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Abstract. We consider a real options problem, which is posed as a stochastic optimal control problem. The
investment strategy, which plays the role of control, involves a one-time option to expand (invest) and
a one-time option to abandon (terminate) the project. The timing and amount of the investment and
the termination time are parameters to be optimized in order to maximize the expected value of the
profit. This stochastic optimization problem amounts to solving a deterministic variational inequality
in dimension one, with the associated obstacle problem. Because we consider both cessation and
expansion options and fixed and variable costs of expansion, the obstacle is nonsmooth. Due to the
lack of smoothness, we use the concept of a weak solution. However, such solutions may not lead to
a straightforward investment strategy. Therefore, we further consider strong (C") solutions based
on thresholds. We propose sufficient conditions for the existence of such solutions to the variational
inequality with a nonsmooth obstacle in dimension one. When applied to the real options problem,
these sufficient conditions yield a simple optimal investment strategy with the stopping times defined
in terms of the thresholds.
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1. Introduction. Stochastic control and optimization problems arise in various applica-
tions in finance. They are mainly related to investment problems where the control is usually
given by an investment strategy [5]. A choice made available to the managers of a company
concerning business investment opportunities is called a real option. In particular, common
types of real options include the decision to expand, wait, or abandon a project [10, 18].

Real options in real estate investment would be an example worth considering. In par-
ticular, expansion options study the timing and the scale of a new construction development.
By contrast, abandonment (exit) options focus on the optimal timing to close activities by
selling the properties entirely. The cost of expansion can be divided into two parts: a variable
cost and a fixed cost. The variable cost is a function of the capital outlay (e.g., the number
of floors in the building). The fixed cost is independent of the capital outlay; it can include
legal fees and construction permits.
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In this work, we study a real options problem with investment flexibility in time and
capacity. The problem is formalized following the impulse control methodology [14], in which
the optimal exit and expansion strategy is formulated in terms of the value function defined
as the expected value of the future cumulative profit. Mathematically, the problem amounts
to solving a variational inequality (V.I.) with a nonsmooth obstacle in dimension one.

It is now standard in investment theory and growth of firms theory that V.I.s obtained
via the dynamic programming method [7] provide a methodology for solving the problem of
finding the right time to invest, called a stopping time. The solution of the V.I. (or one
solution if there is no uniqueness) gives the value function. One expects optimal stopping
times to be expressed through thresholds, i.e., one stops when the state variable attains a
threshold. When the obstacle is smooth (at least C!), this is easily obtained. In our case,
because we have two stopping times (investment and cessation of activities) and fixed and
variable costs for the size of expansion, the obstacle cannot be C1. It is C, and its derivative
has the left and right limits. The value function may have just the same regularity as the
obstacle, but it can also have a C' regularity. Because of this potential lack of smoothness
of the value function, the rigorous theory of V.I. uses the concept of weak solutions. In that
case, the optimal stopping can only be characterized as a time when the value function and
the obstacle coincide. This characterization may not lead to a single threshold.

In what follows, we present a rigorous theory of the existence and uniqueness of a weak
solution to the V.I. with a nonsmooth obstacle in dimension one. We further provide sufficient
conditions for the solution to be C'. In that case, the V.I. can be written in the standard
form, called the strong formulation. We propose sufficient conditions for the existence of a
strong two-threshold solution, which coincides with the obstacle below the lower threshold and
above the upper threshold. These conditions simultaneously suggest a method for obtaining
the solution numerically. An important condition postulates that the derivative of the obstacle
has a positive increment at each discontinuity point, i.e., an assumption, which is naturally
satisfied for the real options problem. In the context of this problem, the thresholds provide
the stopping times for exercising the cessation option and the investment option of the optimal
investment strategy. For the most general theory of weak solutions in any dimension we refer
the reader to [7].

A rather general framework for solving optimal stopping and impulse control problems
with a nonsmooth obstacle for It6 diffusion processes was developed in [1, 2, 3]. This ap-
proach uses the theory of r-excessive and r-harmonic mappings [9, 13] and involves showing
the convexity of the minimal r-excessive mappings (fundamental solutions) for the diffusion
process. In [1], an explicit solution of the optimal stopping problem with a terminal payoff is
obtained. It is shown that the value function increases and the continuation region expands
with higher volatility. These results are extended to impulse control problems with a controlled
diffusion in [2, 3], where the associated optimal stopping problem can have a nonincreasing
running payoff 7 € L;(R;) in addition to the terminal payoff. In contrast to these results, in
the present work a typical running payoff increases with the price and is unbounded, which is
a natural setting for investment decision problems. The fundamental solutions for this paper
are explicit convex power functions because we assume the geometric Brownian motion model
for the price, but the obstacle is not necessarily convex or concave.

Moreover, our findings are also broadly related to the growing literature applying sto-
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chastic control to a firm’s optimal decisions. Explicit closed form solutions for investment
models with entry and exit decisions and investment decisions incurring a fixed cost for open-
ing and closing a project are obtained in [11, 12, 19, 20] using the method of quasivariational
inequalities (Q.V.L.s). In the case of a smooth concave obstacle, a singular control problem
with discretionary stopping is solved for controlled geometric Brownian motion in [16], where
the penalty method is used to analyze the degenerate V.I., show the concavity of the value
function, and obtain the optimal control rule. An impulse control problem with discretionary
stopping and multiple investment options incurring a proportional investment cost is solved
in [5] for the geometric Brownian motion. The Q.V.I. of this problem also has a smooth ob-
stacle. The comparative statics with respect to the fixed and proportional cost of investment
presented in section 4.4.2 are in line with numerical findings in [17], where a lower total equity
issuance cost delays liquidation and a higher fixed cost component of the equity issuance cost
increases the amount of equity issued.

The real options problem with one-time investment flexibility and a cessation option was
studied in [6] under the assumption that the investment cost is proportional to the investment
amount and no fixed cost of investment is incurred. Also, a specific form of the profit function
(which is a particular case of the profit function considered below in section 4.2) was assumed.
In the setting ensuring the smoothness of the obstacle, the associated V.I. was shown to have
a two-threshold strong solution with one continuation interval defining the optimal strategy.
In this work, we consider the one-time investment problem with a cessation option in a more
general setting. That is, we allow any investment cost function and profit function satisfying
a set of simple natural assumptions. In particular, this includes investments incurring a fixed
cost (in addition to the variable cost), which necessarily leads to the V.I. with a nonsmooth
obstacle. By invoking the technique of weak solutions and an adapted form of the maximum
principle, we obtain a set of conditions which ensure the existence of a weak solution and a
strong two-threshold solution in the nonsmooth setting.

The paper is organized as follows. In the next section, the real options problem is discussed.
In section 3, we consider the weak and strong formulations of V.I. with a nonsmooth obstacle
of the general form in one dimension. Sufficient conditions for the existence of a weak solution
and a strong two-threshold solution are presented. This analysis is applied to the real options
problem in section 4. Proofs are presented in the appendix.

2. Optimal investment/exit problem. In a continuous time setting, let us consider the
probability space (2, F,P), and a Wiener process w : Q x Ry — R, with a filtration F =
(Ft;t > 0). Assume that a commodity price X (¢) follows the geometric Brownian motion
process

(1) dX = pXdt + o Xdw, X(0) ==.

Suppose that a firm has a capital 6 > 0, and this capital does not degrade, nor is main-
tenance needed. Let m(X(t),0) denote the profit of the firm per unit time as a function of
the current price and the firm’s capital. If no investment is allowed, then the manager at any

moment decides whether to continue the operation or go into cessation. This leads to the
classical optimal stopping problem with the value function

(2) P(,0) = DB /0 CeTin(X (1), 6)dt,
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where E, 5 denotes the expected value for fixed x, J, and r > 0 is the discount rate.

Everywhere below we assume that the manager can make an investment prior to cessation,
and at most one investment is allowed. Hence, admissible investment strategies are represented
by the set U of triplets {79, &, 71}, where 79 > 0 is the time of investment, £ > 0 is the amount
of investment, and 7 > 0 is the cessation time. In particular, the manager can choose not
to exercise the cessation option (71 = 00) or not to invest (79 > 71). Formally, d; follows
controlled dynamics,

3) 0t = 0+ &1y o) (1),

where the control consists of a stopping time 79 at which an impulse £ (an F,,-measurable
random variable) is applied.

Further, the one-time investment £ into the capital incurs a cost of v(§), where we assume
that v : Ry — R increases, is continuous on (0, 00), and satisfies

(4) v(0) =0 < Ky = lim v(), lim V() =k>0.
£—0 £—o0 {

The first assumption means that there is a fixed cost K associated with the investment of any
amount &, while v(£) — K is the variable cost increasing with £. Further technical assumptions
on the investment cost will be imposed later. The case Ky = 0 is actually simpler and can be
covered by our results, but the explicit assumption Ky > 0 simplifies the formulations.

The manager’s objective is to maximize the market value of equity. Assume that the value
function of this optimization problem is given by

T1
(5) y(l’, 6) = sup ]Ex,é |:/ e—rt,]_r (X(t)v o+ 51[7'(),7'1)(1:)) dt — e_TTOU(§)1[0,71)<7—0):| y
{10,£,11}€U 0

where 14 denotes the indicator function of a set A. On the other hand, the profit from
investment equals

(6) ®(z,6) = 21;18 [p(z,0 + &) — v(§)] = max {w(% 5), 21;15 [p(z,0 + &) — v(&)]} ,

where ¢ is given by (2). With this notation, the value function (5) can be equivalently
expressed using one stopping time 6 = 79 A 71 (see also [5]) as

0
(7) y(z,8) :=sup E,s [/ e " (X(t),6)dt + e "D(X (9), 5)} .
0 0
Define the differential operator
®) Ly(w) = ry(e) — pry/ (@) — 5o*%y/ (@),
According to [7], the value function (5) should satisfy the V.I.
9) y(x,8) > ®(x,0) for all x € Ry,
(10) Ly(x,6) > m(x,0), ae xRy,
(11) [y(flf, 6) - (D(‘Ta 5)] X [[’y('ra 5) - 7'('(%, 5)] =0, ae.z € R-f—
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(which is equivalent to min {y — ®; Ly — 7} = 0) and the boundary conditions

(12) y(0,0) = ®(0,6) =0,
(13) y(z,0) — ®(x,0) >0 as x — oo.

The continuous nonnegative function ® is called the obstacle. Typically, the obstacle (6) has
points of nonsmoothness. Examples will be considered in section 4.

In what follows, we consider a weak formulation of problem (9)—(13) and a strong solution
to this problem, which possesses additional properties. The so-called two-threshold solution y
is twice continuously differentiable in x a.e. and satisfies the condition

(14) y(x> 5) = (I)(Qj‘, 5)a LS [OaXO((S)] U [X5(5)7 OO)

with a priori unknown thresholds (free boundaries) X5(4) > Xo(4) > 0. We choose the nota-
tion X5 for the upper threshold because the assumptions, results, and proofs presented later

use a number of important intermediate points X7, Xo, X3, X4 located between the thresholds
Xo and X5. Condition (14) implies (12), (13).

3. Variational inequality with nonsmooth obstacle.

3.1. Setting of the problem. Motivated by problem (9)—(13), in this section we consider
the existence of solutions to a V.I. with a nonsmooth obstacle in a rather general setting. We
will then apply the results of this section to the real options problem considered above.

We work on R. We consider the second order differential operator (8) with positive con-
stants r, u, 0. The obstacle ®(z) is assumed to be a.e. differentiable and satisfy the conditions

+oo @2 +oo (I)/ 2,.2
(15)  ®(x) >0, ®(0) =0, / : +(§7)ndx < +o0, / mdm < 400
0 0

with an m > 3. The Hilbert space of a.e. differentiable functions satisfying the last two
conditions (15) with the scalar product

oo +oo i/ / 2

and the corresponding norm || - ||3,, is denoted H,,. Clearly, functions with bounded deriva-
tives belong to H,,. Assume that a function 7(x) (the running profit in the above economic
interpretation) is continuous and satisfies

+oo 2
(16) / () dxr < 400, inf 7w(x) <O0.
0 1 —+ ™ x>0

We next consider the set of continuous functions z(x) which satisfy
(17) Lz(x) > m(x) in the sense of distributions on R;

z(x) > ®(x) forall x € Ry; 2(0) =0, z(x)—P(x) -0 as z— +oo,
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where £ is the differential operator (8). We denote by Z the set of continuous functions z(x)
satisfying (17). We can define the value function as the smallest function in the set (17). The
value function y(z) thus satisfies

(18) y(z) € Z; y(z) <z(x) forall zeRy, z€ Z.

This definition will be too loose. We will make it more precise in what follows.

3.2. Existence and uniqueness of a weak solution. We give the definition of the V.I. in
a weak sense. We look for a function y(x) such that

(19) y(z) € Hpm, y(x) > ®(x) for all x € Ry;
y(0)=0, y(z)—®(x)—>0 as z— 4oo;
(20)
7/+°°y<z ) P /*3} d ((z - y>x2> o L/W =y, /+°° m(@)(z=y)
o l4azm 2)g “dx \ 14+2m 0 14a2m 0 1+4am
for all z € Hyp,, 2(z) > ®(x) for all z € Ry with 2(0) =0, z(x) — ®(x) — 0 as z — +o0.
Note that, since we are in dimension one, functions in H,, are continuous. Besides,

d ((z - y>x2> (& —y)a?

do \ 1+ am 1+ am

2z ma™ L )

+(z-y) <1—}-xm B (14 2m)2

holds a.e., and since m > 3, the integral f0+°° y %(('erilfz)dac is well defined.
Theorem 3.1. Let
2

(21) T'm izr—g(m—l)—%(m—l)(m—2)>0 with  m > 3,

and let (15), (16) hold. Then there is one and only one solution y of the V.I. (in a weak
sense) (19), (20).

A constructive intuitive proof using the penalty method is presented in the appendix.
The weak solution can be characterized as follows using a rigorous interpretation of (17).
A function z(z) in H,, will be called an upper solution of the V.I. (20) if it satisfies

+00 2( +00 lec o2 [t° d x2c +00 e
22 dx — de + — — dx > d
(22) T/O l—i—xmm M/O 1+a™ x+2/0 de<1+xm> x_/o 1+xmx

for every (¢ € H,, suchthat ((z)>0, z€Ry; ((0)=0, ((z)—>0 as z— 400

and
(23) z(x) > ®(x), zeRy; 2(0)=0, z(x)—®(zx) >0 as x— +oo.

Proposition 3.2. The solution y of the V.I. (19), (20) is the smallest upper solution.
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3.3. Existence of a strong solution with thresholds. Under the assumptions of Theorem
3.1 the V.I. (19), (20) has a unique solution y. The coincidence set is the set of points = such
that y(x) = ®(x), when the value function coincides with the obstacle. As discussed above
(see the last paragraph of section 2), in applications, we would like this set to be the union
of disjoint intervals. In particular, we are interested in the situation in which we can find two
points, denoted Xy and X5 with Xy < X5, such that (cf. (14))

(24) y(x) = ®(z) for =z €0, Xo]U[X5,+00),
whereas
(25) Ly(x) =m(z), z¢€ (Xo,X5).

We also want y(z) to be C!, which leads to the smooth pasting conditions

y(Xo) = ®(Xo), y(X5)= ®(X5),

(26) Y (Xo) = (Xo), ¥(X5) =¥ (X5).

Clearly, the obstacle must be C! on the coincidence set. For a function y(z) satisfying (24)—

(26) to be a solution of the V.I. (9)—(13), we must also have

LO(x) > m(x) fora.e. =z €0, Xo]U[X5,+00);

(27) y(z) > ®(x), x € (Xo,Xs5).

Below we present sufficient conditions for existence of a solution to problem (24)-(27).
Let us consider the following assumptions about the obstacle.
Assume that there exist a number X; such that

(28) X1 >0; ®x)=0 forall ze€l0,X]; & (X;)=0;

m(x) <0 forall ze€l0,X;),

and a number X, such that
(29) Xy > Xy; ®(x) is C for x> Xy

®"(x) has left and right limits at every continuity point z € R of the function ®'.
We set

(30) g9(x) = m(z) — LO(2);

this function has left and right limits at every continuity point z € R, of the function ®' (in
particular, on (X, +00)). Assume that there exists X, such that

(31) Xy >Xn; g(x)=m(x) — LP(x) <0 forall z> Xy

g(z) < =b< 0 for all sufficiently large x.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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On [X1, X)), @(z) may not be C1, but ®'(x) has left and right limits. We then assume that
(32) if z € (X1, X4) is a discontinuity point of ®'(x),then &' (x —0) < ®'(z + 0);

if x € (X1,X4) is a continuity point of ®'(z),then g(x) > 0,

where again g(x) must be interpreted as left and right limits.!
Next, define the polynomial

() Q)= (n- “2) 518

The roots of this polynomial satisfy 81 < 0 < 2. We further assume that

(34 B0 < /XX o3 [(?)B - (?)ﬁ] o

Consider the function

and its derivative

V6 = oy [<X>ﬁ - <X>ﬁ] A

From the assumption (31) we obtain L'(z) > 0. Also, (21) implies > p, and hence 5141 < 0.
Since g(z) < —b for z sufficiently large, L'(x) — 400 as © — +o0o. Therefore, also L(z) — +o00
as £ — +o00. Due to L(Xy) = 0, the function L(z) is monotonically increasing on (X4, +00)
from 0 to +oo. Assumption (34) implies that there exists a single value X5 = X5(X7) > X4
such that

(36) 02(522_51) /; S) [(?)ﬂl — <)§4>ﬂ1 d¢ — ®(Xy)

b ) ()

We can now state our last assumption,

o ) ot ( /. X i [ﬂl <)§4>ﬁ11 ~ B, <)§4>ﬁ1] ¢
L) )]

'We have introduced X1, X3, X4 but not Xs. This notation is reserved for a multiple of X; defined below
in (87).
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Theorem 3.3. Assume that relations (28), (29), (31), (32), (34), (37) hold. Then there
exists a single pair of thresholds Xo, X5 satisfying Xo < X1, X5 > X4 such that system
(24)—(27) has a unique solution y(x). This function is a solution of the V.I. (19), (20).

We now formulate a more restrictive sufficient condition for the existence of a two-threshold
solution, which can be easier to verify in particular cases such as those considered in section 4.
Let us consider a particular solution y = p(x) of the equation Ly(x) = m(x). Define the
functions

_ /(@) apla) @)
(38) Cile) = (B2 — B1)zA Cal) = (B2 — Br)aP2 7 >0
(39) Di(x) = Cy(x)+ _“"Zf_) ;1)%2(9”), Dy(z) = cg(x)ﬁngj)__ﬁﬁfggm), z > Xar.

It is straightforward to check that
’ 2 (z) ' 2m(z)

Cl(x) (/82 . /81)$B1+1’ 02($) (/82 7 51)x52+1’

) 29(x)

o%(Ba — fr)xl2 1

2¢g(x
02(B — Br)z
Therefore conditions (28), (29), (31) imply

(40) Ci(z) >0, Cy(z) <0 for z € (0, X1); Di(z) >0, Dj(z) <0 for z € (X4, 00).

Di(z) = - Dy(x) =

Hence, each of the functions C(z), Ca2(x) converges to either a finite or infinite limit as z — 0
and each of the functions Dj(x), Da(x) converges to either a finite or infinite limit as © — oc.

Theorem 3.4. Assume that relations (28), (29), (31), (32) hold. Suppose that

(41) Dl(X4) < 01(0); a:lggo Dl(ZL‘) > Cl(Xl).

Then there exists a pair Xo, X5 such that system (24)—(27) has a solution y(x). This function
is a solution of the V.I. (19), (20).

Note that replacing a particular solution p(x) in formulas (38) and (39) by another solution
p(z) of Ly(x) = 7(x) results in shifting each of the functions C;(x), D;(z) by a constant ¢;,
i = 1,2. Therefore, if conditions (41) and (42) are satisfied for a particular solution p(z),
they are also satisfied for any other particular solution p(x) of the equation Ly(x) = 7n(z),
i.e., conditions of Theorem 3.4 are independent of the choice of a particular solution p(z).

Remark 3.5. The results of this section can be extended to optimization problem (5) with
the general one-dimensional diffusion process X (¢). In this setting, the drift and volatility
depend on X, and the differential operator (8) has variable coefficients. In this scenario, the
sufficient conditions of Theorems 2 and 3 should be formulated in terms of the fundamental
solutions of the equation Ly(x) = 0 and the solution p(x) of the equation Ly(z) = 7 (z).
Important properties of these solutions and the associated optimal stopping problem are
provided by the theory of r-excessive mappings [1].
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4. Application to real options.

4.1. Verification theorem. In this section, we apply the results of section 3 to the real op-
tions problem introduced in section 2. We start with the verification theorem, which identifies
the solution to the V.I. with the value function (7) and provides the optimal investment /exit
rule.

Consider the payoff functional

6
(43) Jo(0) =E, [ /0 e (X (1) dt + e T0D(X(0))]

where X (¢) is the process (1) with the initial value X (0) = z and 0 is a stopping time adapted
to the filtration F = (F;;¢ > 0). The value function of the optimization problem is given by

(44) y(z) = Sup Jz(0)

(cf. (5)). Let us check that under the assumptions of Theorem 3.1,
(45) sup |J(0)| < 400 for any z > 0.
0

For z = 0, the equation X (¢) = 0 holds at all times, and hence

1—e "0
Jo(0) = W(O)f + ®(0)e .

Therefore, the optimal stopping time 6 = 0o equals fy = 0 and y(0) = ®(0) if ®(0) > 7(0)/r;
on the other hand, 6y = +o00 and y(0) = 7 (0)/r if &(0) < 7(0)/r. For = > 0, we have

0 400 B
(46) Ex/o r(X(1)e "t dt' gEQC/O 7 (X (6)e ™" dt =: T'(),

where, due to I[td’s lemma and the assumptions (16) and (21), the function [(z) is a well-
defined locally bounded solution of the equation LI'(x) = |r(x)| satisfying I € H,,,. Further,
using (15) we can assert that

a:<1)2(:v) 9
< 2||®

and hence

(47) EL ($(X(0)e™) < V2@, \/IE ((Xte) ¥ Xm—1(0)> e)

Also, due to (21),

(48) E, (<X}9) + Xm_1(9)> 6_2T0> < % + ™ L
Combining (46)—(48), we obtain (45).
Define
+o00o
(49) yoo() = Ey /0 (X (1))e"" dt.
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Theorem 4.1. Under the assumptions of Theorem 3.1, the solution y of the V.I. (19), (20)
coincides with the value function y(x) = supy J;(0). If the function (49) satisfies

(50) Yoo(x) > ®(2) for all =€ Ry,
then y(z) = yoo(x) and the optimal stopping time is at infinity:

(51) sup Jz(0) = Jyp(4+00) for all z € R4,
0

If (50) is not true, then the optimal stopping time is defined by 0, = inf{t > 0| y(X(t)) <
(X (1)}

4.2. Nonsmoothness of the obstacle. Everywhere below we assume a specific form for
the running profit m(z, d) in (2) and the form (6) for the obstacle. Namely, it is supposed that
the profit of the firm per unit time is given by

(52) 7(X(1),6) = —ag + ar X (1)76°

with parameters v > 0, ap > 0,1 > 0, and ¢ € (0, 1). The first term captures fixed operating
costs incurred by the firm. The second term corresponds to the variable profits of the firm
which features standard decreasing returns to scale with respect to §, and allows for curvature
with respect to X to capture, for example, market power. We additionally assume that
Q(y) > 0, where @ is the polynomial (33)—in other words 0 < v < 2 (recall that §; < 0,
B2 > 0 are the roots of @)). For the running profit (52), the optimal stopping problem (2) has
an explicit C! solution [15]:

B1
noy [0°\ 7 . A\ Y
(53)  @(@.0) = |mo+ma’d + 5= <A> P Lezxy) with Xa(6) = (66) :
where 5
@0 a1 no P
N =—— <0, Ny = > 0, A= —— > 0;
’ r QM) ny B1—7

see Figure 1.

The obstacle (6) with ¢ given by (53) has points of nonsmoothness where the left and right
derivatives with respect to x are different. We make this statement precise in the following
two lemmas.

Lemma 4.2. There is a continuous function X3 : Ry — Ry such that

(54) o(z,5) = {so(x, 9), z < X3(),
7 SUP¢>0 [(P(x7 o+ 5) - U(g)] y T > X3(6)7

(55) O(x,0) > @(x,0) for x> X3(6).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/17/23 to 129.62.31.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

REAL OPTIONS PROBLEM WITH NONSMOOTH OBSTACLE 1519

)

01

Figure 1. The graph of the value function ¢(z,-) with fired x = 10 for the parameter values pu = 0.01,
1
0=010,7r=0.12,vy=1,e=05, ag =135, a1 = 1,61 = (&) “.

For every § > 0, x > X3(0), the relations (54) and

(56) o(z,0) —v(04) < p(z,0) < P(x,0);  wx,04+E&) —v() > —0 as £ — +o0

imply that there is a closed nonempty set E,,4.(x,d) C (0,00) of values of £ such that

(57) ®(z,0) =p(z,0 +&) —v(€) & €€ Ema(,9).
Define
(58) Envi(x,0) = sup Epgz(z, 9), Em(z,0) = inf Zp02(, ).

Let D f and D, f denote the right and left (partial) derivatives of the function f with respect
to x.

Lemma 4.3. For x > X3(0), the left and right derivatives of ® with respect to x satisfy

(59) D} ®(x,0) = ¢y (x,6 + Ep(w,6)), Dy ®(z,68) = ¢y (z,6 + &n(,0)),
and
(60) D} ®(x,0) — D, ®(x,0) >0 if En(x,8) > Em(z,9).

If in addition

(61) Env(x,0) =&n(x, )  and  @ss (x, §+ & (z, 5)) — U"(EM(x, 6)) # 0,

then ®,.(x,d) is well-defined.
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Further, the left and right derivatives of ® with respect to x on the line x = X3(0) satisfy
D ®(X3(0),0) = @2 (X3(0),0 + £ (X5(9),0)), Dy (X35(),0) = ¢a(X5(9),9),
and
(62) D ®(X3(0),8) — Dy ®(X3(6),0) > 0.

According to (62), the derivative ®,(-,-) of the obstacle is discontinuous on the line z =
X3(0). This discontinuity is induced by the nonzero fixed cost associated with any positive
investment amount. Let us consider an example of a discontinuity of the type (60).

Assume that the variable cost with v(0) = 0 is piecewise linear:

(63) v(€) = Ko+ k1§ + (k2 — k1) (€ — &o) H(E — &), §>0,

where H is the Heaviside step function and k1 > k2. This cost function (63) captures important
features of economic realism such as fixed expansion cost Ky (e.g., the cost of obtaining a
development license in the case of real estate or obtaining a license to drill in the case of oil
and gas) and a decreasing marginal cost per additional unit. The latter reflects the savings
incurred from bulk buying machinery or raw materials since typically sellers provide discounts
for larger purchases which taper off at a minimum cost per additional unit. In (63), a discount
applies when the investment amount exceeds £. The investment cost function (63) satisfies
(4) with k = ko.

Given a ¢ > 0, let us show that if z and &y are large, then the function ¢(z,d 4+ ) — v(-)
can achieve the same global maximum value on the positive semiaxis & > 0 at two distinct
points &, (x,d) # Ep(x, ). When this is the case, then according to Lemma 4.3, both X35(d)
and x are discontinuity points of the function ®,(-, ).

Indeed, for large x, the function ¢ can be approximated by the function

o(x,0) = nya’ 6%,

Now notice that, given z,d > 0, the system
(64)
@o(@,0+&) =k, @o(@,04+8&) =k, @(x,0+&) —ki&r = @z, 0+ &) — koo + (k2 — k1)&o

has the solution

13 g

T 1-e T 1-e
k2 — kl

1
enyx’) T — 4,
%_g(kl_kQ) (77’)/ )

& =

1
G=k T (enaM)TE =5, i=1,2

Due to the convexity of the function kiﬁ, from k1 > ko it follows that

e 1 k_176 . k_17€ e !
kl 1—e > 1 2 > kQ 1—5;
1—¢ kl—kg 1—c¢
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hence & < &y < &2, and therefore system (64) is equivalent to the system

@s(x,6+&1)—v'(€1) =0,  @s(x,0+8&)—v"(&2) =0, @(x,04+&1)—v(&1) = o(x,0+E2) —v(&2).

In other words, £, & are two maximum points of the function @(x,d+-) —v(-), which achieves
the same value at these points. But, for large values of x, the function ¢ can be considered as
a small perturbation of the function ¢. Also, & grows with x. Hence, we conclude that, given
a d > 0, if the parameter &y of the price function (63) is sufficiently large, then the function
o(x,d + ) — v(-) also achieves the global maximum at two distinct points &; for at least one
value of x = x(§p), which grows with &;. Therefore, ®,(J,-) has at least two discontinuity
points for large &y, one of them due to the fixed cost associated with any investment, the other
due to the discount on investment amounts exceeding &p.

It is worth noting that the situation is similar for smooth cost functions v(-), which are
close to (63), i.e., the corresponding obstacle has multiple points of nonsmoothness.

4.3. Investment cost of general form. Assume that the investment cost function v(§) is
C? for € > 0 and

(65) lim £0”(€) = 0.

£—o00
Proposition 4.4. Let (21) hold with m > 3 and let

¥ m—1
66 _—
(66) 1—€< 2

Let the investment cost satisfy (4) and (65). Then there is one and only one solution y of
the V.I. (in a weak sense) (19), (20) with the running profit w(x) = mw(x,d) and the obstacle
O(z) = O(x,0) defined by (52), (53), (6).

We now turn to the existence of a strong two-threshold solution.

Given a § > 0 (firm’s capital), let us recall the definition of the quantities X; = X;() and
X3 = X3(9); see (53) and (54), respectively. To be definite, assume that X; < X3. In this
case, formulas (53) and (54) imply that assumption (28) of Theorem 3.4 holds. The following
statement asserts that assumption (29) is also satisfied.

Lemma 4.5. (i) Suppose that (65) holds. Then, for each 6 > 0, there is an Xpr(0) > X3(0)
such that Ep(x,0) = Em(x,0) (cf. (57) and (58)), the functions Ep(x,0) and (6) are twice
continuously differentiable in x for x > X/(9), and

(0us(z, 6+ Enr(x,0)))”

(ii) If in addition
(68) (I1—-¢)fa—v>0,
then function (30) satisfies

(69) g(x) > —c0 as x — +oo.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/17/23 to 129.62.31.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1522 ACHARYA, BENSOUSSAN, RACHINSKII, AND RIVERA

Relation (69) ensures that condition (31) of Theorem 3.4 is satisfied if X is sufficiently
large.
Lemmas 4.3 and 4.5 imply that for x > X = Xps(6),

(70) O(x,0) = go(:v,5 + & (, 5)) — U(fM(x, 5)); O, (x,0) = c,ox(ac,(s + & (, 6))

Further, due to Lemmas 4.2 and 4.5, the function (30) is well-defined on the intervals (0, X3)
and (Xps,00). Set

(71) J ={re (X3, Xn]: &m(x,8) > &m(z,6)} U{X3}.
We make an assumption that the following genericity condition is satisfied:
(72) @55 (2,6 + En(,0)) — 0" (Enr(2,0)) 0,  x e (X3, X\ J.
Then Lemma 4.3 implies that the function (30) is well-defined on the domain z € Ry \ J and
is not defined on J. Therefore, conditions (31) and (32) of Theorem 3.4 are satisfied if there
exists X, such that
(73) Xy > X, g(x) =m(x) — LP(x) <0 forall z> Xy;
g(x) >0 forall (X3, Xnm]\JT.

For the running profit (52), the equation Ly(z) = 7(z) has a particular solution

(74) p(x) =m0 + 6727

Therefore, functions (38) and (39) are given by

(75) Cile) = — 2y o MU= PO o,
(76) Co(a) = ﬁ:‘)_ﬂlﬁlm% i Wﬂm;
(77) Di(z) = Bj_ﬁlﬁl ((v = Bo)my 62 — Bamo + Po®(x,8) — 2®y4 (2, 0));
(79) Dae) = 22 (B = A+ B — 518 (s6) + 2 (2,5)).

T BB
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Theorem 3.4 implies the following statement.

Proposition 4.6. Let the running profit and the obstacle be defined by (52), (53), (6). As-
sume that relations (4), (21), (65), (68), and (72) hold. Given a 6 > 0, suppose that X1 < X3,
where X1 = X1(9) and X3 = X3(9) are defined by (53) and (54), respectively. Suppose that
(29) holds and there is an X4 > Xy such that function (30) satisfies (73) and function (78)
satisfies D1(X4) < 0. Then there exists a pair of thresholds Xo = Xo(9), X5 = X5(J) such
that system (24)—(27) has a solution y(x) = y(x, ). In particular, this function satisfies

q)<$75)7 T e [0,X0]U[X5,00),
(I)(‘T,(S), x € (XOaXE'))a

and is a unique solution of the V.I. (9)—(13). The value function (5) is equal to this solution,
and the optimal stopping times are given by

(79) #=inf{t > 0] X(¢) < Xo}, 7o = inf{t > 0] X(t)) > X5}

with the optimal investment amount

~

(80) § = argmaxecp, (gp(max{X5,a:}, o+ §) — v(§)).

We assumed above that X35 > X;. A slight modification of the proof of Proposition 4.6
(we omit the details) allows us to obtain its counterpart for the complementary case X; > Xs.

Proposition 4.7. Assume that relations (4), (21), (65), (68), and (72) hold, and X, =
X1(9), X3 = X3(9) satisfy X1 > Xg for a given 6 > 0. Let relation (73) hold with an
X4 > Xr. Suppose that there are X', X" satisfying X" > X' > Xy such that

(81) Dl(X/) = O, Dl(XH) = Cl(Xg), DQ(X”) > 02(X3).

Then there exists a pair of thresholds Xo = Xo(9), X5 = X5(9) such that system (24)—(27) has
a solution y(x) = y(x,d). The value function (5) is equal to this solution, and the optimal
stopping times and investment amount are given by (79) and (80).

Remark 4.8. According to Propositions 4.6 and 4.7, given an initial capital § > 0 and a
two-threshold solution, the (a priori unknown) thresholds Xy and X5 determine the optimal
strategy as follows. If the price (1) of the commodity initially belongs to the continuation
(waiting) region (Xop, X5) and exits this region through the left end, then it is wiser to exit
without any additional investment at the first moment 71 when X (71) = Xy. On the other
hand, if the price exits the continuation region from the right end, then it is best to apply
the one-time investment at the first moment 79 when X (79) = X5. The optimal amount £ of
this investment is given by (80). In this case, the exit time is determined as the first moment
71 > 10 when (X (11),0 4+ €) = 0. Naturally, if the initial price 2 = X (0) does not exceed
Xp, then it is best to exit immediately, while if z > X5, then it is best to invest at the initial
moment, and the optimal amount of the investment is given by (80).
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4.4. Example: Investment with fixed cost and linear variable cost.

4.4.1. Existence of a two-threshold solution. In this section we consider a particular
investment cost of the form

(82) v(§) = k& + Kolgso,

where k¢ is the variable cost proportional to the investment and Kq > 0 is a fixed cost.” Let
us discuss the implications of Propositions 4.6 and 4.7 for this case. Here, the obstacle (6) is
given by

(83) O(z,0) = 2213 [o(x, € +6) — k§ — Koleso],

where ¢ is the function (53). We will see that this obstacle has a unique point of non-
smoothness, X3, induced by the fixed cost of investment. Equivalently,

(84) ®(x,0) = max {Lp(:r;, J), @(x, 9) — Kg} ,

where

(85) d(x,0) = sup [p(x, A) — kA] + k6
A>S

is the profit of the investment with the same variable cost and zero fixed cost.
First, we specify the result of Lemma 4.2 for the obstacle (83). Formulas (84) and (85)
show that properties of the function p(z,d) — kd play an important role for the analysis of

the obstacle. Define By
Y —¢eh > 7o
p=|—7—"-< > 1
(7(1 —e)
and

™ =

(86) 51 (z) = <A> . a(z) =61(x)pE, x> 0.

xY

Note that 01 (x) is the inverse of the function X;(d) defined in (53), the functions d;(z), da(x)
strictly decrease, and their inverse functions X;(0), X2(6), respectively, satisfy

(87) Xa(8) = X1(8)p7 > X1(5).

Lemma 4.9. Therefore, the equation ps(x,d2(x)) = k has a unique solution x = x*. More-
over, if x < x*, then ps(x,0) < k for all 6 > 0. On the other hand, if v > x*, then the
equation ps(x,0) =k has exactly two solutions 05(x), d03(x) satisfying

(88) 51(z) < d5(x) < d2(z) < d5(x)
and

(89)  ws(@,0) <k, 0€[0,03(x))U(d3(x),00);  @s(,6) >k, 6 € (d3(z),d3(x)).

2The case of Ko = 0 was studied in [5].
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Figure 2. The function ps(x,-) for x = 7,8.52,10. Parameters are the same as in Figure 1; z* = 8.52.
The horizontal dashed line is ps(x,-) = k for k = 20. The points 2 = d2(x), 63 = 63(x), 55 = 85(x) are shown
for x = 10.

Figure 3. The graph of ¢(x,d) — kd for fivzed x = 10 > x*. Other parameters are the same as in Figure 1.
The horizontal dashed line shows the value of ¢(x,d3(x)) — kds(xz) — Ko.

According to Lemma 4.9, for any = < z*, the function ¢(z,d) — kd strictly decreases in §
on the whole domain ¢ > 0, while for any « > z*, the function ¢(z, §) — kd strictly decreases in
d on the intervals [0, 05(z)] and [d3(x), 00), strictly increases on the interval d5(z) < 6 < d3(x),
and attains a unique local minimum at the point 6 = §5(x) and a unique local maximum at
the point § = d3(z); see Figures 2 and 3.
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We need to consider a few additional properties of the function ¢(z,d) — kd. Define

(90) A(z) = p(z,03(2)) — kds(x) — ((z, 0 (w)) — kdj(z)).

Lemma 4.10. Equation A(z) = Ky has a unique solution z™* > z*. Equation ¢(x,03(x))—
kds(x) = Ko has a unique solution x** > x***. Further, for every x > x***, the equation

(91) o(x,03(x)) — kds(z) — Ko = p(x,9) — ko

has a unique solution § = 65'(xz) in the interval 05(x) < 04 (x) < d3(z). In addition, for every
x € (2™, 2*), (91) has a unique solution 6 = 04 (x) satisfying 0 < &4 (x) < d4(x) (see Figure
3). The function 85 (x) strictly increases on its domain (z***,00), the function §%(x) strictly
decreases on its domain (z***, 2**|, and these functions are smooth and 65 (z***) = 04’ (x™**)

85 (z**) = 0.

7

s
- J=0)
------ J=03(x)
x=X3(0), Ko=5
x=X3(d), Kp=20
é‘a’q‘»‘r‘k ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0

Figure 4. The graphs of X3(9) for Ko = 5,20. Other parameters are the same as in Figure 1.
Having defined the functions

where 6" = §5'(z™*) = 04 (x***), we can specify formula (54) for the obstacle (6) with
the running profit (52) and the investment cost (82). By Lemma 4.10, these functions are
invertible; see Figure 4. Denote by (55")~%, (65)~! their inverse functions, respectively.

Lemma 4.11. The obstacle function (83) satisfies

[ o(x,9), z < X3(9),
(92) ®(x,0) = { i(x, 83(x)) — kds(z) + k6 — Ko, = > X§<6),
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and (55), where X3(0) is the continuous concatenation of the inverse functions (85')~1, (64)~1
(with 8% (x), 8% (x) defined in Lemma 4.10):

(65)71(8), 0< 8 <,

(93) X3(5) = {(5{)’//)—1(5)7 5 > 5***

Remark 4.12. From relations (89) and the definition of the functions &4 (x), 6" (x) (cf. (91)),
it follows that the domain x > X3(9), where ® > ¢ (see Figure 4), shrinks with increasing K.

Lemma 4.11 implies that the values (58) satisfy &, (z, ) = &n(x, §) = d3(x) — 0. Therefore
Xy = X3 (see Lemma 4.5) and the set (71) consists of one point for each § > 0,

J ={Xs}.

In particular, (72) is trivially satisfied. Conditions (4) and (65) of Propositions 4.6 and 4.7
are also trivially satisfied for the investment cost (82).
Lemma 4.11 allows us to express function (30) explicitly in terms of the function d3(z):

g(x,6) = n(x,6) — L(@(x,03(x)) — kdz(x) + ké — Ko)

c(v=81)
51($) WW 1

d3(x)

= —1,Q(7)(d3(x)° — 6%)27 + r(63(x) — 0)enyd3(x)™ a7 |1 — <

5 s(y-81) 72
) - (3)]
(04 - Temds(o)a)

[

c(v—B1) +TK0a WS (X3(5)>OO)7

5—1+(1—5%> (%) K

where d3(x) is implicitly uniquely defined by the relations

sz, 03(x)) = k, d3(z) > da(x),

and 01(x), d2(x) are given by (86). Further, substituting formula (92) in (77) and (78) gives
(95)

b1
oy (B =) Gs(2)° = 8) 5 Ka(Bs(x) —8) + faKo s my  (Ba(@)T\ 7
D1 () B2 — b B2 — b +(51—’y)< A )
and
(96) Dy(z) = (= B)Bs(x)" = ) g, KBGs(2) —0) + By g,

B2 — b1 B2 — B

for x > X3(d). Therefore, Proposition 4.6 implies the following statement.

Theorem 4.13. Assume that the running profit and the investment cost are defined by (52)
and (82). Let (21) and (68) hold. Given a 6 > 0, let X1 < X3, where X; = X1(d) and
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» Q

\ .

Figure 5. The graph of the function g(-,0) with fized 6 = 3 for the investment cost of the form v(€) =
k& + Koleso with k =20, Ko = 5. Other parameters are the same as in Figure 1.

X3 = X3(9) are defined by (53) and (93), respectively. Suppose that there is an X4 > X3 such
that function (94) satisfies

(97) g(x,0) >0 for X3<uz< Xy g(x,6) <0 for x> X4

(see Figure 5), and function (95) satisfies D1(X4) < 0. Then there exists a pair of thresholds
Xo, X5 such that system (24)—(27) has a solution y(x) (see Figure 6). The value function (5)

18 equal to this solution, and the optimal stopping times and investment amount are given by
(79) and (80).

It follows from the proof of Theorem 3.4 that the thresholds have to satisfy Xg < Xi,
X5 > Xy4. In particular, condition (97) is satisfied if g(z,d) < 0 for all z > X3, in which case
X4 = X3. On the other hand, if g(X3,d) > 0, then relation (69) ensures the existence of a
zero X4 of g such that g(x,d) < 0 for x > X4, as required by the second part of condition
(97). If X4 is a unique zero of g, then also the first part of condition (97) is satisfied. This is
the case for all the numerical simulations, and the corresponding parameter values, presented
in the following section. However, g is not necessarily monotone with respect to x. The
authors don’t know whether condition (97) can be violated due to g having multiple zeros.
The simple condition D;(X4) < 0 is quite strong and more restrictive than the assumptions
of Theorem 3.3. However, this condition is useful because it is easy to check for a given
parameter set. It holds true for realistic parameter values presented in the next section.

Proposition 4.7 can be adapted in a fashion similar to that in the case X; > X3. The
optimal control/exit rule is described in Remark 4.8.

4.4.2. Numerical solutions and comparative statics. Figure 7 presents comparative stat-
ics for the value function y with a fixed § with respect to the parameters Ky, k,~, r, and o.
Panel A shows the effect of the fixed cost K. Higher fixed cost reduces the benefit of invest-
ment, and as a result the firm delays investment. In panel B, the value gets smaller as the
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--= ®(x)
- ()

Xo Xi

(b)

Figure 6. (a) Solution y (solid line) of problem (9)-(11) and the obstacle ® (dashed line). ® has a
discontinuity of the derivative at the point x = Xs. (b) Zoom-in of panel (a) near the point x = Xo (above)
and near the point x = X5 (below). Parameters are the same as in Figure 1.

variable cost k increases, and hence the firm exits earlier. It also delays investment, since the
benefit of investment is lower. In panel C, as = increases, the return on investment grows.
Thus, the firm exits later and invests earlier. Panel D shows the comparison of two discount
rates . The higher the discount rate, the earlier the firm chooses to exit. Also it invests later.
As shown in panel E, increasing o delays both exit and investment decisions because higher
volatility increases the option value of waiting for both options.

Figure 8 shows comparative statics for the parameters of the optimal strategy, i.e., the exit
threshold X, the investment threshold X5, and the investment lump d3(X5) — d. Both fixed
cost (Kp) and proportional cost (k) have similar effects on the exit and investment decisions.
As Ky and k increase, the firm exits earlier (panels A, D) and invests later (panels B, E).
As Ky increases, the investment amount also increases (panel C), but it decreases (panel F)
when k increases, since k is a proportional cost.

Higher ~ implies a higher return to scale in X. Thus, as 7 increases, the firm exits later
(panel G) and invests more (panel H). Importantly, the timing of investment is U-shaped in ~.
On the one hand, increasing - increases the net present value of investment, thereby hastening
investment. On the other hand, higher v means that there is more complementarity between
0 and X, rendering the option value of waiting for a larger value of X to be reached more
valuable, thereby delaying investment. The first effect dominates for low -y, while the second
effect dominates for large v. We stress that the second effect arises in our model because of
the additional flexibility to choose the scale of investment, since waiting for a higher X also
increases the investment lump (panel I). Hence, when the size of investment is fixed, X5 is
monotonically decreasing in ~.
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Figure 7. Comparative statics for the value function y(x,d) with respect to the parameters Ko, k,~, T,
o for a fixed 5. The solid vertical lines correspond to the exit threshold Xo(0), the dashed vertical lines

correspond to the investment thresholds Xs5(5). Baseline parameter values are Ko = 5, k = 20, r = 0.12,

o =

0.10, £ =0.01, g = 13.5, 1 = 1,0 =0.1, e = 0.5,y =1, and § = 3.

A larger discount rate r implies earlier exit (panel J) (since the option value of eventu-

ally recovering is discounted at a higher rate) and delayed investment (panel K) with lower
investment lump (panel L) (since the benefits of investment are discounted at a higher rate).
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Figure 8. Comparative statics of the exit boundary, investment boundary, and investment lump for different
values of the parameters Ko, k,~, v, and o for a fized 5. Baseline parameter values are the same as in Figure 7.

A larger o delays both exit and investment decisions (panels M, N), because the value of
waiting increases in a volatile market. Also, the investment lump is larger if the volatility is
higher (panel O).

The examples presented in Figure 8 satisfy all the conditions of Theorem 4.13.

In order to obtain the value function y(z) and the threshold values X, X5, we solved the
System

(98) C1(Xo) = D1(X5), Ca(Xo) = D2(X5),

where Cj, D; are defined by formulas (75), (76), (95), and (96). According to (40), the functions
C; are invertible on the interval Xy € (0, X1), and therefore system (98) is equivalent to the
scalar equation

CrH(D1(X5)) = Cy '(Da(X5)).

After finding the upper threshold X5 from this equation, we obtained the lower threshold as
Xo = C;H(D1(X35)). The value function is given by

y(z) = p(x) + C1(Xo)z™ + Ca(Xo)2z™ = p(x) + D1(X5)a™ + Dy(X5)a™

on the interval z € (Xo, X5) with p(z) = no + n,0°z” (cf. (74)) and by y(z) = ®(x) outside
this interval (see section A.5 of the appendix for details).
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5. Conclusions. We showed that the value function of a simple real options problem with
an exit option and a one-time investment option with fixed and variable components of the
investment cost satisfies a free boundary problem with a nonsmooth obstacle. Due to non-
smoothness, we invoked the concept of a weak solution. We showed how the existence and
uniqueness of a solution for a weak formulation of the variational inequality with a nonsmooth
obstacle in one dimension can be obtained using a constructive intuitive penalty method.
However, the weak formulation does not lead to a straightforward control strategy, like a two
threshold strategy. We further proposed sufficient conditions for the existence of a strong
solution with the coincidence set defined by two thresholds. The crucial assumption is that
the increments of the derivative of the obstacle at the discontinuity points of this derivative are
all positive. This condition is naturally satisfied for the real options problem. The theorem,
which ensures the existence of a strong two-threshold solution, results in a naturally simple
optimal investment strategy with stopping times expressed through the thresholds.

It would be natural to consider real options problems with a wider class of controls which
allow for a sequence of compound capacity expansion options, as, for example, in [4]. In this
case, dynamic programming leads to a quasi-variational inequality [8]. This more complex
setting is beyond the scope of the present paper and will be the subject of future work.

Appendix A. Proofs.
A.1. Proof of Lemmas 4.2 and 4.3.

A.1.1. Proof of Lemma 4.2. By definition of ¢, its mixed second derivative satisfies
wzs = 0 for z < X1(0) and

CE
)
(99) Vs = 5’77]756_1567_1 + P _moy Wﬁl P> 0 for x> X((6).
Y b= \F

Define the function

P(x,0,8) = p(x,6 +&) —v(§) — p(x,6), £>0.

This function increases in x because

¢($ + A.%',&,f) - ¢($757 5) = QO(I' + A$,5 +§) - QO(.CE + Ax76) - 90('%'15 + E) + (P(xﬁ(s)

13 £ 13 Az
(100) :/ g05(x+Am,5+7')dT—/ @5(.73,54—7’)617':/ dT/ Ors(x + 8,0 +7)ds
0 0 0 0
and s > 0. Therefore, the continuous function

£>0

also increases in x. Further,

»(04,9) = 21;13(—1}(5)) = —v(0+4) <0,
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Y(+00,6) = lim sup[nya? ((6+&)°—6°) —v(€)] > lim [n,a?((6+1)°—6°) —v(1)] = +oo.
r—+00 £>0 r—+00

Hence, there is an interval [z_(d), z(0)] C (0,00) such that

P(x,0) <0, z<z_(0); Y(x,6)=0, xz€[z_(0),z+(9)];  ¥(z,0) >0, =>z4()).

Let us show that in fact 2_(9) = x4(d). Relations (53), (4) imply that ¢(x,d,§) - —oo as
&€ — 00. On the other hand, ¢(z,d,0+) = —v(0+) < 0. Hence, the relationship ¢ (z_(),d) =
0 and the definition of ¢ imply that there is a £&_(0) > 0 such that ¢(x_(5),d,£-(5)) =0
Since ¢ increases in x,

(101) 0= ¢(x(9),6,£-(9)) < ¢(24(5),6,€-(9)) < ¢p(x4.(6),0) =0,
and hence relations (100) with = z_(9), * + Az = 24.(6) and { = £_(J) imply that either
2(8) = x4(0) or pas(x,6 +&) = 0 for all w € [z (6),21(3)], € (0,

& (5)] The latter option
is only possible if p(z,d+&) = 0 in the rectangle = € [x_(d), z+ ()], £ € [0,£-(0)]. But in this
case plr_(5),5+ £ (5)) = p(r(6),8) = 0 and further p(z_(5),6,€_(5)) = —v(€_(8)) < 0,
which contradicts (101). Hence the only possible option is z_(d) = x4 (4).

Further, since the continuous function 1 increases in x and the equation ¢ (z,) = 0 has a
unique solution x = x_(9) for each § > 0, the implicit function theorem implies that x_(4) is
a continuous function. Hence, we set X3(0) = z_(d) = x4(J) and conclude from the definition
of ¢ and (6) that (54) holds. As ¥(x,d) > 0 for z > x4 (J), we also see that (55) holds. W

A.1.2. Proof of Lemma 4.3. Let us fix § > 0, x > X3(J) and, to shorten the notation,
denote ((x,0,£) = p(z,d + &) — v(§). Then relations (56) can be written as

(102) ®(x,6) — ¢(x,6,0+) > v(0+) = Ko > 0, ((2,6,) = —00 as & — +o0

and Lemma 4.2 implies that ®(x,d) = supg( ((z,9,§). Therefore,
O(x + Az, d) =sup((xz + Az, d,§) > C(ac + Az, 6, & (x, (5))
£>0
= C(ZE, 57 gM(xa 5)) + Az C:E (337 57 EM(ZL‘7 5)) + O(ASL‘)
(103) = ®(z,0) + Az (2,6 + En(2,6)) + o(Ax),
where o(Az)/Axz — 0 as Az — 0+. On the other hand, due to (58) and (102), given any
g0 > 0 there is a 1 > 0 such that § > &y (x, §) 4+ ¢ implies ((z,0,§) < ®(z,) —e1. Therefore,
using (102) and the continuity of {(z, d,&),

(104) sup  ((z+ Az, 0,8 < P(x,0) —e1/2
E>Em (x75)+€0

if Az > 0 is sufficiently small. Further, if £ < &yr(x, ) + €0, then

3
= ®(,0) + Az G (2,0,&m(,6)) + A95/ Cae (2, 6,m) dn + o(Az)
Enm(z,6
3
= 5(0.0) + v (.6 Eu(r.0) + A7 [ sl +m) dy + o(A)
& (z,0)
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The integral in this expression is nonpositive for all £ < &y/(x,d) because p,5(x,0) > 0; on
the other hand, this integral has the order O(eg) for {ar(z,0) < & < Eum(x, d) + €. Hence, for
Az >0,
sup C(z+ Az,6,8) < ®(2,0) + Az (2,6 + Ep(x,6)) + Az O(e0) + o(Ax).
§<&m(,0)+e0
Combining this with (104), we obtain

Pz + Az,0) < ®(z,8) + Az u (2,6 + Enr(2,6)) + Az O(e9) + o(Ax)

for any sufficiently small Az > 0. Since g9 > 0 is arbitrarily small, this relation together with
(103) implies DI ®(z,8) = ¢u(z,6 + &m(x,0)), ie., the first of relations (59). The second
relation can be obtained similarly for z > X3(J).

Let us notice that

(105) x> X1(0+ En(z,8) > X1(0 + Epr(,9)).

Indeed, according to (53), the opposite inequality = < X;(d + &, (x,d)) implies ga(x,& +
&m(z,6)) = 0 and hence ®(xz,0) = —v(&m(z,6)) < 0, which contradicts the nonnegativity of
®. Relations (99) and (105) imply

(106) ‘;Oxé(l'aé + g) >0 for ‘S > gm(l‘a(;)
Therefore, from (59) it follows that if £y (z,0) > & (x,0), then
gM($,6)
DI®(z,0) — D, ®(x,6) = / Yzs(z,0 +n)dn >0,
Em(,0)

which proves (60).

Now, suppose that conditions (61) hold, i.e., £a7(2,8) = &n(w, ) and Cee (2, 6,&m (2, 0)) #
0. In this case, since ®(z,§) = supg~( ((7,0,§) = C(x,d, £M(3:,5)) implies Cg(x,é, fM(x,(S)) =
0, the function (¢(-, 6, -) of two variables with the fixed § satisfies the conditions of the implicit
function theorem in a neighborhood of the point (x,&y(x,d)). Hence, there is a smooth
function &, (Z) such that (¢(Z,0,£«(2)) = 0 in a neighborhood of the point x and &.(x) =
Env(x,0). Since &€ = &pr(w,0) = Enr(x,0) = &x(x) is a unique point of global maximum for the
function ((z,d, -) of one variable { (with x, d fixed), and this point satisfies (¢e (2,0, & (x)) < 0,
we conclude by continuity that there are open intervals O¢ > & (x) and O, > x such that
if £ € O,, then the function ((Z,d,-) of one variable £ has a unique critical point £ = £,(Z)
within the interval O¢, and this is a maximum point. Furthermore, relations (102) ensure
that £ = £.(2) is a unique point of global maximum for the function ((z,J, ) whenever & is
sufficiently close to x. Therefore, ®(z,d) = ((&,6,&(Z)) in a neighborhood of the point z,
and consequently @, (z,d) is well-defined.

Finally, for = X3(§), Lemma 4.2 implies that Dy ®(X3(0),8) = ¢4 (X3(6),6). On the
other hand, we have already shown that D} ®(z,6) = ¢ (z,6 + &u(z,0)) for z = X3(6).
Hence,

Enm(X3(6),0)
DI &(X3(8),8) — Dy ®(X5(6),) = / 5 (X5(8),6 + 1) .
0

This quantity is positive because (105) and (106) hold for x = X3(d) and every &, which is
sufficiently close to £x7(X3(6),d). Thus, relation (62) and the lemma are proved. [ ]
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A.2. Proof of Theorem 3.1.

A.2.1. Proof of uniqueness. We prove the uniqueness. We shall provide a constructive
proof of existence in the next section. Suppose we have two solutions y' and 2. By writing
the inequality (20) for y' and y? and choosing z = 3? and y!, respectively, we obtain after
adding the inequality

+00(1_22 2 ptoo d 1. 2\,.2
Yy —y°) o 1 oy (v —y)x

— AL AV SR a2y (2T ) g
r/o 1+4am v 2/0 (v y)daz< 14+ a™ “

/+°° a(y' —v?) (v —v?)
0

Lt am dz > 0.

Rearranging with one integration by parts using y*(0) — 3%(0) = 0,y'(z) — ¥*(z) — 0 as
x — +00, we obtain easily

/+Oo(y1—y2)2 P =t +ma2(3xm(m—1)+m—3) dz + 02/+m[(?fl_y2)']2xzdx <0
0 L+am " 2(1+2m) 4(1 + xzm)? 2/, 1+ am s U
from which we obtain immediately y' — y? = 0. -

A.2.2. Constructive proof of existence. There are nonconstructive proofs. We present
rather the penalty method, which is constructive and very intuitive. We consider the nonlinear
second order differential equation

(107) Lyt =7m(x)+ —;

y(0) =0, y(x)—P(x) >0 as z— +oo, Y€ Hp,
where we use the notation f~ = (|f| — f)/2 for the negative part of the function. We begin
with the following statement.

Proposition A.1. Under the assumptions of Theorem 3.1, there exists one and only one
solution of problem (107) in the space H,. This solution satisfies y¢ € C[0,00) N C?(0, 00).

Proof. We begin with uniqueness. If we have two solutions y1,y2 (we delete € in the
notation), then setting y = y1 — y2 we can write

Lo = (Y1 —P)” — (12— P)”

€

;o y(0)=0, ylx)—>0 as x — 4oo.

Suppose ¥ is strictly positive at some point; then it has a strictly positive maximum at some
x* >0, ie., yi1(z*) — y2(z*) > 0, and hence (yi(z*) — ®(x*))™ — (y2(z*) — ®(x*))~ < 0. But
the maximum principle implies y(z*) < 0, which is a contradiction. Therefore y(z) < 0. By
interchanging the roles of x1,x9 we can also state y(x) > 0. Hence y(z) = 0. The uniqueness
is proved.
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To prove the existence, we consider the sequence of two-point boundary value problems,
indexed by R defined by

(108) Lyp=m+ L 0<z <R yz(0)=0, yi(R)=D(R),
and we extend y%(z) beyond R by writing y;(x) = ®(z),z > R. We can solve (108) by using
a fixed point argument for the map

(109) Cyz?r+(z_€q))_,0<x<R; y(0) =0, y(R) = ®(R).

We first notice that for a z bounded function on [0, R] the solution of (109) is uniquely defined.
We can find bounds on z which depend only on 7 and ®, implying the same bounds on y.

Indeed we first have
Ly >m; y(0)=0, y(R) > 0.

The maximum principle implies

infxe [0,R] 7T(:E)

r

(110) y(z) >

We now assume that z and consider the maximum of y(x) attained at some
point z*. We have y(z*) > ®(R). If z* = R, we have y(z*) = ®(R). Otherwise, z* is in the
interior. The maximum principle implies

inf,, [O’R]ﬂ'(at)
(w) > %

If z(z*) > ®(a*), then y(a*) < T&) < MPose<n (@) qf z(z*) < ®(x*), then

r - T

o(z*) inf, i, r) 7(2)
€ € er '

Therefore, we can also assert that

SUPo<z<R m(z) n SUPo<z<R ®(x) B infxe[o,R} m(z)

*
<
y(z™) < , er er2

To simplify the formulas, assume that er < 1; then we get

SUPo<z<R m(z) SUPo<z<R ®(z) infa:e[O,R] m(z)
sup y(z) < + — i :
0<z<R T er er

We may also assume, again to simplify the formulas, that er? < 1. Then we obtain

su m(x su d(z inf m(x
(111) sup |y(z)| < My — Po<a<R 7 ( )+ Po<z<r P( )_ xe[o,iz} ( ).
0<z<R r er er
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Clearly, if z(x) satisfies supy<,<p|2(7)| < My, then the same inequality holds for y(z). But
then, from (109), we also obtain fixed bounds for the derivatives:

(112) sup |y (x)| < My, sup |y'(z)] < M.
0<z<R 0<z<R
If 2 satisfies these bounds, y satisfies them also. It is then immediate to apply the Schauder
fixed point theorem to see that the map z — y has a fixed point. So there exists a solution
Y% of (108).
The next step is to let R — +00. We first obtain estimates on yf%. We multiply (108) with

Ve=® nd integrate. We get, making use of the boundary conditions,

14+z™
yR(yR (yR (I)) /R € ,l’(y% - (I))
7 dx — TWr =) 4
r/o 1+xm v / dm( Lagm ) n ) WR) e

_ [, L (e ®))?
_/0 1+ zm d 6/0 (1+2am) d

After rearranging and making use of the fact that y — ® = 0 for x > R, we obtain

+o0 € ()€ —® 2 +o00 €N (s — D) 2 1 +oo € _(1)72
T,/ YR )derU/ (vr)'(yg — @)’z d$+/ (yr —2)7)"
0 14+ 2m 2 Jy 14+ a2m € Jo 1+2m

R N R Cve=r IO M

The first, second, and fourth integrals in the left-hand side of (113) can be equivalently

written as oo oo )
S(ys — @ S —@ Py, — P
r/ yR(?/R )dx _ 7“/ (yR ) + (yR ) dz,
0 I+am 0 I+azm 1T+am

o /+°° () (v — ®)'2*  _ o® /*“ (v = )12 | Py - 22|
2 Jy 14 a2m 2 Jy 14+a2m 1+a2m ’
and
Feo 22 + (2 — m)x™H!
€\/ € @ o Hr 2 d
|0 - |- (B ) |

- /;oo (cb’(yiz ) + %di(y — <I>)2> [_lﬁim +o? (2”6 J;((f;;zl);mﬂﬂ dz.

Further, using integration by parts the last integral transforms into

[ G- [ ot (R R Y

[t p(l 4 (1 —m)z™ (m? — 3m + 2)2%™ — (m? + 3m — 4)z™ + 2

- /0 (R — @) { Wty 4(1 + am)? ] e
tooxd/ (v, — P) o?((m —2)a™ — 2)

—/0 1 +Rxm [M + 2(1+ 2 } dx.
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Using these results in (113), we obtain the relation

+o00 € 2 2 +o0 € _ n2,.2 400 € _ —\2
rm/ (Vg — @) dm+0/ [(yr — ©)]°x d:Hl/ (e —2)7)"
0 0 1+ 0

1+ ™ 2 xrm € 14+ gm
L[TORSR m  otnin=3sein0) ,  [ sl =),
0 1+azm [2(1+2™) 4(1 + 2™)? 0 14 2am

i U ST T (IR EE R

0 14 am 2/o 14 xm 0 14 am 2(1 4 a™) ’
where r,, is defined by (21). We deduce immediately

1 +oo ye —P) 2

(114) I~ @i, < Caes /0 G

where the constant Cg , does not depend on R or on e. At this stage € is fixed and we let
R — +oo. From (114) we can extract a subsequence, still denoted by y%, which converges
weakly in H,, to y° as R — 4o0. It follows that y5(x) — y(z) for all z. Since

W)@z o [Ty WR) (€€ T (yR)* (N = (m —1)¢m]
1R+xm _2/0 R1+}2m d§+/o - (1+¢&m)2

dg,

it follows that

(yp)* (@)

(115) T xm:U <2||yl3,, < Cor for all z.

Now if ¢ is a smooth function with compact support in R, we can assume that the support
of ¢ is contained in (0, R) for R sufficiently large. From the pointwise convergence and the
estimate (115), we can assert that

/+Oo M@(ﬂ:)dw — /+OO ws@(fﬂ)dw-
0 € 0 €

Since f0+oo Lys(x)p(z)dr — [7°° Ly (z)p(x)dr, the function y¢ satisfies (107). It satisfies
also the boundary conditions (107). This completes the proof of existence of a solution of
problem (107) in H,,. Finally, due to y° € H,, C C, the right-hand side z = 7 + (y* — ®)" /e
of (107) is continuous, and hence Ly = z implies 3¢ € C?(0, o). [ |

A.2.3. End of proof. From the uniform estimates (114) and (115), we get immediately
(116)

1[0 ((yf — ®)7)? (y)?(z) x
‘-9 <Conr; - =~ L dr < Copn -~ <(Cp,. forallzx.
Iy = @l < Cos ¢ /0 Tram) =0T TTggm o OTANE

As € — 0, we can extract a subsequence, still denoted y¢, which converges weakly in H,,
to y. It follows that y“(z) — y(x) pointwise. From the second inequality in (116) we get
(y¢ — @)~ (x) — 0 pointwise; therefore we obtain

(117) y(x) — ®(z) >0 for all .
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Now let z € H,,, such that z(z) — ®(z) > 0 and 2(0) = 0,z(z) — ®(z) — 0 as x — +oo.
We multiply (107) by (Lym(x)) and integrate on R;. We note that (y* — ®)"(z — y¢) > 0.

Therefore
o0 Ly(z)(2(2) — y(x)) o0 7 (z)(2(2) — y ()
/0 1+ am dz 2 /0 14 am d

Z.

We can perform integration by parts on the left-hand side, taking account of the boundary
conditions. We obtain

+o0 , € € 2 +oo / e/ .2
y(z —¥°) 0/ v (2= (y))z
Y=Y ) g EoWE

7’/0 L+ 2 x+2 ; (v©) T x

+/O+°° (y) (2 — y°) [_# L= (m - 2)33’”)} de > /O+°° mz=y)

1+ zm 2(1 + ™) - 14 am

Rearranging and performing integration by parts we get

+00 +oo /_ e/ .2
r/ 2z = d +/ y))x ———dx

+/0+°° x2'(z — y°) [_M N o%(2 — (m — 2)3;’”)} i > /0+00 m(z — ye)dm

1+am 2(1 + ™) 1+ am
(TR YR ),
2Jo 1+am o l4am 2(1 4 a™) 4(1 4 2m)

On the left-hand side, we pass to the limit by using the weak convergence in H,,. On the
right-hand side, we first note that we can modify the norm in #,, by using the equivalent
norm

02 /+oo (Z/)2$2
2 0 1 + xm
and we use the weak lower semicontinuity of the norm, to finally get the inequality

+o00 _ 2 +oo T AW
74/ z(2 y)dm+0/ S =y
0 0

14 xm 2 1+azm

+/0+°°a:z’(z—y) [M+02(2—(m—2)xm)}dxz/g*‘”?r(z—y)dx

+/+°° 22 L Bm mo?(3z™(m — 1) +m — 3) d
T r T
o L4am [T 2(14am) 4(1 + xm)? ’

1+azm 2(1 +a™) 1+ ™
/+oo 2y 2d . /+oo (z —y)? N wm N mo?(3z™(m—1)+m—3) d
R — | T €.
1 +xm o Laam ™7 201 +2m) 4(1 4 xm)?

By cancelling terms and performing integration by parts, we reduce it to (20). This completes
the proof of existence of the solution of the V.I. (19), (20). The proof of Theorem 3.1 is
complete. |
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A.3. Proof of Proposition 3.2. We are going to show that y¢ < z. Going to the limit, we
have y < z. But y is an upper solution, since in (20) we can take z = y + ¢, where ( satisfies
the conditions in (22). So it is the smallest upper solution. Let us show that y¢ < z. We have
y©— ® > y° — z, and hence

1
Ly <m+—-(y*—2)".
€

+
We multiply this inequality by ((1 = 221 ), integrate over R, and perform integration by parts

to obtain the following, since (y¢ — 2)*(y* — z)~ = 0:

+00 ,€(, € + +oo +oo 2 € +
y (¥ —2) z(y°)' (v — 2) / (y° = 2)
- dx— d — — )d
7‘/0 14 am v M/O 14 am + da: 1+4am “

(118) < / AL M
0

1+ am

Since z is an upper solution, we also have

400 €_ N\t +oo +o0 2 _ N\t €_ N\t
r/ 72@ 2) dq:—u/ G0 d —i—/ o ( Z) dx 2/ 77T(y 2) dx,

and thus

T/+°° ' =2y =2, M/“” o((y) =Ny = 2)"

= yd (P =)
- (=L 2 <
(119) - / pb= < o ) dx <0,

from which it follows, through calculations already made in section A.2.3, that (y*—2z)* = 0. W

A.4. Proof of Theorem 3.3. We begin by proving that there exists a unique pair Xg, X5
such that the system (24), (25), (26) has a unique solution y(z). Solving (24), (25), (26)
is equivalent to the following problem. We fix Xy < X; and X5 > X, and consider two
initial-value problems,

(120) [‘y =T, y(XO) = 07 y,(XO) = Oa T > XOv

(121) Lz=g, 2(X5)=0, 2/(X5)=0, < X;,
where z = y — ®. The first problem is solved on the interval [Xg, X4]; the second problem

is solved on the interval [ X4, X5]. If the solutions y : [Xo, X4] — R and z : [X4, X5] — R of
(120) and (121), respectively, satisfy the matching conditions

(122) y(Xa) = ©(Xyq) + 2(X4),

(123) y(Xy) = '(Xy) + 2/ (Xy)
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at the point X4, then the concatenation of the functions y : [Xo, X4] — R, 24+ : [ Xy, X5] —» R,
® : [X5,00) — R and the zero function on [0, X] is a solution of problem (24), (25), (26)
(recall that ® = 0 on [0, X]). Hence, it suffices to prove the existence of a unique pair of

numbers Xy, X5 satisfying (120), (121), (122), (123).
By standard methods, one can check that the solution of (120) is given by

= s o 2 | (5) - (2) ] e

vi) = azwgz— m/:o s(g) [51 (5)51 - (?)M] Bl

and the solution of (121) is given by

(125) 2e) = 02(/322— B1) /xxs 9(5) [(96 ) (Z)ﬁl “

v =y [ (1) - (2) e

We can then express conditions (122) and (123) as follows:

(126) 02(522_51)/)::4 ﬂ(;) [< £ > <
=T

et X e [51 (?)Bll s (?)Bll dé — @/(Xy)

sl ) ()

We first consider the function

A0 g [ [@4)5 - @4)/3] e

for z € (0, X1). From the assumption (34), we have A(X;) > 0. We have also

(128) M) = 02(6;2— ) & [@4)/3 - @4)[3] =

]df P(Xyq)

<
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using the fact that 7(x) < 0 on (0, X7). Moreover A(0) = +o0. So if we fix Xy € (0, X7), the
left-hand side of (126) is positive. Now, the right-hand side of (126) is L(X5). We have seen
earlier that L(x) is monotone increasing on (X4, +00) from 0 to +o00. Therefore for X fixed on
(0, X1), equation (126) is satisfied for a unique value X5(Xp) on (X4, +00) with X5(0) = +oo.
Because of (128) and L'(xz) > 0, we can assert that X/(Xy) < 0. We can then reduce the
problem to one equation for Xy on (0, X;) given by

(129) 5 /. X m [ﬁl (?)ﬂll—ﬁz (?)M] d¢

For z € (0, X1), set

Tle) = 02(522 A1) /zX4 Wf(g) [ﬁl <)§4>611 e (?)621] “

- 2 X5(x) @ <X4>/32—1 B <X4>ﬁ1—1
o?(B2 — P1) /x4 &2 P 3 o 3 &

Assumption (37) reads ®'(Xy4) > I'(X7). We next have

 2X5(X0)g(X5(x)) X\ X, \ A
(B2 = Br) Xs (@) [ﬁQ <X5($)> A <X5(x)> '

Using 7(z) < 0,9(X5(z)) < 0, X.(Xo) < 0, we see immediately that I''(z) < 0. Now I'(0) =
+00. Therefore (129) has one and only one solution Xy in (0, X7). So the system (126), (127)
in Xy, X5 has one and only one solution in (0, X1) and (X4, +00). Therefore system (24), (25),
(26) has a unique solution y(x).

To show that y(z) is a solution of the V.I., it remains to show (27). The first part
is immediate since on (0, X7) we have ®(x) = 0 and 7(x) < 0 and on (X4, +00) we have
g(xz) = m(x) — LP(x) < 0. So, the only thing to show is y(z) > ®(x) on (Xo, X5). We split
this interval into (Xo, X1], (X1, X4), [X4, X5). On (X4, X5) the function z(x) = y(z) — ®(x)
satisfies

(130) Lo@) = gla); =(X5) =0, #(X5) = 0.

We note that 2’/ (X5 — 0) = —252(§52) > 0. Therefore, z(z) > 0 for x < X5 close to X5. But z
cannot have a strictly positive maximum on (X4, X5), which would contradict the maximum
principle, since g(x) < 0. Therefore z(z) is decreasing on [X4, X5) and therefore positive. So
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we have z(x) = y(z) — ®(x) > 0 on [X4, X5). In particular y(Xy) > ®(X4). Similarly, on
(X0, X1), the function y(z) satisfies

(131) Ly(r) =m(z); y(Xo) =0, y'(Xo) =0,

Since 7(z) < 0 on (Xo, X1), a reasoning similar to that for z(x) shows that y(z) is positive
in a right neighborhood of the point X and increases on (Xo, X1], and hence y is positive on
the whole interval (X, X;]. Since the obstacle is zero on (X, X1], we have y(z) — ®(z) > 0
on (Xo,X1]. In particular, y(X;) — ®(X1) > 0. Consider finally the interval (X, X4). If
y(x) — ®(z) has a strictly negative minimum in this interval, it is necessarily in the interior.
Let x¢ be such a point. Then zy cannot be a point of discontinuity of ®'(z), because in this
case y'(zg) — ®'(x9 — 0) < 0 < ¢/(x0) — P'(x¢ + 0), which implies ®'(xy + 0) < ®'(zo — 0).
But this contradicts the first part of assumption (32). On the other hand, if z( is a point
of continuity of ®'(x), then the left and right limits of £(y — ®)(x¢) are negative, but this
contradicts the second part of assumption (32). So we must have y(z) —®(z) > 0 on (X1, X4).
This concludes the proof that y(z) is a solution of the V.I.

A.5. Proof of Theorem 3.4. From relations (40), it follows that C1(0) < C1(X1). There-
fore, assumption (41) implies the existence of an interval [a,b] C (X4, 00) such that

(132) Dl(a) = 01(0); Dl(b) = Cl(Xl); 01(0) < Dl(l‘) < Cl(Xl) for x € (CL, b)

Since a > X4 and, according to (40), Ds(x) decreases on (X4, 00), assumption (42) implies
that

(133) C2(X1) < Da(x) < Co(0) for =z € [a,b],

where C5(0) := lim,_,o C2(x) is either finite or infinite.
Consider the restriction of the functions C, Cy to the intervals [0, X;] and (0, X1), respec-
tively. Relations (40) ensure that the inverse functions

Oyt [Ci(0),Cr(X1)] = [0, X1), Gyt i (Ca(Xn), Ca(0)) — (0, X1)
are well-defined. Now, let us consider the functions
fi(z) = CTH(Di(x)),  f2 = Cy ' (Da(x))

on the interval [a,b]. They are well-defined due to (132) and (133). Relations (132) imply
that

fila) =0, fi(b) = X,
and hence
fi(a) = fa(a) <0, f1(b) — fa(b) >0
because the range of fy belongs to (0, X7). We conclude that there is a point X5 € (a,b) C
(X4, 00) such that f1(X5) = fa(X5). We set Xog = f1(X5) = f2(X5) € (0,X1). By definition

of f17 f27
C1(Xo) = Di(X5), Ca(Xo) = Da(Xs).
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Consider the solution
y(z) = p(z) + C1(Xo)z™" + Co(Xo)z™ = p(x) + D1(X5)z” + Do(X5)z"

of the equation Ly(z) = m(z). The definition (38), (39) of the functions C;, D; combined with
the assumption (28) ensures that this solution satisfies the smooth pasting conditions (26). It
remains to establish 27, which can be done exactly as in the last part of the proof of Theorem
3.3 presented above.

A.6. Proof of Theorem 4.1. The assumptions (16) and (21) ensure that the function
(49) is a unique locally bounded solution of £y (z) = 7(x) satisfying Yoo € Hrm,. Further, by
the Markov property of X(t),

+o0o
J2(6) = yoo(2) — Ea /0 (X (6)e™ dt + B, (B(X(8))e ™)

= Yoo (2) = B (Yoo (X(8))e ™) + B (2(X(6))e™™).
Therefore, if (50) holds, then J;(0) < yoo(x). Hence, in this simple case, (49) is the value
function, and the optimal stopping is at infinity, i.e., we have (51). Also, due to (50), the
function (49) is a solution of the V.I.
Now, assume that (50) is not true. We begin the analysis of this main case with an
important property of the penalized problem.

Lemma A.2. The function ¢ — y(x) is decreasing.
Proof. Consider y(x) and y¢ (z), with € < €. We set §(x) = y*(z) — y¢ (). From (107),
it follows that .
_ v~y ) . (1 1
i) = W=Dy (1)

€

and y(0)=0, y(z) — 0 as z — +o00. We see that

“+o0o ~—
N
dxz > 0.
/0 £y(az)1+xm x>0

Performing integration by parts, we check easily that 3 (z) = 0, and hence y¢(x) > € (z),
which proves the property. |

We also conclude that
y'(z) Ty(z) as €lO.
Now, we interpret y¢(x). Since y¢(x) is C*, it is standard. Problem (107) is the Bellman
equation of a continuous stochastic control problem. Indeed, it can be written as

1
Ly () = m(z) + ~ sup (((z) -y (z))v).
€ 0<w<1
Therefore, considering controls as a stochastic processes v(t) adapted to the filtration F with
values in (0, 1), we introduce the functional

v(s)ds
dt

|
3
o~
|
o=
O =

s =B [ (x0xe) + Do)
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with = X (0). Then we have

y(x) = sup Jz(v(-)).
v()

We observe that the control does not affect the state dynamics X (¢), and the optimal control

is given by

55t) = { 1y (X (1) < 9(X(1),
0 iy (X(1) > B(X (1))

Next, we introduce the stopping time

~

0y = inf{t > 0]y (X (1)) < ®(X(?))},
which satisfies

e >0 if y(z) > D(a),

(134) b =0 if y(x) < B(a).

We can also see that
(135) y(x) = L(05) it y(x) > B(x).
Indeed, we have v¢(t) = 0 for ¢ < é\fﬂ Therefore, using 1t6’s formula,
0 N
V(o) =B [ X(O) dt + By (X))

and since y°(X,(05)) = ®(X,(65)) due to the definition of 6%, we obtain (135).
Now, take 6 to be an F stopping time, and R large enough so that x < R. Let 7p =
inf {¢ > 0| X(¢) > R}. Using It&’s calculus, we can write

ONTR
y(z) > Ez/ m(X (8)e "t dt + B, (y (X (8 A g))e " ONR)),
0
Then, as € | 0, we obtain
ONTR
y(@) 2 B, / (X ()" dt +Eq (y(X(0 A Tr))e M),
0
Since y(z) > ®(z), it follows that
ONTR
y(r) > E, / T(X(t)e ™ dt +Ey (P(X(0 A TR))e_T(e/\TR))_
0

By letting R 1 400, we obtain y(z) > J;(0), and since 6 is arbitrary,

(136) y(x) > sup Jo(0).
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Now, if y(z) = ®(z), it means that y(z) = J,(0). Therefore, if y(x) = ®(x), then 6, = 0 is
the optimal stopping time and (44) holds. So, we can assume that y(x) > ®(x). Hence, also
0, > 0. Since y“(z) 1 y(z), we can assume that y(z) > ®(z); then from (134) and (135) it
follows that 65 > 0 and y(x) = J,(65). Also, by definition of the stopping time,

(137) Yy (X(03)) = ©(X(63))-
Let us show that the sequence ¢ — @\fc is decreasing. Indeed, we want to show that

(138) 05 > 07 if e<¢.

r — 7T

It is enough to show it when 5;’ > 0. In this case,
0<s<00 = (X(5)>0(X(s) = y(X(s)>B(X(s))

by Lemma A.2. This implies immediately é\; > 5;’, hence the property (138) holds.
Since y“(x) 1T y(x) as € | 0, the same argument shows that

(139) 0, > 6.
Finally, let us show that
(140) 5; 160, as €l0.

This property follows from (139) if 0, =0.1f 0, >0, let 0 <& < B, then for 0 < s < 6, — 6,
we have y(X(s)) > ®(X(s)). Therefore, there exists an ey = €y(z,w,d) > 0 such that for
€ < €0z, w, ), we have y¢(X(s)) > ®(X(s)) for all s € [0,0, — 6]. This implies ¢ > 0, — 6.
Since ¢ is arbitrarily small, this argument proves (140).

From (140), it follows that

~ ~

(141) ye(x) = Jp(05) = Jo(0,) as €l0 if 6, >0.

Since y“(z) T y(x) as € | 0, we obtain y(x) = Jo(0) if O, > 0, ie., if y(z) > ®(x). Moreover,
due to (136), the optimal stopping time is 6,. We have already seen that if y(z) = ®(x), then
the optimal stopping time is zero. This completes the proof of the verification theorem.

A.7. Proof of Lemma 4.5 and Proposition 4.4. We start with the proof of Lemma 4.5.
Lemma 4.2 implies that at the points £ of the set Z,,4.(x,d) one has

(142) po(w,0+&) —v'(§) =0
(cf. (57)). According to (53), for z > X3 this is equivalent to

B1

B /1 <8
(143) e, (5 + €)1 4 ST (

7
— = §+&)7 =€ =0.
S (3) 649 v
Due to (4), for large x this leads to the asymptotics

1
(144) &~ (%) TELTE S o0 as x— +00, € € Epaz(z,0),
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where we use the notation f; ~ fo if fi/fo — 1 as © — +oo. Differentiating the left-hand
side of (143) with respect to £ and using (65) and (144) gives

e—2

€ " -
&> ! 113511 <0, § € \:max(a:?(s)'

(145) (@, 0+ —v"(©) ~ele 1) (]

Hence, by the implicit function theorem, (142) has a unique solution & = &, (x,d) = &pr(x, 0)
for sufficiently large x (i.e., Epaz(z,0) = {{m(x,6)}), and this solution is a smooth function
of z. Further, due to (145), Lemma 4.3 implies that ®(x) is smooth and formulas (70) hold.
Differentiating the equality ¢s(x, 0+ &z, 0)) — v’ (Enr(x,0)) = 0 with respect to x, we obtain

25 (z,0) = — 0as(x,0 + Em(x,0))
9> ws5(x, 0 + & (x,0)) — v"(Enr(,0))

Therefore, differentiating the second equation in (70) gives (67). This proves statement (i) of
Lemma 4.5.

Using the asymptotic expressions (144) and v(§) ~ k& and formulas (70), one obtains from
(53) by direct calculation that

EMy\ To 1 ENy\ T 2
(146) O(z,0) ~ny(l—¢) <77> T x Dy(z,0) ~ nyy (77) T,

Computing the second derivatives @g,, @.s of the function (53), substituting the asymptotic
formula (144) in the expressions for these derivatives, and using relation (145), from (67) one
gets

(147) 2% By (,6) ~ 0yy (%) ﬁ (’y -1+ 755> rTe,
The first of relations (146) implies that 7(z,0)/®(x,d) — 0 as z — 400, and hence g(z, ) ~
—L®(z,9). Therefore, using the definition of the differential operator £ and formulas (146)
and (147), one obtains

9(@,0) ~ 17715 <%> -

_ gl T ()T
(148) B Q(l—s)l—e(!z) S

Relation (68) implies that £; < 0 < {2z < f2; hence Q(%_E) > 0 and therefore (148) implies
(69). This completes the proof of Lemma 4.5.

Relations (66) and (146) imply that all the integrals in (15) and (16) converge. Also
®(0) =0, &(z) >0, z € R4, and inf,~o7(x) < 0 due to formulas (53), (54), and (52) where
ag < 0. Hence, all the conditions of Theorem 3.1 are satisfied and the proof of Proposition
4.4 is complete.
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A.8. Proof of Proposition 4.6. Formulas (75) and (76) imply that

(149) C1(0) =0, Ca(x) 00 as x— 0.

1
Also, substituting X1 = X1(5) = (£)7 into (76) gives C2(X1) = 0 due to the definition of \.
On the other hand, substituting asymptotic formulas (146) into (77) and (78), one obtains

(L—¢e)B2—7y (em\i=, 25 —(1—¢)f1+7 rem\= 2 _p
Dray~ LD (YT sy SO OB Y (e, g,
1( ) 62 _61 k 77’}’ 2( ) 62 _Bl k' 77’)/
and hence (68) implies

(150) Dy (x) — o0, Dy(z) -0 as x — oo.

Combining (149), (150), and C2(X1) = 0 with the assumption D;(X4) < 0, we see that
conditions (41) and (42) of Theorem 3.4 are satisfied. As we saw in section 4, all the other
conditions (28), (29), (31), (32) of this theorem are also satisfied, and hence (24)-(27) has
a solution y(z). The other conclusions of Proposition 4.6 follow by invoking the verification
Theorem 4.1.

A.9. Proof of Lemma 4.9 . By direct calculation, formula (53) implies

—B1

e—1,.y 51($) Eﬂyﬂ/
@s(x,0) =eny, 6 "7 |1 — 5 1556, (2)s

=81

_ Sa(x)\
p(a8) = (e = Do 1= ()7 | 1

We see that the function g is continuous for all positive z,d and
pos(@,02(x)) = 0;  pss(,6) >0 for 01(x) < < da(z);  ss(w,0) <0 for 6§ > da(x).

Hence, ps(x,0) strictly increases in 0 on the interval d1(z) < § < da(x), strictly decreases for
d > d2(z), and has a unique (global) maximum at 0 = d3(z). Moreover, from the expression
for @5, one obtains

ws >0 forall z,0>0; ¢s5(x,00=0 for &€ (0,01(x)); ¢s(x,6) =0 as J— oo,

and, furthermore, the quantity

B1=v
emmAp(l—p 7 - B 4
max{ps(z,0) : § > 0} = ps(x,0s(x)) = — Eb(:n) ) _ eny(Ap) T (1—p 7 )as

strictly increases with x and satisfies
©5(0,02(0)) = 0; ws(x,02(z)) = 00 as x — oo,

which implies the statement of the lemma.
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A.10. Proof of Lemma 4.10. The following lemma was proved in [5].

Lemma A.3. The function p(x,d3(x))—kds(x) strictly increases on the interval [x*, 00) and
tends to infinity as x — oo. The function d3(x) strictly increases on [x*,00). The function
85 (x) strictly decreases on [x*,00). These functions are smooth on the interval (x*,00) and
satisfy 05(x*) = d3(x*).

Let us consider the derivative of the function ¢(x,d3(x)) — kd3(z). The relations

%((p(x, 53(x)) — kd3(x)) = walz, 03(x)) + (ws(x, d3(x)) — k) %(@

and k = @s(x,3(x)) imply that

d
(151) (ol () — k3(a)) = o, 35(a).
Further, from (53) it follows that
8 dy(w)
k= ps(x,d3(x)) = enyd xg_lx“w—g—l L ISR
906( 3( )) My 3( ) N B —n )\%1
Hence
J. (l‘)# o)
oy 03 B _ e—1
o7t = — (k — enyd3(x x7),
B 2 561( 1,03 () )

and therefore

(,0;5(33',(53(5@) :’}/777(53(1')81'7714- Moy (53(1‘)6)7,31%'311

pr— A
1 v3(x) _ B vkos(x)
= yny03(x) 1y W (k: — eny03(x)° 11:7) Pl

Using (151), we conclude that

% ((x,03(z)) — kds(z)) = vkd3(z)

ET

A similar argument shows that
d Vkd5(x)
(e, 84(2) — K (a)) = T2,

Combining these two equations, we see that function (90) satisfies

d

%A(”C) = Z*:(@(@“) —&(x) >0, x>

Further, according to Lemma A.3 the difference d3(z) — 04(x) increases; therefore for all
x> x> T,
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and integrating, one obtains

A(z) — Azg) > 'Ysﬁ((sg(xo) — 84 (x0)) In x% :

We conclude that A(l’) strictly increases on its domain x > z* and tends to infinity as
x — 00. Also A(z*) = 0 because d3(z*) = d4(z*). Therefore, given any Ky > 0, the equation
A(z) = Ko has a unique solution z*** > z* and, furthermore, A(z) > Ky for & > a***; see
Figure 4.

From o(x, 8(z)) — koy(x) < (x,0) = 0, it follows that A(z) > ¢(x, d3(x)) — kds(x). But
the function p(z, d3(xz)) — kds(z) strictly increases and tends to infinity as © — oo (see Lemma
A.3); hence from Ko = A(z*™*) > p(z***, 83(x™*)) — kdz(z™*) it follows that the equation
o(x,03(x)) — kds(z) = Ko has a unique solution z** > x***.

Also, if z > 2% then from A(z) > K| it follows that (91) has a unique solution § = 5%’ ()
in the interval d5(z) < 6 < d3(x) because the function p(x,d) — kd strictly increases in § on
this interval. On the other hand, if #*** < z < z**, then the relations A(z) > K, >
o(x,d3(x)) — kds(z) and p(x,0) = 0 imply that (91) has another solution § = &4 (z), which
belongs to the interval 0 < § < d5(z) and is unique in this interval (because the function
o(x, ) — ko strictly decreases in ¢ on (0, 05(x))).

It remains to show that

d d
To this end, recall that each of the functions § = 65'(z), 04 (x) is implicitly defined by (91).
Substituting either of these functions in (91) and differentiating with respect to x gives

d d d d

P, 8a(w) + s . 83(2)) -80(0) — b -03(x) = pul,8()) + (. 8(2)) -0(e) — k-3 (a)

where 0 = 5’ or 6 = d4. Due to ¢s(z,d3(x)) = k, this is equivalent to

pu (2, 03()) = pa (2, 6(2)) + %5(3«“) (ps(z,0(x)) — k).

Consequently,

(153) %5(:[;) = %(%ﬁig?ﬁ(mﬁi@éé(@)? §(z) = 63 (x), &5 (x).

Now recall that .5 > 0 whenever § > ¢;(x) due to (99), while g5, = 0 for § < §;1(z).
Therefore, the numerator on the right-hand side of (153) is positive as 01(z), 0% (x), 95 (z) <
d3(z). Finally, the denominator on the right-hand side of (153) satisfies

ws(z,05 (2)) — k>0 > ¢s(z,05(z)) — k

because 85 (x) < d5(x) < 04'(z). This proves (152) and completes the proof of the lemma.
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A.11. Proof of Lemma 4.11. From (84) and (85) it follows that

®(x,0) = max < sup [p(z, A) — kA] — Ko, o(x,d) — kd » + ko.
A>6

Therefore, the definition of §5'(z), 65 (z) and relations (89) imply that

o(z,9) if 0<0<65(z) or 6 > 04 (x),

®(e,0) = o(x,03(x)) — kds(x) + kéd — Ko if max{0,05(z)} < d < 85 (x)

and
o(z,03()) — kds(x) + k§ — Ko > ¢(x,8) if max{0,55(x)} <& < &4 ().

Combining these relations with (54) and (55) of Lemma 4.2 proves (92).
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