

\=g\=c
; C4 =

1

\=c

\sqrt{}
cs\=l2 +\=l22 + \=g2

\sqrt{}
cs(\=l2 + c0\=l)

\=g
.

We then state the regularity of \Phi (x) in Lemma 3.3.

Lemma 3.3. For the solution of HJE (2.6), there exist positive constants C3 and

C such that for all x, y \in \BbbR
d,

| \Phi (x) - \Phi (y)| \leq C3(1 + \| x\| + \| y\|)\| x - y\| ,

| \Phi (x)| \leq C(1 + \| x\| 2),

where C3 =

\sqrt{}
\=l1\=l

\Bigl(

1+
c0
l1

\Bigr)

\=g\=c as defined in Lemma 3.2, and C := max\{ \^C +C3
\=C +C3

\=C2 +
1+C3

\=C+ \=C
2 , 1+C3

\=C+ \=C
2 +C2

3\} for two positive numbers \=C, \^C such that there exists \^x\in \BbbR
d

satisfying \| \^x\| \leq \=C so that | \Phi (\^x)| \leq \^C.

In Theorem 3.4, we show that the value function and the solution for HJE are
the same by the verification theorem.

Theorem 3.4. Let \Phi (\cdot) \in C2(\BbbR d;\BbbR) be the solution of HJE (2.6). Then for all

x\in \BbbR
d we have the following:

1. \Phi (x)\leq J(x,a(x)) for every a(\cdot)\in \scrU ad.
2. If there exists an admissible control a\ast such that

a\ast (x) = argmin
a

[g(x,a) \cdot \nabla \Phi (x) + l(x,a)] a.e. in x\in \BbbR
d,

then \Phi (x) = J(x,a\ast (\cdot)).

Next, we state our main theorem that shows the convergence of the PI-lambda
algorithm.

Theorem 3.5. Under Assumption 2.1, for any \alpha > 1, there exists a large enough

\rho 2 such that if \rho > \rho 2, then we define

(3.13) e(k) :=

\int

\BbbR d

\| \lambda (k)(x) - \lambda (k - 1)(x)\| 2

(1 + \| x\| 2)2\alpha
dx.

We have e(k+1) \leq \eta e(k) with \eta \in (0,1). Therefore \{ \lambda (k)\} forms a Cauchy sequence in

the L2
\alpha sense.

Remark. Note that \rho 2 \geq \rho 1, which suggests that if \rho satisfies the inequality
condition in Theorem 3.5, then it satisfies the inequality condition in Lemma 3.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 983

Proof. Recall that in (3.8), \lambda (k)(x) and \lambda (k+1)(x) are defined by

\rho \lambda (k)(x) = D\lambda (k)(x)g
\Bigl(
x,a(k - 1)(x)

\Bigr)

+Dxg
\Bigl(
x,a(k - 1)(x)

\Bigr)
\lambda (k - 1)(x) +\nabla xl

\Bigl(
x,a(k - 1)(x)

\Bigr) (3.14)

and

\rho \lambda (k+1)(x) = D\lambda (k+1)(x)g(x,a(k)(x))

+Dxg
\Bigl(
x,a(k)(x)

\Bigr)
\lambda (k)(x) +\nabla xl

\Bigl(
x,a(k)(x)

\Bigr)
.

Then the difference in \lambda (k+1) - \lambda (k)(x) is

\rho (\lambda (k+1) - \lambda (k)(x))

= D\lambda (k+1)(x)g(x,a(k)(x)) - D\lambda (k)(x)g(x,a(k - 1)(x)) +Dxg(x,a
(k)(x))\lambda (k)(x)

 - Dxg(x,a
(k - 1)(x))\lambda (k - 1)(x) +\nabla xl(x,a

(k)(x)) - \nabla xl(x,a
(k - 1)(x))

= D
\Bigl(
\lambda (k+1)(x) - \lambda (k)(x)

\Bigr)
g(x,a(k)(x))

+D\lambda (k+1)(x)
\Bigl(
g(x,a(k)(x)) - g(x,a(k - 1)(x))

\Bigr)

+

\biggl(
Dxg(x,a

(k)(x)) - Dxg(x,a
(k - 1)(x))

\biggr)
\lambda (k)(x) +\nabla xl(x,a

(k)(x))

 - \nabla xl(x,a
(k - 1)(x)) +Dxg(x,a

(k - 1)(x))
\Bigl(
\lambda (k)(x) - \lambda (k - 1)(x)

\Bigr)
.

We consider the error in the following L2
\alpha sense with \alpha > 1. Taking the inner product

of \lambda (k+1) - \lambda (k)(x) with the previous expression, we have

\rho e(k+1) := \rho

\int

\BbbR d

\bigm\| \bigm\| \lambda (k+1)(x) - \lambda (k)(x)
\bigm\| \bigm\| 2

(1 + \| x\| 2)2\alpha
dx

\leq
1

2

\bigm\| \bigm\| \bigm\| \bigm\|
\int

\BbbR d

D(\| \lambda (k+1)(x) - \lambda (k)(x)\| 2)
g(x,a(k)(x))

(1 + \| x\| 2)2\alpha
dx

\bigm\| \bigm\| \bigm\| \bigm\|

+

\bigm\| \bigm\| \bigm\| \bigm\|
\int

\BbbR d

D\lambda (k+1)(x)
\Bigl(
g(x,a(k))(x) - g(x,a(k - 1)(x))

\Bigr) \lambda (k+1)(x) - \lambda (k)(x)

(1 + \| x\| 2)2\alpha
dx

\bigm\| \bigm\| \bigm\| \bigm\|

+

\bigm\| \bigm\| \bigm\| \bigm\|
\int

\BbbR d

\biggl(
Dxg(x,a

(k)(x)) - Dxg(x,a
(k - 1)(x))

\biggr)
\lambda (k)(x)

\lambda (k+1)(x) - \lambda (k)(x)

(1 + \| x\| 2)2\alpha
dx

\bigm\| \bigm\| \bigm\| \bigm\|

+

\bigm\| \bigm\| \bigm\| \bigm\|
\int

\BbbR d

\biggl(
\nabla xl(x,a

(k)(x)) - \nabla xl(x,a
(k - 1)(x))

\biggr)
\lambda (k+1)(x) - \lambda (k)(x)

(1 + \| x\| 2)2\alpha
dx

\bigm\| \bigm\| \bigm\| \bigm\|

+

\bigm\| \bigm\| \bigm\| \bigm\|
\int

\BbbR d

Dxg(x,a
(k - 1)(x))

(\lambda (k)(x) - \lambda (k - 1)(x))
\bigl(
\lambda (k+1)(x) - \lambda (k)(x)

\bigr)

(1 + \| x\| 2)2\alpha
dx

\bigm\| \bigm\| \bigm\| \bigm\|
:= I1 + I2 + I3 + I4 + I5.

By Lemma 3.1 and Assumption 2.1, we have

\| g(x,a(k))\| \leq \=g(1 +C1)(1 + \| x\|).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

984 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

Integration by part for the first term I1 gives

I1 \leq
1

2

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| 2

(1 + \| x\| 2)2\alpha

\biggl[\bigm\| \bigm\| \bigm\| Dxg(x,a
(k)(x))

\bigm\| \bigm\| \bigm\|

+
\bigm\| \bigm\| \bigm\| Dag(x,a

(k)(x)
\bigm\| \bigm\| \bigm\|
\bigm\| \bigm\| \bigm\| Da(k)(x)

\bigm\| \bigm\| \bigm\| + 4\alpha \| x\|

1 + \| x\| 2
\=g(1 +C1)(1 + \| x\|)

\biggr]
dx

\leq
1

2

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| 2

(1 + \| x\| 2)2\alpha

\biggl[\bigm\| \bigm\| \bigm\| \bigm\| Dxg(x,a
(k)(x))

\bigm\| \bigm\| \bigm\| \bigm\|

+ \=c
\bigm\| \bigm\| \bigm\| Da(k)(x)

\bigm\| \bigm\| \bigm\| + 5\alpha \=g(1 +C1)

\biggr]
dx

\leq e(k+1) (\=g+ \=cC2 + 5\alpha \=g(1 +C1)) ,

(3.15)

using \| x\| (1+\| x\|)
1+\| x\| 2 < 5

4 for all x\in \BbbR in the last second equation.

By the mean value theorem for g(x, \cdot) and Lemma 3.1, the second term I2 is

I2 =

\int

\BbbR d

\bigm\| \bigm\| \bigm\| \bigm\| D\lambda
(k+1)(x)Dag

\Bigl(
x,a(k - 1)(x) + \delta 1(x)(a

(k)(x) - a(k - 1)(x))
\Bigr)

\cdot (a(k)(x) - a(k - 1)(x))
\lambda (k+1)(x) - \lambda (k)(x)

(1 + \| x\| 2)2\alpha

\bigm\| \bigm\| \bigm\| \bigm\| dx

\leq \=cC4

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| \| a(k)(x) - a(k - 1)(x)\|

(1 + \| x\| 2)2\alpha
dx,

where a function \delta 1(x) is \BbbR
d\rightarrow \BbbR .

The third term I3 = 0 because Dxg(x,a) is independent of a. The fourth term I4 is

I4 \leq \=l2

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| \| a(k)(x) - a(k - 1)(x)\|

(1 + \| x\| 2)2\alpha
dx.

The last term I5 is

I5 :=
1

2

\int

\BbbR d

\bigm\| \bigm\| \lambda (k+1)(x) - \lambda (k)(x)
\bigm\| \bigm\| 2

(1 + \| x\| 2)2\alpha

\bigm\| \bigm\| \bigm\| Dxg(x,a
(k - 1)(x))

\bigm\| \bigm\| \bigm\| dx

+
1

2

\int

\BbbR d

\bigm\| \bigm\| \lambda (k)(x) - \lambda (k - 1)(x)
\bigm\| \bigm\| 2

(1 + \| x\| 2)2\alpha

\bigm\| \bigm\| \bigm\| Dxg(x,a
(k - 1)(x))

\bigm\| \bigm\| \bigm\| dx

\leq
\=g

2

\Bigl(
e(k+1) + e(k)

\Bigr)
.

(3.16)

Next, we estimate the bound of \| a(k)(x) - a(k - 1)(x)\| by \| \lambda (k)(x) - \lambda (k - 1)(x)\| . By
the first-order necessary condition, we have

0 = \nabla al(x,a
(k)) + c\top \lambda (k)(x);

0 = \nabla al(x,a
(k - 1)) + c\top \lambda (k - 1)(x).

Then, by the mean value theorem, there exists \gamma
(k+1)
1 (x) :\BbbR d\rightarrow \BbbR such that

(\nabla a\nabla
\top
a)l
\Bigl(
x,a(k - 1)(x) + \gamma

(k)
1 (x)(a(k) - a(k - 1)(x))

\Bigr)
(a(k) - a(k - 1)(x))

+ c\top (\lambda (k)(x) - \lambda (k - 1)(x)) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 985

Thus

a(k)(x) - a(k - 1)(x) = -

\biggl(
(\nabla a\nabla

\top
a)l
\Bigl(
x,a(k - 1)(x) + \gamma

(k)
1 (x)(a(k) - a(k - 1)(x))

\Bigr) \biggr) - 1

\cdot

\biggl(
c\top (\lambda (k)(x) - \lambda (k - 1)(x))

\biggr)
.

Since \| (\nabla a\nabla
\top
a)l(\cdot , \cdot)\| > cs, we have

\bigm\| \bigm\| \bigm\| a(k)(x) - a(k - 1)(x)
\bigm\| \bigm\| \bigm\| \leq \=c

cs

\bigm\| \bigm\| \bigm\| \lambda (k)(x) - \lambda (k - 1)(x)
\bigm\| \bigm\| \bigm\| ,

and then

I2 \leq
\=c2C4

cs

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| \| \lambda (k)(x) - \lambda (k - 1)(x)\|

(1 + \| x\| 2)2\alpha
dx\leq

\=c2C4

2cs
(e(k+1) + e(k))

(3.17)

and

I4 \leq \=l2

\int

\BbbR d

\| \lambda (k+1)(x) - \lambda (k)(x)\| \| \lambda (k)(x) - \lambda (k - 1)(x)\|

(1 + \| x\| 2)2\alpha
dx\leq

\=l2
2
(e(k+1) + e(k)).(3.18)

Combining (3.15), (3.16), (3.17), and (3.18), we have

\rho e(k+1) \leq e(k+1) (\=g+ \=cC2 + 5\alpha \=g(1 +C1))

+
\=c2C4

2cs
(e(k+1) + e(k)) +

\=l2
2
(e(k+1) + e(k)) +

\=g

2
(e(k+1) + e(k)).

Consequently,

e(k+1) \leq
\=c2C4

2cs
+

\=l2
2 + \=g

2

\rho - (\=g+ \=cC2 + 5\alpha \=g(1 +C1)) -
\=c2C4

2cs
 -

\=l2
2 - \=g

2

e(k) := \eta e(k).(3.19)

Select \rho 2 to be

(3.20) \rho 2 =max

\biggl\{
\rho 1,2\=g+ \=cC2 + 5\alpha \=g(1 +C1) +

\=c2C4

cs
+\=l2

\biggr\}
.

Then for \rho > \rho 2, we have e(k+1) \leq \eta e(k) where \eta \in (0,1). e(k+1) will converge to 0 as
k\rightarrow \infty . That is,

(3.21) lim
k\rightarrow \infty

\int

\BbbR d

\bigm\| \bigm\| \lambda (k+1)(x) - \lambda (k)(x)
\bigm\| \bigm\| 2

(1 + \| x\| 2)2\alpha
dx= 0.

Finally, we show that the sequence \{ \lambda (k)\} does converge to the classical solution by the
corollary below; the proof is shown in the supplementary material ex supplement.pdf
[local/web 1.84MB].

Corollary 3.6. If there exists a classical solution of PDE (3.4), then \lambda (k) con-
verges to the solution in the L2

\alpha sense.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

986 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

4. Numerical methods. Our algorithm is the policy iteration based on \lambda , and
it is clear that the main challenge is to solve the system of linear PDEs (3.8) in any
dimension. It is worthwhile to point out that each PDE in (3.8) is the same type of
PDE as the GHJE (2.11). So, the Galerkin approximate approach also can be applied
for these equations in (3.8), but to directly aim for the high-dimensional problems,
we use the method of characteristics and supervised learning.

Specifically, we first consider a family of functions, such as neural networks, with
\widehat \Phi (x;\theta) to numerically represent the value function, where \theta \in \Theta is the set of parame-
ters. The value-gradient function \widehat \lambda (x;\theta) =\nabla x

\widehat \Phi (x;\theta) is then computed by automatic
differentiation instead of finite difference. Second, in each policy iteration k, we com-
pute the characteristics by numerical integrating the state dynamics, and we calculate
the true value \Phi (k+1) and value-gradient functions \lambda (k+1) on the characteristics curves
based on the PDEs (2.11) and (3.8). Then these labeled data (X(t),\Phi (X(t)), \lambda (X(t)))
are fed into the supervised learning protocol by minimizing the mean squared error
to find the optimal \theta (k+1).

In what follows, we discuss the details of the method of characteristics for solv-
ing the PDEs (2.11) and (3.8) on characteristics curves. We drop the PI-lambda
iteration index k in this section for notational ease.

4.1. Method of characteristics. Bearing in mind the similar form of (2.11)
and (3.8), which are both hyperbolic linear PDEs with the same advection, we consider
a general discussion. Given a control function a(\cdot), we denote G(x) = g(x,a(x)) and
define X(t) as the characteristic curve satisfying the following ODE with an arbitrary
initial state X0 \in \BbbR

d:

(4.1)

\Biggl\{
dX(t) =G(X)dt,

X(0) =X0.

We consider the PDE of the function v,

(4.2) \rho v(x) - Dv(x) \cdot G(x) =R(x),

where the source term R is given. Note that (2.11) and (3.8) are special cases of (4.2)
with different R terms. Along the characteristic curve X(t), by (4.1) and (4.2) we
derive that

d

dt

\bigl[
e - \rho tv(X(t))

\bigr]
= - \rho e - \rho tv(X(t)) + e - \rho tDv(X(t)) \cdot

dX

dt
= - e - \rho tR(X(t)).

After taking integration in time,

lim
s\rightarrow +\infty

e - \rho sv(X(s)) - e - \rho tv(X(t)) =

\int +\infty

t

 - e - \rho \tau R(X(\tau))d\tau .(4.3)

As time s tends to infinity, suppose \rho is large enough; then we have

v(X(t)) =

\int +\infty

t

e - \rho (\tau - t)R(X(\tau))d\tau .

4.2. Compute the value function and the gradient on the characteris-
tics. We apply the above method of characteristics to compute the value function \Phi
and the gradient \lambda =\nabla \Phi . For the value function in (2.6), the R function in (4.2) is
l(x,a(x)). Then \Phi in (2.6) has the values on X(t):

(4.4) \Phi (X(t)) =

\int +\infty

t

e - \rho (\tau - t)l(X(\tau), a(X(\tau)))d\tau .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 987

For \lambda (k+1) in (3.8), for each component i, R(x) in (4.2) now refers to the right-hand
side in function (3.8); then

(4.5) \lambda
(k+1)
i (x(t)) =

\int +\infty

t

e - \rho (\tau - t)r
(k)
i (\tau)d\tau ,

where

r
(k)
i (\tau) =

\sum

n

\partial gn
\partial xi

\lambda (k)n (X(\tau)) +
\partial l

\partial xi
(X(\tau), a(k)(X(\tau))).

4.3. Supervised learning: Interpolate the characteristic curve to the
whole space. With a characteristic curve X(\cdot) computed from (4.1), we can obtain
the value of the value function \Phi and the gradient \lambda i =

\partial \Phi
\partial xi

, i = 1, . . . , d, along X(t)
simultaneously . By running multiple characteristic curves starting from a set of the
initial points \{ X

(n)
0 ,1\leq n\leq N\} , which are generally sampled uniformly, we obtain a

collection of observations of \Phi (X(n)(t)) and \lambda (X(n)(t)) on these characteristics tra-
jectories \{ X(n)(t) : t \geq 0,1 \leq n \leq N\} . In practice, the continuous path X(n)(t) is
represented by a finite number of ``images"" on the curve, and these images on each
curve are chosen to be of roughly equal distance from each neighboring image.

To interpolate the labeled data from the computed curves to the whole space, a
family of approximate functions \widehat \Phi (x;\theta) should be proposed first by the users, which
could be a Galerkin form of basis functions, radial basis functions, or neural networks,
etc. Then the parameters \theta is found by minimizing the following loss function L(\theta)
combining two mean square errors:

L(\theta) = \mu

N\sum

n=1

\int \bigm| \bigm| \bigm| \Phi (X(n)(t)) - \widehat \Phi \theta (X(n)(t))
\bigm| \bigm| \bigm|
2

dt

+ (1 - \mu)

N\sum

n=1

\int \bigm\| \bigm\| \bigm\| \lambda (X(n)(t)) - \nabla \widehat \Phi \theta (X(n)(t))
\bigm\| \bigm\| \bigm\|
2

dt,

(4.6)

where 0 \leq \mu \leq 1 is a factor for balancing the loss from the value function, and
the gradient. \| \cdot \| is the Euclidean norm in \BbbR

d. The gradient \nabla \widehat \Phi \theta is the gradient
w.r.t. the state variable x and computed by automatic differentiation. The training
process of the models is to minimize the loss function (4.6) w.r.t. \theta by some standard
gradient-descent optimization method, such as ADAM [38].

The following remarks explain our practical algorithm more clearly
\bullet Our algorithmic framework is the policy iteration based on \lambda . So, the com-

putation of the data points on the characteristics curves and the training of
the loss (4.6) are performed at each policy iteration k. One can adjust the
number of characteristic trajectories N and the number of training steps (the
steps within the minimization procedure for the loss function). The trajectory
number N determines the amount of data, and the training step determines
the accuracy of supervised learning.

\bullet The loss (4.6) simply writes the contribution from each trajectory in the
continuous L2 integration in time. Practically, this integration is represented
by the sum from each discrete point on the curves. For better fitting of the
function \widehat \Phi \theta , these points are not assumed to correspond to equal step sizes
in the time variable but should be arranged to spread out evenly in space.
There are many practical ways to achieve this target, such as using the arc-
length parametrization or setting a small ball as the forbidden region for each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

988 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

prior point. Our numerical tests use the arc-length parametrization for each
trajectory.

\bullet The choice of the initial states \{ X
(n)
0 : 1 \leq n \leq N\} can affect how the corre-

sponding characteristics curves behave in the space, and we hope these finite
numbers of curves can explore the space efficiently. Some adaptive ideas are
worth trying in practice. For example, more points may be sampled where the
residual of the HJE is larger. However, since all of the characteristics curves
nonlinearly depend on the initial states, we use the uniform distribution in
our numerical tests for simplicity.

5. Numerical examples. This section presents numerical experiments show-
ing the advantage of our new method of policy iteration using \lambda and \Phi over the
method only using \Phi . We test three problems in all: Linear-quadratic regulator, ad-
vertising process, and cart-pole balancing task. Due to space limitations, we only
show the last example in this section. The remaining two can be found in the
supplementary material ex supplement.pdf [local/web 1.84MB]. Additional experi-
ments on high-dimensional cases, choices of loss function, choices of network struc-
ture, and approximation of control a(x) are also shown in the supplementary material
ex supplement.pdf [local/web 1.84MB].

The cart-pole balancing task is a 4-dim nonlinear case [3]. The physical model of
this task includes a car, a pole, and a ball. The ball is connected to one end of the
pole, and the other end of the pole is fixed to the car. The pole can rotate around
the end fixed to the car, while the car is put on a flat surface, being able to move left
or right. The aim of this task is to balance the pole in the upright vertical position.

The state variable has four dimensions: the angular velocity of the ball, denoted
by \omega ; the included angle of the pole and the vertical direction, denoted by \psi \in [- \pi ,\pi];
the velocity of the car, denoted by v; and the position of the car, denoted by z. The
control of this problem is the force applied to the car, denoted by F .

The control problem is to let \psi be as small as possible. To eliminate the trans-
lation invariant in the horizontal position, we also want z to be small. So we aim to
minimize - cos(\psi) and | z| 2 with the cost function

J(u) =

\int \infty

0

e - \rho t
\bigl(
 - cos(\psi (t)) + \eta | z(t)| 2

\bigr)
dt,

with \rho = 5 and \eta = 0.2 and subject to the dynamical system
\left\{

\.\omega =
g sin\psi +

(\mu c sgn(v) - F - ml\omega 2 sin\psi) cos\psi
m+mc

 -
\mu p\omega

ml

l
\Bigl(

4
3 - m

m+mc
cos2\psi

\Bigr) ,

\.\psi = \omega ,

\.v=
F +ml

\bigl(
\omega 2 sin\psi - \.\omega cos\psi

\bigr)
 - \mu c sgn(v)

m+mc

,

\.z = v,

\omega (0) = \omega 0, \psi (0) = \psi 0, v(0) = v0, z(0) = z0,

where m is the mass of the ball, mc is the mass of the car, l is the length of the
pole, and g is the gravitational constant. A constraint is imposed on the control:
| F | \leq Fmax, Fmax \geq 0 is the largest control we can have. These hyperparameters are
set to be

m= 0.1, l= 0.5, mc = 1, \mu c = 5\times 10 - 4, \mu p = 2 \times 10 - 6, Fmax = 10.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 989

The state variable is x = (\omega ,\psi , v, z) \in \BbbR
4 with \psi \in [- \pi ,\pi). The value function

is approximated by a neural network with radial basis function (n = 50 modes). In
total, there are (2d+ 1)n= 450 parameters to learn. We compute the value function
on the domain \Omega = [- 2\pi ,2\pi]\times [- \pi ,\pi]\times [- 0.5,0.5]\times [- 2.4,2.4]. So, the initial values

of the characteristics X
(n)
0 are uniformly sampled from \Omega . But the characteristics

are computed in the whole space with sufficiently long time until e - \rho t\Phi (X(t)) and
e - \rho t\lambda (X(t)) are both sufficiently small. The error of the numerical solution \widehat \Phi \theta is
measured by the HJE residual calculated on Np = 10,000 points uniformly sampled
from \Omega :

res=
1

Np

Np\sum

j=1

\bigm| \bigm| \bigm| \rho \^\Phi \theta
\Bigl(
x(j)
\Bigr)
 - g
\Bigl(
x(j), a\ast

\Bigl(
x(j)
\Bigr) \Bigr)

\cdot \nabla \^\Phi \theta

\Bigl(
x(j)
\Bigr)
 - l
\Bigl(
x(j), a\ast

\Bigl(
x(j)
\Bigr) \Bigr) \bigm| \bigm| \bigm| ,

where x(j) is the jth data point.
To better evaluate the performance, we introduce the ``successful roll-up"": In a

20-second simulation (T = 20), if
\bullet | \psi (t)| <\pi /4 lasts for at least 10 seconds, and
\bullet | z(t)| < 10 for all t\in [0, T],

then we call this run a ``successful roll-up.""
The initial conditions for measuring the successful roll-up numbers are (\omega (0), \psi (0),

v(0) = 0, z(0) = 0) with 100 pairs of (\omega (0), \psi (0)) from the 10 \times 10 mesh grid of
[- 2\pi ,2\pi)\times [- \pi ,\pi).

We conduct two experiments for this 4-dim nonlinear case which test the per-
formance under insufficient data or incomplete training. Here the control is solved
analytically at each iteration for both experiments to better show the robustness of
PI-lambda. We refer the reader to the supplementary material ex supplement.pdf
[local/web 1.84MB] for the experiments where a\ast is solved numerically.

Experiment 1. In this experiment, we study how an insufficient amount of
characteristics data will affect the performance. Specifically, we test the performance
of trajectory numbers 2, 5, and 10, while the training for the supervised learning
to minimize the loss L(\theta) takes a fixed number of 100 ADAM steps [38]. Fewer
trajectories mean a smaller amount of labeled data for the method of characteristics.

Table 1 shows the results when \mu varies for each test. For each given N , the
collection of N initial states is the same at different \mu for consistent comparison.
The average residual error of the last 20 iterations is reported in the table. For each
setting, the best residual is highlighted in bold, s and the worst residual is emphasized
in italic. From the table, we can see that \mu = 1 performs the worst in all cases. In fact,
a huge improvement can be observed in the residual and successful roll-up number
when the gradient information is used. Also, this table confirms that with the number
of characteristics increasing, the final accuracy of the numerical value functions always
gets better since more labeled data are provided.

To investigate the effect of \mu on the decay of the error, we plot the residual error
during the policy iteration in Figure 1. This figure clearly demonstrates that \mu = 1
has the slowest convergence among all \mu we tested, and we can find that adding
even a small portion of the loss for the value-gradient, i.e., \mu < 1, can improve the
convergence. Also, we plot the successful roll-up number of \mu = 1 compared with
\mu = 0.8 at each iteration. It can be seen that the value-gradient significantly improves
the performance.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

990 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

Table 1

The error (HJE residual) and the number of successful roll-ups for different \mu when the trajec-
tory number N changes in the cart-pole balancing task. The training step is 100.

Number of trajectories
\mu 2 5 10

1.0 2.088 0.844 0.934

0.8 0.696 0.281 0.100
0.6 0.450 0.169 0.117

Residual 0.4 0.441 0.147 0.091
0.2 0.181 0.113 0.082

0.0 0.166 0.124 0.094

1.0 14.85 19.25 12.30
0.8 10.65 25.10 60.8

0.6 27.10 25.15 38.65
Successful roll-up 0.4 11.05 39.25 44.20

0.2 9.30 40.95 50.45
0.0 20.95 44.95 55.00

0 10 20 30 40 50
Iteration

10−1

100

101

Re
sid

ua
l

μ=1
μ=0.8
μ=0.6
μ=0.4
μ=0.2
μ=0

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

Su
cc

es
sf

ul
 R

ol
l-u

p
nu

m
be

rs

μ= 1
μ= 0.8

Fig. 1. Residual and the successful roll-ups with trajectory number of 10 and training step of
100 in the cart-pole task.

Experiment 2. The purpose of this experiment is to test the performance of
the methods when the training process is not sufficiently long. In this experiment,
the training steps 50, 100, 150, and 200 are tested. A small training step means less
accuracy in fitting the value function. The trajectory number is now fixed as 10.

As shown in Table 2, the accuracy improves quite remarkably as long as the
value-gradient is included in the formulation. The successful roll-ups also show a
better performance for \mu < 1, particularly when the number of trajectories increases.

Figure 2 shows the residual and successful roll-ups with respect to the policy
iteration for different \mu values. As expected, choosing \mu < 1 considerably improves
these results.

To conclude the above experiment, we have performed the numerical tests by
changing the amount of characteristics data and the training steps, which are two
important factors in practical computation. By comparing the performance measured
by the HJE residual as the error and the successful roll-ups as the robustness, we
find that these numerical results consistently show high performance when using the
characteristics data from both the value and value-gradient functions. Although the
four tested values of \mu = 0.2,0.4,0.6,0.8 between 0 and 1 always beat the traditional
method at \mu = 1, the optimal value \mu actually varies on the specific settings, and the
difference among these four values for the performance is marginal.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 991

Table 2

The error (HJE residual) and the number of successful roll-ups for different \mu when training
steps change in the cart-pole balancing task. The trajectory number is 10.

Training step
\mu 50 100 150 200

1.0 1.355 0.934 0.500 0.471

0.8 0.260 0.100 0.151 0.155
0.6 0.175 0.117 0.092 0.097

Residual 0.4 0.096 0.091 0.105 0.103
0.2 0.106 0.082 0.094 0.080

0.0 0.130 0.094 0.070 0.083

1.0 13.75 12.30 28.55 30.00
0.8 58.25 60.80 41.45 35.80
0.6 28.05 38.65 16.50 35.55

Successful roll-up 0.4 56.40 44.20 36.50 35.75

0.2 61.65 50.45 35.30 47.00
0.0 21.85 55.00 49.30 54.10

0 10 20 30 40 50
Iteration

10−1

100

101

Re
sid

ua
l

μ=1
μ=0.8
μ=0.6
μ=0.4
μ=0.2
μ=0

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

Su
cc

es
sf

ul
 R

ol
l-u

p
nu

m
be

rs

μ= 1
μ= 0.2

Fig. 2. Residual and the successful roll-ups with trajectory number of 10 and training step of
50 in the cart-pole task.

6. Conclusion. Based on the system of PDEs for the value-gradient functions
we derived in this paper, we develop a new policy iteration framework, called PI-
lambda, for the numerical solution of the value function for optimal control problems.
We show the convergence property of this iterative scheme under Assumption 2.1. The
system of PDEs for the value-gradient functions \lambda (x) is closed since it does not involve
the value function \Phi (x) at all, so one could, in principle, use neural networks only
for \lambda . This is distinct from many existing methods based on the value function (e.g.,
[27]). The system for \lambda is also essentially decoupled and shares the same character-
istics ODE with the generalized HJE. By simulating characteristics curves in parallel
for the state variable by any classic ODE solver (such as the Runge--Kutta method),
both the value \Phi and the value-gradient functions \lambda on each characteristics curve can
be computed. Equipped with any state-of-the-art function representation technique
and large-scale minimization techniques from supervised learning, these labeled data
can be generalized to the whole space to deal with high-dimensional problems. Policy
iteration has the computational convenience of simulating characteristics equations
only forward in time instead of solving any boundary-value problem for optimal tra-
jectories directly as in [32, 35, 43]. Policy iteration is also convenient when Hamilton-
ian minimization has no analytical expression. The learning procedure of supervised
learning in our method is not new, and it has been applied, for example, in [51, 32,
42], to combine the losses from the policy data, the value function data, and the value-
gradient data. Our distinction from these works is to formulate the costate variable

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

992 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

as the gradient function \lambda (x) of the state and not as a function of the time \lambda (t) in
the PMP.

The generalization to the finite horizon control problem on [0, T] is straightfor-
ward: to replace \rho \lambda (x) by - \partial t\lambda (t, x) in (3.7) and add the transversality condition
\lambda (T,x) =\nabla xh(T,x) when there is a terminal cost h(T,x(T)). The main algorithm in
this paper based on the policy iteration, PI-lambda (Algorithm 3.1), is still appli-
cable in this case, and our main theorem (Theorem 3.5) can be easily generalized.

Some practical computational issues which are not fully discussed here include
the choice of initial policy a(0), and the number of trajectories N and their initial
locations \{ X0\} . For the initial policy, it should be chosen conservatively to stabi-
lize the dynamics. For the characteristics curves, N may be changed from iteration
to iteration, and adaptive sampling for the initial states is a good issue for further
exploration [42].

An obvious question to address in the future is how to formulate the equations of
\lambda for stochastic optimal control so as to leverage benefits similar to our method. One
may consider the splitting method in [9].

Acknowledgments. We thank Dr. Bohan Li and Dr. Yiqun Li for offering
academic suggestions on some results and their proofs.

REFERENCES

[1] A. Alla, M. Falcone, and D. Kalise, An efficient policy iteration algorithm for dy-
namic programming equations, SIAM J. Sci. Comput., 37 (2015), pp. A181--A200,
https://doi.org/10.1137/130932284.

[2] A. Bachouch, C. Hur\'e, N. Langren\'e, and H. Pham, Deep Neural Networks Algorithms
for Stochastic Control Problems on Finite Horizon: Numerical Applications, Methodol.
Comput. Appl. Probab., 24 (2022), pp. 143--178.

[3] S. Barto, Neuronlike adaptive elements that can solve difficult learning control problems, IEEE
Trans. Syst. Man Cybern., 13 (1983), pp. 834--846.

[4] R. W. Bea, Successive Galerkin approximation algorithms for nonlinear optimal and robust
control , Int. J. Control, 71 (1998), pp. 717--743.

[5] R. W. Beard, G. N. Saridis, and J. T. Wen, Galerkin approximations of the generalized
Hamilton-Jacobi-Bellman equation, Automatica, 33 (1997), pp. 2159--2177.

[6] R. W. Beard, G. N. Saridis, and J. T. Wen, Approximate solutions to the time-invariant
Hamilton-Jacobi--Bellman equation, J. Optim. Theory Appl., 96 (1998), pp. 589--626.

[7] R. Bellman, A Markovian decision process, Indiana Univ. Math. J., 6 (1957), pp. 679--684,
https://doi.org/10.1512/iumj.1957.6.56038.

[8] R. Bellman, Dynamic Programming , Princeton University Press, Princeton, NJ, 1957.
[9] A. Bensoussan, Splitting up method in the context of stochastic PDE , in Stochastic Partial

Differential Equations and Their Applications, B. L. Rozovskii and R. B. Sowers, eds.,
Springer, Berlin, Heidelberg, 1992, pp. 22--31.

[10] A. Bensoussan, Estimation and Control of Dynamical Systems, Interdiscip. Appl. Math.,
Springer, Cham, 2018.

[11] A. Bensoussan, Y. Li, D. P. C. Nguyen, M.-B. Tran, S. C. P. Yam, and X. Zhou, Machine
learning and control theory, in Handbook of Numerical Analysis, E. Tr\'elat and E. Zuazua,
eds., Elsevier B.V., 2022, pp. 531--558.

[12] D. P. Bertsekas, Dynamic Programming and Optimal Control , Vol. I, 2nd ed., Athena Sci-
entific, Belmont, MA, 2001.

[13] D. P. Bertsekas, Reinforcement Learning and Optimal Control , Athena Scientific, Belmont,
MA, 2019.

[14] P. Chen, J. Darbon, and T. Meng, Hopf-Type Representation Formulas and Effi-
cient Algorithms for Certain High-Dimensional Optimal Control Problems, preprint,
https://arxiv.org/abs/2110.02541, 2021.

[15] P. Chen, J. Darbon, and T. Meng, Lax-Oleinik-Type Formulas and Efficient Algorithms for
Certain High-Dimensional Optimal Control Problems, http://arxiv.org/abs/2109.14849,
2021.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

VALUE-GRADIENT OF OPTIMAL CONTROL 993

[16] Y. T. Chow, J. Darbon, S. Osher, and W. Yin, Algorithm for overcoming the curse of di-
mensionality for time-dependent non-convex Hamilton-Jacobi equations arising from op-
timal control and differential games problems, J. Sci. Comput., 73 (2017), pp. 617--643,
https://doi.org/10.1007/s10915-017-0436-5.

[17] Y. T. Chow, J. Darbon, S. Osher, and W. Yin, Algorithm for overcoming the curse of
dimensionality for certain non-convex Hamilton-Jacobi equations, projections and differ-
ential games, Ann. Math. Sci. Appl., 3 (2018), pp. 369--403.

[18] Y. T. Chow, W. Li, S. Osher, and W. Yin, Algorithm for Hamilton-Jacobi equations in
density space via a generalized Hopf formula, J. Sci. Comput., 80 (2019), pp. 1195--1239.

[19] J. Darbon, P. M. Dower, and T. Meng, Neural Network Architectures Using Min Plus
Algebra for Solving Certain High Dimensional Optimal Control Problems and Hamilton-
Jacobi PDEs, preprint, http://arxiv.org/abs/2105.03336, 2021.

[20] J. Darbon, G. P. Langlois, and T. Meng, Overcoming the curse of dimensionality for some
Hamilton--Jacobi partial differential equations via neural network architectures, Res. Math.
Sci., 7 (2020), 20, https://doi.org/10.1007/s40687-020-00215-6.

[21] J. Darbon and T. Meng, On some neural network architectures that can represent viscosity
solutions of certain high dimensional Hamilton--Jacobi partial differential equations, J.
Comput. Phys., 425 (2021), 109907, https://doi.org/10.1016/j.jcp.2020.109907.

[22] J. Darbon and S. Osher, Algorithms for overcoming the curse of dimensionality for certain
Hamilton-Jacobi equations arising in control theory and elsewhere, Res. Math. Sci., 3
(2016), pp. 1--26.

[23] W. E., J. Han, and A. Jentzen, Algorithms for solving high dimensional PDEs: From non-
linear Monte Carlo to machine learning, Nonlinearity, 35 (2022), pp. 278--310.

[24] M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton--Jacobi Equations, SIAM, 2013, https://doi.org/10.1137/1.9781611973051.

[25] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd ed.,
Stoch. Model. Appl. Probab. 25, Springer, New York, 2006.

[26] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control , Appl.
Math. 1, Springer-Verlag, New York, 1975.

[27] J. Han, A. Jentzen, and E. W., Solving high-dimensional partial differential equations using
deep learning, Proc. Natl. Acad. Sci. USA, 115 (2018), pp. 8505--8510.

[28] M. B. Horowitz, A. Damle, and J. W. Burdick, Linear Hamilton-Jacobi-Bellman equations
in high dimensions, in Proceedings of the 53rd IEEE Conference on Decision and Control,
2014, pp. 5880--5887.

[29] R. A. Howard, Dynamic Programming and Markov Processes, Technology Press of M.I.T.,
Cambridge, Mass.; John Wiley \& Sons, New York-London, 1960.

[30] T. P. Lillicrap. J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, Continuous Control with Deep Reinforcement Learning , preprint,
https://arxiv.org/abs/1509.02971, 2016.

[31] C. Hur\'e, H. Pham, A. Bachouch, and N. Langren\'e, Deep neural networks algorithms for
stochastic control problems on finite horizon: Convergence analysis, SIAM J. Numer.
Anal., 59 (2021), pp. 525--557, https://doi.org/10.1137/20M1316640.

[32] D. Izzo, E. \"Ozt\"urk, and M. M\"artens, Interplanetary transfers via deep representations of the
optimal policy and/or of the value function, in Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO '19), ACM, ACM, New York, 2019, pp.
1971--1979, https://doi.org/10.1145/3319619.3326834.

[33] D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton--Jacobi--
Bellman equations and applications to feedback control of semilinear parabolic PDES ,
SIAM J. Sci. Comput., 40 (2018), pp. A629--A652, https://doi.org/10.1137/17M1116635.

[34] W. Kang and L. Wilcox, A causality free computational method for HJB equations with
application to rigid body satellites, in Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2015, p. 2009.

[35] W. Kang and L. C. Wilcox, Mitigating the curse of dimensionality: Sparse grid character-
istics method for optimal feedback control and HJB equations, Comput. Optim. Appl., 68
(2017), pp. 289--315, https://doi.org/10.1007/s10589-017-9910-0.

[36] J. Kim, Hamilton-Jacobi-Bellman equations for Q-learning in continuous time, 120 (2020), pp.
1--10, https://proceedings.mlr.press/v120/kim20b.html.

[37] J. Kim, J. Shin, and I. Yang, Hamilton-Jacobi deep Q-learning for deterministic continuous-
time systems with Lipschitz continuous controls, J. Mach. Learn. Res., 22 (2021), 206,
https://dl.acm.org/doi/abs/10.5555/3546258.3546464.

[38] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, preprint,
https://arxiv.org/abs/1412.6980, 2014.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

994 A. BENSOUSSAN, J. HAN, S. C. P. YAM, AND X. ZHOU

[39] G. P. Kontoudis and K. G. Vamvoudakis, Kinodynamic motion planning with continuous-
time Q-learning: An online, model-free, and safe navigation framework, Neural Netw.
Learn. Syst., 30 (2019), pp. 3808--3817.

[40] E. C. Lawrence, Partial Differential Equations, 2nd ed., American Mathematical Society,
2010.

[41] A. T. Lin, Y. T. Chow, and S. J. Osher, A splitting method for overcoming the curse of
dimensionality in Hamilton-Jacobi equations arising from nonlinear optimal control and
differential games with applications to trajectory generation, Commun. Math. Sci., 16
(2018), pp. 1933--1973, https://doi.org/10.4310/cms.2018.v16.n7.a9.

[42] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, Adaptive deep learning for high-
dimensional Hamilton--Jacobi--Bellman equations, SIAM J. Sci. Comput., 43 (2021), pp.
A1221--A1247, https://doi.org/10.1137/19M1288802.

[43] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, Qrnet: Optimal regulator design with
LQR-augmented neural networks, IEEE Control Syst. Lett., 5 (2021), pp. 1303--1308.

[44] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12--49.

[45] M. Oster, L. Sallandt, and R. Schneider, Approximating the Stationary
Hamilton-Jacobi-Bellman Equation by Hierarchical Tensor Products, preprint,
https://arxiv.org/abs/1911.00279, 2019.

[46] M. Palanisamy, H. Modares, F. L. Lewis, and M. Aurangzeb, Continuous-time Q-learning
for infinite-horizon discounted cost linear quadratic regulator problems, IEEE Trans. Cy-
bernet. 45 (2015), pp. 165--176.

[47] L. S. Pontryagin, Mathematical Theory of Optimal Processes, CRC Press, Boca Raton, FL,
1987.

[48] M. L. Puterman and S. L. Brumelle, On the convergence of policy iteration in stationary
dynamic programming , Math. Oper. Res., 4 (1979), pp. 60--69.

[49] B. Recht, A tour of reinforcement learning: The view from continuous control , Ann. Rev.
Control Robot. Auton. Syst., 2 (2019), pp. 253--279.

[50] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., Adaptive
Comput. Mach. Learn., MIT Press, Cambridge, MA, 2018.

[51] D. Tailor and D. Izzo, Learning the optimal state-feedback via supervised imitation learning,
Astrodynamics, 3 (2019), pp. 361--374, https://doi.org/10.1007/s42064-019-0054-0.

[52] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for
a class of Hamilton--Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673--694,
https://doi.org/10.1137/S0036142901396533.

[53] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, in Proceedings of the
1994 33rd IEEE Conference on Decision and Control, vol. 2, 1994, pp. 1368--1373.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

7
/2

3
 t

o
 1

2
9
.6

2
.3

1
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Problem formulation and review of HJE
	Discounted deterministic control problem in infinite horizon
	Hamilton–Jacobi equation
	The Pontryagin maximum principle
	Value iteration and policy iteration for the HJE

	Formulation for value-gradient functions
	Equation for the value-gradient functions
	Policy iteration for the value-gradient
	Convergence analysis for PI-lambda

	Numerical methods
	Method of characteristics
	Compute the value function and the gradient on the characteristics
	Supervised learning: Interpolate the characteristic curve to the whole space

	Numerical examples
	Conclusion
	Acknowledgments
	References

