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MEAN FIELD APPROACH TO STOCHASTIC CONTROL WITH
PARTIAL INFORMATION

ALAIN BENSOUSSAN'?* AND SHEUNG CHI PHILLIP YAM?**»***

Abstract. In our present article, we follow our way of developing mean field type control theory in
our earlier works [Bensoussan et al., Mean Field Games and Mean Field Type Control Theory. Springer,
New York (2013)], by first introducing the Bellman and then master equations, the system of Hamilton-
Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, and then tackling them by looking for the
semi-explicit solution for the linear quadratic case, especially with an arbitrary initial distribution; such
a problem, being left open for long, has not been specifically dealt with in the earlier literature, such as
Bensoussan [Stochastic Control of Partially Observable Systems. Cambridge University Press, (1992)]
and Nisio [Stochastic control theory: Dynamic programming principle. Springer (2014)], which only
tackled the linear quadratic setting with Gaussian initial distributions. Thanks to the effective mean-
field theory, we propose a solution to this long standing problem of the general non-Gaussian case.
Besides, our problem considered here can be reduced to the model in Bandini et al. [Stochastic Process.
Appl. 129 (2019) 674-711], which is fundamentally different from our present proposed framework.
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1. INTRODUCTION

With the development of nonlinear filtering, stochastic control with partial information has been one of the
most important and well established topics in control theory, where the underlying controlled state dynamics
is also influenced by unobservable uncertainties. With full information, the optimal control can often be taken
in a Markovian feedback form as a function in the state up to the present time. In contrast, under partial
information, the state of the system is unobservable, yet Markov property can still be reinstated by introducing
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the conditional probability, of the controlled dynamics, given the available observation; which is the state of an
infinite-dimensional dynamic system satisfying Kushner equation. The classical stochastic control problem under
partial information, as, for instance, described in the books of Bensoussan [3] and Nisio [13], can be formulated
as a control problem for the (controlled) Zakai equation, whose solution is the unnormalized conditional
probability distribution of the state of the system, which is not directly accessible. It is however noteworthy
that [3] requires that, even under the linear quadratic setting, the initial distribution should be Gaussian, which
is fairly restrictive.

Conventionally, two approaches are commonly adopted in order to solve the stochastic control problem under
partial observation. The first one is through the stochastic Pontryagin Maximum Principle which describes
necessary conditions for the optimality in terms of the dynamics and the corresponding adjoint process, see e.g.
[3] and [17]. The second one is via Dynamic Programming Principle under the assumption that the conditional
expectation with respect to the observation process admits a density, then one obtains the controlled Zakai
equation, also known as the Duncan-Mortensen-Zakai equation, or Zakai equation in short in the rest of this
article, for the proxy of unnormalised conditional probability density, which leads to the fully nonlinear HJB
equation, see [10, 11] and references therein. There are also more relevant developments recently, see for instance
[8] that provides a discrete setting, and [16] discussing the applications in machine learning; for other works that
are more related to mean field theory and partially observable systems, please refer to [1, 5, 6, 9, 14, 15], and
references therein. Particularly, another notable recent work is [13], where the linear quadratic problem is also
dealt with when the initial distribution is Gaussian as in [3], yet the problem with an arbitrary initial distribution
has not been tackled until our present work; furthermore, [13] does not state the separation principle, nor does
it exploit the filtering formulae with non-Gaussian initial conditions as discussed in [12].

By introducing the unnormalized conditional probability, the solution of the controlled Zakai equation which
is a stochastic Fokker-Planck equation, the classical stochastic control problem under partial information can
be formulated as a control problem for the Zakai equation. This new mathematical problem can be solved very
similarly to those commonly encountered in Mean Field Type Control theory, and this newly developed method
is introduced here as the first time in the literature of filtering. Moreover, to the best of our knowledge, even
for the setting with a linear dynamics and quadratic payoff, the filtering problem with non-Gaussian initial
distributions has been standing for long, and we shall illustrate the power of our proposed mean-field approach
and resolve this open problem for the linear quadratic case here.

Mean Field Type Control theory is much later than the development of Stochastic Control with partial
information, the tools, techniques and concepts obtained in the last decade, for Mean Field Games and Mean
Field Type Control, have not been used for the control of Zakai equation. It is the objective of this work
to connect these two theories; indeed, there is a notable difference, namely, we here deal with unnormalized
probabilities instead of proper probabilities like those dealt in the canonical problems in Mean Field Theory.
Motivated by our former work in [4], particularly by introducing Bellman equations, master equations, and
the system of forward-backward equations, we aim to establish and then study these equations to the greatest
extent in this paper. Besides grasping the power of new tools, we also gain new insights for the problem of
stochastic control with partial information. For Mean Field Theory, we get new interesting applications, but
also new problems. The possibility of using direct methods is, of course, quite fruitful; indeed, if Mean Field
Type Control Theory is a very comprehensive and powerful framework, it leads to very complex equations, like
Master equation, which is a nonlinear infinite dimensional PDE, for which general theorems are hardly available,
although an active research in this direction has been conducted, see Cardaliaguet et al. [7]. Direct methods are
particularly useful to obtain regularity results. We shall develop in detail the linear quadratic regulator problem,
but because we cannot just consider the Gaussian case, well-known results, like the separation principle are not
available. An interesting and important result is available in the literature, due to A. Makowski, [12]. It describes
the solution of Zakai equation for linear systems especially with general initial condition, i.e. non-Gaussian
setting. As mentioned, this result has not been exploited for the control aspect in the literature before our
work. We show that the separation principle can be extended for quadratic pay-off functionals, but the Kalman
filter is much more complex than in the case with Gaussian initial distributions. We finally discuss in the last
section the recent approach of Bandini et al. [2] for comparison with our approach. Their approach is very
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fruitful for the general theory, but does not lead to the explicit solution as we obtain in this paper. Roughly
speaking, our problem considered here can be reduced to that investigated in an interesting recent alternative
formulation in [2], which is fundamentally different from our present proposed framework; indeed, their set
up leads to a conditional probability (hence normalized) solution of a linear stochastic PDE, which is another
special case of Duncan-Mortensen-Zakai equations but different from the one we obtained here. They have also
provided an example with linear equations, which we believe does not cover the proposed linear quadratic case,
with an arbitrary initial distribution, as extensively dealt in the present work; particularly our system remains
nonlinear in the framework of [2], which is due to the complication of their approach.

The organization of this article is as follows. Section 2 formulates the stochastic control problem with partial
information, and introduces the corresponding controlled Zakai equation. The key toolkit of mean field approach
is introduced in Section 3, and then we attempt to obtain a weak solution of the stochastic control problem
by solving the Zakai equation under a weak formulation in Section 4. In Section 5, we present the solution of
the linear quadratic problem with an arbitrary initial distribution using the mean field approach, and hence
demonstrate the effecitiveness of the mean-field theory. Finally in Section 6, we compare our approach with the
recent one in [2].

2. STOCHASTIC CONTROL WITH PARTIAL INFORMATION
2.1. The problem

We first describe the problem formally, without making precise the assumptions. The state of the system
z(t) € R™ is a solution of a diffusion:

{ xdx = g(x,v)dt + o(x)dw, (2.1)

0)=¢,

and we assume that there exists a probability space (€2, A, P) on which a random variable ¢ and a standard R™
-valued Wiener process, which is independent of &, are constructed. There is a control v(¢) in the drift term,
with values in R™. Since, we cannot access to the state x(¢), which is not observable, it can neither be defined
by a feedback on the state, nor adapted to the state. Formally, we have an observation equation:

dz = h(z)dt + db(t) (2.2)

in which z(t), with values in R%, represents the observation and b(t) is another Wiener process, independent
of the pair (£, w(:)). The function h(x) corresponds to the measurement of the state x and b(t) captures a
measurement error. So the control v(¢) should be adapted to the process z(t), not a feedback of course. It is
well-known that this construction is ill-posed. Indeed, the control is adapted to the observation, which henceforth
depends also on the state, which depends on the control. It is a chicken and egg matter, that is usually solved
by the Girsanov theorem, at the price of constructing appropriately the Wiener process b(t). In practice, we
construct on (2, 4,P) three objects: &, w(-) and z(-). The processes w(-) and z(-) are independent Wiener
processes on R™ and R?, respectively, while ¢ is independent of these two processes. We set

Fr=o(&w(s),2(s),s <t), Z'=o0(z2(s),5s<t),

the filtrations on (€2, A, P) generated by (&, w(-),2(-)) and z(-) respectively. The process z(-) is the observation
process, but it is defined exogeneously. We can then choose the control v(:) as a process with values in R™,
which is adapted to the filtration Z*. So, it is perfectly well-defined, as well as the process x(-) as the solution
of (2.1). In fact in (2.1) v(+) is fixed, like £ and w(+), and we assume that we can solve the SDE (2.1) in a strong
sense. So x(+) is well-defined. Here comes Girsanov theorem. We define the scalar P, Ft-martingale n(¢), which
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is the solution of the equation:

(2.3)

This martingale allows to define a new probability on Q, A, denoted by P¥() to emphasize the fact that it
depends on the control v(-). It is given by the Radon-Nikodym derivative:

dpr®)
dP

) (2.4)

Finally, we define the process

BO(#) = 2(t) — /0 h(z(s))ds, (2.5)

which also depends on the control decision. We take a finite horizon T in the rest of this article. Making the
change of probability from P to P*() and considering the probability space Q,FT, IP’“(')), then b*() appears as
a standard Wiener process, which is independent of w(-) and £. Therefore, (2.5) is a template of (2.2) as far as
probability laws are concerned. We can then rigorously define the control problem (without the chicken and egg
matter):

T
J(v(-) =E*V VO fla(),v(®)dt + fr(z(T))|, (2.6)

in which the functions f(z,v) and fr(z) represent the running cost and the final cost, respectively, contributing
to the payoff functional to be minimized. The notation E¥() refers to the expected value with respect to the
probability law Pv(),

Remark 2.1. The previous presentation, which is currently the common one to formalize stochastic control
problems with partial information, has a slight drawback, in comparison with the description of the problem with
full information. With full information, there is no Z* and the underlying filtration ¢ = (£, w(-)) is accessible.
A control v(+) is a stochastic process adapted to F*. We call it open-loop, because it is externally defined (this
should not be confused with the practice in engineering to call open-loop controls, those which are deterministic
functions of time). But, since the state x(t) is also accessible, we can also consider controls, defined by feedbacks
built on the state. In spite of the difference in the definition, the class of feedback controls is contained in
that of open-loop controls. Indeed, after constructing the trajectory corresponding to a feedback, we feed the
feedback with that trajectory. We get an open-loop control, leading to the same cost. The interesting feature of
cost functionals of the type (2.6) is that the optimal open-loop control is defined by a feedback. So restricting
ourselves to the subclass of feedback controls does not hurt. This is very important, when we formulate the
control problem in the framework of mean-field theory. In mean-field theory, we must define the control with
a feedback. Surprisingly, open-loop controls and feedback controls will lead to different solutions. In the case
of partial information, we have unfortunately no choice. There is no feedback, since the state is not accessible.
With the formulation above, the observation filtration Z? is externally defined, and the control is open-loop,
since it is externally defined as a process adapted to Z%. It is important to have this discussion in mind, when
we formulate the problem with mean-field theory.
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2.2. Control of Zakai equation
Note first that the functional (2.6) can be written as

T
J(v(-)) =E /0 n(@)f (@ (t), v(8))dt +n(T) fr(z(T)) | - (2.7)

This is obtained by using the Radon-Nikodym derivative (2.4) and the martingale property of 7(t). We next
recall the classical nonlinear filtering theory result. Let ¥(z) be any bounded continuous function. We want
to express the conditional expectation EYC)[W(xz(t))|Z] of the random variable W(z(t)) with respect to the
o—algebra Z!, on the probability space (Q, A, ]P’”(')). We have the basic result of non-linear filtering theory:

Eln()¥(x(1)|2"] _ Jp. V(z)g(w, t)dz

B = = e e . D)

(2.8)

where ¢(z,t) is called the unnormalized conditional probaility density of the random variable z(t) with respect
to the o—algebra Z'. One can directly read off from (2.8) that the conditional probability density itself is
q(z,1)

Jrn (&, )dE
stochastic PDE:

given by . The function ¢(x,t) is a random field adapted to the filtration Z*. It is the solution of a

{ dg + A*q(x, t)dt + div(g(z, v(t))g(z,t)) dt — q(z,t) h(z) - dz(t) = 0, (2.9)

q(z,0) = qo(z),

in which A* is the second order differential operator:

which is the dual of

Ap(z) = — g a;;(x) ,
=1 83@8%

1
with a(x) = =(00™*)(z). The initial condition ¢g(x) is the probability density of £&. We suppose that £ has a
2

probability density. The random field q(z,t) depends on v(-) and is thus denoted by ¢*()(z,t). From (2.8) and
(2.7), we can write the pay-off J(v()) as

sw) =5 [ /nq“(‘)(m,t)f(x,v(t))dxdt+/nq”(‘)(az,T)fT(x)dml. (2.10)

The minimization of J(v(+)) is a stochastic control problem for a dynamic system whose evolution is governed
by the stochastic PDE (2.9).

Remark 2.2. We can elaborate more on the difference between feedback controls and open-loop controls,
as addressed in Remark 2.1, by considering equation (2.9) describing the evolution of the state g(x,t). In this
equation v(t) is a stochastic process adapted to the filtration Z?, so it is fixed with respect to the space variable .
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3. MEAN FIELD APPROACH

3.1. Preliminaries

We define the value function:
®(q0,0) = }Jr(lf) J(v(-)), (3.1)

and following the main concept of Dynamic Programming, we embed this value function into a family
parametrized by initial conditions ¢ and t, where ¢ denotes an unnormalized probability density on R". We
also make precise the choice of the functional space in which the function g(x) lies. To fix ideas, we take
q € L2 (R") N LY(R") and g(z) > 0. We shall assume that

/Rn |z|?q(z)dz < +oo0. (3.2)

Considering functionals on L?(R™), ¥(q), we say that it is Gateaux differentiable, with Géateaux derivative

oV
a—(q)(a?) if the function t — ¥(q + tq) is differentiable with the following formula:
q

d N
—VU(g+1tq) =

= (g D) (@)ile)de, V() € P2(RY) 1 LR, i) 2 0,6 2 0. (33)

we 0q

ov
We shall assume that with (¢, 2) — ——(¢)(z) is continuous, satisfying:

dq

ov

%0 < (@)1 +[2f?), (3.4)

(¢)(z)

such that ¢(q) is continuous and bounded on any bounded subsets of L?(R"™) . We also need the concept of
0?w
second order Gateaux derivative. The second order Gateaux derivative is a functional W(q) (&,m) such that
q
the function t — ¥(g + tq) is twice differentiable in ¢ so that

d? - 0% - e~
Erara = [ [ Sl e na©indsy (35)
dt n JRn 3q
2
Moreover, the function (q,&,n) — 6—(12((])(5, 7) is continuous satisfying:
0w
@€ < o)1+ 5+ ) (35

with ¢(g) continuous and bounded on any bounded subsets of L?(IR™). From formula (3.5), it is clear that we can
2

U

choose %—Q(q)(g,n) to be symmetric in (§,7). Set f(t) = ¥(q + tG). Then, combining the above assumptions
q

(3.2), (3.4) and (3.6), we can assert that f(t) is C2. Therefore, we have the identity:

1 1
F(1) = £(0) + £/(0) + / / £ (st)dsdt,



MEAN FIELD APPROACH TO STOCHASTIC CONTROL WITH PARTIAL INFORMATION 7

which leads to the formula:

ov

V(g+q)=V(g) + N

O () (@)d(w)da + / / / s 8q Y (g4 st i€ dedndsdt.  (3.7)

3.2. Bellman equation

We consider the control problem with initial conditions ¢(z) at time ¢, or (g,t) for short:

dg + A*q(z, s)ds + div(g(z,v(s))q(x, s)) ds — q(z, s) h(z) - dz(s) = 0, s > t, (3.8)
q(x,t) = q(=), '
such that
T
Jaa(o()) = E [ || e+ | q”<'><x,T>fT<x>dx] . (39)
and define the value function:
B(a.) = i Jyu (o) (3.10)

. . 02 ov 0*w
Assuming that the value function has derivatives E(q,t), a—q(q)(w), W(q)(f,n), then, by standard

arguments, we can check formally that ®(q,t) is the solution of the Bellman equation:
o od 82<I>
S [ A @@ g [ [ S a0 ma©annt) - hindsdy
. o
cinf [ qa) (f(rmv) + D52 0.0)(0) - o v>) dz =0, (3.11)

R™

(¢, T) = fT()()m

The optimal open-loop control is obtained by achieving the infimum in (3.11). We derive a functional 9(qg,t),
which is a feedback in ¢ but not in . We can then feed the Zakai equation (3.8) with this feedback to get the
optimal state equation:

{ dg + A*q(x, s)ds + div(g(x, 9(q, 8))q(z, s)) ds — q(x, s) h(z) - dz(s) =0, s > ¢, (3.12)

q(z,t) = g(z).

Once we solve this stochastic PDE, we obtain the optimal state ¢(s) := §(x,s). We then define the control
0(s) = 0(g(s), s), which is indeed adapted to the filtration Z7 = o(2(7) — 2(t), t < 7 < s). This is the optimal
open-loop control.
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3.3. The master equation

oP
The functional ©(q,t) defined at the very end of the last subsection depends on the function Fq(q,t)(m)

denoted by U(z,q,t). So, it is convenient to denote by ©(q, U) the vector v which achieves the minimum of

inf/n q(z) (f(z,v) + DU (z,q) - g(z,v)) dz, (3.13)

v

in which we omit to write explicity the arguement ¢ for simplicity. Bellman equation (3.11) can be rewritten as:

%cf - /n Ay Uz, q) q(x)dz + 5 /n /n o (@0 ma(©alh(€) - h(n)dedn

+ [ ao) (@50 0) + DaU(w.0) - gl 8(a. V) do =0, (3.14)

(¢, T) = | fr(x)q(z)d.

Rn

It is also convenient to set
2P

Therefore, Bellman equation reads

0P

G [ Ao+ [ ] Viaoema@amne - rmdsr

+ [ ao) (@50 0) + DoV () - gl b, U) d =0, (3.16)

(¢, T) = | fr(z)q(z)d.

R

The Master equation is an equation for U(z,q,t). It is obtained by differentiating (3.16) with respect to g.
We therefore obtain, formally:

= [ AV 06 0uee 1) [ Ve OnEaes
1 ov .

w5 [ S @En@h(e) - hna©atndsan + £z, o(a. 0) .

DU g0, 0) + [ DeVia0(60) (6. . 0)a()dE =0,
U(IL(],T) = fT(x)

Note that
3
%(q,t)(&n)(x) = %(qi)(%&n), (3.18)

which is symmetric in the arguments (z, &, 7).
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3.4. System of HIB-FP equations

In Mean Field Theory approach, the Master equation is the key equation. However, it is an infinite-dimensional
nonlinear PDE. Direct approaches are very limited. The most convenient approach is to use ideas similar to the
classical method of characteristics. This amounts to solving a system of forward-backward finite dimensional
stochastic PDE. Since it is forward-backward the initial conditions matter. We shall consider that the initial
time is 0, for convenience; yet the same argument applies for any time ¢ € [0, T]. This system is called Hamilton-
Jacobi-Bellman for the backward equation and Fokker-Planck for the forward one. The Fokker-Planck equation
is the Zakai equation in which we insert the optimal feedabck (g, U). So we get

{ dg + A%q(z, t)dt + div(g(z, 0(q, U))q(z, t)) dt — q(z,t) h(z) - dz(t) = 0, (3.19)

Q(xa 0) = Q(x)

The functional U(x,q,t) used in (3.19) is the functional solution of the master equation (3.17). We call simply
q(t) the solution of (3.19). We then set

u(z,t) = Uz, q(t), ). (3:20)
We use the notation (g, us) to represent the functional ©(q,U) in which the arguments ¢,U are replaced by

n
q(-,t) and U(-, q(+,t),t) = u(-,t). We denote q; = q(-,t), us = u(-,t) to simplify. The functional 0(g;, us) achieves
the infimum of

O(qe, up) = arg mvin / q(z,t) (f(z,v) + Dyu(z,t) - g(z,v)) dz. (3.21)

n

The next step is to obtain the equation for u(z,t). It is a long and tedious calculation, obtained in taking the
Tto differential of the random field defined by (3.20). We omit the detail and only give the result as follows:

—du+ (Au — Du - g(z, 0(qe,u)))dt = f(x,0(qe, ur)) — K(z,t) - (dz(t) — h(z)dt), (3.22)
u(z,T) = fr(z),
where K (x,t) is defined by the formula:
K(z,t) = /n Vg, t)(z,&)h(€)q(€, t)dE. (3.23)

In fact, we do not need to compute K (z,t) by formula (3.23), which would require the knowledge of V' (¢, t)(z, ),
thus solving the master equation. From the theory of backward stochastic PDE the random field K(z,t) is
required by the condition of adaptativity of u(z,t). So the solution of (3.22) is not just u(x,t) but the pair
(u(z,t), K(x,t)), and we can expect uniqueness. Equation (3.22) is the HJB equation. It must be coupled with
the FP equation (3.19) written as follows:

(3.24)

dg + A*q(x, t)dt + div(g(z, 0(qe, ue))q(z, t)) dt — gz, t) h(z) - dz(t) = 0,
(](337 0) = Q($)7

recalling also (3.21). So the pair (3.22), (3.24) is the pair of HJB-FP equations. Since ¢(z,0) = ¢(z), we can
assert that

u(x,0) = Ul(x,q,0). (3.25)
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Therefore we can compute U(z, g,0) by solving the system of HIB-FP equations and using formula (3.25). Of
course u(z,t) # U(x,q,t). To compute U(x, q,t), we have to write the system (3.22), (3.24) on the interval (¢,T)
instead of (0,7'). In that sense, the system of HIB-FP equations (3.22), (3.24) is a method of characteristics to
solve the master equation (3.17). Besides the optimal optimal feedback ©(g, U(+, q,t),t) can be derived from the
system of HJB-FP equations; indeed,

ﬁ(Qa U(a q, 0)7 0) = ﬁ(qa u(‘? 0))7

and setting the initial condition of the system of HIB-FP equations at ¢ instead of 0 yields o(q, U(-, q,t),t). To

o
compute the value function, we have to rely on Bellman equation (3.16). Let us compute E(q, 0), by using

(3.16). The only term which is not known is [, [en V(g,0)(&,m)q(&)q(n)h(§) - h(n)dédn. However from (3.23),
we can write

[ [ vaoena@amne) - aman = [ h©)- Ke,0a(6)de. (3.26)

Rn

Collecting results, we can write the formula:

a® 1
- (¢,0)= [ Ayu(z,0)q(z)dz — 5 [ h(z) K(z,0)q(z)dx
at / . 2 Jon (327

- [ @) (7,500, u(-,0))) + Duu,0) - gl 50, u( 0)) d

0P
In a similar way, we can define — (g, t), for any ¢ and any ¢. Since we know ®(gq,T'), we obtain ®(g,t) for any

t. So solving the system of HJB-FP equations provides all the information on the value function and on the
optimal feedback.

4. WEAK FORMULATION OF ZAKAI EQUATION

4.1. Weak formulation and linear dynamics

In this section, we consider Zakai equation as follows:

{ dg + A*q(x, t)dt + div(g(z, v(t))q(z, ) dt — g(z,t) h(z) - dz(t) = 0, (4.1)

Q(377 0) = Q(x)7

in which v(t) is a fixed process adapted to the filtration Z¢ = o(2(s),0 < s < t). If ¢(z,t) is a deterministic
function in (x,t) which is C? in # and C! in ¢, we deduce immediately from (4.1), by simple integration-by-parts
that

¢(xat)dq = / Q(xat)[wa(xat) + g(ajvv(t)) ' Dw(xvt)]dt + / q(:c,t)w(x,t)h(:r) : dz(t)a

n n

]Rn
and thus

[ ateopean = [ a@itow+ | t [ atees) (52 = Avtas) 4 g(o.0(s)) - Do) ) dads "

+ /Ot / q(z, s)i(z, s)h(x) - dz(s),
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which is the weak formulation of Zakai equation. Note that the formulation (4.1) (strong form) and the weak
form (4.2) are not equivalent. We may have a weak solution but not a strong solution.

4.2. Linear system and linear observation

We want to solve Zakai equation in the following special case:

{g(m,v) = Fz + Gv, o(z) = o, (4.3)

h(z) = Hz.

In general, this case is associated to an initial probability ¢(z), which is Gaussian. In our approach, we cannot
take a special ¢(x). It must remain general, because it is an argument of the value function and of the solution
of the master equation. When we solve the system of HIB-FP equations, we can take ¢(z) Gaussian, but then
we cannot use this method to obtain the solution of the master equation or of Bellman equation. For a given
control v(t) which is a process adapted to Z!, Zakai equation reads:

{ dq — tr(aD%q(z,t)) dt + div(Fz + Gu(t))q(x,t)) dt — q(z,t) Hx - dz(t) = 0, (4.4)

q(z,0) = q(x),

1
where a = —oo*. Makowski [12] has shown that this equation has an explicit solution, that we describe now, in

a weak form. We first need some notations. We introduce the matrix 3(¢) solution of the Riccati equation:

dx
— + X(t)H"HE(t) — FX(t) — () F* =2
=+ S()HTHS() - FE() - S0F = 2 s
2(0) = 0.
We then define the matrix solution ®(¢) of the differential equation:
do
— =F -X@)H"H)o(t
= (F =S H)o(), (4.6
®(0) =1,
and
t
S(t) = / Q*(s)H*HP(s)ds. (4.7)
0

We then introuduce stochastic processes 8(t) and p(t) adapted to the filtration Z¢, defined by the following
respective equations

dB(t) = (FB(t) + Gu(t))dt + X(t)H* (dz — HB(t)dt), 48)

B(0) =0, '
dp(t) = &* () H* (d=(t) — HB(t)dt), W)
p(0) = 0.
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The process §(t) is the Kalman filter for the linear system (4.3) with a deterministic initial condition, equal

to 0. If we set

m(e,t) = B(t)a + B(t),

(4.10)

we obtain the Kalman filter for the same linear dynamic system, with an intial condition z. It satisfies the

equation:

{ dem(z,t) = (Fm(z,t) + Go(t))dt + S(t) H* (dz — Hm(z, t)dt),

m(z,0) = x.
Finally, we introduce the martingale 6(x,t) defined by:

di0(z,t) = 0(x,t) Hm(x,t) - dz(¢),
0(x,0) =1,

whose solution is the Doléans-Dade exponential
t t
O(x,t) = exp (/ Hm(x,s) - dz(s) — %/ |Hm(a:,5)|2ds> .
0 0

4.3. Formulas

We can state the following result, due to Makowski [12], whose proof can be found in [3].

Proposition 4.1. For any test function ¥ (x,t), we have

()
Proof. Equality (4.14) is true for t = 0. Let us set
N

According to (4.2), it is thus sufficient to show that

d:f(z,t) </]R" p <m(z, t) + E(t)%g, t) exp 7¥d5>

58
2

[

= 9z, 1) /Rn L (m(a:,t) T z(t)%g,t) exp <7 > dedt + 6(z, t) /R W (m(e,t) + S(0)

This can be done through some tedious calculation, whose details can be found in [3].

We shall derive from (4.14) a more analytic formula. We first set

V(t):/nq(x,t)da::/nﬂ(:c,t)q(:z:)dx.

£, t) H (m(m, t) + Z(t)%ﬁ) exp —

(4.11)

(4.12)

(4.13)

(4.14)

Tdﬁ - dz(t).

O

(4.15)
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Hence, from (4.12),

dv(t) = . O(z, t)Hm(x,t)q(z)dz - dz(t).

But from (4.14), we see that

/n q(z, t)xdx = - O(x, t)m(x,t)q(z)dx.

Therefore,

dv(t)=H - q(z,t)xde - dz(t) = v(t)Hz(t) - dz(t),

where we have set

ot fR” (z,t)xdx
B(t) = Jgn a(z,t)dx

Referring to (2.8), we see that
2(t) = E"V[z(t)|2"],
the conditional mean of the process x(t) defined by, see (2.1):

dz = (Fz(t) + Gu(t))dt + odw,

13

(4.16)

(4.17)

(4.18)

(4.19)

with respect to the filtration Z* on the probability space (€2,.4,P¥()). It is thus the Kalman filter in this
probabilistic set up. We shall derive the form of its evolution in the sequel. Now, from (4.17) we can assert that:

V(t) = exp{/ot Hi(s) - da(s) — ;/Of |H§:(s)|2ds} / o(x)dz,

recalling that, see (4.15), = [gn q(x)dz. Next, from (4.13) and (4.10), we have:

0(z,1) = exp </ H(®(s)z + B(s)) .dz(s);/ot |H(<I>(s):z:+ﬁ(s))|2ds>

= 7(t) exp (— St 2_ Qx*p@)) ;

with

0 = e { [ 156 ast) - 3 [ asorash,

(4.20)
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and recalling the definition of S(t) and p(t), see (4.7) and (4.9). From (4.15), we obtain:

v(t) = () /n exp (— v5(t)z 2_ 2x*p(t)> q(z)dx.

Combining results, we can assert that:

exp (_ x*S(t):v;2x*p(t) )

O(x,t) = v(t) e — .
S exp (— SO0 g(6)ag

(4.21)

Next, using (4.16) and (4.10), we have:

/ Ll tede = [ 0@.0@(O + Bt)a(e)da

= ®(¢) O(x,t)x q(x)dx + B(t) 0(z,t) q(z)dx,

R Rn

therefore, from (4.18) we also obtain:

Jgn 0 xtwq x)dx
f]R” (z)dx

I(t) = @(t) + (1) (4.22)

Let us introduce the deterministic function of arguments p € R™ and t¢:

Jin exp (_w) q(z)dz
Jron €D G%) g(z)de

b(p,t) = (4.23)

then (4.22) can be written as:

B(t) = @(t)b(p(t), 1) + B(1), (4.24)

We can finally state the main formula for the unnormalized conditional probability ¢(z,t).
Theorem 4.2. The unnormalized conditional probability q(z,t) is given by:

B v(t) x*S(t)x — 2x*p(t)
/n q(z, t)Y(x, t)de = o (_ I*S(t)m;m*p(t)> (s /Rn exp ( . P )

exp (_ |§I2> (4.25)
2

o (30 + 20 - bote). ) + =3¢, )

4.4. Sufficient statistics

We see, from formula (4.25), that the unnormalized conditional probability ¢(z, t) is completely characterized
by two processes Z(t) and p(t), which are stochastic processes adapted to Z with values in R", and it is crucial
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to obtain their evolutions. To this end, we need to introduce a new function B(p,t) similar to b(p,t) defined by
the following formula:

Jgn x* exp (—%) q(x)dz

B(p,t) == , 4.26
0 = e A e (1.26)
and we also define
D(p,t) i= S(t) + ®(t) (B(p, ) — blp, D" (p, 1)) D" (2). (4.27)
We are going to show that:
Proposition 4.3. The pair (Z(t),p(t)) is the solution of the following systems of SDEs:
di(t) = (F(t) + Gu(t))dt + T'(p(t), t) H* (dz(t) — H(t)de),
50) — Jgn 2q(x)dz (4.28)
(0) = Jgn a(z)dz
Ap(t) = ()" (d2(t) — H(2(2) ~ 2(b(p(0).1), 120)
p(0) =0.
Proof. The pair (p(t), 5(t)) satisfies (4.8), (4.9) and &(t) satisfies (4.24), therefore
dz(t) = ds(t) + %}Et)b(p(t), t)dt + @(t)db(p(t), t). (4.30)
Next, we use
Dpb(p,t) = B(p,t) — b(p,t)b"(p, 1), (4.31)

te(D2b(p,)L) = — Blp, )(L + L )blp,t) — tr(B(p,)L) blp, t) + 2b(p, ) b" (p. 1) Lb(p, 1)
sl Le)exp (5020 ) ) (4.32)

Jgn €xP (-*ﬁs(ﬂ;_m*p) q(z)dx ’

for any dummy matrix L. Therefore,

%tr(Df,b(p, DO () H* HO (1)) = — Blp, )0 (£)H* HO()b(p, t) %tr(B(p, 0" (1) H* HO (1)) bp, 1)
+tr(b(p, 1) " (p,t) " (t) H*H®())b(p, 1)
Jgn 2(x*®*(t) H* HO(t)x) exp (—w) q(x)dz

1
2 Jgn €xD (—7”(”5*2“) q(z)dx
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Also,
M(p,t) 1 - | S 2@ @ (O H HO(t)2) exp (— 502222 g(z)da
) — (Bl (OH HYO) b(p.1) — 5 fRn o (R .
(4.33)
Hence,
8b(apt, D +%tr(Dib(p, HQ* () H " HP(t)) = —B(p, t)@* (t)H* HP(t)b(p,t) +tr(b(p,t) b* (p, t) D" (¢ ) H*HD(t))b(p, t).
(4.34)
We can then compute db(p(t),t) by making use of (4.34), (4.31) and (4.29), we then obtain:
ab(p(t),£) = (B(p(t), 1) — blp(t), D" (p(1), )" () H* (d=(t) — Ha(t)de). (4.35)

Using (4.6), (4.30) and (4.35), we obtain easily (4.28), recalling the definition of I'(p, t), see (4.27). The relation
(4.29) follows immediately from (4.9) and (4.24). The proof is complete. O

We also have the follwing interpretation of I'(p(¢),t) as the conditional variance of the process x(t):
Proposition 4.4. We have the formula:

T(p(t), 1) = W — (D))" (4.36)

Proof. We use (4.25) to write:

S z2*q(, t)da

Jen a(z,t)d
B 1 x*S(t)x — 22*p(t)
- 2" S(t)e—20p(t) P 2
Jgn exp (=272 g(x)da R

: [/R (i(t) +®(t)(x — b(p(t), 1)) + E(t)%§> (a}(t) +0(t)(z — b(p(t), ) + E(t)%g)* wdg o(2)dz

exp( z*S( t)a: 2z* p(t)) I)dSC
p

(- 0 2P - [(60) + (0 — bloto) ) (310) + () x  p(0). )" + (o)
+
+

p(1),t) = blp(t), 1)) (B(p(t), 1) = b(p(t),1))"@(1)" + (1)

/\
~
~—
—~
oy
—~

= &(t x(t)
i

which is (4.36) as desired. O



MEAN FIELD APPROACH TO STOCHASTIC CONTROL WITH PARTIAL INFORMATION 17

4.5. The Gaussian case

We first begin by giving the characteristic function (Fourier transform) of the unnormalized probability
density denoted by:

QA t) = /n q(z,t) exp(iX*z) dx

fRn exp (7z*S(t)a:72r*(2p(t)+i<1>*(t))\)) g(z)dz

Jn €xD (_71*3(@3:;2.1*,,@)) q(z)dx
(4.37)

1
= v(t) exp {—2/\*2@))\ +iN"(2(t) — @(t)b(p(t),t))] .
The Gaussian case corresponds to an initial value of the system (4.19) which is Gaussian:

1 _ _
exp (—2(3U —Z0)*Fy 1(x - x0)>
(2m)% | Po|2

q(z) = , (4.38)

where we have assumed the initial variance Py to be invertible, to simplify calculations. Using (4.23), we obtain:

b(p,t) = (S(t) + Pg )™ (p + Py 7o), (4.39)
B(p,t) = b(p,t)b(p,t)* + (S(t) + Py )7t (4.40)

Therefore, from (4.27), we obtain:
T(p,t) = S(t) + ®(t)(S(t) + Py )t o(t)* = P(t), (4.41)

which is independent of p. An easy calculation shows that P(t) is the solution of the Riccati equation:

EJFPI‘I *HP — FP — PF* = 2a,
d (4.42)
P(0) = P,

and &(t) is then the classical Kalman filter:

dz(t) = (F(t) + Gu(t))dt + P(t)H*(dz(t) — Hz(t)dt), (4.43)
£(0) = To '
To obtain ¢(z,t), we use the characteristic function (4.37). An easy calculation yields:
o 1
QA t) =v(t)exp (M*ﬁc(t) - 2)\*P(t))\) , (4.44)

which is the characteristic function of a Gaussian random variable with mean #(t) and variance P(t). Recall
that it is a conditional probability density given Z*.
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5. LINEAR QUADRATIC CONTROL PROBLEM
5.1. Setting of the problem

We want to apply the theory developed in Section 3 to the linear dynamics and linear observation (4.3), with
a quadratic cost:

{ f(z,v) =a*Mx +v*No, (5.1)

fr(x) =" Mrax,

in which M and Mt are n X n symmetric positive semi-definite matrices and N is an m X m symmetric positive
definte matrix. We want to solve the control problem (2.9), (2.10) in this case. We write it as follows:

{ dg — tr (aD2q(z,t)) dt + div(Fz + Gu(t))q(z,t)) dt — g(z,t) Hz - dz(t) = 0,
(5.2)
q(z,0) = q(z),
T
Jw(-))=E /0 /n ¢"O(z,t)(z* Mz + v(t)* No(t))dzdt + /n ¢"(x, T)x* Mpzdz | . (5.3)

In the sequel, we shall drop the index v(-) in g(z,t) without cause of too much ambiguity.

5.2. Application of mean field theory
We begin by finding the function (g, U) defined by (3.13). We have to solve for the minimization problem:

inf |:’U*NU/ q(z)dz + Gv - D, U(z,q)q(x)dz|, (5.4)
v n Rn

which yields

D,U(z,q)q(x)dx
Jon q(x)dz

o(q,U) = —%N‘lG* Jor (5.5)

and thus

1 Jpn DU (2, dr-GN71G* [, DU (x, d
inf v*NU/ q(z)dr + Gu - D,U(z,q) q(z)dz| = _7]]1{ (z,q) g(z)dz fR (z,9) q(x) x.
! " R" 4 Jan a(x)dz

We consider the value function:

®(q,t) = ir(lf) J(v()), (5.7)
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and we write Bellman equation (3.16) specifically for the linear quadratic case as follows:

0P
(o) DUGana@)arr ] [ ] voenme @i+ [ o Mg

1 fzn DU (2, q,t) g(x)dx - GNT'G* [, DoU(x,q,t) q(x)da

—|—/ Fx-D,U(x,q,t)q(x)dx — - =0,
R ( ) ( ) fRn q(l‘)dl‘
®(q, T) = / x* Mrx q(x)dz,
(5.8)
in which we recall the notation:
09(g, t) > ®(q,t)

U(xqut) = dq (SL’), V(q,t)(:r,y) = qu(x’y)

We can next write the Master equation (3.17), which is the equation for U(z, q,t). We get:

ou + tr (a DiU(m,q,t)) + tr (a

- D2V (0, 0)(e, ) a(©a€) + o [ €V(0.0(w O ate)ie

R™

+ % /n - aV(q, )(57 n)(x)HE - Hnq(€)q(n)dédn + 2" Mz + Fa - D, U(z,q,t) + . F¢-DeV(g,t)(x,6)q(§)dE

+1fRn D,U(z,q, ) q(z )d%GN_lG* Jan DaU(z, q,t) q(x)da 1 pU@qn on e Jan DeU(E, q, ) (§)d¢
X Un o : [T
» DeU(E, q, d
3 [ PVl gaeae G DG ADIEKE
2 Jan fR

U(z,q,T) = 2" Mrzx.
(5.9)

5.3. System of HIB-FP equations

We now write the system of HIB-FP equations (3.22) and (3.24). We look for a pair (u(z,t),q(z,t)) the
adapted random fields solution of the coupled system:

diq = (tr (aDZq) — div [(Fx— ~GN'G* Jo- l};“ &0 466, ﬂdf) Q(x,t)D dt + q(z,t)Hax - dz(t),

q(.’L‘, 0) = q($)§

(5.10)

—1 /%
—dyu = (tr (aD2u) + 2" Mz + Fo - Dyu(z,t) + if]R" Deu(€, 1) a(€, t)di GNg tigfw Deu(&, 1) (&, 1)d¢
Rn

fen D€ 0 €096
Jan (€, 1)d€ )dt K(z,t) - (da(t) — Hadt),

1
- §Dxu(a:,t) -GN~'G*

u(z,T) = " Mrx.
(5.11)
The random field K (z,t) can be expressed as:

K(z,t)=H | V(g t)(x,8)q(§,t)dE. (5.12)

R™
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The key result is that we can solve this system of equations explicitly and obtain the optimal control. We
introduce the matrix 7 (¢) solution of the Riccati equation:

dm
4 rF+ F'r—aGN'G*r+ M =0

q T Tt ’ (5.13)
7(T) = My.

We next introduce the function Z(z, p,t) solution of the deterministic linear PDE:

%—f +D,Z - (F—=T(p,t)H*H)x + D,Z - ®*(t)H* H(®(t)b(p, ) + ) + %tr (D2Z (2a + T (p,t)H*HT(p, 1)))

+ %tr (D2Zo*(t)H*H®(t)) — tr (D2,Z®*(t)H*HT (p, 1)) + =7 (t)GN~'G*7(t)x + 2tr(an(t)) = 0,
Z(z,p,T)=0.

(5.14)
We next introduce the pair of adapted processes (Z(t), p(t)) the solution of the system of SDE:
{ dz = (F — GN7YG*n(t))@(t)dt + T(p(t), t) H* (dz(t) — Hi(t)dt),
) _ (5.15)
z(0) = Zo;
dp = " (OH" (@2(t) — H((0) ~ (o(2). 1) 516
p(0) = 0.

They are built on a convenient probablity space on which z(¢) is a standard Wiener process with values in R<.
We associate to the pair (Z(¢), p(t)) the unnormalized conditional probability ¢(z,t) defined by Zakai equation:

{ dig = (tr (aD2q) — div[(Fz — GN'G*r(t)2(t))q(x,t)]) dt + q(z,t)Hz - d=(t),

4(.0) = o). (17
We next define the random field
u(z,t) =" w(t)xr + Z(x — &(t), p(t), t). (5.18)
We now state the main result of our paper:
Theorem 5.1. We have the property:
D, Z(x — (t), p(t), t)g(x,t)dx = 0, a.s., for anyt, (5.19)

R™

and u(z,t) and q(x,t) defined by (5.18) and (5.17), respectively, are solutions of (5.10) and (5.11). The optimal
control is given by

0(t) = 0(qs, ur) = —N1G*r(t)2 (). (5.20)
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Proof. We first prove (5.19). We differentiate (5.14) with respect to = in order to obtain:

%Dzz + D2Z(F =T (p,t)H*H)x + (F* — H*HT (p,t)) D, Z + D2, Z®*(t)H* H(®(t)b(p, t) + x)
1
+ H*H®(t)D,Z + %tr (D2D,Z(2a+T(p,t)H*HT (p,1))) + Str (D2 D, Zo*(t)H*H®(t)) (5.21)
—tr (D3, D Z®*(t)H*HT (p, 1)) + 2n(t)GN ' G*n(t)z = 0,
Z(x,p,T) = 0.

We next consider g(x,t) defined by (5.17). A long calculation then shows that:

dy - D.Z(x — &(t), p(t), t)q(z,t)dx = —(F* — H"HL(p(t),t) + H* H®(t)) . D.Z(x — &(t), p(t), t)q(z, t)dzdt

+ (/Rn [—D2Z(x — &(t), p(t), )T (p(t), t) + D3, Z(x — &(t), p(t), )" (t) + DaZ(z — &(t), p(t), t)z"] q(a, t)) H*dz(t),

. D.Z(x — &(T), p(T),T)q(z,T)dz = 0.
(5.22)

From this relation, it follows that

D, Z(x — z(t), p(t), t)g(x, t)dx - exp (/ (F*— H*HT(p(s),s) + H*H@(s))ds)
Rn 0

is a Z' martingale. Since it vanishes at T\ it is 0 at any ¢, a.e. Hence (5.19) is obtained. Consider u(x,t) by
formula (5.18), therefore, using (4.18) and (5.19), we get:

Jrn Deul€,t) q(&,1)d€
f]R" Q(gv t)df

=2m(t)Z(t). (5.23)
To check (5.10) we have to check:

—du = {tr (aD2u) + 2*Mx + Fx - Dyu+ 2(t)*7(t)GN ' G*m(t)&(t)
— Dyu- GN_lG*w(t)fc(t)]dt ~ K(x,t) - (d2(t) — Hzdt), (5.24)

u(z, T) = z* Mrz.

Note that the final condition can be trivially verified. We can check (5.24) by direct calculation. We obtain also
the value of K(x,1):

K(2,t) = H[-D(p(t), ) D, Z(x — #(t), p(t), 1) + B() Dy Z (@ — (1), plt), )- (5.25)

So we have proven that (u(z,t),q(x,t)) is the solution of the system of HIB-FP equations (5.10) and (5.11).
The result (5.20) is an immediate consequence of (5.23). The proof is complete. O

5.4. Complements

The result (5.20) is important. It shows that the optimal control of the problem (5.2) and (5.3) follows
the celebrated “Separation Principle”. We recall that in the deterministic case, the optimal control, which is
necessarily an open-loop control can be obtained by a linear feedback on the state. Open loop and feedback
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controls are equivalent. The separation principle claims that in the partially observable case, the optimal open
loop control (adapted to the observation process) can be obtained by the same feedback as in the deterministic
case, replacing the nonobservable state by its best estimate, the Kalman filter. The fact that the separation
principle holds is well-known when the initial state follows a Gaussian distribution. We have proven that it holds
in general. What drives the separation principle is the linearity of the dynamics and of the observation and the
fact that the cost is quadratic. The Gaussian assumption does not play any role. A significant simplification
occurs in the Gaussian case, regarding the computation of the Kalman filter. In the Gaussian case, the Kalman
filter solves a single equation. In general, the Kalman filter is coupled to another sufficient statistics p(t) and
the pair (£(t), p(t)) must be obtained simultaneously.

We proceed on by obtaining the value function ®(q,t). In fact, we obtain ®(g,0). The same procedure must
be repeated at any time ¢. First, we have:

M(z) =u(z,0) =2*7(0)x + Z (a:

Jen €a(§)d€
9q e a0 0) . (5.26)

 fana(©)de

oP
We next obtain E(q, 0) by formula (3.27). We obtain:

0P

E (q1 O)

=—tr (a - D2u(x, O)q(ac)daz) - % Hz - K(z,0)g(x)dz — / [z* Mz + 9(0)* No(0) + Dyu(z,0) - (Fz + Go6(0))]q(z)dz

R"

R™

= —2tr(aw(0)) — tr (a D2 Z(x — %, 0, O)q(x)dz> — % Hz - H(-T(0,0)D.Z(x — Z0,0,0) + Dy Z(x — Z0,0,0))q(z)dz

R™ R™

— /Rn Fx - DyZ(x — Zo,0,0)q(x)dz + [3’66#'(0):7:0 — tr(I'(0,0)(M + 27T(0)F))] /R" q(x)dz,
(5.27)

where

Fo = fRn xq(m)dx
7 fa(@)dz

We can finally obtain the value of ®(g,0). Since we know the optimal control for the problem (5.2) and (5.3),
we have:

q(z, T):U*MTxd:C] )

n

B(q,0) = J(i()) = E Vo / o, t) (2" Mz + 3(8) ()N~ G r(£)3 (1)) dt + /

where ¢(z,t) is the solution of (5.17). Therefore also,

T
®(q,0)=E /0 v(t)[z(t) (M + m(t)GN ™ G*x(t))z(t) + trMF(p(t),t)]dt] (5.28)
+Ep(T)(&(T)*Mpz(T) + trMT(pT), T)).
The triple (£(¢), p(t), v(¢)) is the solution of the system of SDE (5.15) and (5.16), and
dv(t) = v(t) H2(t) - dz(t),
(5.29)
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respectively. From the probabilistic formula (5.28), it is easy to derive an analytic formula as follows:

B(0.0) = (#gm(O)m + 5(0.0)) [ ata)i, (5.30)

n

where p(p,t) is the solution of the linear PDE:

0 1
a—‘; + Do - ®*(t)H*H®()b(p, t) + Str (Dopud®* () H* H®(t)) 4 tr((M + m(t)T (p, t)H*H)T (p, t)) = 0,
pu(p, T) = tr(MrI'(p, T)).
(5.31)
We can apply these results in the Gaussian case. We first solve the PDEs (5.14) and (5.31). We recall that
['(p,t) = P(t), then Z(z,p,t) and p(p,t) are independent of p and are easily seen:

Z(w,pt) = 2 A1) + B(E), (5.32)
with
dA % * * e Yak _
X +A@)(F—P@)H"H)+ (F*—H*HP(t))A(t) + () GN~ G*=(t) = 0, (5.33)
A(T) =0,
T
B(t) = / tr (A(s)(2a+ P(s)H*HP(s))) ds. (5.34)
t
Similarly, u(p,t) = u(t) is given by:
T
u(t) = / tr (w(s) P(s) H* HP(s)) ds + tr(MrP(T)). (5.35)
t
Then,
M)gg O (@) = 2" m(0)z + (& — 20)" A(0) (& — T0) + B(0), (5.36)
%—T(q, 0) = —2tr((a + P(0)F)(n(0) + A(0))) + Zom' (0)Zo — tr(P(0)M) + tr(P(0)H* HP(0)A(0)), (5.37)

®(q,0) = zym(0)To + u(0). (5.38)

6. COMPARISON
6.1. Objectives

We compare in this section our work with another recent approach of Bandini et al. [2]. They consider a
general problem of stochastic control with partial information, to which our problem can be reduced. Their set up
leads to a conditional probability, (hence normalized) solution of a linear stochastic PDE, which they call DMZ
equation (for Duncan-Mortensen-Zakai equation). They formulate a control problem for this infinite dimensional
state equation, for which they write a Bellman equation. The solution is a functional on the Wasserstein space
of probability measures, since indeed the state is a probability. When we formulate our problem in their set up,
our Zakai equation cannot be their DMZ equation, since we do not have a probability, but an unnormalized
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probability. To make the comparison easy we keep our model, but we follow the setup of [2]. We explain the
difference between the two equations, and also the difference between our own Bellman equation and their
Bellman equation. Although our problem can appear as a particular case of [2], it is at the price of complicating
it, which turns out to be not suitable. The discussion will explain the reasons. [2] provides an example with
linear equations, which does not cover ours. In the set up of [2], our system remains nonlinear, which is also
a consequence of the complication of the approach. We remain formal in our presentation, since we want to
discuss the concepts and compare the methods.

6.2. Use of the set up of [2]
In the set up of [2], we consider the pair (z(t),n(t)) the solution of the system:

dz = g(z,v)dt + o(z)dw,

{ #(0) = ao; (O
dn(t) = n()h(x(t)) - dz(t),

{ 7(0) = o, (62

in which w(-) and z(-) are independent Wiener processes and xg and 7o are random variables independent of
w(-) and z(-). We observe only the process z(:). The DMZ equation introduced by [2] is the equation for the
conditional probability of the pair (z(t),n(t)) given the o-algebra Zt= o(2(s),s < t). In (6.1), the control v(t)
is simply adapted to Zt.

If o(n,x,t) is a deterministic function on R"*! x RT, we are interested in the process p(p)(t) =
Elp(n(t), z(t),t)|Z']. It is the solution of the DMZ equation. We use the notation:

Aw@(nax7t) = —tr(a(x)Di<P(777$at))v (63)
with a(z) = $0(x)o*(x). We note
Azplinn,t) = = Y 5o (ay ()l .0) (6.4

We next define the operators:

£0pl,2,0) = Datpl2,0) 900, 0(0) = Asilr ) + o) L), 65)
My, ,6) = 120D, (6.6)
Then the DMZ equation is:
ap(e)(t) = p (a@ T ﬁ”%) (1)t + p(Mg) (1) - da(t)
ot (6.7)

p(#)(0) = Ep(no, xo,0).
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In the sequel, we assume the existence of a density p(n,x,t) which is the joint conditional probability density
of (n(t),z(t)) given Z¢. Tt is defined by:

o)1) = / p(n, . t)p(n, z, t)dnd. (6.8)

The conditional probability density is the solution of the stochastic PDE:

N ) 1 02 0
dp + | Azp(n, z,t) + div(g(z, v(t))p(n, ,t)) — §|h(x)\26772(772p(77,x,t)) dt = —h(x)afn(np(n,x,t)) ~dz(t),
p(n7 x, 0) = pO(T]a 1:)
(6.9)
It is easy to check that
q(z,t) = /np(n, x,t)dn (6.10)

is the solution of Zakai equation (2.9), provided that the initial condition

qo(z) = /npo(n, x)dn. (6.11)

It is then clear that although p(n, z,t) is indeed a probability density, while ¢(z, t) is not. Conversely, if we start
with go(z) and want to solve Zakai equation (2.9), we can use (6.10) by looking for p(n, z,t) the solution of the
DMZ equation (6.9). We need to take the initial condition of product measure:

_ - qo(z)
wina) =3 (1= [ (o) o 72 (612)

This is not a probability density, so we need to use the weak formulation, to proceed.

We get some kind of interesting quandary. Using the set up [2] we can use probability measures, the Wasser-
stein topology and the lifting method of P.L. Lions, but the price to pay is to increase the dimension by 1, with
a nonlinearity. If we stay with the traditional setup, we have to work with unnormalized probability densities.
If we can work with densities, it is not a serious drawback, but otherwise we have to find an alternative to the
Wasserstein space and the lifting procedure, and it is not clear how to proceed. We can, of course, consider
Kushner equation, instead of Zakai equation, whose solution is a probability. But Kushner equation is nonlinear,
conversely to Zakai equation.

6.3. Bellman equation

We can extend the comparison at the level of Bellman equation. We consider p?() (n,z,s), s > t, the solution
of

o+ | A2p(n.,5) + div(g(a,o(s)p(..5)) = b 5 (0Pt 50| ds = ~h(o) 5. (apln.,9) - (),
p(m €T, t) = P(’?a l‘)7
(6.13)
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where p(n, z) is a probability density, denoted in the sequel by p. We can then define the payoft J, ;(v(-)) by:

Tpa(0() [ / / YO, , 8 f (2, v(s))dndards + / O, 2, Ty fr(a)dnda | (6.14)

and we define the value function
W(p.t) = inf Ty (0()). (6.15)

We can write Bellman equation corresponding to this problem; indeed,

aa—\f+/ [—Axfgp(p,t)(mxwr;lh( ) 286172 (Zp( )(n,m)] p(n, z)dndx

w5 [ [ i 5 )00 52)h(e) - @)l )7, 3) s o

wint [ 1)+ 0.5 (0. 000.2) e, )] o 0)anas =0,

U(p,T) = / nfr(x)p(n, z)dndz.

If we compare with the Bellman equation (3.11) rewritten with the current notation (with argument an
unnormalized probability), we obtain:

“ (_Azgj@,txmm) dot g [ [ 53006k )o@ dods
it [ [f@c,v) + 0.5 (0. 0)() -g<x,v>] g(z)dz =0, (6.17)
= /fT(Jc q(z)dx
Equations (6.16) and (6.17) are linked by the formulas:
U(p,t) =2 (/ np(n, -)dn,t) , (6.18)
_ o q()
2oty =¥ (5 ( / "<§)d§> “7 q(é)df’t> | (6.19)

6.4. The linear case

If we go back to the linear case (4.3), we get:

(6.20)

dz = (Fz 4+ Gv)dt + odw,
dn=nHzx-dz,

therefore, in the setup [2], we still have a nonlinear system. Therefore, we cannot use the linear case of [2]. This
explains why our formulas are completely different. The fact that we have an explicit solution of the system
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of HJB-FP equations does not imply that we have an explicit solution of Bellman equation. This is consistent
with the spirit of the method of characteristics.
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