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Does Performance-Sensitive Debt mitigate Debt Overhang?

Abstract

We model the expansion decision of a levered firm. Straight debt distorts both timing and scaling:
the firm invests less and later than its all-equity financed counterpart. The inclusion of performance
sensitivity in the debt contract mitigates such distortions. Moreover, performance sensitivity is
consistent with firm value maximization within a standard trade-off theory of capital structure. As
a result, our model rationalizes the widespread use of performance sensitive debt (PSD), especially
amongst fast growth firms.
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1 Introduction

This article studies the optimal exercise of real options with time and scale flexibility when the
firm is financed with performance-sensitive debt (PSD). The issuance of hybrid debt instruments,
such as PSD, has become popular as an alternative to straight debt, especially for corporate bank
loans (see, e.g., Asquith, Beatty, and Weber, 2005; Manso, Strulovici, and Tchistyi, 2010). A
PSD contract stipulates interest payments that are not constant, but depend on a measure of
the borrower’s performance. The focus in the literature has been so far on (i) pricing such PSD
instruments and (ii) developing rationales for their use. A case in point where our setting would
apply would be a pharmaceutical company that decides on when to open another laboratory and
how large to build it, aware that the interest on the outstanding debt depends on the firm’s
Debt/EBITDA ratio. Asquith et al. (2005) detail Core Laboratories syndicated revolving loan
performance-pricing grid. Moreover, it is known since Myers’s (1977) paper that a firm financed
with straight debt underinvests compared to its unlevered counterpart; this is because shareholders
pay for the upfront cost of investment, but do not fully internalize its benefits (because of a debt
overhang). The purpose of this article is to address the following set of interrelated questions:
(a) What are the optimal default and capacity expansion policies for shareholders when the firm
is financed with PSD? (b) To which extent can PSD mitigate the debt-overhang problem in the
timing and scale of investment? (c) Can the widespread use of performance-pricing clauses in bank
loans (documented by Asquith et al., 2005) be rationalized within a standard tradeoff theory of

capital structure (see Kraus and Litzenberger, 1973)7

This paper answers these questions by modeling a firm partially financed with ‘risk-compensating’
PSD (Manso et al., 2010). Shareholders choose an optimal default policy (Leland, 1994) and decide
on the exercise of a real option (Dixit and Pindyck, 1994; Trigeorgis, 1996). Optimal leverage and
sensitivity of debt are jointly optimized in our setting. That is, we model a setting where the
initial shareholders (e.g., entrepreneurs) decide on the best debt contract among a menu offered
by their bank. Banks can offer straight debt, but they can also offer debt whose coupon payments
depends on the firm’s performance (PSD). We characterize how this financing choice depends on

the available investment opportunities the firm has, which we model as expansion real options.



We are particularly interested in the role played by PSD in mitigating debt overhang, and how
such mitigating effect can rationalize the use of PSD by certain type of firms. To that end, we
compute the equilibrium capital structure and investment decision that maximizes shareholder

returns subject to the participation constraint of the banking sector.

The firm’s profitability and scale determine its free cashflows to equity (FCFEs). The management
can increase the firm’s scale at a time of its choosing. As in Myers (1977), shareholders finance
this expansion project. If the firm is financed with PSD, the management factors in the reduction

in debt payments resulting from greater scale when deciding about an expansion.

The timeline is as follows. Ex ante, the initial owners decide on the firm’s capital structure by
specifying a debt amount and the performance sensitivity of its debt given a preexisting scale
resulting from past investment decisions. That is, the initial shareholders decide which is the
optimal debt contract that can be offered to them by the bank. Banks can offer straight debt, but

they can also offer debt whose coupon payments depends on the firm’s performance.

The optimal capital structure trades off (a) bankruptcy costs, (b) tax advantage of debt and (c)
underinvestment induced by debt. Ex post, given outstanding debt, the management chooses the

expansion & default policy that maximizes shareholder value.

Our model helps us derive three novel insights. First, the expansion decision of a firm financed with
straight debt is distorted (compared to the decision of its unlevered counterpart) in both timing and
scaling: the former invests less and later. Our paper is the first to highlight such a distortionary
effect in a unifying framework showcasing optimal timing and scaling of investment.! Intuitively,
shareholders finance the new project, yet do not fully internalize the benefits as debtholders capture
some benefits in the event of bankruptcy. Consequently, the management will defer the option
exercise until the benefits to shareholders are sufficiently large (in a sense that we shall specify
explicitly). Moreover, because of debt overhang, the marginal benefit of investment to shareholders

will always be lower than that of an unlevered firm, leading to a lower scale of investment.

Second, we show that PSD can mitigate the debt-induced distortions: the performance-sensitivity

criterion can induce a firm to invest sooner and in a larger amount than a similar firm financed

'"Hennessy (2004) shows underinvestment in a neoclassical investment framework without timing considerations.
Mauer and Ott (2000) show investment delay in a real options framework with fixed scale.



with straight debt. Because PSD rewards a firm with a larger scale with lower debt payments,
the management will approve a growth plan financed by shareholders. Under straight debt, invest-
ment increases the size of the pie, but also increases the size of the slice accruing to debtholders,
thereby constituting a transfer of wealth from shareholders to debtholders. By contrast, under
PSD, debtholders receive lower debt payments after investment, while shareholders internalize a

larger slice of the pie. It is therefore optimal for shareholders to invest earlier and more.?

Third, the initial shareholders may maximize total firm value by issuing PSD. Because PSD brings
the firm’s investment policy closer to the investment policy followed by an unlevered firm, total
firm value is enhanced by introducing performance sensitivity. Our model provides a theory for
optimal leverage and optimal sensitivity of debt, and rationalizes the extensive use of performance

sensitive clauses in private debt contracts documented by Asquith, Beatty, and Weber (2005).3

The paper is organized as follows. Section 2 provides a review of the literature. Section 3 introduces
the model and motivates the assumptions. Section 4.1 presents the benchmark model where the
firm decides uniquely on the time of default. Section 4.2 elaborates on the decision on the expansion
lump, while Section 4.3 discusses the timing decision. Section 5 justifies the use of PSD as a devise

to mitigate the debt overhang.

2 Literature Review

Empirical studies documenting the prevalence of performance sensitive debt include Asquith et al.
(2005), Manso et al. (2010), and Kjenstad, Su, and Xia (2018). Asquith et al. (2005) obtain
commercial loan data from the Loan Pricing Corporation (LPC) database and focuses primarily on
bank debt with long maturities. Of the bank loan sample, 41% (~$943bn) contained a performance-
pricing component. This figure is consistent with Manso et al. (2010), who—based on bank loan
data from Thomson Financial’s SDC database—show that 40% of the loans have performance-

pricing provisions. Importantly, their finding that fast-growth firms are more likely to issue PSD

2Qur results for the scale of investment are proven analytically in Corollary 1. The results for the timing of
investment are numerical, but robust to a wide range of parameter specifications.

30ther works rationalize the use of PSD, in particular Manso et al. (2010) based on the signaling theory, Tchistyi,
Yermack, and Yun (2011) based on the shareholder wealth extraction theory, and Adam, Burg, Scheinert, and Streitz
(2020) based on the theory of managerial overconfidence.



is consistent with our model. Kjenstad et al. (2018) study the interplay between product market
competition and performance-pricing provisions. They posit that PSD and product market com-
petition act as substitutes to mitigate shareholder-debtholder conflicts and empirically document
that firms operating in markets with low levels of product market competition are more likely to

have performance-pricing clauses.

Despite being used widely in private debt contracts, only a few theory papers study performance
sensitivity. Manso et al. (2010) were the first to model PSD in the credit-risk literature. In a model
without investment, they showed that PSD reduces total firm value (compared to straight debt)
because it leads to earlier default. But they rationalize the existence of PSD as a signaling device
when borrowers have heterogeneous types (adverse selection). Our contribution is complementary
as we discuss yet another rationale: PSD helps align the interests of debtholders and shareholders
when a firm decides on its investment policy, an effect akin to mitigating shareholder moral hazard

on the optimal investment decision.

Other contributions in this literature stream include Manso (2013) who shows that when a firm’s
interest payments depend on its credit rating, there exists a soft-rating and a tough-rating equi-
librium featuring, respectively, low and high default rates. Tchistyi, Yermack, and Yun (2011)
focus on the optimal sensitivity of debt when managers are compensated with stock options. They
provide theoretical and empirical evidence that a more generous granting of stock options increases
the “vega” of the managers’ compensation package, thereby incentivizing them to increase risk
on equity via PSD. Following Sarkar and Zhang (2015), PSD can mitigate the excessive delay in
real option exercise induced by straight debt. Our paper expands their analysis by simultane-
ously studying the distortionary effect of debt on the timing and scale of investment as well as by

providing a theory for the joint determination of leverage and performance sensitivity of debt.

Very few real options papers discuss decisions on firm scale according to a recent survey by Trigeorgis
and Tsekrekos (2018). Dangl (1999) characterizes the optimal exercise of one expansion option
with scale flexibility. Bensoussan, Chevalier-Roignant, and Rivera (2019) consider a more general
problem of capacity expansion under fixed running costs, while Bensoussan and Chevalier-Roignant
(2018) study the sequential exercise of expansion options. The early literature ignored financing

considerations. More recently, several authors (see Mauer and Sarkar, 2005; Sundaresan and Wang,



2007; Shibata and Nishihara, 2015) investigate the decision of an unlevered firm to finance a real
option’s exercise cost with debt.* Our paper fills a gap in the literature by characterizing the
optimal exercise policy of a firm financed with PSD to expand its scale of production and by
explaining how the issuance of a performance-sensitive debt instrument helps reduce agency costs

by mitigating the debt-overhang problem in a dynamic setting.

A growing literature examines the relation between different types of contracts and the agency cost
of debt. Hackbarth and Mauer (2012) study the optimal priority structure of debt that minimizes
the debt overhang cost in a real options framework. Diamond and He (2014) show that short-term
debt alleviates the debt-overhang problem. Moreover, holding debt value constant, their model
implies an interior solution for the optimal maturity of debt.> Bhanot and Mello (2006) study the
role of credit rating triggers on shareholder incentives to take risk. They conclude that such triggers
(that force shareholders to buy back debt after poor performance) can mitigate the risk-shifting

problem as long as the debt is paid for with freshly injected equity.

Finally, our paper also relates to the literature calibrating the extent of debt overhang. Mello and
Parsons (1992) were the first to quantify the magnitude of the debt overhang problem. They note
that the magnitude of the agency cost of debt varies with its deflator (e.g., debt or equity value,
levered or unlevered firm value). They calculate this agency cost is 0.8% of firm value but 4.3% of
debt value. Moyen (2007) measures a larger overhang cost with both long and short-term debt. For
instance, with short-term debt, she computes the debt overhang cost add up to 5.12% of firm value.
More recently, Chen and Manso (2017) compute how debt-overhang costs depend on business cycle
risks. In their benchmark case, the debt overhang costs for a low leverage firm is less than 0.5%

of the total firm value without macroeconomic risk, while these costs are as large as 2.7% or 3.6%

4Recent contributions to the real option literature in non-standard settings also include Miao and Wang (2007), who
characterize optimal option exercise for a risk-averse entrepreneur under incomplete markets. Nishimura and Ozaki
(2007) and Miao and Wang (2011) study the optimal exercise of real option under ambiguity aversion. Bolton, Wang,
and Yang (2014), and Hugonnier, Malamud, and Morellec (2014) study real options within a liquidity management
framework. Gryglewicz, Hartman-Glaser, and Zheng, and Philippon and Sannikov (2007) characterize real option
exercise under managerial moral hazard. Lambrecht and Myers (2008) characterize optimal investment decisions
when managers maximize the present value of their future compensation.

Other papers focusing on the optimal maturity of debt include Della Seta, Morellec, and Zucchi (2020); Titman
and Tsyplakov (2007); He and Xiong (2012), and He and Milbradt (2014).

S A large literature studies shareholder-debtholder conflicts including Edmans and Liu (2010); Jensen and Meckling
(1976); Myers (1977); Hackbarth, Rivera, and Wong (2018); Hennessy (2004); Mello and Parsons (1992); Leland
(1998); Ericsson (2000); Kumar and Yerramilli (2017); He (2011); Morellec (2001); Parrino and Weisbach (1999);
Rivera (2020); Schwartz (1982); Whited (1992); Wittry (2021) among others.



in booms and recessions, respectively, in the presence of macroeconomic risk. Our contribution
relative to this literature is to show that the cost of debt-overhang encompasses a simultaneous

distortion of the scale and timing of investment, in relation to the first-best investment benchmark.

3 Model

We consider a continuous-time setting where a firm earns a running operating cashflow zv/8 which
depends on its scale ¢ > 0 and profitability z > 0. On the probability space (€2,.%,P), we consider
a (standard) Brownian motion Z : Q x Ry — R, which generates a filtration F = (#;¢t > 0). The

firm’s profitability X : Q2 x Ry — R, follows a geometric Brownian motion:

Xg =ux, P-a.s.,
(1)
dX; =upXydt+oX,dZ;, Vt>O0.

We assume p > 02/2 and o > 0 as usual. The expectation E. s is conditional on the initial values
for the states x and §. The initial firm scale ¢ is a result of the firm’s past investment history,

possibly zero.

At the outset, the firm finances itself via a mix of equity and PSD. Debt contracts often stipulate
negative covenants which prevent the issue of new debt until the outstanding debt has matured. In
this paper, we focus on such cases, so the issuance of new debt at the expansion time is precluded.
We consider a “risk-compensating” PSD, i.e., a debt instrument that pays higher interest payments
when performance worsens. We here proxy the firm’s performance by its operating cashflows (rather
than, say, its credit rating or a balance sheet ratio). Following the terminology introduced in Manso
et al. (2010), for tractability reasons we specifically assume a linear PSD for which the interest paid
is of the form By — 81 V/§ with By, 81 > 0. By construction, the interest payment can be negative
for large values of x or §. However, in our numerical analyses, we calibrate the debt parameter
(1 such that the interest payments become negative only at very large values of x, an event which
occurs in the remote future. To focus on the effects induced by debt financing, we abstract away

from any other fixed and variable costs. Firms pay corporate taxes at a rate § € (0,1). As in



Leland (1994), the free cashflow to equity (FCFE) is

(2, 8) = aVé — (1 - 0)(Bo — B12V/3). (2)

We allow the firm to raise its capacity at a stopping time 7; by a lump size £ (understood as a
Fr,-measurable random variable) as well as allow it to renege on its debt obligations at a stopping
time 7p. The cost incurred to increase the capacity from 6 to 6 + & is k€, with k& > 0. The scale AY,

a stochastic process adapted to the filtration F, depends on the strategy choice v := {77,£,7p}:

A () = d+&(w), mr(w)<t<1p(w),

0, otherwise.

Agents are risk neutral and discount at the constant rate r. Management acts in the interest
of shareholders, which leads to an agency conflict with debtholders. In particular, management

chooses a strategy v = {7y, é ,7p} that maximizes shareholder value:

D
F(z,0):=sup E,s [/ e "t (Xy, AY)dt — e k&1 (0,7p)(T1) |- (3)
v 0

The first right-hand side (RHS) term corresponds to the present value of the FCFEs until default
at time 7p, while the second term is the present value of the expansion cost. A key problem is
to determine shareholder value (3) and characterize the optimal strategy © (if one exists). This
problem (3) subsumes the unlevered case (for Sy = 1 = 0): an unlevered firm is not subject to a

distortionary effect of debt and chooses a policy that we call “first best.”

It also matters to determine the market value of the debt claim given by

D(w,6) == Eyg [ /O ™ (ﬁo - ﬁlxt\/Zg) dt +e (1 — a)X%j_j?D] . (4)

The first RHS term in (4) corresponds to the interest payments until default. In the event of

bankruptcy, debtholders receive full ownership of the firm net of proportional bankruptcy costs



a€[0,1).7

As in Leland (1994), our model features a choice of capital structure at time 0. Assuming an

initial capacity § that is already in place, and a profitability x, initial shareholders choose debt

parameters (BO,Bl) that maximize total firm value TV (z,J; 5o, B1), i.e., the sum of shareholder

value F(x,d; o, 81) and debt value D(z,d; 5o, B1).

4 Model solution

4.1 Benchmark default option

We consider a simple default option as a benchmark. In this case, shareholder value ¢ is

™
o(x,d) := sup Ex[/ e (X, 0)dt|.
0

™D

Before providing an explicit solution to (5) in Theorem 1, we introduce the terms

1-6
no o=~ 100 <0
1+(1-26
o= LH L= 0B > 0]
r—p
—02/2 —02/2\? 2r
VA,WB:—M 02/ i\/(u 02/) +§, 7B <0 <1< y4.

Theorem 1 (Benchmark default option). The shareholder value in (5) reads

0, x < x1(9),
p(x,0) =

B
no + mave + 1L ($1f5)> , x> x1(0),

yB—1

where

(Vs =-L_TB >0 §5>o0.
mys—1

(9a)

(9b)

"As in Leland (1994, 1998), we assume that, when debtholders become owners of the firm, they decide not to
re-leverage the distressed asset; by doing so, the debtholders limit the risk of having to file bankruptcy should the

firm not be able to recover quickly.



A. Value function: ¢(z, 9) B. Value function: ¢(z,d)
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Figure 1. Analysis of marginal benefit of increasing the capital stock. Panel A (resp.
Panel B) depicts ¢ with and without straight debt (resp. PSD). Panel C (resp. D) depicts the
marginal benefit of increasing the capital stock with and without straight debt (resp. PSD). The
parameter values are r = 0.12, 0 = 0.10, 4 = 0.01, £ =20, 60 = 0.1, x = 8.

Following Theorem 1, a firm with a scale § optimally defaults if profitability = falls below the
level x1(0). Otherwise, shareholder value in (9a) comprises the perpetuity value of the FCFEs,
no +mxy/9, plus the value of the default option. A larger firm is more able to service its debt and,

hence, less likely to default, i.e., 2 (-) < 0.

Panels A and C of Figure 1 depict respectively the value function ¢(z,-) and the marginal benefit
ws(z,-) with and without straight debt (where the under-script denotes the partial derivative).
There are two important observations: First, debt financing depresses the marginal benefits. Be-
cause debtholders claim the residual value at bankruptcy, shareholders do not fully internalize the
benefits from raised scale. This is an illustration of Myers’s (1977) debt-overhang problem. Sec-
ond, under debt financing, returns to scale are increasing for low capacities but decreasing for high
capacities. This reflects two opposing effects. Without the default option in (9a), the firm faces
diminishing marginal returns because the production function is concave. Yet, raising the scale
helps the levered firm reduce default risk, rendering the shareholders’ default option less valuable

as 0 increases.
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Panel B of Figure 1 compares the value function ¢(z,-) with PSD (i.e., By, 81 > 0) versus without
debt (i.e., By = 1 = 0). Panels C and D depict the respective marginal benefit § — ¢s(d, ).
Importantly, panel D shows that the marginal benefit of increasing scale in the presence of PSD
can be larger than the benefit in the absence of debt. Because PSD reduces total debt payments
when the firm’s operating cashflows are large, this acts as an additional benefit to the shareholders
from increasing scale. Through this channel, PSD can mitigate the underinvestment induced by

straight debt financing.

4.2 Optimal scale expansion

If the firm expanded capacity, it faces the optimal default problem (5) solved in Theorem 1. If it

decides to invest, it maximizes the net present value (NPV) from scale expansion given by

O (z,0) = 21;18 {gp(:p, d+¢)— kf}. (10)

Figure 2 depicts the NPV ¢(z,d) — kd obtained by increasing capacity from 0 to d. First, as shown

in Panel A, the firm is better off not to invest in any capacity if profitability x is below the level

1 2-vp

x* = \/2]{:77073 2—~vp)t=B > 0. 11
(L —vB)m ( ) ()

This critical level * increases with §y but decreases with performance sensitivity 5. The level
x* vanishes when Sy = 0. This implies that debt distorts the investment decision in that the

profitability = must be sufficiently high for shareholders to benefit from an expansion.

If profitability is larger, i.e., for > z*, then the function 6 — ¢(x,d) — ké has a local minimum
d3(z) obtained by a first-order condition. The local maximum d3(x) will be global if and only if
profitability « is larger than a level 2** > z*. The case for which d3(z) is not (resp., is) a global

maximum is depicted in Panel B (resp., Panel C) of Figure 2.

If the firm with an initial scale § and facing profitability = decides to invest (because it is optimal

to do s0), it raises its scale by a lump £(z,0) = d3(z) — 8. It is intuitive that lower profitability =

11



A. Case xz < z* B. Case z* <z < x** C. Case z** < zx

20+

I
I

-40 | {1 40t I 1 40t
|

0 2 4 6 03 () 53(x)
Capacity Stock: §

Figure 2. Study of § — ¢(z,d) — kd. The parameter values are r = 0.12, o = 0.10, p = 0.01,
Bo=38, 1 =0,k=20,0=0.1.

leads to a less ambitious expansion. That is

ey = P @O@) o
I5(z) = 255 (2 03(2)) > 0, > x”, (12)

as shown in the Appendix. Moreover, as profitability x deteriorates to the level x*, the local

maximum d3(x) falls to the point

)
5% 1= BB (2 — 7)1 20, (13)

Henceforth, we restrict attention to the case 6 > §*, which ensures existence of the inverse x3(¢d) of
d3(x). We interpret x3(d) as the profitability level above which expanding the firm’s scale creates
shareholder value. A larger firm is less likely to launch an expansion program (i.e., z5(-) > 0).
Theorem 2 summarizes our findings about the increase in shareholder value from scale expansion
in (10), and is illustrated in panel B of Figure 3. Panel A shows a numerical illustration of the
more involved case § < ¢*, for which analytical results are beyond the scope of this paper.

Theorem 2 (Shareholder value from scale expansion). We assume that 6 > 6*. The function ®

in (10) is given by

O(z,9) = B (14)



A. NPV regions with debt

No expansion according to NPV/ Expansion according to NPV
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Figure 3. Positive vs Negative NPV regions (in the absence of timing considerations).
Panel A (resp. B) depicts a case where the firm is levered (resp. unlevered). The parameter values
are r = 0.12, 0 = 0.10, p = 0.01, k = 20, # = 0.1. PSD values are 3y = 15, 81 = 1 for panel A, and
Bo =0, B1 = 0 for panel B.

Further, the function x +— ®(x,0) is continuously differentiable.

We now want to specify the impact of PSD financing on the (static) investment policy:
Corollary 1. The region (x3(0),00) in which the management creates shareholder value by ex-

panding is decreasing in the fized debt installment By and increasing in performance sensitivity

pr.

Figure 4 illustrates the (analytic) findings in Corollary 1. Because the default probability increases
in By, a larger share of the investment benefits accrues to bondholders if the parties agree on a larger
fixed amount SBy. Thus, shareholders are less willing to expand when debt payments are increased
as shown in Panel A. The distortion from debt financing is significant when profitability x and
initial scale ¢ are low, but becomes negligible as profitability x and scale § become very large. This

is because, in case x and § are low, the firm is more likely to default soon after expansion, thereby

13
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Figure 4. Comparative statics of investment vs noninvestment regions in the absence
of timing considerations. Panel A [resp. panel B| depicts comparative statics with respect to
the PSD parameter 3y [resp. [51]. The parameter values are r = 0.12, 0 = 0.10, . = 0.01, k& = 20,
6 =0.1.

limiting the extent to which shareholders would benefit from expansion. Panel B of Figure 4 shows
that the positive NPV region is increasing in ;. Larger sensitivity makes expanding capacity more

lucrative for shareholders because it leads to reduced debt payments. Yet, because the firm still

incurs a fixed payment [y, it still should not invest for low profitability « and capacity d.

In summary, Corollary 1 and Figure 4 prove that PSD mitigates underinvestment in the scale
dimension. We now turn to whether PSD financing will have an impact on the default and expansion

timing decisions.
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4.3 Default and expansion timing decisions

We now discuss the optimal strategy for the shareholder problem F in (3).8 The difference between
shareholder value in (3) and the NPV from immediate, optimal scale expansion in (10), namely
x := F — ®, captures the flexibility value or option time value. As a result, shareholders will wait

to invest (and default) until the investment (and default) options are “deep in the money.”

The solution of this problem can be characterized as a two-threshold strategy (see Appendix D
for exact definitions and all mathematical details). That is, the continuation set is of the form
(z0(8), 5(0)), with () corresponding to the default threshold and z5(8) to the investment thresh-

old. Further, the free boundaries z(d) and x5(d) satisfy

xo(é) < :L’1(5) < xg(é) < 335((5), (15)

with x1(0) defined in (9b) and z3(d) the inverse of d3(x).

Figure 5 depicts the state space (z,d) distinguishing the default (to the left of the black curve) and
expansion regions (to the right of the red curve) as well as the negative (to the left of the green
curve) and positive NPV region (to the right of the green curve). This figure generalizes previous
insights to a larger set of scale values: A bigger firm is less likely to default on its debt obligations,

but also less likely to expand its scale further.

The impact of PSD financing on the firm’s default and expansion timing decisions is particularly
interesting. We explore this topic numerically in Figure 6 and conclude that PSD mitigates under-

investment in timing, in addition to the distortionary effect on scale documented in Corollary 1.

According to panel A, agreeing on a larger fixed installment [y leads to delayed investment, an
effect which arises because shareholders do not fully internalize the investment benefits and because
the investment is deferred until the benefits accruing to shareholders are sufficiently large to justify
the costs, an excessive delay compared to the unlevered benchmark. Moreover, a larger 5y reduces

FCFEs, thereby hastening default. However, panel B shows that a larger sensitivity (81 to the

8In this section we proceed heuristically, but refer the interested reader to Appendix D for a more rigorous
mathematical treatment.
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A. Default, Positive NPV, and Investment Regions B. Shareholder value function
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Figure 5. Structure of the multiple regions. This figure depicts the default, positive NPV,
and investment regions. The parameter values are r = 0.12, ¢ = 0.10, p = 0.01, Bp = 8, f1 = 0,
k=20,0=0.1.

firm’s performance gives an incentive for shareholders to invest earlier. Such is the case because

increasing capacity entails a smaller interest payment when g; > 0.

Panel C shows comparative statics for the investment lump & (z,9) with respect to the fixed debt
installment 3. Higher 5y renders investment less attractive: investment is not only delayed, but
also the scale of investment is distorted downwards. Our paper is the first to simultaneously
highlight the time and scale dimensions of the debt-overhang problem: a levered firm invests later
and less.” Panel D depicts comparative statics for é (x,d) with respect to performance sensitivity

(51. Higher 81 makes investment more attractive, thereby leading to a larger investment lump.

As a result, PSD has the potential to mitigate the underinvestment problem in both dimensions:
time and scale. Interestingly, PSD can potentially lead to overinvestment, encouraging shareholders
to invest in projects sooner than the first-best time and in an amount larger than the first-best ca-

pacity. However, economic intuition suggests that overinvestment will not arise for the equilibrium

9Myers (1977) focuses on the effect of debt on the scale of investment, while Mauer and Ott (2000) focuses on the
timing of investment.
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A. Shareholder value: F'(x) with straight debt  B. Shareholder value: F'(x) with PSD
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Figure 6. Comparative Statics for shareholder value function F' and investment lump
¢ with respect to 5y and ;. The dotted lines corresponds to the investment thresholds z5(9).
Baseline parameter values are r = 0.12, 0 = 0.10, . = 0.01, g = 16, 51 =0, k =20, § = 0.1,6* = 3,
and § = 3.

17



choices of fy and 8. Our numerical results are consistent with this intuition.

We also derive interesting economic insights from the comparative statics depicted in Figure 7. As
seen in panel A, higher volatility o delays both the default and investment decisions. The effect on
shareholder value F'(z,0) and investment lump ¢ (x,9) is ambiguous: higher volatility o increases
the option value, but it also increases the probability of a costly bankruptcy. Moreover, as shown
in panel B, stronger growth p benefits shareholders. Shareholders delay default (because a recovery
is more likely) and expansion (as the opportunity cost of “killing” the expansion option becomes
larger). Finally, panel C conforms with intuition: a larger investment cost k renders expansion less

attractive, so the firm defaults earlier and delays investment further.

A. Shareholder value: F'(x)  B. Shareholder value: F(z) C. Shareholder value: F'(x)

400 - 400 - 400 -
o =0.10 41 =0.01 k =20
350 I o=0.13 ' 350 B p= 0.02 1 350 B k =22
300 | /1 300t 300 |
250 ¢ i1 250} 250 f
200 200 r 200 r
150 ¢ 150 ¢ 150
100 ¢ 100 100 ¢
50 1 50 f 50 r
0 P 0 P o—T1 i
0 5 10 15 0 5 10 15 0 5 10 15
Firm profitability: z Firm profitability: z Firm profitability: z

Figure 7. Comparative Statics for shareholder value function F(z,J) and investment
lump é with respect to o, pu, and k. The solid (resp., dotted) lines corresponds to the default
thresholds xo(0) (resp., investment thresholds x5(d)). Baseline parameter values are r = 0.12,
0=0.10, u=0.01, Bp =8, 1 =0, k=20,0 =0.1 and § = 3.

5 Optimal PSD financing

In this section we study optimal PSD financing. First, we show that PSD mitigates debt overhang
in both the scaling and timing dimension when holding the market value of debt (4) constant. We

show that, for a given loan amount, an increase in the sensitivity of debt to the firm’s underlying
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performance enhances firm value. Then, we allow shareholders to jointly optimize over the amount

and sensitivity of debt to maximize total firm value (ex-ante equity value).

5.1 PSD holding debt value constant

Following a procedure similar to Diamond and He’s (2014), we consider pairs (fp, 51) satisfying:

D(x,6; Bo, f1) = D, (16)

where debt value is defined in (4) and D > 0 is a constant. The objective is to explore the effect on
the firm’s default and investment policies of changes to performance sensitivity £y, while holding
the loan amount constant. Figure 8 depicts investment and default policies for three (S, 51)
pairs satisfying (16). Panel A shows that higher sensitivity hastens firm’s default, by triggering
higher payments as the firm’s situation deteriorates. However, it also hastens investment and
leads to a mitigation in excessive delay due to debt financing. Panel B corroborates our previous
intuition that higher sensitivity also leads to a larger investment amount. This figure highlights the
fundamental tradeoff regarding the optimal sensitivity of debt: on the one hand higher sensitivity
brings investment closer to first-best, but on the other hand it entails higher bankruptcy costs due
to earlier liquidation. In the following section these two forces balance out to yield the optimal

sensitivity of debt.

5.2 Capital structure

Figure 9 depicts total firm value TV (x,d; By, 81) = F(z,0; 5o, B1) + D(x,d; Bo, 1) as a function of
By and By for given initial profitability x and scale . Panel A shows that, in this instance, total
firm value has a unique interior optimum with 31 > 0. By identifying a capital structure that
maximizes total firm value and includes PSD, this section provides a rationale for the extensive use

of this debt instrument.

The optimal capital structure reflects a tradeoff among (a) the tax shield benefits, (b) expected

bankruptcy costs, and (c¢) the distortionary effect of debt on the investment policy. As shown
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A. Shareholder value: F(x) B. Investment lump: d3(z) — 0
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Figure 8. Comparative Statics for shareholder value function F(z,d) and investment
lump ¢ with respect to 3; holding market value of debt D = 66.5 constant..Baseline
parameter values are r = 0.12, 0 = 0.10, £ = 0.01, 5o =8, 81 =0, k=20, 0 =0.1 and § = 3.

in Panel B, a change in performance sensitivity 5y (for Sy = Bo constant) has a nonmonotone
effect on total firm value: an increase in (1 leads to reduced debt payments and lower tax shield
benefits, a negative influence on total firm value, but to reduced bankruptcy risk and lower expected
bankruptcy costs, a positive influence. We observe a similar tension in Panel C which depicts total
firm value as a function of Sy (with 1 = Bl constant): a larger fixed debt payment [y enhances
tax shield benefits, but increases the bankruptcy risk (and expected related costs) and exacerbates
underinvestment. Importantly, the interplay between these three forces has been studied in prior
literature highlighting other aspects of the debt contract. Hackbarth and Mauer (2012) explore the
seniority of debt and characterize the optimal seniority of debt that maximizes firm value. Similarly,
Diamond and He (2014) obtain the optimal maturity of debt that trades off bankruptcy cost (b)
and underinvestment (c). They abstract away from the tax advantage of debt (a) in their model.
Our contribution complements this literature by exploring the sensitivity of debt that maximizes

firm value in a realistic environment with taxes, bankruptcy costs, and a growth opportunity with

a choice of timing and scale.
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Figure 9. Optimal Capital Structure. Baseline parameter values are r = 0.05, ¢ = 0.11,
p = 0.015, k = 20, 0 =0.1, 6 =2, and x = 5.5. Total firm value is maximized for Sy = 14.25, and
£1 = 0.11 in this example.

In summary, our model rationalizes the extensive use of performance sensitive clauses in debt
contracts (see, e.g., Asquith et al., 2005; Manso et al., 2010), as it delivered an optimal capital
structure with Bl > 0 for firms with available growth options. Importantly, because growth options
allow firms to grow faster, our model is consistent with the empirical finding that PSD is more

prevalent amongst fast-growth firms (see Table 2 in Manso et al. (2010)).

5.3 Comparative Statics and Empirical Implications

Section 5.3 depicts the optimal capital structure chosen by three different types of firms relative to
our baseline case. For each case we show a “heat map” for total firm value as a function of (fy, 51),
where the blue dot corresponds to the capital structure that maximizes it. Taking comparative
statics with respect to the three key parameters characterizing a firm our model, namely the firm’s
profitability growth rate p, its volatility o, and its investment cost k, our model delivers the

following empirical implications:
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Figure 10. Comparative Statics. Panel 1 depicts optimal capital structure for lower growth
firms (u = 0.014). Panel 2 depicts optimal capital structure for higher volatility firms (o = 0.115).
Panel 3 depicts optimal capital structure for firms with higher investment costs (k = 21). Baseline
parameter values are r = 0.05, 0 = 0.11, 4 = 0.015, k =20, 0 =0.1, § =2, and = = 5.5.

First, firms with higher (lower) profitability growth stand more (less) to gain from available ex-
pansion opportunities. Because PSD brings the firm closer to the first best investment policy, our
model predicts a wider use of PSD for firms with higher growth rates. Panel 1 depicts the optimal
capital structure of a firm with lower profitability growth: Bl goes down from (.11 to 0.07, as the

baseline growth rate u decreases from 1.5% to 1.4%.

Second, firms with higher (lower) volatility are more (less) likely to default. Because PSD stipulates
higher debt payments as the firm’s profitability deteriorates, thereby triggering earlier liquidation,
our model predicts a lower use of PSD for firms with higher volatility. Panel 2 depicts the optimal
capital structure of a firm with higher volatility: 5’1 goes down from 0.11 to 0.04 as the baseline

volatility o increases from 11% to 11.5%.

Finally, firms with higher (lower) investment costs have more (less) to gain from available expansion
opportunities. Our model predicts that firms with higher investment costs will make less use of
PSD, as the benefit from implementing an optimal investment policy is relatively small. Panel 3
depicts the optimal capital structure of a firm with higher investment costs: Bl goes down from

0.11 to 0 as the baseline cost of increasing capacity k increases from 20 to 21. That is, in this
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specific instance, the firm does not use any PSD and only issues straight debt.

6 Conclusion

This paper studies the effect of performance-sensitive debt on the shareholders’ decisions to default
and expand capacity. We show that a levered firm invests later and less than an unlevered firm.
However, PSD financing mitigates this underinvestment problem by bringing the firm’s investment
policy closer to the first-best investment policy. By reducing the misalignments of interests among
debt and shareholders, PSD mitigates the agency conflict between shareholders and debtholders
and enhances total firm value. This rationale underpins the widespread use of performance-pricing

loans.

Our modeling assumptions closely follow the stylized facts described by Asquith et al. (2005)
regarding performance sensitive clauses present in bank debt contracts. However, we speculate the
key intuition of our results carry over for richer type of debt contracts that feature lower interest
payments after good performance such as callable debt and finite maturity debt. Debt instruments

with equity features, e.g., convertible bonds, may also help align the interests of various parties.

Our model has certain limitations. We assumed homogeneous beliefs, risk aversion, and time pref-
erences among shareholders and debtholders. In particular, our intuition suggests that PSD can be
used as a mechanism to “bridge the gap in beliefs” between optimistic entrepreneurs and creditors;
similarly to how short-term debt operates in Landier and Thesmar (2008). A firm generally ex-
pands capacity in stages, rather than once. The optimal exercise of sequential options will interact
with PSD financing. Relaxing this assumption would require refining the techniques developed
by Bensoussan and Chevalier-Roignant (2018). Finally, we assumed away liquidity considerations,
implicitly assuming that the firm can finance its expansion by reducing dividends and/or issuing
new equity acquired by existing shareholders. These directions present opportunities for future

research, yet relaxing these assumptions remains a major (technical) challenge.
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Appendices

A  Proof of Theorem 1

VI. For the problem (5), the DP equation is a variational inequality (VI), which reads

min{p(z,d); Lo(x,0) —m(z,0)} =0, ae. x (17)
with £ given in (41). A boundary condition is limgjeo %{5)) = 1. We conjecture the existence

of a free boundary z1(-) such that the continuation set is C; = {(z,6) € RZ | z > 21(5)} and we

consider the free-boundary problem (FBP)

o(z,0) = 0, Vo < x1(0), (18a)
Lo(z,0) = 7(x, ), Vo > x1(5) (18b)
p(21(0),0) =0, (18c)
dfp(z1(5),6) = 0. (18d)

We know that x + o + n12+/3 is a particular solution of (18b). The function

O() =7~ — gy (y —1)o” (19)

has two distinct roots, yp < 0 and y4 > 1, given in (8). We are interested in comparative statics
of v4/p with respect to the parameters p € {r,u,0}. We note that Q is a function of both p and

v and that v4,p is a root of Q which also depends on p. We now write

Q(pa 'YA/B(p)) = 0.

By total differentiation and the chain rule,

0 0 d
af(p, 'm/B(p)) + af(p,'m/g(p)) X ’E?/B (p) =0, pe{rpoc},
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so that

el
dva/B v a%(p, ’YA/B(p)> pe o)
= - ) y 50 gy
dp 92 (p, Ya/B (p))

We already know that v +— %%(p,v) is positive at yp < 0 and negative at v4 > 4. Besides,
from (19),
Je) >0, p=m,
F(puv) =
p
<0, pe{po}

It follows that

d d d
Sy >0, DAy <o, SA

2 = T (o) <0 (20)
dvp dvB dvp
dr() 0, dﬂ( ) >0, P (0) >0

Given the solution to the homogenous ODE, it follows that the ODE (18b) admits a solution of
the form

p(x,8) = no + maVs + A1 (8)a7 + Bi(8)a™®, x> 1(d). (21)

The three unknowns A(-), Bi(-) and z1(-) are obtained from the boundary conditions. We set

Aq(-) = 0. For a given § > 0, it obtains from (18¢)—(18d) that x1(¢) is a root of x 72—;1771:0(5% +10

in R;. Because v € (0,7v4), 7?;;1171\/5 > 0 and thus x — Vgglnlxéé + no increases on Ry from
no < 0 to oo, proving the uniqueness of a root in (9b). By differentiation, 2 (0) < 0, whence z1 ()
is monotone decreasing on R} from oo to 0 and invertible, with its monotone increasing inverse

function ¢1(-) given by

i = (-t d)’ @

It now obtains by differentiation that

0u(r,6) = m62 +ypB1(8)a75 7, x> 3(6), (23)
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so that Bj(d) obtains (18d) as being equal to

(24)

where

o 7B
Ai=———— [>0 25
mye—1 > 0] (25)

In summary, we just established that the function ¢ in (9a) solves the FBP (18a)—(18d). The proof

that the solution ¢ to the FBP (18a)-(18d) solves the VI is fairly standard (and omitted here).

We note that

pslw,0) = 0 [2673 = NTEGTHERE8 |15 ) ) (0), (26)

906(1', 5) = %(5_%1'7 |:1 — )\1_73(573771]}7]3_1] 1[61(90)700) (5) (27)

B Proof of Theorem 2

Local maximum at d3(z). Because we can write (10) as

o(r,0) = sup {gp(w, A) — m} + kS, (28)

it is meaningful to study ¢ — ¢(z,d) — k6. We have

1

1. 3 1 _ _3
wss(w,0) = 5 < — 50 e+ (- 735))\1 s 2733373)1[51@),00)(5)

1 3 11— _
:_1771(5 2$<1_(2_73))‘1 R 1>1[51(x)700)(5)'

We obtain

] 15, (2),00) (0)- (29)
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2
So the function § — @g(x,0) vanishes on (0,d1(z)), increases on [1(x),[2 — |78 41(x)] and

2 2
decreases on [[2 — yp] =78 01(x), 00). The global maximum attained at [2 — yg]'=78 §;1(z) is

=== 1 1 1—
7o <x’ 2 =7B]te 51(95)) = cm(A 2=y TE) 2
4 1- 5B

We define the point z* in (11). We distinguish several cases:

2
A If ¢ < 2%, 95p(z,[2—yB]" B 61(x)) < k and so § — ¢(z,8) — kd is decreasing in [0, 00).
From (28),

O(z,0) = p(x,0), ifx <™. (30)
B. If 2 > 2*, ¢s(x,0) = k has two solutions in [01(z), 00), which we note d3(x) and d3(z) with

d3(x) > [2 — vg]ﬁ 0 (z) > o3(x), x> a*. (31)

The function § ~— dsp(x,d) increases at d3(z) and decreases at d3(z) and so the function
6 — @(x,0) — kd attains a minimum at d3(z) and a unique local maximum at d3(x). By

definition of d3(x) and total differentiation,

R 2 (z,03(x))
%) = wss(x,03(x)) (3)

It obtains from (29) and (31) that ¢s5(z, d3(2)) < 0. Furthermore,
o1 _1\17E —1+vB
pas(2,0) = 5md 2 |1 —p <>\5 2> z ) (33)

which is positive. So, d5(z) in (32) is strictly positive and d3(-) monotone increasing on
(z*,00). We note that d3(z*) = do(z*) = d3(2*) and denote this value 6*. To show that

d3(x) — oo as x — oo, we note that

%771 [(53(30)_%@' - )\1_7353($)_1+%’YB =k. (34)
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It follows from d3(z) > 0* that 53($)71+%73x 10 as x T co. Therefore,

where C' is a constant.

We can now conclude that:
Lemma. (i) For any x < x* the function 6 — ¢(x,0) — kd admits a unique local and global

mazximum in [0,00), at § = 0.

(ii) For any x > x* the function 6 — p(x,d)—kd admits a unique local mazximum 03(x) in [01(x), 00).
Moreover, the function 03(-) is monotone increasing on its domain [x*,00) from &* given in (13)

to o0.

Global maximum. We introduce the function

¢(x) := p(x,03(x)) — kd3(x), (35)

which is defined on the domain (x*,00). The local maximum d3(x) in case (ii) of the Lemma above
will not be a global maximum unless the value attained at that local maximum, ¢(x), is above the

other local maximum 0 attained at 6 = 0. We thus study the sign of ¢(-) on the domain (z*, c0).

It follows from total differentiation and definition of d3(x) that ¢/(z) = . (x,d3(x)). It is immediate

from (9a) that ¢’(x) > 0 and, hence, that ¢(-) is monotone increasing.

From (9a) and (34), we can re-write the function (35) as

mo(1 — %’YB) (53(I)%$>73'

1 1
¢(z) = mo + gmds()2z + po— 3

We define )
2 — yp| T \2
d3(z*) = 6% := (—/\[ sl ) .

x*
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It follows that

1
1 1 m[2—~B]'B
*) = —mA[2 — 1=y _—
¢(a%) =m0 + gmA 2 —yp]'E + 5 po—
which we can simplify to
1 1
(z*) =no [1 - 5(2 —B) 1‘73}

thanks to (11) and (25). Because 19 < 0, we have

sgn{¢(z*)} =sgn{2 —vp — 2l=B }.

The second-order derivative of z + 2 — z — 2177 is —In(2)?2!7% < 0, so the first-order derivative

x + —1+1n(2)2'7% is monotone decreasing on (—o0,0) from +oo to a positive number. It follows

that the function z + 2 — z — 2!=% is monotone increasing on (—oc,0) from —oco to 0. Because

vB < 0, it can assert that ¢(z*) < 0.

We now remark that the function ¢(x) — oo as * — oo because d3(z) — oco. So we can now

conclude that:

Lemma. The function ¢(-) defined in (35) is monotone increasing on [x*,00). There is a unique

point x** > x* such that ¢(x) ; 0 iff x § .

From the above Lemma, we conclude that d3(z) will be a global maximum iff z > a**.

NPV upon expansion. We now want to determine @ in (10):

1) We recall the expression for ® in (30) if z < z*: .

2) If © > ™, then ¢(z) > 0. The function ® defined in (10) is thus

2(s.) = o(x) + ko, 0§ < d3(x),

90($75)7 5253(1;)

(36)

The function d3(-) is monotone increasing on (z*,00) from ¢* to oo, so its inverse x3(-) is

monotone increasing on (6*,00). We now assume § > 0*. Then x3(0) > z3(6*) = 2*. We can
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now re-write (36) as

o(z,6) = o(z) + k6, x3(9) < =z, (37)

o(z,0), x3(0) > x,

We can now assert the expression for ® in (14) in the case § > 6*. If § > §*, we see from (37) that
®(-,0) is continuous; it is also continuously differentiable by the definitions of ¢(-) in (35) and of

93(+). This completes the proof of Theorem 2.

C Proof of Corollary 1
Suppose that (z,0) is in the positive NPV region, i.e., that

O(x,0; fo) > (x,0; Bo)

which implies that 3¢ > 0 such that

o(x, 6+ & Bo) — k& > p(x,0; Boy).

We claim that

d;l% (@(% 6 +& o) — p(z,6; 50)> <0, (38)

which would imply that

o(x,6 + & By) — k& > o(x, 05 By),

for 5(, < Bo. Therefore

O (x, 35 Bp) > (, 03 Bo)
which means that (z,9) € I(5], 1)

We now prove claim (38). In order to prove the claim we precompute the following quantities:

d77(] 1—9 d
— = <0, $2=0
dBo T b1
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d,B() T dB T QM)
dx 1 4 dno dx _m s dm
v dpr T onis—vdA

dBo ~ ms—vdbo

Replacing from Theorem 1 we obtain that:

N s s h oY N\ sl MY < z )”B
e(x,0+&; Bo)—p(,6; Bo) = no+ma” (6+E) — <x1(5+§)> k§—no—ma70 7\ B
(39)

=[5+ 0f -6l + vgojv [(wl(ir 5))73 - <$1925)>73} e

where x1(6) = (A)% Deriving with respect to [y yields:

o DTV ((aa(6+ )7 — (02(9) 7] +

dBo vB —~ —
N~ N —
oYz’ —B _ o1 1dX
+ OBy Ta (5 4+ €)% — 2y (8) 7] =22 <
73—7( S ) [21(6 +€) 1(0) ])\dﬁo
———— Z
+ + +

Similarly, suppose that (z,0) is in the positive NPV region, i.e., that

(I)(l'a 6; Bl) > SO(:E’ 5; 61)

which implies that 3¢ > 0 such that

4,0(3?,54-5, Bl) - k§ > QO(.%',(S, 51)

We claim that
d
7(90(‘1‘75_‘_5761) _SO(:E75; Bl)) > 07 (40)
dp

which would imply that
p(x,0+&B1) — k& > o(x, 03 81),
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for ] > Bi1. Therefore
O(z,8; 81) > ¢(z, 03 81)

which means that (z,d) € I(5, 3,).

Deriving with respect to By yields:

dm 11
d—ﬂlx[(é—i—ﬁ)?—é?}—i-
Y +
noyx"?  —vB _ o Ld\
4 IO (OB T (54 €) 7 — 20(8) B] = > 0
73—7(7)[1( §) 1(0) ]Adﬁl
+ + B -

D Appendix for Section 4.3

We now discuss the approach to solve for shareholder value F' in (3). The difference between
shareholder value in (3) and the NPV from immediate, optimal scale expansion in (10), namely
X := F — ®, captures the flexibility value (resp., “option time value”) to use the terminology of
real (resp., financial) options. If we make the assumption 6 > ¢*, then the function ®(-,0) is
continuously differentiable (see Theorem 2). We introduce the second-order differential operator £
given by

L) o= rf(@) — o (@) — 50% ['(x). (41)

We interpret —L® as the excess capital gain from delaying and Il := 7 — L& as the temporary
economic profit or loss accruing to shareholders when the management delays decision making.
Using standard techniques (see the appendix), we can re-write the stochastic control problem (3)
as an optimal stopping problem, namely

x(z,d) = sup Ew/ e "II(Xy,0)dt  for 6 > 6*. (42)
0

T

We assume that the option value x(z,d) vanishes as x | 0. We will also need to ensure that the

payoff in (42) is finite. If we manage to solve (42), we can easily recover the value function F' in
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(3) by using F' = x + ®, with ® given in (14).

We use dynamic programming to solve (42). The dynamic programming equation corresponding

to this optimal stopping problem is
0 =min{y; Lx — I} for § > §* and a.e. z > 0. (43)

The equation (43) has an appealing economic interpretation. A first inequality, xy > 0, asserts that
flexibility is of value to shareholders. A second inequality, Lx > II, states that the total return
from holding the real option (weakly) exceeds the FCFE and the capital gain from delaying the
exercise. Finally, the condition y x [EX — H] = 0 asserts that the decisions to stay put or act (i.e.,
default or expand) are mutually exclusive. Below, we express sufficient conditions under which the
following theorem holds:

Theorem 3 (Flexibility value y for § > §*). The continuation set C for the optimal stopping

problem (42) is of the form (x0(0),25(0)) where xo(8) and x5(3) are free boundaries satisfying

.750((5) < ZL‘1(5) < .Tg(é) < x5(5) (44)

The flexibility value x(+,d) in (42) is continuously differentiable and given by

0, 0<z< ;UO((S)?
2 T I(z,0) 59 11(z, 8)
=4 — 2 |8 ’ A ’ <z< 45
xe0) (va —vB)o? {x /:Jco(5) ot BT /x aart 47)) @0) s@ < 25(9), (45)
0, x > I‘5(5)

Before proving this theorem we provide some intuition for the growth condition, namely v4 >
2. Formally, for very large profitability x, the default option term in (9a) becomes negligible.
Consequently, for large profitability x, the amount d03(x)—obtained by the first-order condition
Vs (m, 53(95)) = k—increases in a quadratic manner. That is, the FCFE a:\/m grows quadrat-
ically. The condition 74 > 2 ensures that the FCFE stream has a finite perpetuity value. The
condition v4 > 2 is less likely to hold when the parameters p and o take on larger values; this is

because an increase in any of them leads to a greater economic profit from delaying. By contrast,
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the condition is more likely to hold when the discount rate r increases because a delayed cash flow
yields a lower present value.

Instantaneous Profit/Losses: II(x, d)

&
T

29(8) @1(6) ) 24(9) 25(9)

Figure 11. Variations of the function x — II(z,d) for 6 > 6* and y4 > 2. The parameter
values are r = 0.12, ¢ = 0.10, . = 0.01, kK = 20, § = 0.1. Debt parameters are 5y = 8 and ;1 = 0.

Figure 11 plots the function II(-, §)—assuming § > 0* and y4 > 2—and helps us intuit the threshold
ranking in (44). We recall the threshold z;(d) in (9b) under which a firm that cannot expand
defaults and the NPV threshold z3(d). The firm incurs temporary economic losses when it decides
not to default for low profitability x < x1(d) or when it decides not to expand for large profitability
x > x4(0). The firm is locally indifferent between delaying or exercising either option (e.g., installing
0 capacity) if z1(9) < z < x3(d). As per Figure 11, the firm makes an economic profit from delaying
if 23(0) < x < x4(). Losses may be conjunctural: the shareholders may accumulate economic
losses in the short or medium term, yet may expect a recovery [if 0 < z < x1(0)] or a downturn [if
x > x4(9)]. The shareholders will therefore delay until the economic losses are sufficient—namely,
when 0 < x < xo(x) or x > x5(d)—to justify making an irreversible decision. This logic is consistent
with classical real options reasoning (see, e.g., McDonald and Siegel, 1986), but here applied to a
more complex setup involving decisions on the expansion (77) and default times (7p) as well as on

the optimal scale expansion (§).
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D.1 Proof of Theorem 3

Problem reformulation. Because { is a random variable that is .%,,-measurable, we can re-write

the stochastic control problem (3) thanks to (10) as
TINTD
F([E’(g) = sup Ex,6|:/ e_rtW(Xt,d) dt + €_TTI(I)<X7—I,5)1(077.D)(7']):| .
TI,TD 0

Further, if we introduce 7 := 77 A 7p, we can express (3) as an optimal stopping problem:

F(z,0) =sup E.; [/ e (X, 8)dt + e T R(X,, 5)] . (46)
T 0

We recall the operator £ in (41). If § > §*, then ®(-,6) is C', so we can apply Dynkin’s formula

(see Bensoussan and Lions, 1982, Thm. 8.5, pp. 185-86) obtaining
E, e—TT<1>(XT,5)} = B(x,0) — Eyg / eTLLB( Xy, 0)dt.
0

for an arbitrary F-stopping time 7. The expression (42) readily obtains once we introduce the
functions y := F' — ® and Il := 7 — L®. For convenience of notations, we drop the dependence of

the thresholds and functions on the parameter § when there is no confusion.

Study of the function II. From Theorems 1 and 2,
(z) = rio +m(r — pave, =< .

We further note that Q(yg) = 0 to obtain
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The case x > x3 requires tedious calculations. By total differentiation of ¢(-) in (35), we obtain

¢ () = pa(x,03(x)) + @s(x, 63(z))d5(z),

3" (2) = puz(x,03(2)) + 2025(z, 03(2))05(2) + wss(, 53($))5§($)2 + ps(z, 05(x)) 55 (2).

It follows that

£6(2) =[rp(e,53(2)) — pra 35(2)) — 50%% e, B3(2))] — K[ rb(a) — pdi(e) — So*264 ()]

— pxps(x, 83(x))d5(x) — %02m2 20,5 (, 03(2))05(z) + @ss(x, 63(m))5§(a:)2 + p5(x, 63(1‘))5{{(56)}

We recall that [x3,00) is a subset of [x1,00), the continuation region for (5) given in Theorem 1.

Hence,

(e, 03(x)) — paes(z, 03(2)) — %02@“2%(% d3(x)) = rno + (r — p)ma\/03(x).

Consequently,

Lo(x) =rno + Q(v)mw/d3(x) — rkdz(z)
— uady(@) ps(a, Ba() — k] — 507028 () s, Bs()) — ]

1
— 502025 (2) | 20052, 8(2) + s, 03(2)) % () |.
It now obtains from the definition of d3(x) and (32) that

X i 2
Lo(2) =r1o + (r — pyma/Fa(@) — rhds(x) + ;”W (47)

Substituting (47) into the expression for IT yields

X T 2
(z) = —(r — pma(v/03(x) — V) +rk(d3(x) — 6) — ;ﬁﬂW, xr>ux3.  (48)
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To summarize, the function g can be written as

o +m(r — p)Ve, T < 21,

H(l‘) =130, 1‘1(5) <z <3,

5 (x,03(x))2
—(r — p)maz(\/03(x) — V6) + rk(3(z) — 6) — %02962%, x> x3.

Discontinuities arise because ®(-,d) is not C? at x1 and x3.

We now discuss the sign of II(-). The function II(-) is monotone increasing on (0,z).

obtains from (9b), (19) and (25) that

70 .
II(z) < —r) <0, ifz<a.
(x) Bo— (vBp—r) , ifxr<x

Further, it is immediate from (48) that

1 5)>
122 Pas(23,0)

s +) = 2 ©ss5(x3,0)

We want to study the behavior of II(-) as © — co. From the definition of d3(z), we have

k3 (z) = ”21\/53(;[;)3;[1 - (g;gi;)ﬂ
We have from (29) and (33) that

111—~p 2
Pus(w,03(2))* _ miy/0s(@) (1—73[)\:n—153(x)—5]1 )

wos(,03(z) r 1-[[2—- fyB]ﬁ )\3:_153(56)_%]1773

From (22)

1—vp 2
1—qp () 2
pas (2, 03(2))” 14/ 03() ( (53( ))

wos(x,03(x)) T 2 — ) (61(r))
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We recall that 6;(-) vanishes as x — oo while d3(-) goes to co. From (49) and (50) we conclude

I _ 2
(z) " — W, as T — 00. (51)

mxy/63() 2

Furthermore, we can infer from (49) that

d3() m
— . 2
o g @ T (52)
Combining the limits (51) and (52), we conclude
1(x) Q2)
3 T T g hoas T oo (53)

We know that

Q(2) S0 < 2Z 4.

From (53) we can now assert that % goes to a negative (resp., positive) constant if y4 > 2 (resp.,
0 < ya < 2). To simplicity, we exclude the case y4 = 2. We conclude that:
Lemma. The function II(x) is discontinuous at x1 and x3. It is negative on (0,x1) and vanishes

on (x1,x3). It is positive at the right of x3 and goes to —oo if 74 > 0 and to +00 if y4 < 2.

If 6 > 6 and v4 > 2, we define x4 > x3 as the point such that II(x4) = 0 and II(x) < 0 for all
x > x4. We thus established the pattern in Figure 11 except for the sign in z3 < z < x4 which we

could not prove.

Restriction 74 > 2. Given optionality, the value function x(-) in (42) must weakly exceed

x(x) =E,; /000 e "g(Xy) dt. (54)

The functional representation of (54) is the solution to the second-order ODE

Lx(x) =1(x), ford>o* (55)
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while the functional representation of (42) is the solution x to the VI (43).

Given the behavior of II(-) in (53), the function x(-) in (54) is finite iff
E, / e " XP dt < oco.
0

But we know that
x oo
Ez/ zf,’_TtXt2 dt = x2/ e~ Q@1 qs,
0 0

It follows that the condition (56) is satisfied iff Q(Z) > 0, ie., iff y4 > 2. If 0 < v4 < 2, the

solution to the VI (43) does not have the probabilistic interpretation (42).

Free-boundary problem. To solve the VI (43), we first conjecture a structure for the continu-

ation set, namely of the form (zg, z5) with free boundaries xy and x5 such that

O<zy <1 <24 <T5.

The corresponding FBP is

X(zo) = x(x5) =0, [value matching (x2)]

X (x0) = X' (x5) = 0. [smooth pasting (x2)]

As usual, we guess a solution to the ODE (58a) of the form

x(z) = A(z)z" + B(x)x?®  with  A'(z)2" + B'(2)2"® =0 for z € (z0, x5).

It follows from (58a) that

2 Il(z) 2 H(z)

Allz) = — d B'(z)= .
(@) (va —yp)o? aratt (=) (ya —yB)o? x¥ETL
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The smooth-fit conditions (58b) and (58c) imply that

By integrating (60), this is equivalent to defining xy and x5 as solutions to

() d¢ =0 and /x5

20 é"YB-H

II
@Ei d¢ = 0. (61)

We now state conditions to solve (61). We first assume that'’

T4 H T4 H
[0 e [ I g, -

We may then define the term

:cT:—inf{O<z<:c1

/Z " ;}g de > o}. (63)

We may have x; = 0; if it is not the case, we define 0 < z; < 1 as the solution to fj: (¢)¢B-1de = 0.

1(z)
2B+l

For a given u € (x1,21), the function v — f: dz is monotone decreasing on its domain of

definition [24, 00) from a strictly positive amount to —oo. This function therefore admits a unique

v(u) 13
/u gi i 21 de =0

We understand the mapping u +— v(u) as a function from (x;, 1) to [z4,00). By the chain’s rule,

V' (u) = CM(w) (v(u)>73+1.

u

root v(u) in [z4, 00), satisfying

It follows from u < z1 (resp. v(u) > z4) that II(u) < 0 (resp. II(v(u)) < 0); hence, the function

v(+) is monotone increasing.

""We could not specify the sign of II(z,8) in (23(5),z4(6)). We instead made an assumption in ?? that, in
probabilistic terms, allows an episode when the firm incurs an economic loss [II(X¢,0) < 0] as long as the present
value is positive when profitability (X;;¢ > 0) remains in the range (23(8),z4(8)). The condition II(z,§) > 0 for all
x € (23(8),24(0)) is stronger and subsumed into our assumption.
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We next define the function

v(u)
G(u) = /u 51;[/(13)1 d¢. (64)

We can compute:

G () = L) [(”(“))“‘“ - 1].

- U’YA+1 u

Because II(u) < 0 and v(u) > wu, it obtains that G'(u) > 0. Consequently, the function G(-) is
monotone increasing on its domain (x4, 21). For this function to have a unique root, it is necessary
and sufficient that

G(z1) <0 and G(x1)>0. (65)

If 4 = 0, then the first assumption G(a) < 0 is satisfied because G(0) = —oc.

The above ensures the existence and uniqueness of solutions xy and x5 to the equations (61). We

can then state the solution to the FBP (58a)—(58c) is continuously differentiable and given by (45).

Optimality. It remains to prove that

x(z) >0, z € (zo,25) (66a)

Lx(x) > T(x), z € (0,20) U (z5,00) (66Db)

for C*! solution  of the FBP (58a)—(58¢c) to solve the VI (43). Proving (66b) is immediate because

x(z) = 0 and II(x) < 0 in the stopping regions. To prove (66a) we consider subregions in turn:

a) (zo,z3). It follows from (58b)—(58¢) that

1
Lx(zo+) = *502$3X”($0+)-

Because Lx(zo+) = H(zg) < 0, it follows that x”(zo+) > 0. Therefore, for € sufficiently
small, x”(zo + tue) > 0 with t,u € (0,1). If we integrate u — x”(zo + tue) and then

t — x/(zo + te) on the interval [0, 1], then we obtain

1 1
X(zo +¢) = 52/ / tx" (w0 + tue) dtdu, &>0
0o Jo
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because of (58¢)—(58¢c). Consequently, x(zo+) > 0. Necessarily, the function x(-) has positive
local maxima in (:L'(), :U5), possibly a maximum. At a local maximum z, we necessarily have
Lx(z) > 0. Because Lx(z) = II(z) < 0in (xg, x3), it follows from the maximum principle that
there is no local maximum in (zg,x3). Therefore, x(-) increases on (zg,z3) taking positive
values; in particular, x(z3) > 0.

b) In the case (1:4, x5), we follow a reasoning similar to a). We have

1 1
x(zs5 —¢) = 52/ / tx" (x5 — tue) dtdu, &> 0.
o Jo

We proceed similarly obtaining that x(xs—) > 0. Because Lx(z) =II(z) < 0 on (x4, z5), it
follows from the maximum principle that there is no local maximum in (x4, x5). Consequently,
X(+) decreases on (x4, x5) taking positive values and x(z4) > 0.

¢) The function x(-) on (z3,z4) solves Lx(z) = II(z) with boundary conditions x(z3) > 0 and

x(:U4) > (0. We assume that

the solution on (z3,x4) of LT'(z) = II(x) with boundary

conditions I'(z3) = 0 and T'(z4) = 0 is strictly positive. (67)

It is immediate that x(z) > I'(z) on (2s3,z4) and, under the assumption (67), that x(z) > 0

on (933, 1‘4) .

We conclude:

Theorem (Solution of the VI for 6 > §* for y4 > 2.). Assume that I1(-) satisfies (62). We define
xt and G(-) in (63) and (64) respectively. We make the assumptions (65) and (67). Then, xo and
x5 solve equation (61) uniquely and satisfy (57). Besides, the function x given in (45) is a C!
solution of the FBP (58a)—(58¢c) and of the VI (43).

We again omit the verification theorem, leveraging on the known connection between the solution

to a VI and the value function of optimal stopping (see Bensoussan and Lions, 1982).
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E Value of debt

The functional representation of the function D(-) defined in (4) is that of the solution D(-) to the

Dirichlet problem:

20V/8
D() = (1~ )= . (68a)
D(z) = B — BizV xo < x < T, (68Db)
LD(z) = Bo — Pra\/d3(x) T > 5, (68¢)
D
lim (23:) = constant > 0 (68d)
ztoo X
We assume continuity at x¢ and x5.
We conjecture the solutions
D(z) = a(x)z7* + b(x)2"? with a'(x)x’4 + b (x)2"B =0 for (68b)
D(z) = ax(x)x™ + by(z)z"? with al (z)x? + V) (z)2"B =0 for (68c)
It follows respectively from (68b) and (68c) that
1N 2 Bo — BrzV/s N 2 Bo — PrzV/s
a(r) = — b(z) =
(ya —p)o?  zratl (ya —p)o?  avetl
o () = 2 Bo — Brz/03(x) W(z) = 2 Bo — Pz \/d3(x)
N (ya —7p)o®  arat! . (ya—7p)o®  avstl
It follows by integration and from continuity at x5 that
2 * Bo — B124/0,
ax(z) = / fo= Biavs(2) g, T > x5,
(ya —vB)o? 1At
B 2 ¥ By — P12V > Bo — P124/03(2)
(I(ZU) = W |:/ Wdz + . At dz y o < T < Ty
2 * Bo — ﬁ12\f
b(x) = b(xg) + To < x < T5,
( ) ( 0) (7A _7B) B+1 0 5
2 " By — 12V Bo — Br2/63(2)
be(z) = b(xo) + (A = 750 [/ pE] dz +/ pE] dz x> xs.
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We know that

oo _

2

r—p

(va —vB)o

5 [;v”B dz + 274 / dz]

0 2¥vB+1 27at+1

Therefore, by continuity at zg, it must be that

b(zo) =

The expression for D(x,d) obtains:

(1—a)2,

G| o

D(z,6) = +a7A [
T

(ya—vB) I 0

+am 7

2 / (1— a)zf
(va —vB)o? 27+l
x < 1'0(5),
el o 7 B,
x z 24/ 63(
e P ONE ] () < z < 25()
o (1 woé)f;[d + 2B fﬂﬁfw Bo Wilffdz
@ fo- 5;24153 dz+x7Af°°60 iiiif?’ d] x > x5(0)
(69)
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