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a b s t r a c t

We consider the response of a one-dimensional system with friction. Shaw (1986) introduced the set
up of different coefficients for the static and dynamic phases (also called stick and slip phases). He
constructs a step by step solution, corresponding to an harmonic forcing. In this paper, we show that
the theory of variational inequalities (V.I.) provides an elegant and synthetic approach to obtain the
existence and uniqueness of the solution, avoiding the step by step construction. We then apply the
theory to a real structure with real data and show that the model qualitatively agrees with the real
data. In our case, the forcing motion comes from dilatation, due to temperature.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The study of one dimensional models of dry friction (also called
Coulomb friction) has received a significant interest over the last
decades [1–6]. A typical example is a solid lying on a motionless
surface. In response to forces, the dynamics of the solid has two
separate phases. One is dynamic (also called slip) in which the
solid moves and a dynamic friction force opposes the motion. The
other phase is static (also called stick) in which the solid remains
motionless while being subjected to a static friction force that is
necessary for equilibrium. The physics of dry friction is presented
in [7,8]. The static phase plays an important role on the prediction
of the system behavior (e.g. failure) and thus it has to be carefully
analyzed.

The case when external forces are harmonic has been inves-
tigated with particular attention. Two classes of techniques have
been developed in the literature. In dimension one or two, exact
methods have been considered. Den Hartog [1] has proposed an
exact solution of the dynamic phase for a single degree of free-
dom system where the coefficients of static and dynamic friction
are equal. Shaw [2] extended Den Hartog’s results with a different
approach to the case where the coefficients of static and dynamic
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friction are not identical and provided a stability analysis of the
periodic motion. Yeh [4] extended the method to two degrees
of freedom with one dry friction damper. In higher dimensions,
an approximation method called the incremental harmonic balance
(IHB) method, has been developed by Lau, Cheung & Wu [5,6] and
Pierre, Ferri & Dowel [3]. This method is efficient when dealing
with many degrees of freedom and many dry friction dampers.
The IHB method does provide good results on amplitude and
phase for a broad class of stick/slip motions but it does not give
detailed information about stick/slip phases.

In this paper, we study a one-dimensional problem, with
general forcing term. Denoting the actual displacement of the
oscillator by x, we consider the initial value problem

mẍ(t) + F(ẋ(t)) = b(x(t), t), t > 0 (1)

with m > 0 is a constant, the initial displacement and velocity

x(0) = x0, ẋ(0) = 0. (2)

On the right hand side of Eq. (1), b(x(t), t) represents the forces
that are not related to dry friction; here b is a locally Lipschitz
function with at most linear growth. The considered system is
a one degree of freedom oscillator. Thus, although variable x
is one-dimensional, the phase-space of the dynamical system is
two-dimensional. In our application, we will take

b(x, t) ≜ K (βT (t) − x) (3)

with K , β constants and T is a temporal function which describes
the evolution of the temperature. The function F(ẋ(t)) is not easy
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to describe. In a static phase ẋ(t) = 0 on an interval, which
implies ẍ(t) = 0 on the same interval and therefore from (1)

F(ẋ(t)) = b(x(t), t). (4)

However, this is possible only when |b(x(t), t)| ≤ fs, where fs
is the static friction coefficient.2 In a dynamic phase ẋ(t) ̸= 0
on an interval, although it can vanish at isolated points. We
cannot simply use Eq. (1) to obtain F(ẋ(t)). We need an additional
information, provided by Coulomb’s law. We write, formally

F(ẋ(t)) = fdsign(ẋ(t)). (5)

Since we expect ẋ(t) to vanish only at isolated points, sign(ẋ(t))
is defined almost everywhere, and therefore, we can use this
expression in the second order differential equation (1), with an
equality valid a.e. instead of for any t . The difficulty is that we
cannot write the equation a priori. The step by step construction
of the solution is a way to get out of this dilemma. A more elegant
way is to use variational inequalities (V.I.) [9]. A V.I. is the fol-
lowing mathematical problem: find a continuously differentiable
function x(.) that satisfies

∀t > 0, ∀ϕ ∈ R, (b(x(t), t)−mẍ(t))(ϕ−ẋ(t))+fd|ẋ(t)| ≤ fd|ϕ|. (VI)

If we apply the V.I. in a static phase, when ẋ(t) = 0 on an interval,
we get immediately that |b(x(t), t)| ≤ fd. This cannot apply to the
case considered by Shaw in which in a static phase |b(x(t), t)| ≤ fs
with a coefficient fs > fd. We will see how to solve this difficulty
in the next section.

Remark 1. We can change b(x(t), t) into b(x(t), ẋ(t), t) on the
right hand side of Eq. (1), provided the dependence in ẋ(t) is
smooth. For instance, we have in mind forces of the form b(x(t),
ẋ(t), t) = b(x(t), t)−αẋ(t). To simplify we shall omit this situation.

Remark 2. Our approach lies in the framework of Den Hartog [1]
and Shaw [2]. We want to emphasize the interest of V.I. in
providing a synthetic and rigorous mathematical analysis of the
problem. It is of course known that V.I. are an important tool for
nonlinear problems of mechanics, like elastic–plastic systems and
contact friction models based on Signorini’s Law and Coulomb’s
Law, see Lebon [10] and references therein. Another mathemat-
ical theory, which is widely used, is the theory of differential
inclusions; see Manuel Marques [11], Bastien and Schatzman [12].
This theory is more general than that of V.I. but presents the
difficulty of obtaining non unique solutions. Since the systems,
which are considered are nonlinear dynamical systems, one finds
in the literature many works related to the behavior of non-
smooth dynamical systems, see di Bernado, Budd, [13] including
the possibility of chaotic behavior, see Licsko [14], and that of
‘‘shake down’’, see Klarbling [15]. These aspects of non-smooth
dynamical systems are not directly related to our work. We prefer
V.I. to differential inclusions, because we can obtain uniqueness.
The closest work related to ours on numerical simulation is [16].
The work of Lebon is directly on V.I. but in a more complex set up,
in dimension 2, with both Signorini and Coulomb law acting. This
leads to a system of coupled V.I., for which the author studies spe-
cific algorithms. In our work we remain in the one-dimensional
classical set up of Den Hartog, Shaw with the sequence of static-
dynamic phases. We make an extensive comparison of the use of
V.I. and of the step-by-step construction of the trajectory, which
in fact requires splitting the dynamic phase into sub phases.

In this paper, we propose a two-phase model for Eqs. (1)–(2)
with fd ≤ fs and obtain a solution which is C1. The two phases are
called static and dynamic phases. The dynamic phase is captured
by a V.I. In the case fd = fs, the VI captures both phases.

2 Since fs has to be compared with the magnitude of |b(x(t), t)|, it has the

same dimension as |b(x(t), t)| and thus can be seen as a force like-term.

2. Model description and mathematical theory

2.1. Description of dry friction: static and dynamic phases

In presence of dry friction, the physical description of the
dynamic and static phases is as follows.

• The phase of x(t) at time t is static when

ẋ(t) = 0 and |b(x(t), t)| ≤ fs.

It is important to emphasize that a static phase corresponds
to ẋ(t) = 0 on a time interval of positive Lebesgue measure
and thus ẍ(t) = 0 on the same interval. In this case, the
friction force takes the value

F(ẋ(t)) = b(x(t), t)

that is necessary for equilibrium.

• Otherwise, the phase of x(t) at time t is dynamic when

ẋ(t) = 0 and |b(x(t), t)| > fs or ẋ(t) ̸= 0.

When ẋ(t) ̸= 0, the friction force takes the value

F(ẋ(t)) = sign(ẋ(t))fd.

It is important to emphasize that ẋ(t) = 0 and |b(x(t), t)| >
fs happen on a negligible (isolated points) time set.

The transition from a static phase to a dynamic phase occurs as
soon as

|b(x(t), t)| > fs.

Conversely, from a dynamic phase the system enters into a static
phase as soon as

ẋ(t) = 0 and |b(x(t), t)| ≤ fs.

Below, we make precise the mathematical formulation and obtain
a solution which is C1.

2.2. Mathematical theory: an extended variational inequality (E.V.
I.) formulation for the two phase model

We first assume that fs > fd. We will discuss the case fs = fd at
the end of this section in Remark 4. We want to define rigorously
a function x(t), which is C1 and satisfies the set of conditions
(static/dynamic phase, transition from dynamic to static phase
and vice versa.) (1), (2), (3), (4) and (5). We define it, as follows:
we look for a function x ∈ C1(R+). We associate to this function
the domain in R

+ defined by

Ox(.) ≜ {t > 0, |b(x(t), t)| > fs} ∪ {t > 0, |ẋ(t)| > 0}. (6)

This is an open domain in R
+. In this domain x(t) is the solution

of the variational inequality

∀ϕ ∈ R, ∀ a.e. t ∈ Ox(.), (b(x(t), t) − mẍ(t))(ϕ − ẋ(t))

+ fd|ẋ(t)| ≤ fd|ϕ|. (7)

We need to add initial conditions x(0) and ẋ(0). We assume that
the system starts from a static phase,

|b(x(0), 0)| ≤ fs and ẋ(0) = 0. (8)

We claim that the conditions (6), (7) and the initial condition (8)
define a unique function x(t) ∈ C1(R+). Note that the comple-
ment of Ox(.) is the closed subset of R+

COx(.) ≜ {t ≥ 0, |b(x(t), t)| ≤ fs} ∩ {t ≥ 0, ẋ(t) = 0} (9)

and the boundary of Ox(.) is

∂Ox(.) ≜ {t ≥ 0, |b(x(t), t)| = fs} ∩ {t ≥ 0, ẋ(t) = 0}. (10)

We first state the first lemma.

2
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Lemma 1. In Ox(.), we have ẋ ̸= 0 a.e.

Proof. Let t0 ∈ Ox(.) such that ẋ(t0) = 0, we cannot find ϵ > 0

such that [t0, t0 + ϵ) ⊂ Ox(.) and ∀t ∈ [t0, t0 + ϵ), ẋ(t) = 0.

Indeed, if such ϵ exists, then ∀t ∈ [t0, t0 + ϵ), |b(x(t), t)| > fs.

Moreover ∀t ∈ (t0, t0 + ϵ), ẍ(t) = 0 and from the V.I. (7) it

follows ∀ϕ ∈ R, ∀t ∈ (t0, t0 + ϵ), b(x(t), t)ϕ ≤ fd|ϕ| which

implies ∀t ∈ (t0, t0 + ϵ), |b(x(t), t)| ≤ fs. Thus we obtain a

contradiction. Similarly, we cannot have (t0 − ϵ, t0] ⊂ Ox(.) and

∀t ∈ (t0 − ϵ, t0], ẋ(t) = 0. So t0 is an isolated point in Ox(.), which

implies the result. □

It follows that sign (ẋ(t)) is defined a.e. Therefore, we can

replace the V.I. (7), by

∀a.e. t ∈ Ox(.), mẍ(t) = b(x(t), t) − fdsignẋ(t). (11)

In this context, the open set Ox(.) is called the dynamic phase

of the trajectory x(t). Its complement is the static phase. The

existence and uniqueness of a solution of the E.V.I. formulation

(6), (7) and (8) are shown in the theorem below.

Theorem 1. Assume fs > fd. Then, there exists one and only one

solution of (6), (7) and (8).

Proof. We first prove the existence. We are going to define a

sequence {τj, xj}j≥0. We begin with τ0 = 0 and x0 = x(0) the

initial condition. From (8), |b(x0, τ0)| ≤ fs and ẋ(τ0) = 0. More

generally, suppose we have a pair τj, xj with |b(xj, τj)| ≤ fs and

ẋ(τj) = 0. We then define τ
j+ 1

2
≜ inf{t > τj, |b(x(t), t)| > fs}.

We may have τj = τ
j+ 1

2
. If τ

j+ 1
2
> τj then we define ∀t ∈

[τj, τj+ 1
2
], x(t) = xj and ẋ(t) = 0. We consider next the variational

inequality

∀ϕ ∈ R, ∀a.e.t > τ
j+ 1

2
, (b(x(t), t)−mẍ(t))(ϕ−ẋ(t))+fd|ẋ(t)| ≤ fd|ϕ|

(12)

with x(τ
j+ 1

2
) = xj and ẋ(τ

j+ 1
2
) = 0. This class of V.I. is standard

and the theory tells that such a problem has one and one solution

in C1 on the interval (τ 1
2
,∞). We shall not give a proof of this

general result but discuss the properties of the solution in the

next section. We then define τj+1 by the condition

τj+1 ≜ inf{t > τ
j+ 1

2
, ẋ(t) = 0 and |b(x(t), t)| ≤ fs}.

We have τj+1 > τ
j+ 1

2
. It is justified in 4 steps.

Step 1.

Using the continuity of the function t ↦→ b(x(t), t) and the fact

that |b(xj, τj+ 1
2
)| = fs, there exists a δ > 0 such that

∀t ∈ (τ
j+ 1

2
, τ

j+ 1
2

+ δ), |b(x(t), t)| ≥
fs + fd

2
> fd. (13)

Step 2.

It is not possible to find a subinterval I ⊂ (τ
j+ 1

2
, τ

j+ 1
2

+ δ)

of positive Lebesgue measure such that ẋ(t) = 0. For the sake

of contradiction, suppose there exists such an interval I where

∀t ∈ I , ẋ(t) = 0. Then we must have ∀t ∈ I , ẍ(t) = 0 and as a

consequence of the V.I. (12), we have ∀t ∈ I, |b(x(t), t)| ≤ fd. This

is a contradiction with (13).

As a consequence, zeros of ẋ (if any) are isolated points on

the interval (τ
j+ 1

2
, τ

j+ 1
2

+ δ). This implies that the function t ↦→

sign(ẋ(t)) is defined a.e. on (τ
j+ 1

2
, τ

j+ 1
2

+ δ).

Step 3.

So, outside of a set of measure 0, ẋ is either positive or

negative. Therefore, on the interval (τ
j+ 1

2
, τ

j+ 1
2

+ δ), the V.I. (12)

is equivalent to mẍ(t) = b(x(t), t) − fdsign(ẋ(t)).

Step 4.

Thus from (13), if b(x(t), t) ≥
fs+fd
2

on (τ
j+ 1

2
, τ

j+ 1
2

+ δ) then on

the same interval ẍ(t) ≥
fs−fd
2m

> 0. In turn, it gives ẋ(τ
j+ 1

2
+ h) ≥

h
fs−fd
2m

for any h small enough and ∀t ∈ (τ
j+ 1

2
, τ

j+ 1
2

+ δ), ẋ(t) > 0.

In this case, sign(ẋ(t)) = 1.

Similarly, if b(x(t), t) ≤ −
fs+fd
2

on (τ
j+ 1

2
, τ

j+ 1
2

+ δ) then on the

same interval ẍ(t) ≤ −
fs−fd
2m

< 0. ẋ(τ
j+ 1

2
+ h) ≤ −h

fs−fd
2m

provided

that h is small enough and ∀t ∈ (τ
j+ 1

2
, τ

j+ 1
2

+ δ), ẋ(t) < 0. In

this case, sign(ẋ(t)) = −1. All in all, this proves τj+1 > τ
j+ 1

2
.

Furthermore, next we check that the zeros of ẋ, if any, are isolated

on the interval (τ
j+ 1

2
, τj+1). Consider t⋆ in this interval such that

x(t⋆) = 0. Since t⋆ < τj+1, necessarily |b(x(t⋆), t⋆))| > fs. But

then, as in Lemma 1, there cannot be a small interval around t⋆ on

which ẋ(t) vanishes. This implies that the function t ↦→ sign(ẋ(t))

is defined a.e. on (τ
j+ 1

2
, τj+1). We therefore can replace the VI by

∀a.e.t ∈ (τ
j+ 1

2
, τj+1)

{

mẍ(t) + fdsign(ẋ(t)) = b(x(t), t),

x(τ
j+ 1

2
) = xj, ẋ(τ

j+ 1
2
) = 0.

(14)

It is possible to have τj+1 = ∞. If τj+1 < ∞ we can set xj+1 ≜

x(τj+1). In this way, we have defined the value xj+1, τj+1 starting

from xj, τj. We have τj+1 > τj and also the sequence τj → ∞ as

j → ∞. For the sake of contradiction, suppose τj → θ < ∞ and

so does the sequence τ
j+ 1

2
. From Eq. (14), with t = τ

j+ 1
2
, we must

have

mẍ(τ
j+ 1

2
+ 0) + fdsign(ẋ(τj+ 1

2
+ 0)) = b(x(τ

j+ 1
2
), τ

j+ 1
2
),

and thus

m|ẍ(τ
j+ 1

2
+ 0)| = fs − fd > 0.

But ẍ(τj+1 + 0) = 0. So the sequence τj cannot converge toward a

finite value as it would lead to a contradiction. We have defined

a function x(t) which is C1 and satisfies (6)–(7)–(8). It is the only

one. Indeed, if x(t) is a solution of (6)–(7)–(8), then we define

τ 1
2
, in which the trajectory x(t) enters in Ox(.). The V.I. holds. This

allows us to define τ1, the time at which the trajectory leaves

Ox(.) to enter the static phase. Continuing we obtain the sequence

of times τj defined for the existence. So the trajectory x(t) coin-

cides with that constructed for the existence. This completes the

proof. □

Remark 3. In the proof of Theorem 1, we would like to emphasize

that the V.I. of type (14) on (τ
j+ 1

2
, τj+1) is equivalent to (14)

together with the fact that the zeros of ẋ(t) are isolated points.

But one needs to define τj+1 which depends on the equation. We

cannot just write Eq. (14) after τ
j+ 1

2
because we cannot define

the function sign(ẋ(t)) without prior knowledge that the zeros of

ẋ(t) are isolated. We need to define a well posed problem, valid

for any time posterior to τ
j+ 1

2
. Eq. (14) cannot be used. The V.I.

is an elegant way to fix this difficulty. The only alternative is to

construct the trajectory in the dynamic phase step by step, as we

are going to do in the next section. The V.I. is a synthetic way to

define the solution, without a lengthy construction. As we shall

see, when fs = fd, it will also incorporate the static phase, and

thus avoid any sequence of intervals.

3
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Remark 4. The mathematical formulation of the E.V.I. above is
equivalent to a V.I. when f ≜ fs = fd. Indeed, assume y(.) is a C1

function and satisfies

∀ϕ ∈ R, ∀ a.e. t ≥ 0, (b(y(t), t)−mÿ(t))(ϕ− ẏ(t))+ f |ẏ(t)| ≤ f |ϕ|

(15)

where the initial conditions are the same as in (8) y(0) = x(0)
and ẏ(0) = 0 (|b(y(0), 0)| ≤ f and ẏ(0) = 0). To this function, we
can define the open domain Oy(.) ≜ {t > 0, |b(y(t), t)| > f }∪{t >
0, |ẏ(t)| > 0} in which the V.I. is satisfied. Thus, y(.) satisfies the
notion of E.V.I. in (6)–(7)–(8). We now check the reverse. Suppose
x(.) is C1 and satisfies (6)–(7)–(8). We claim that the V.I. is also
satisfied on Int(COx(.)), the interior of COx(.). If Int(COx(.)) is empty
then the V.I. holds almost everywhere. Otherwise, Int(COx(.)) is
an open set of positive measure on which we have |b(x(t), t)| ≤
f , ẋ(t) = 0 and ẍ(t) = 0. This means that the V.I. is also
satisfied on Int(COx(.)) and then almost everywhere. Thus x(.) is a
C1 function satisfying (15).

2.3. A step by step method for the dynamic phase as an alternative
to the V. I

2.3.1. A general formulation for the sub phases of the dynamic phase
We now check that we can also define a sequence of sub

phases of the dynamic phase, in which the solution satisfies a
standard differential equation. This procedure is an alternative to
the V.I. but is much less synthetic. The first dynamic sub-phase
starts at τ 1

2
≜ inf{t > τ0, |b(x(t), t)| > fs} where we recall that

τ0 ≜ 0. Define

x00 ≜ x(0), τ 00 ≜ τ 1
2
,

thus

|b(x00, τ
0
0 )| = fs.

We set ϵ00 ≜ sign(b(x00, τ
0
0 )) and consider the differential equation

{

mẍ(t) = b(x(t), t) − ϵ00 fd, t > τ 00 ,

x(τ 00 ) = x00, ẋ(τ 00 ) = 0.
(16)

Then, we define

τ 10 ≜ inf{t > τ 00 , ẋ(t) = 0} and x10 ≜ x(τ 10 ).

• If |b(x10, τ
1
0 )| ≤ fs then the dynamic phase ends here and a

new static phase starts. We set

τ1 ≜ τ 10 and x1 ≜ x10.

• Otherwise |b(x10, τ
1
0 )| > fs and we set

ϵ10 ≜ sign(b(x10, τ
1
0 ))

and again consider the differential equation
{

mẍ(t) = b(x(t), t) − ϵ10 fd, t > τ 10 ,

x(τ 10 ) = x10, ẋ(τ 10 ) = 0
(17)

and introduce

τ 20 ≜ inf{t > τ 10 , ẋ(t) = 0}.

We can repeat the same procedure several times and thus
define a sequence τ k0 , x

k
0, ϵ

k
0 for k ≤ k(0) where

k(0) ≜ inf{k ≥ 1, |b(xk0, τ
k
0 )| ≤ fs}.

If k(0) = ∞ then x remains in a dynamic phase forever
otherwise a new static phase starts at

τ1 ≜ τ
k(0)
0 and x1 ≜ x

k(0)
0 .

The dynamic phase on the interval (τ 1
2
, τ1) is thus divided

into dynamic sub-phases (τ k0 , τ
k+1
0 ) with

τ0 ≤ τ 1
2

= τ 00 < τ 10 < · · · < τ
k(0)
0 = τ1.

Similarly, if for any j ≥ 1 we know xj and τj with |b(xj, τj)| ≤ fs.

The first dynamic sub phase starts at

τ 0j ≜ τ
j+ 1

2
, x0j ≜ xj, where |b(x0j , τ

0
j )| = fs.

For each k ≥ 0, to define the dynamic sub phase starting at τ kj ,

we set

ϵkj ≜ sign(b(xkj , τ
k
j ))

and consider the differential equation
{

mẍ(t) = b(x(t), t) − ϵkj fd, t > τ kj ,

x(τ kj ) = xkj , ẋ(τ kj ) = 0.
(18)

Then, we uniquely define τ k+1
j by

τ k+1
j ≜ inf{t > τ kj , ẋ(t) = 0}.

This procedure defines the dynamic sub phase (τ kj , τ
k+1
j ). On this

subinterval ϵkj = sign(ẋ(t)), so (18) is also the equation

mẍ(t) = b(x(t), t) − sign(ẋ(t))fd. (19)

We set xk+1
j ≜ x(τ k+1

j ) and we proceed as follows:

• if |b(xk+1
j , τ k+1

j )| ≤ fs then we start a new static phase and

we set

τj+1 ≜ τ k+1
j and xj+1 ≜ xk+1

j .

• on the other hand, if |b(xk+1
j , τ k+1

j )| > fs then we start a new

dynamic sub phase on the interval (τ k+1
j , τ k+2

j ).

We can define

k(j) ≜ inf{k ≥ 1, |b(xkj , τ
k
j )| ≤ fs},

thus the dynamic phase on the interval (τ
j+ 1

2
, τj+1) is divided into

dynamic sub-phases (τ kj , τ
k+1
j ) with

τj ≤ τ
j+ 1

2
= τ 0j < τ 1j < · · · < τ

k(j)
j = τj+1.

This procedure gives explicitly the solution of the V.I. We will

see in the next section that, when considering the case b(x, t) =

K (βT (t) − x), we have the additional advantage that the solution

is explicit in a dynamic sub phase.

2.3.2. Formula for x(t) on a dynamic sub phase when b(x, t) =
K (βT (t) − x)

When b(x, t) = K (βT (t)−x), the differential equation (18) has

an explicit solution. For t ∈ [τ kj , τ
k+1
j ),

x(t) = xkj cosω
(

t − τ kj
)

+

∫ t

τ k
j

sinω(t − s)
KβT (s) − ϵkj fd

mω
ds (20)

and τ k+1
j is defined by the equation

xkj sinω
(

τ k+1
j − τ kj

)

=

∫ τ k+1
j

τ k
j

cosω(τ k+1
j − s)

KβT (s) − ϵkj fd

mω
ds.

(21)

4
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We then set

xk+1
j ≜ x(τ k+1

j ) = xkj cosω
(

τ k+1
j − τ kj

)

+

∫ τ k+1
j

τ k
j

sinω(τ k+1
j − s)

×
KβT (s) − ϵkj fd

mω
ds. (22)

2.3.3. Construction of the sequence {xj, τj} and the trajectory {x(t),
t ≥ 0} when b(x, t) = K (βT (t) − x)

The above discussion allows to define an algorithm to con-

struct the trajectory x(t) of initial problems (1) and (2) with b(x, t)

given in (3). We construct the sequence {xj, τj, j ≥ 0} where

|b(xj, τj)| ≤ fs.

When j = 0, it corresponds to the initial condition x0 ≜ x(0) and

τ0 ≜ 0. For each j ≥ 0, we first compute

τ
j+ 1

2
≜ inf{t ≥ τj, |b(xj, t)| > fs}

and then we define a subsequence with respect to k.

• Define

τ 0j ≜ τ
j+ 1

2
, x0j ≜ xj, ϵ0j ≜ sign(b(x0j , τ

0
j )).

• For each k ≥ 0, using ϵkj , define τ
k+1
j using (21) and xk+1

j

using (22).

• If

|b(xk+1
j , τ k+1

j )| ≤ fs

then

τj+1 ≜ τ kj and xj+1 ≜ xk+1
j

otherwise we define

ϵk+1
j ≜ sign(b(xk+1

j , τ k+1
j ))

and repeat the procedure with the definition of τ k+2
j , xk+2

j .

The subinterval (τj, τj+ 1
2
) is a static or stick subphase, and the

subinterval (τ
j+ 1

2
, τj+1) is a dynamic or slip phase, itself subdi-

vided into dynamic subphases. The trajectory x(t) is completely

defined by this cascade of phases and subphases.

2.3.4. Quasistatic approximation when b(x, t) = K (βT (t) − x), T (t)
slow

Since Eq. (21) is transcendental, we need also an algorithm to

solve it. We are going to state an approximation which simplifies

considerably the calculations. This approximation is called qua-

sistatic which means that the excitation variation is slow enough

to be neglected during any dynamic phase. From then on, an

interesting consequence of this approximation is that there are no

subphases in the dynamic phases. We will see below that, with

the definition of sub phases of Section 2.3.1. in mind, one has x1j
and τ 1j satisfy

|K (βT (τ 1j ) − x1j )| ≤ fs.

So there is only one sequence τj, xj and once τ
j+ 1

2
is defined, the

equation for τ 1j becomes simply an equation for τj+1 which is

xj sinω
(

τj+1 − τj
)

=

∫ τj+1

τj

cosω(τj+1 − s)
KβT (s) − ϵjfd

mω
ds. (23)

with

ϵj ≜ sign(βT (τ
j+ 1

2
) − xj).

Next finding xj+1 uses Eq. (22) as follows:

xj+1 ≜ xj cosω
(

τj+1 − τ
j+ 1

2

)

+

∫ τj+1

τ
j+ 1

2

sinω(τj+1 − s)

×
KβT (s) − ϵjfd

mω
ds. (24)

The quasistatic approximation consists in making the approxima-
tion

∀s ∈ (τ
j+ 1

2
, τj+1), T (s) = T (τ

j+ 1
2
).

We will use the notation T
j+ 1

2
≜ T (τ

j+ 1
2
). From (24), we obtain

sin(ω(τj+1 − τ
j+ 1

2
)) = 0

which implies

τj+1 = τ
j+ 1

2
+
π

ω
.

We turn to (24) which simplifies considerably using

|βT
j+ 1

2
− xj| =

fs

K
, (25)

and we obtain

xj+1 = xj + 2ϵj
fs − fd

K
. (26)

Of course, we need to find

τ
j+ 1

2
= inf{t > τj, |βT (t) − xj| >

fs

K
}

and then define

τj+1 = τ
j+ 1

2
+
π

ω
.

Also

ϵj+1 ≜ sign(βT
j+ 3

2
− xj+1).

When we are in a static phase at the value xj, starting at τj, we
can interpret the condition (25) as a condition that the future
temperature must satisfy to initiate a new dynamic phase.

Remark 5. When f ≜ fs = fd, we have seen in Remark 4 that the
problem is simply

∀ϕ ∈ R, (K (βT (t) − x(t)) − mẍ(t))(ẋ(t) − ϕ) + f |ẋ(t)| ≤ f |ϕ| (27)

with

x(0) = x0, ẋ(0) = 0.

In this case, we also see from the approximation formula (26) that
xj is constant. So the system enters in the static mode at the same
point. Since in our assumption ẋ(0) = 0 and x(0) = x0, we have
xj = x0. This is only an approximation. The alternance of static
and dynamic modes follows the sequence of times, τj,τj+ 1

2
, such

that

τ
j+ 1

2
= inf

{

t > τj | T (t) /∈

[

x0

β
−

f

βK
,
x0

β
+

f

βK

]}

(28)

τj+1 − τ
j+ 1

2
=
π

ω
with τ0 = 0. What is not an approximation is the following
discussion. In a static mode τj ≤ t ≤τ

j+ 1
2
, we have

|βT (t) − x(t)| ≤
f

K
(29)

and in a dynamic mode, τ
j+ 1

2
≤ t ≤ τj+1 we have the equation

mẍ(t) = K (βT (t) − x(t)) − ϵjfs (30)

and x(t) is C1, with ẍ(t) locally bounded.

5
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3. Simulations: a step by step Euler method for the discrete

version of the two-phase model

Let T > 0,N ∈ N
⋆ and {tn}

N
n=0 a family of time which dis-

cretizes [0, T ] such that tn ≜ nh where h ≜
T
N
. We will construct

a sequence {(Xh
tn
, Ẋh

tn
)}Nn=0 where for each n, (Xh

tn
, Ẋh

tn
) is meant to

approximate (x(tn), ẋ(tn)). For each n, from the state (Xh
tn
, Ẋh

tn
) at

time tn, our procedure below defines a unique (Xh
tn+1

, Ẋh
tn+1

) at the

following time tn+1.

3.1. Case fd < fs

When fd and fs are not identical, the dynamics of x(t) is
governed by the two-phase model for which the dynamic phase
remains governed by (VI) but not the static phase. The finite
difference method becomes

Xh
t0

≜ x0, Ẋ
h
t0

≜ 0

then for n = 0, 1, . . . ,N − 1

Xh
tn+1

≜ Xh
tn

+ hẊh
tn

and Ẋh
tn+1

is defined using a discrete version of a two-phase

model:

• if
⏐

⏐

⏐

⏐

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

⏐

⏐

⏐

⏐

≤
h

m
fs

then

Ẋh
tn+1

≜ 0.

• if
⏐

⏐

⏐

⏐

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

⏐

⏐

⏐

⏐

>
h

m
fs

then Ẋh
tn+1

is defined as the unique solution of the discrete

V.I.

∀ϕ ∈ R,

(

b(Xh
tn
, tn) − m

(

Ẋh
tn+1

− Ẋh
tn

h

))

(ϕ − Ẋh
tn+1

)

+ fd|Ẋ
h
tn+1

| ≤ fd|ϕ|.

which means

Ẋh
tn+1

≜ Ẋh
tn

+
h

m

(

b(Xh
tn
, tn) − fdϵ

h
tn

)

,

ϵhtn ≜ sign

(

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

)

.

3.2. Case fd = fs

When f ≜ fd = fs, the dynamics of x(t) is governed by the
variational inequality (VI). Thus a finite difference method leads
to a discrete V.I. as follows:

Xh
t0

≜ x0, Ẋ
h
t0

≜ 0

then for n = 0, 1, . . . ,N − 1

Xh
tn+1

≜ Xh
tn

+ hẊh
tn

and Ẋh
tn+1

is defined as the unique solution of the discrete V.I.

∀ϕ ∈ R,

(

b(Xh
tn
, tn) − m

(

Ẋh
tn+1

− Ẋh
tn

h

))

(ϕ − Ẋh
tn+1

)

+ f |Ẋh
tn+1

| ≤ f |ϕ|

which is equivalent to defining Ẋh
tn+1

using a discrete version of a

two-phase model in this way:

• if
⏐

⏐

⏐

⏐

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

⏐

⏐

⏐

⏐

≤
h

m
f

then

Ẋh
tn+1

≜ 0.

• if
⏐

⏐

⏐

⏐

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

⏐

⏐

⏐

⏐

>
h

m
f

then

Ẋh
tn+1

≜ Ẋh
tn

+
h

m

(

b(Xh
tn
, tn) − f ϵhtn

)

, where ϵhtn

≜ sign

(

Ẋh
tn

+
h

m
b(Xh

tn
, tn)

)

.

Remark 6. When f ≜ fd = fs i.e. when globally the dynamics
is governed by a V.I. then the convergence of the solution of the
discrete problem toward the solution of the continuous problem
is known [16]. Using the notation u(t) ≜ (x(t), ẋ(t))T and u0 ≜

(x0, 0)
T , we can recast Eqs. (1) and (2) in terms of a certain type

of differential inclusion as follows:
{

u̇(t) + ∂ψ(u(t)) ∋ g(t, u(t)), a.e. on (0, T )

u(0) = u0

where ∀u ≜ (x, y) ∈ R
2, ψ(u) ≜ f |y| and g(t, u) ≜ (y, b(x, t))T . In

particular we recall that

∂ψ(u) =

{

{±f } × {0} if ± y > 0

[−f , f ] × {0} if y = 0.

For instance, it is clear that if we consider the case of a harmonic
forcing b(x, t) ≜ K (β cos(ωt) − x) where K , β, ω > 0 then

sup
0≤t≤T

sup
u̸=v

|g(t, u) − g(t, v)|
R2

|u − v|
R2

< ∞

and also ∂g

∂t
(t, u) is bounded on [0, T ] and does not depend on u.

Here |.|
R2 is a norm on R

2. In this context, Theorem 3.1 of [16]
can be applied. There exists a constant M ≥ 0 such that

∀h > 0, ∥u − uh∥ ≜ sup
0≤t≤T

|u(t) − uh(t)|
R2 ≤ Mh.

where uh(.) is the linear interpolation of (Xh
tn
, Ẋh

tn
) on [0, T ]. The

order of the method is one.

3.3. Two numerical case studies

In this section, we apply the algorithm presented in Section 3.1
to two cases. The first one concerns the response of a system
with dry friction to harmonic excitation. The second one is similar
to the first one except that it includes an additional random
perturbation expressed as an Ornstein–Uhlenbeck process. To
support the validity of the numerical method, we also discuss the
empirical rate of convergence of the algorithm in these two cases.

3.3.1. Simulation of the response of a system with dry friction to
harmonic excitation

We consider the model studied by Shaw in [2]. We apply the
algorithm above to simulate x(t) satisfying (1) where the right
hand side is of the form

b(x(t), t) ≜ β cos(ωt) − x(t). (31)

6
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Fig. 1. Simulation of trajectories. Typical trajectory of a solution x(t) with an harmonic forcing (Eq. (1) with (31)). The numerical results have been obtained using

the numerical scheme shown in Section 3. The time intervals enclosed by [τ0, τ 1
2
) and [τ1, τ 3

2
) correspond to static phases whereas the intervals [τ 1

2
, τ1) and [τ 3

2
, τ2)

correspond to dynamic phases.

To ensure sticking motions, we chose the parameters as follows

m = 1, fd = 1, fs = 1.2, β = 6, ω =
1

2
. (P)

This choice is inspired from Figure 8 p. 315 in [2]. The numerical
results are shown in Fig. 1. We recover the results obtained by [2].

3.3.2. Simulation of the response of a system with dry friction to a
random perturbation

Using the numerical scheme above, the behavior of (1)–(2) has
been simulated with a temperature function chosen as T (t) =

cos(ωt)+ρv(t) where v(t) is an Ornstein–Uhlenbeck noise in the
sense that

v̇ = −v + ẇ, where w is a Wiener process.

This can be seen as a random perturbation of the model on the
section above. Here ρ is a small parameter. Fig. 2 displays the
result of the simulation. We used the parameters (P) and K =

1, ρ = 0.25. Fig. 2 displays the displacement x(t) in response to
βT (t), and the velocity ẋ(t) together with the forces F(ẋ(t)) and
K (βT (t)−x(t)). Fig. 2C displays the evolution of (βT (t)−x(t), ẋ(t))
with respect to t in a displacement versus temperature plane.
The static phases occur during the time intervals (τj, τj+ 1

2
). They

can be seen in Fig. 2 when x(t) is constant (Fig. 2A) or ẋ(t) =

0 (Fig. 2B) over time intervals with positive Lebesgue measure.
In contrast, the dynamic phases occur during the time intervals
(τ

j+ 1
2
, τj+1). They can be seen in Fig. 2B as non constant phases

and in Fig. 2C as cycles. In this simulation, there are subphases
in the dynamic phases. The likeliness of occurrence of dynamic
sub phases is highly dependent on important variations of the
temperature T (t).

3.3.3. Empirical accuracy in the numerical case study
Below, we use the same notation as in Remark 6. For instance,

the notation u is for (x, ẋ) and uh is for the linear interpolation of
(Xh

tn
, Ẋh

tn
) on [0, T ]. If the numerical method is of order p with p

is a certain positive number then ∥uh − u∥ ≤ Chp where C is a
constant independent of h. Moreover, if in addition ∥uh − u∥ =

Chp + O(hp+ϵ) for some ϵ > 0 then

∥uh − u
h
2 ∥

∥u
h
2 − u

h
4 ∥

≈ 2p + O(hϵ).

With such a relation in mind, we empirically test the conver-
gence of our algorithm by considering ratios involving the norm
of the difference between uh computed for different h halved
successively. To be precise, we look at the behavior of

q(h) ≜
∥uh − u

h
2 ∥

∥u
h
2 − u

h
4 ∥

and p(h) ≜ log2(q(h)). With T = 5 and other parameters
unchanged, h0 = 0.05 and for different values of h ∈ {h02

−j, 0 ≤

j ≤ 7}, in Table 1 we present a set of empirical estimations of
p(h) in the two numerical case studies. The data indicates that the
convergence rate of the method is ∼h, i.e the numerical method
is empirically of order 1.

4. Experimental campaign

In general, mechanical properties of real world structures are
not known but in some cases it is possible to infer them from
observations (experimental data). Here, we focus on the behavior
of such a structure (bridge component) subjected to changes of

7
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Fig. 2. Simulation of trajectories. Typical trajectory of a solution x(t) where the temperature function T is given by T (t) = cos(ωt) + ρv(t) where v is an

Ornstein–Uhlenbeck process, ρ = 0.25. The τ• and τ •
• pinned on the trajectory refer to the times defined in Section 2.3.

Table 1

Empirical rate of convergence with different h, starting with h0 ≜ 0.05 halved

successively: (a) case of harmonic excitation and (b) case of harmonic excitation

perturbed by an Ornstein–Uhlenbeck process.

(a) (b)

h ∥uh − u
h
2 ∥ p(h) h ∥uh − u

h
2 ∥ p(h)

h0 0.26284 1.01745 h0 0.41406 1.12726

h02
−1 0.12984 1.04446 h02

−1 0.18955 0.99567

h02
−2 0.06295 1.01035 h02

−2 0.09506 0.94579

h02
−3 0.03125 1.00509 h02

−3 0.04935 1.10016

h02
−4 0.01557 1.00278 h02

−4 0.02302 0.96288

h02
−5 0.00777 0.97606 h02

−5 0.01181 1.07137

h02
−6 0.00395 1.02580 h02

−6 0.00562 1.16864

temperatures over time, see Fig. 3. Engineers are interested in in-
ferring the initial condition of displacement and other properties
of the structure such as the stiffness, the magnitude of the static
and dynamic friction forces and the dilatation with respect to the
temperature. In terms of our model, it corresponds to adjusting
the parameters z0, K , fs, fd and β to fit a set of observations.

4.1. Presentation of the experimental data

The model described above has been used on a practical case
study on the Paris Metro Line 6 in 2016. The aim of the operation
was to estimate the real friction coefficients fs and fd of a single
bearing point of the metro viaduct, near to the station Quai de la
Gare in the East of Paris. The viaduct is an isostatic steel truss
built in 1909. The bearing points are supposed to be fixed at
one end and free at the other end of each span, but actually a
significant friction appears on the free bearing points. OSMOS
Group performed the continuous monitoring of the displacement

of the span end on one of the free bearing points during one full
year in 2015 and 2016. The measurements were taken 6 times
every hour and additional records with 50 points every second
were also available under the effects of the live loads. The bridge
is instrumented with multiple sensors which measure (a) Txp the
temperature in Celsius degree and (b) zxp the displacement sensor
in millimeters. The period of data assimilation covers about ∼300
days (August 2015–May 2016). See Fig. 4. It is important to
emphasize that the output of the displacement sensor zxp(t) is
actually the sum of the bearing point displacement and the elastic
shear deformation, as shown in Fig. 3. The bearing point has a
linear behavior, and its stiffness is known KBP = 2.0 × 106 Nm−1.
For the sake of consistency with the experimental data, in our
numerical results we also use a corrected variable z(t) that takes
the elastic shear deformation into account z(t) = x(t)+ F (t)/KBP.

4.2. Calibration of the model to interpret the experimental data

The experimental data, discussed in the previous section,
showed that the length of a dynamic phase is smaller than the ac-
quisition time-step. Moreover, since this time-step is sufficiently
small, the temperature variation between two time steps is also
relatively small. Therefore, we consider that the changes of tem-
perature during dynamic phases are not significant. Physically,
that justifies the use of the quasi-static approximation in the
model for interpreting the data. Now, the goal is to find a set
of parameters for the model that gives a good fit between the
numerical and the experimental results. The parameters consid-
ered are: a constant displacement offset z0, the stiffness K , the
dilatation coefficient β and the two friction coefficients fs and
fd. It is a difficult task to calibrate the model but one can use a
least-square method and minimize the function:

err(z0, K , β, f , f0) =

∫

(

z0 + zK ,β,f ,f0 (Txp(s)) − zxp(s)
)2

ds (32)

8
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Fig. 3. The structure consists of a pier (massive solid block) that is located between a bridge (horizontal structure) and its base. The pier is driven by a thermally

induced displacement forcing and experiences dry friction (due to bridge/pier interaction). This mechanical structure is located at the Parisian metro station Quai de

la Gare (courtesy of RATP, the main public transportation in Paris).

Table 2

Results for 10 optimization procedures with different random initial sets of values.

Run # z0 [m] K [N m−1] fd [N] fs [N] β [m K−1]

1 9.54 · 10−3 1.75 · 105 0.42 0.47 2.97 · 10−4

2 9.18 · 10−3 2.06 · 108 0.42 0.47 2.72 · 10−4

3 9.84 · 10−3 1.81 · 108 0.42 0.47 3.18 · 10−4

4 9.78 · 10−3 1.93 · 108 0.43 0.49 3.14 · 10−4

5 9.77 · 10−3 1.98 · 108 0.44 0.47 3.14 · 10−4

6 9.78 · 10−3 1.85 · 108 0.42 0.47 3.13 · 10−4

7 9.74 · 10−3 1.8 · 108 0.4 0.45 3.12 · 10−4

8 9.72 · 10−3 1.83 · 108 0.42 0.46 3.1 · 10−4

9 9.71 · 10−3 1.9 · 108 0.43 0.48 3.08 · 10−4

10 9.67 · 10−3 1.97 · 108 0.43 0.45 3.06 · 10−4

Mean 9.67 · 10−3 1.89 · 108 0.42 0.47 3.06 · 10−4

St. D. 1.91 · 10−4 9.67 · 106 1.12 · 10−2 1.17 · 10−2 1.34 · 10−5

C. V. 1.97 · 10−2 5.12 · 10−2 2.65 · 10−2 2.5 · 10−2 4.38 · 10−2

where the time integration is done over the data assimilation
period (∼300 days), Txp(s) and zxp(s) are the experimental data for
the temperature and the displacement respectively, and zK ,β,f ,f0

(Txp(s)) is the displacement given by the model detailed in Sec-
tion 2.3 with the quasistatic approximation, with K , β, fd, fs as
parameters and with Txp(s) as temperature input. We use the
genetic algorithm of the MATLAB optimization toolbox [17] to
look for the minimum of the function err. We have performed 10
tests with different arbitrary initial sets of parameters, we obtain
the values presented in Table 2.

4.3. Comparison between the experimental observations and our
calibrated model

Using the parameters shown in the first row of Table 2, we
have obtained numerical results of our calibrated model in re-
sponse to the observed thermal forcing. These results are com-
pared to the experimental observations in Figs. 4 and 5. Fig. 4

presents the results over time; the main plot displays them over
a 9 months period and the two other plots display a zoomed in
result over a 2 month period. Each of those plots displays on the
top part both the measured and computed displacements, and
on the bottom part the measured temperature. Fig. 5 displays
both the experimental and numerical results in the displacement
versus temperature phase plan. The loops predicted by the model
have a similar width and height than those obtained with the
experimental data. Good agreement between experimental and
numerical data is shown on these figures. That supports that
the model is quite accurate. This practical case study enables to
validate the friction model and to identify the friction coefficients
of the bearing point.

5. Conclusion

An extended variational inequality (EVI) approach is intro-
duced for modeling dry friction when essentially the forcing is

9
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Fig. 4. Experimental and numerical results according to time. Main : 1 data point per hour. Zooms : 1 data point per 10 min.

Fig. 5. Experimental and numerical results in the displacement versus temperature plane. For the convenience of the reader, we only display the data for March and

April. 1 data point per 10 min.

10
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assumed to be a continuous time function. A proof of existence
and uniqueness is given when fs the coefficient of static friction
is larger than fd the coefficient of dynamic friction. When fs
and fd are identical, our approach turns out to be equivalent
to a standard variational inequality [18]. Then, for simulation
purpose, a discrete time version of the EVI approach is proposed
in terms of a step by step Euler method. This discrete problem is
well posed. In practice, the method is simple to implement with
any programming language such as MATLAB or C. When fs and
fd are identical, the rate of convergence of the solution to the
discrete time problem toward the solution of the continuous time
problem is known [16]. The method is of order one. In contrast,
when fs and fd are different, the study of the rate of convergence
remains an open question which is beyond the scope of this
work. However, numerical test studies indicate an empirical rate
of convergence of order one. Next, our framework is used on a
practical case study where the objective is to estimate the friction
coefficients fs and fd associated to a real world structure. The
latter is a single bearing point of the metro viaduct, near to the
station Quai de la Gare in the East of Paris. The viaduct is an
isostatic steel truss built in 1909. The bearing points are supposed
to be fixed at one end and free at the other end of each span, but
actually a significant friction appears on the free bearing points.
Here the forcing b(x, t) is of the form K (βT (t) − x) where T has
slow variation. In this context, a quasi static approximation of the
EVI is used to interpret the data. There are 5 parameters for an
acquisition period of the experimental data of ∼300 days with a
measurement every 10 min. OSMOS Group performed the contin-
uous monitoring of the displacement of the span end on one of
the free bearing points during one full year in 2015 and 2016. Our
model fitted with these parameters matches the available data
closely. We have used a standard algorithm encoded in MATLAB
to minimize the error function. In this context a minimizer has
been obtained. Perhaps more sophisticated algorithms can possi-
bly do better. This type of issues (including the convexity of the
error function) is beyond the scope of the present paper. Finally,
we would like to emphasize that an important benefit of our EVI
approach together with its discrete time counterpart is that it can
be employed for a broad class of functions b(x, y, t). We recall
that the latter represent forces that are not related to dry friction.
Moreover, there is strictly no conceptual difficulty to adapt our
method to any multi degree of freedom (MDOF) system involving
several nonlinear behaviors such as dry friction, while keeping a
synthetic framework.
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