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This paper advances significantly the literature on the optimality of the base stock policy by generalizing
the demand distribution and beginning with a completely general belief prior to be updated as demands
are observed over time. As the value function depends on the belief, the functional Bellman equation is
infinite-dimensional. We use unnormalized probabilities to linearize it and derive a functional equation for
the derivative of the value function. This provides a constructive approach to obtain the base stock as
well as the value function. We completely characterize the way the base stock depends on the belief, and
implement it in two important cases. In the case of conjugate probabilities, we show rigorously that the
infinite-dimensional problem reduces to one in terms of a finite-dimensional sufficient statistic. We solve
numerically an example of Weibull demand. The second case considers the demand to come from one of two
possible distributions, but we don’t know which. This gives a functional equation in two hyperparameters. We
develop two approximation schemes to solve it, obtain the formulas for the base stock, and show numerically
that both procedures converge and provide nearly the same base stocks. Finally, our methodology can be
used for examples such as the case of multiple possible demands and the case when a fixed ordering cost is

present.
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1. Introduction

The optimality of the base stock policy when the demand distribution is known is among the most
fundamental results in the inventory theory. However, the assumption of known demand conflicts
with many real situations when some degree of uncertainty exists in the mind of the decision
maker about the distribution of demand. In such situations, a Bayesian framework has been used
since intuition and previous experience which represent the initial state of information can be
expressed by a prior distribution, and Bayes’ rule provides a way to incorporate new information

as it becomes available into the decision model.

In this paper, we advance significantly the literature on the optimality of the base stock policy
with demand learning by extending it to cases with general demand distributions and beginning
with a completely general belief prior to be updated as the demand history unfolds over time. We
consider a standard discrete-time infinite-horizon inventory problem, but with a general demand
that is not known, and allow unmet demands to be backlogged so that the realized demands
are fully observed (Section 4). We assume the demand to depend on an unknown (scalar or a
vector) parameter and an initial belief given in terms of a general probability density function,
as a point of departure from the extant literature, reviewed in Section 2 and EC.1. This means
that the state equation evolves in the infinite-dimensional state space of the current inventory
and the current belief density, which get updated after the ordering decision and the demand
realization in the period. As we know that in the standard inventory problem when there is
no unknown parameter, there is no learning, and the optimal feedback is a base stock policy
(Section 3). That cannot work anymore since a feedback rule based on the current inventory alone
would entirely ignore the learning process. Thus, the goal here is to obtain a similar result when
there is learning, with a base stock now depending on the current belief probability updated
from observing the past demands. We accomplish this main finding of the paper by analyzing

the functional Bellman equation resulting from the dynamic programming formulation of the
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infinite-dimensional inventory problem under consideration. Moreover, the value function is now
a functional that not only depends on the usual current inventory level, but also on the current
infinite-dimensional belief, and we use a monotonicity argument in Section 6 to show that it is the

unique solution of the Bellman equation in an appropriate Banach space.

The ensuing analysis represents another important methodological contribution of the paper that
can be applied in other similar contexts. To facilitate the study of the Bellman equation, we
extend the domain of belief functions to positive functions, called unnormalized probabilities,
which are not necessarily probability densities. This extension results in a simpler, equivalent
Bellman equation in which belief updating becomes linear. Since the Bellman equation involves an
inf operation to obtain the optimal solution, we need to differentiate the value function. Instead
of this usual approach, we derive a functional equation for the derivative of the value function and
then obtain it as the fix point of the equation directly by an iterative approach. This procedure
yields not only the derivative of the value function, but also the base stock. Moreover, the value

function can be recovered from these as well.

Our next contribution is in applying the developed theory to two special cases where we assume the
belief function to depend on a finite set of hyperparameters, thus reducing the infinite-dimensional
problem to a finite-dimensional one, the dimension being the number of the hyperparameters. The
first case is to choose the belief function to be a conjugate prior of the demand density, and show
that the belief can now be expressed in terms of its hyperparameters which can be updated based
on the observed demands, and thus the base stock becomes a function of this sufficient statistic.
We illustrate these results by assuming a Weibull demand whose scale parameter is not known and
whose conjugate prior is the family of Gamma densities characterized by two hyperparameters. We
characterize the base stock in terms of these two hyperparameters and obtain them numerically.

We obtain the optimal orders in an example for, say, the first five periods. We also validate
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the model by numerical simulation. That is, we create demands according to an assumed true
Weibull density, start with an initial belief about the hyperparameters, update them based on
the simulated demands, obtain the sequence of the optimal base stocks in terms of the updated

hyperparameters, and then show that the sequence converges to the true base stock.

Our second special case considers the demand to come from one of two possible distributions,
but we don’t know which. This gives rise to a single hyperparameter that expresses the ratio of
the weights assigned to the two distributions. We use our theory to write the functional equation
satisfied by the derivative of the value function in this case, develop two approximation schemes
to solve it, and thereby obtain the base stock. We apply these schemes to a particular case of high
or low exponential demand distributions and obtain the formulas for the base stock. We show

numerically that both procedures converge and provide nearly the same base stocks.

The plan of this paper is as follows. In Section 2, we review the related literature and delineate our
contributions to the literature. Section 3 recalls the classical base stock policy results in inventory
control problems with backlog allowed. In Section 4, we formulate an inventory problem with a
general demand depending on a parameter, introduce a general belief density of the parameter,
and use the Bayesian learning process to update the density based on the demands observed over
time. In Section 5, we use dynamic programming to obtain the functional equation and obtain
bounds on its solution to ensure a unique solution. In Section 6, we prove that the value function
is the only solution of the Bellman equation and that there exists an optimal feedback policy. In
Section 7, we show that the optimal feedback policy can be expressed as a base stock policy where
the base stock depends only on the current belief function. In Section 8, we treat the special case of
conjugate probabilities with the belief modeled by the conjugate prior of the demand distribution,
and characterize the dependence of the base stock on the set of hyperparameters of the belief

density. We apply the theory to a particular case of the Weibull-Gamma conjugates. In Section 9,
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we consider the case when demand comes from one of two possible distributions, but we don’t
know which. We develop two approximation schemes to obtain the base stock and show numerically
that both procedures converge to nearly the same base stocks. Section 10 concludes the paper. An
e-companion contains the proofs of results, derivation of some of the equations, and a review of
the additional literature that is related but only tangentially to the specific topic of the base stock

policy.

2. Review of Related Literature

Inventory problems with Bayesian learning of an unknown demand have their origin in the classical
papers of Dvoretzky et al. (1952), Scarf (1959) and Scarf (1960a), with Scarf’s work being the
seminal as well as the most related to our paper. Scarf (1959) pioneered the Bayesian approach
to show that the base stock policy remains optimal in the presence of demand learning, under
the assumption that the prior distribution is in the conjugate family to the form of the unknown
demand distribution. He considers an infinite-horizon inventory problem with demand densities
to be in the exponential class g(z|€) = B(£)r(z)e %%, where 7(z) is bounded and strictly positive
for z > 0. Also, r(z) =0 for z <0, since demands are nonnegative. It is then known that all of
the relevant information in any given period may be summarized in a single sufficient statistic,
namely the mean of the past demand observations as the only hyperparameter. He sets up the
functional Bellman equation for the value function depending on the current inventory level and
the current update of the hyperparameter (two variables), approximates it by a recursion over a
finite horizon N, and obtains the base stock policy for the approximate problem. He proves that
the approximate base stock obtained for any given period n converges to the base stock in period
n of the original infinite horizon problem as N goes to infinity, which in turn converges to the
true base stock as n approaches infinity. He also provides an asymptotic expansion of the base
stock when the number of demand observations is large, and shows that for large n the base stock
becomes close to the true base stock and the error term is of the order of 1/n. Karlin (1960) and

Iglehart (1964) extend Scarf’s results to the range family of densities. Owing to the monotone
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likelihood ratio property satisfied by these distributions, it is also shown that the base stock is

nondecreasing in their respective sufficient statistic.

Scarf (1960a) notes that the functions of two variables arising in Scarf (1959) are difficult to
compute recursively. So he makes a simplifying assumption 5(£)r(z) = ™2™, which makes the
demand density a Gamma density. This enables him to determine the optimal base stock levels by
the recursive computation of functions of only the inventory level (one variable), and thus without
any approximation. Azoury (1985) extends the reduction result in a natural way to demand
densities such as Gamma, uniform, and Weibull. Lovejoy (1990) accomplishes a further reduction
of the dynamic program with a single state variable to one with a “zero dimensional” state space,
i.e., a static optimization problem. This is accomplished by imposing assumptions in addition to
those of Scarf (1960a) and Azoury (1985) that provide for a myopic optimal policy, which is given

by a simple critical fractile stock level as the base stock in each period.

Building on the works of Subrahmanyan and Shoemaker (1996) and Petruzzi and Dada (2002),
Zhang and Chen (2006) allow for price as an additional decision variable. They assume that the
demand in any given period is a basic random demand minus a deterministic component that
increases linearly in price. They follow Azoury (1985) to reduce the dimension of the state space
of the dynamic programming recursion. They show that a base stock list price policy, coined in
the Porteus (1990) inventory theory survey, is optimal. Other related papers on dynamic pricing
with demand learning are Aviv and Pazgal (2005), Bisi and Dada (2007), Farias and Van Roy

(2010) and Araman and Caldentey (2009).

Larson et al. (2001) treat both finite and infinite horizon problems by considering a nonpara-
metric Bayesian approach in which a firm’s prior information about the demand distribution is

characterized by a Dirichlet process prior on the space of distributions. We note that this setting
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makes the hyperparameter also a probability measure. Given such a Dirichlet process prior, any
distribution whose support is included in the support of the measure characterizing the prior can
be approximated as a posterior demand distribution, under the topology of weak convergence.
Thus, the approach provides a consistent model of learning provided that the support of the true
demand distribution is in a subset of the support of the prior. As the authors allow for fixed
ordering cost, their focus is on showing the optimality of a history-dependent (s,.S) policy, which
is known to reduce to a base stock policy when the fixed cost is zero. Furthermore, they show that
if the optimal history-dependent (s,S) policies take a limit as demand information accumulates,
then they converge to the (s,5) policy that is optimal for the true underlying demand distribution.
The authors note that their approach does not smooth beliefs as in the conjugate family settings
where observing a high outcome typically implies that other high outcomes are also more likely. In
this regard, the approach is likely to be most useful when observations occur frequently, or when
the absence of smoothing is of minor concern. Indeed, their model allows demands to be observed

more frequently than once every period.

As we can see that previous relevant research, with the exception of Larson et al. (2001), specify the
information about demand typically by some conjugate prior on the unknown demand parameters
and updates via Bayes’ rule. Typically, the choice of a conjugate family of distributions places
restrictions on the prior beliefs that can be accommodated and the true demand distributions
that can be allowed. For example, it is difficult under this setting to allow for bimodal priors or
bimodal true demand densities. Further conditions imposed to achieve dimensionality reduction
also restricts the choice of distributions or the priors. On the other hand, given a Dirichlet process
prior as in Larson et al. (2001), any demand distribution whose support is included in the support
of the measure characterizing the prior can be approximated as a posterior, but if we are given
an arbitrary belief, there may not be a Dirichlet process prior that can closely approximate it.

In particular, if a demand distribution is a Dirichlet process, then with probability one it is
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discrete. This has the limitation that if the set of possible demand distributions is a subset of the
continuous distributions, then the Dirichlet process assigns probability zero to the true set. In
other words, while the Dirichlet process is rather flexible as a model of the underlying demand
distribution, it is less so as a model of beliefs. Furthermore, as Larson et al. (2001) note that their
approach is likely to be most useful when observations occur frequently. If that is the case, the
approach may not be suitable in common situations where the demand realizes once every period.
Moreover, the hyperparameter in the Dirichlet approach being itself a probability measure, the

approach may not be convenient for computational purposes.

We can now articulate our contributions in relation to the literature. We advance the research
on the optimality of the base stock policy in the presence of demand learning significantly by
assuming a general demand depending on an unknown (scalar or a vector) parameter and an
initial belief given in terms of a general probability density function. In Section 8, we specialize
our theory to the case of conjugate families of distributions, and present results that generalize all
previous research that has assumed the firm’s information about demand to be specified by some
conjugate prior on the unknown parameters and updated via Bayes’ rule. While we develop the
main theory with a parametric demand, our method can handle nonparametric demands since our
belief can be completely general. That allows us to consider a finite set of possible nonparametric
demand distributions containing the true distribution and a belief modeled by a Dirac mass
associated with each distribution along with its coefficient representing the weight assigned to
that distribution. Then the coefficients are the hyperparameters that can be updated as demands
get observed. Indeed, we illustrate this setup in Section 9 with two arbitrary demand distributions

as a special case of our general theory.

Thus, in connection with proving that a base stock policy is optimal in the presence of demand

learning, our paper is arguably the most general one to date. In addition, we also make major



Alain Bensoussan et al.: Inventory Control Driven by Demand Data: Optimality and Computation of Base Stocks

methodological contributions which we have already summarized in the previous section. Before we
conclude this section, we would like to mention that there is a considerable literature on partially
observed inventory control problems with demand learning that is not devoted to extending the
optimality of base stock, base stock list price, and (s,S) policies. We review very briefly this

literature in EC.1.

3. Classical Base Stock Policy

We recall the standard discrete-time inventory control problem over an infinite horizon. The
inventory manager IM decides on his inventory order v,, n=1,2,---, at the beginning of period
n that is delivered in the period before the demand in the period materializes. The demands D,,,
n=1,2,---, are independent and identically distributed random variables with the probability
density function (PDF) on R denoted by g(z). We define G(z) = /Zg(t)dt, the cumulative

0

distribution function (CDF), and G(z) =1 — G(2). In this section, we assume this distribution to

be known, an assumption that will be relaxed in the remainder of the paper.

The demand is satisfied to the extent possible from the inventory on hand in each period, the
excess inventory or the backlog, as the case may be, is carried over to the next period. Then with

x, denoting the inventory at the beginning of period n, the inventory evolves according to

The order v,, = v(x,) is a function of the inventory at the beginning of period n. It is called a
feedback control in the engineering literature. It is well known that it is not a restriction to limit
order decisions to feedback controls. Denoting by V = {vy,--- ,v,,--- }, the feedback to be chosen,

the payoff to minimize is

J.(V)=EY o (ha +pz, + cv,). (2)
n=1
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The parameters p,h and c are, respectively, the penalty cost of backlog per unit per period, the
inventory holding cost per unit per period, and the unit ordering cost. The parameter « is the

discount factor. We define the value function

(a) = inf J,(V). (3)

Then, ®(z) is solution of the Bellman equation

O (z)=hat +px~ +in£ [cv+ aE®(x+v—D)]. (4)
v>

We make a standard assumption

P . (5)

to rule out the trivial solution of no ordering and backlogging all demands to be optimal. This is
easy to see by knowing that the right hand side is the cost of ordering a unit of inventory in the
current period and the left hand side is the present value of a unit backlog carried out from the
next period on all the way to infinity. In other words, if (5) does not hold, then the base stock, as

it were, will be —oo.

The solution is obtained as follows. Let S, called the base stock, to be the unique solution of

- c—ac+ah
GS)=—F7—— 6
5)= "5 (©
The optimal feedback is then
S—x, if z<8,
b(z) = (7)
0, if x> 6.

For z < S,

&(z)=hat +pr~ —cx+ H, (8)
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with

e cS(1—a)+caD+hE(S—D)"+pE(S— D)

. 9)

11—«

For x > S, ®(z) is solution of the linear integral equation

®(x) =ha +pzr~ +a /+<><> P (x—t)g(t)dt. (10)

Note that from the definition of H, the function ®(x) is continuous at S. Define

U(IL') :(I),(x) —hl,50+plyco+c. (11)

Then u(x) =0 for < S, and for x > S we can see from (10) that it satisfies the relation

uw(x) =c(l—a)+ah—alh+p)G(z)+ a/om u(z —t)g(t)dt. (12)

By use of the contraction mapping theorem, equation (12) defines a unique positive bounded
function on [S,+00) with the property that u(S) =0. We can then extend u(x) by setting it as 0
for © < S. This defines a nonnegative function u(z) which is continuous and bounded on R. Then

the function ®(x) of (10) for > S is given by the relation

@(m)z@(S)—(C—h)(x—S)+/ w(t)dt, = > S, (13)
s
We have thus defined a function ®(z) by (8) and (13) which is C' and it solves the functional

Bellman equation (4). See (Bensoussan 2011) for details.

4. Bayesian Learning

We now assume that the IM does not have full knowledge of the probability density g(z) of
the demand. More precisely, we write g(z|¢) with £ a parameter not known to the IM, but he
will learn about it by observing the demands over time. We can no longer, as in Section 3,
work with a feedback rule based on the current inventory as that would ignore the learning

process. Since the information comes from observing the demands, we introduce the filtration
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D" =o(Dy,---,D,), n>1. The order quantity v, at time n is D"~! measurable. At the initial
time 1, there is no information except that the inventory x; = x, which is given. However, the IM
has an initial belief on £, which we express by the PDF f(£) on R. This belief will evolve through
the learning process. From the inventory evolution

anrl =Tn +vn - Dn)

(14)

1 =2,

we can see that the inventory process z,, is also D"~ ' measurable.

The belief density is updated by the Bayesian learning process. For this, let us define the updated

belief after observing the demands Dy, -+, D, as f,(§) with f;(£) = f(£). Then we can write

__ f(©g(D1§) - - g(Dns[€) (15)
S F()g(Daln) -+ g(Dn_sln)dn

fn(€)

by observing that the numerator gives the joint probability density of &, Dq,---,D,,_1, since the
demands are independent given the parameter &, and the denominator is the joint probability
density of the demands as they are no longer independent in the presence of the parameter. Using

fn(&), it is easy to obtain the conditional density of D,,, given Dy,---,D,, 1, as

9(D, D" ) = / Fa(m)a(Dalm)d. (16)

We can now use Bayes’ theorem to obtain

_9(DOLE) _ g(DIOS(E) an

n+1(£)_ g(Dn|Dn71) _fg(Dn|7])fn(n)d77‘

The pair {z,,, f.(.)} is a stochastic process adapted to D" . Setting y,, = x,, +v,,, we can write (14)

and (17) as

$n+1:yn_Dn7 w1:x7 (18>

9(Dnl§)
(Dn|77)fn(77)d77’

fn+1(§)=fn(€)fg fi(&) = f(&) (19)
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The pair (z,, f.(.)) becomes the state of our dynamic system with the state space R x £L(R), where
L(R) is the set of probability densities on R. With this new system state, we can now define the
inventory control problem of IM. We set the decision V = {y;, -+ ,y,, - } with y1 =y >z, y, >z,
where y,, — x,, denotes the order quantity in period n, and we define the payoff
+oo
ey (V)= Z o' Elhal 4 px, — cx, + cyn]. (20)
n=1

The value function can be denoted as

®(x, () =ik Lo sy (V), (21)

where (z, f(.)) is the initial state.

5. Dynamic Programming and Control

In this section we use dynamic programming and write the functional Bellman equation satisfied
by the value function. As the Bellman equation may have many solutions, we develop conditions
under which the value function becomes its unique solution. In Subsection 5.1, we obtain lower
and upper bounds on the value function, which will allow us in Section 6 to show that the solution
of the Bellman equation is unique when restricted to these bounds, and that solution is indeed
the value function. Furthermore, we can use these bounds also to obtain an upper bound on the
order-up-to level decision y. Note that the beginning inventory level z in is naturally a lower
bound on the decision y. These decision bounds allow us to obtain a modified Bellman equation.
In subsection 5.2, we obtain an intermediate comparison result that would help us in proving the

main result of Section 6.

The functional ®(z, f(.)) defined in (21) satisfies the Bellman equation

P : f()g(D.)
O(x, f(.)) =ha™ +pz _“Jr},gfc [cy—i—aE(I)(y—D,ff(n)g(Dn)dnﬂ, (22)

and the unique solution of it will be the value function as defined in (21).
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5.1. Bounds on the Value Function

In order to have the value function (21) to be the only solution of (22), we need some conditions
which in our case appear by imposing upper and lower bounds on that unique solution. In other
words, we would like to have the Bellman equation to take a unique solution when restricted to
these bounds. It turns out that we can find these bounds directly from the definition of the value

function, i.e., from (20)-(22), as shown in EC.2. These bounds are presented in the following lemma.

LEMMA 1. The value function ®(z, f(.)) defined in (21) satisfies

(12 = 2 [etnsonan) < )< 1+ v+ 25 [omman
(23)

where we assume that /go(n)f(n)dn < 400, with
o= [ Gl (24)

0

Next we show that if a solution of (22) is to be the value function, then the bounds in (23) imply
an upper bound on the decision y > x. For a y that achieves the inf in (22), the right hand side

with that y equals ®(x, f(.)). Then we can use the upper bound in (23) to obtain

27 szfv'))gg((g\b))dn) = 1hf+a +(p+e)a + aipf;) / o(n) f(n)dn.

hx*—i—px’—caﬂ-cy—i—aE(I)(y—

+

By noting that x +z~ =2, we can rewrite it as

cy+aEd <y - D, ()g(Dl.) ) <czt+ aha” + alpto) /go(n)f(n)dn. (25)

f
J f(mg(Dln)dn l-a  l-a
On the other hand, if we put y =z in (22), then its right hand side will be larger than or equal to

®(z, f(.)), and thus also larger than or equal to the lower bound in (23). Therefore, we have

ff; +pr — (1?0;)2 / e(n)f(n)dn < (ff; +pr — ﬂfo‘g / w(n) f(n)ozn)+

o)
70)g(D])
D\ T )e D)

<hxt +px~ —i—aE(I)(y —

So,

~aE®(y-D, < s [ (26)
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By adding (25) and (26) and dividing by ¢, we see that the decision y can be chosen to satisfy

<ac+—i-1 <
v= c(l—a)?

(h+(p+c)(1 —a))/sO(n)f(n)dn- (27)

Hence, we can define the following admissibility interval for y :

e 1
Yy e I@f(.) d:f [ﬂ?, x4 E

Tt o1 =0)) [ o) man]. (28)

We can then replace the domain of y > z in (22) by the domain (28) to obtain the modified Bellman

equation

Oz, f())=hat +pr~ —cx+ yeizrxlim {cy +a /O+OO d <y -z, m> /f(n)g(z\n)dndz} .
(29)
In Subsection (6.2), we will show that the unique solution of (23) and (29) is the value function.
5.2. A Comparison Result
We provide here an important comparison result between the solutions of (29) satisfying the bounds

in (23) and the value function ir&f Jo, 1) (V) defined in (21). To avoid confusion, we temporarily call

the value function by

O (z, () =1nf S sy (V).

PROPOSITION 1. Any solution ®(x, f(.)) of the functional equation (29) such that (23) holds

satisfies

D () <@ (2. f()) =inf T, (V). (30)

Its proof is relegated to EC.3. This result will be required to establish our main result of the next

section.
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6. Main Result
In this section, we prove that the value function is the unique solution of the Bellman equation and
there exists an optimal feedback policy. For proving these results stated as Theorem 1, we make

the following assumptions:

g(z|n) < C(2), V2 >0, ¥n, (31)
C'(z) continuous, (32)
©(n)g(z|n) < C, independent of z,7, (33)

where ¢(n) is defined in (24).

THEOREM 1. Assume (31)-(33). For any probability density f(.) on R such that /go(n)f(n)dn <
+00, then the value function ®(z, f(.)) is the unique functional such that (23) and (29) hold.

Moreover, there exists a §(z, f(.)) that attains the inf in (29).

For proving Theorem 1, it is convenient to work with unnormalized probability introduced in the
next subsection. We will see that the belief updating in (29) becomes linear when expressed in
terms of unnormalized probability, which will facilitate a further study of the Bellman equation (29)
once it is transformed to (39) in the next subsection.

6.1. Unnormalized Bellman Equation

Consider the space of functions on R such that

111, = / )+ / ()| ()] < +oo. (34)

We denote this space as L;,(R), and it is a Banach space for the norm || f||,. The subset of positive
functions denoted by L}O +(R) is closed. We now introduce a simpler but equivalent equation, called
the unnormalized Bellman equation. The idea is to extend the domain of the function f(.) to
unnormalized probabilities, which are simply positive functions which include probability densities.
So a functional on R and probability densities is extended to a functional on R X L; +(R) by the

formula

Wi f() = 0. Fa2) [ fonyin (3)
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Note that W (zx, f(.)) and ®(x, f(.)) coincide when f(.) is a probability density. From (35), we can

see that the decision y satisfies

o [ s <y [ san< (4 Lo - ap LI [,
So,
yE Lo ™ [x,x++1M(h+(p+c)(1 f‘pff ;’; 1. (36)
Also by (35), we see that
W, 1 () —@(x,m) [ tdn = (. 1), >0, (37)

which, in turn, gives

IOl
WS T g lndn /f( Ja(zln) (38)
_ £l W
=W gy | Fmeemin =W (y = F)g(:1),
Hence, from (29) and (35), we get the unnormalized Bellman equation
Wo f0) = (ke +pa —ca) [ o+ int [e [ fondnta [ W= 2 50gtel)dz).
Lo 1)
(39)
and by Lemma 1, we can easily obtain the following bounds of W (x, f(.)):
hx hao +
((1_ /f )dn — a)Q/w(n)f(n)dn)
<W(z, f(.)) (40)
<(1o b +(p+o /f C) /«p(n)f(n)dn-

To conclude, it is clear that a solution of (39) and (40) satisfies (37). Also (39) and (40) are
equivalent to (29) and (23), respectively, and the optimal feedback, if any, is identical for both
problems. But, because the update of f(.) in (39) is linear, the derivative of the term inside the inf
of (39) with respect to y is easier to obtain. Hence, finding the optimal y is easier with (39) than

it is with (29). For this reason, we shall work with (39) and (40).
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6.2. Steps of the Proof of Theorem 1

The proof of Theorem 1 is based on the monotonicity argument, which is a classical tool for
variational inequalities, quasi-variational inequalities and Bellman equations at large. We adopt
this argument to our case of partially observed demand to complete the proof of Theorem 1 given

in EC.4. The proof requires the following four steps:

e Since Wz, f(.)) must be positive, we will see that it is enough to require that instead of the
sharper constraint on the left of (40), and consider the set I" of functionals on R x L, (R) such

that

r= {W(x,f())] W is continuous,

(41)
i
0 W fO) < ({2 + (+0)a) [ fd oo 2 w(n)f(n)dn},
and define a monotone nonlinear operator 7" on I as follows:
+o0
TOV) (a1 () = (b 4™ =) [ f@an ot ey [ fodna [ Wiy=zOu(e1)dz).
(42)

e We show that the operator T maps I" into itself, so T(W)(z, f(.)) is continuous in both arguments
x and f(.). For the proof, we first show that T'(W)(x, f(.)) € I. As for the continuity, observe
that W(x, f(.)) is continuous by (41), so the function of y in the second term inside the infimum
in (42) is continuous, and thus it is minimized at y on the bounded interval £, ;). Then, by the
measurable selection theorem, we can find a Borel function g(z, f(.)) that realizes the infimum
in (42) for any (z, f(.)) € Rx L, (R), i.e.,

TOV) (o, () = (ha* + pa = o) [ Flapn +

—+oo

(e, £() / fadn+a [ Wiitaf0) == 0O )dz. Vo 0

9(x, () € Lay0)-
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Next, we consider z,, € R, z, =z and f,(.), f(.) € L,,(R), fu(.) = f(.) € L, (R). We then
prove that the sequence T'(W)(z,, fu(.)) converges to T(W)(z, f(.)), which proves the continuity

of T(W)(x, f(.))-

e For the existence of a solution, we first note that (39) is a fixed point equation. Then, the

functional W (zx, f(.)) must satisfy Wz, f(.)) =T (W)(z, f(.)). We define two monotone sequences:

Wk+1(x7f(')) = T(Wk)($7f()),

Wo(z, f(.)) =0,

WE (2, f() =T(W*")(z, f()),

hxt

a(p+c)
11—« —

Wo(a, f()) = (1 + (4 o) [ S+

/ () ()i,

(67

and show that Wi (x, f(.)) is lower semi-continuous and it converges to a lower semi-continuous
function W (z, f(.)) and W*(z, f(.)) is upper semi-continuous and it converges to an upper semi-
continuous function W (x, f(.)). In fact, W (x, f(.)) is the smallest solution and W (z, f(.)) is the

largest solution, in the sense that if W (z, f(.)) is any solution of (39), then necessarily

Wz, f(.)) SW(z, f(.) SW(x, f(.)).
(43)

e For the uniqueness of the solution, we go back to functions f(.) that are probability densities.
We can transpose the results in W to results in ®, and thus we obtain the minimum and maximum

solutions ®(z, f(.)) and ®(z, f(.)), respectively, of (29). Thanks to the feedback §(z, f(.)) given by

the selection theorem, we construct the processes Z,, 9,, and fn() by the iterations

#ni1=8n— Dy, #1=uz, (45)
Foa(©) = Fu(e) I PlS) A0 =F0). (46)

[ 9(Duln) fu(n)dn’
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We show that the minimum solution coincides with the value function by first setting V=

(Y1, yUn, -+ ) and showing that

@2, £(.) 2 Joyy (V) 2 @7 (x, f() = inf Sy sy (V).

Since ®(x, f(.)) is the smallest solution, it follows that all solutions are larger than the value
function. On the other hand, by Proposition 1, all solutions are smaller than the value function.
Necessarily, the solution is unique and coincides with the value function. Moreover, the feedback
9(z, f(.)) allows us to construct an optimal control by using (44)-(46). That this feedback is a

base stock policy will be proved as the main result of the next section.

Before proceeding to the next section, let us mention that the following result follows from the

facts that ®(x, f(.)) is Ls.c., ®(z, f(.)) is u.s.c., and ®(z, f(.)) = ®(x, f(.)) = ®(x, f(.)).
COROLLARY 1. The solution ®(x, f(.)) obtained in Theorem 1 is continuous.

7. Optimality of Base Stock Policy

We have seen in Section 3 that when there is no unknown parameter, there is no learning, and the
optimal feedback is a base stock policy defined in (7). The objective here is to obtain a similar result
when there is learning, with a base stock now depending on the latest belief function updated from

observing the demand realizations. It is convenient to consider an equivalent problem by setting

Z(l’,f(-))ZW(x,f(-))—(thrm_—crv)/f(n)dn- (47)

Let us note that we do not need to impose the upper bound on y for minimizing the right hand

side of (47), as it will be automatically satisfied at a minimum point.

LEMMA 2. The Bellman equation (47) can be written as

Z(a, () =ale~h) [ ) fndn+min [(e(1- o)+ ab)y [ Fonydn
- (13)

vatien) [ [Gemmansa [ 22 g0On)].

0
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This transformation is justified in EC.5. The advantage of this formulation is that x appears only
in the constraint on y. We know from Theorem 1 and Corollary 1 that this equation has a unique

continuous solution in the following interval:

Zo(o FO) (o) [ st -

T [ e

<Z(x,f.) (49)

<2 fO) G2+ et [ an+ LED [ ooy rnyan.

The solution of (48) is a fixed point of the operator

Z(z, f(.))=0(Z)(=, f()) (50)
with

O(2)(a, () ale~ 1) [ el fn)an+ min (e(1~ )+ abyy [ Fn)an
) 61)

vaien) [ [Gemmants+a [ 2t s0a)0,
which is a nonlinear operator on functionals Z(z, f(.)) defined on R x L, (R) and satisfying the
bounds in (49).
7.1. Preserving Convexity
We state the following property whose proof is given in EC.6. This result helps us to establish the

stability needed in the proof of the optimality of a base stock policy.

PROPOSITION 2. Assume that © — Z(x, f(.)) is differentiable, increasing and convex in x.

Assume that

2O
S T fdn < (52)

and
~(ap—c(t-a)) [ fndn+a / 2y — 2 f()g(=]))dz <0, (53)

where Z'(x, f(.)) is the derivative of Z(x, f(.)) with respect to x. Then x — O(Z)(x, f(.)) and

x— Z(x, f(.)) have the same properties.
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7.2. Base Stock Policy

It is interesting to find Z'(x, f(.)) directly, and not by differentiating Z(x, f(.)). Indeed, we have

0, if x<Sz(f(),

2z, () = ) (54)
(c(1-a) +ah) / f(n)dn — a(h+p) / G(aln) £ (m)dn

o0
+a/0 2@ =2 gzl )dz i &> Sy(F().

Since the second expression is positive, Z'(x, f(.)) satisfies

2. £) = ((e(1= ) +a) [ fdn—ath-+p) [ Glaln) iy
+oo +
o [ Z@—zfOgtel))

and we define

Sz(f()) =sup{z | Z'(z, f(.)) = 0}.
(56)

We can now state the base stock policy in the following theorem whose proof is relegated to EC.7.

THEOREM 2. We make the assumptions of Theorem 1. The function Z(z, f(.)) is globally con-
tinuous and C*, increasing, and conver in x. The optimal feedback 4(x, f(.)) takes the following

base stock policy form:

Sz(f(), it x<Sz(f()),
gla, f()) = (57)
xz, if x>Sz(f()).

We have the following result whose proof is given in EC.7.

PROPOSITION 3. Equation (55) has one and only one solution in the functional space of contin-

uous functions on R x L., (R) with the norm

12" (z, f())]

sup

eity [ Fm)dn < hee (58)
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Knowing Z'(z, f(.)) and Sz(f(.)), we recover Z(x, f(.)) by

K(f(), if 2 <S5z(f()),

K(f() + / 20, fO)dn, if 2> Sy(F().

It remains to obtain K (f(.)), the solution of a linear problem derived from (48). Namely,
K(F()=a(e=h) [ o fndn+ (1 - a) +ah)Sz(10)) [ fady
too —
h G dnd 60
votnrr) [ [ GG saand: (60)

+a/0+oo (/_SZ(f('))ZZ/(njf(,)g(z|.))d77)dz+O‘/O+OOK(f(')g(d'))dz‘

oo

Note that since K(f(.))=Z(0, f(.)) =W (0, f(.)), we can use the right inequality of (49) to have

0<K(70) < D [ o fan (61)

T l-«
7.3. A Monotonicity Property

We consider the iterative sequence

Zisa(o £) = ((e(1= )+ ab) [ fo)dn—alh-+p) [ Glaln) sy
+a/0 OOZ,’C(:zfz,f(.)g(zL))dz)Jr, with Z)(z, f(.)) = 0.

By recurrence, we see that

Z(z, f(.)) >0, and increasing in z. (63)

Consequently,

(c(1-a) +ah) / f(n)dn — a(h+p) / Galn) f(n)dn+a / " 2w — = fQg(2].))d

is increasing in z. Since it is —(ap — (1 — a))/f(n)dn at * = —oo and larger than (c¢(1 —a) +
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ah)/f(n)dn at ¥ = +o00, there exists a unique Sz, (f(.)) such that

Zyia (2, f() =0, if ©<57,,,(f())-

Also Zj(x, f(.)) > Zy(x, f(.)). By recurrence again, we have

Zi (2, () 2 Zy (@, ()

Since (55) is a fixed point for a contraction, we can assert that

Z(z, f()) 12 (2, f())-

From the definition of Sz, (f(.)), we get immediately

and
Sz, (f()) 1 Sz(f()).

8. Learning with Conjugate Probabilities

(65)

(67)

(68)

In this section we take the important case of conjugate probabilities. Most of the literature devoted

to proving the optimality of the base stock policy in the presence of demand learning, including

Iglehart (1964) and Azoury (1985), follow Scarf (1959) and Scarf (1960a) and assume a conjugate

probability set up. In these papers, the analysis is done via a sequence of functions. By contrast,

we do not need that set up as we recover the results as a particular case of our general theory.

Here we specialize the belief function f(.) introduced in our general theory to depend on a vector

X of hyperparameters. So we write it as fx(§). We shall then see that the infinite dimensional

problem of the previous sections reduces to a finite dimensional one, the dimension being the size

of the vector of the hyperparameters. Our analysis therefore generalizes as well as rigorizes the

literature mentioned above.
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In Subsection 8.1, we consider a special case of Weibull demand whose scale parameter is not
known. So we choose our belief function from its conjugate prior family of Gamma densities,
which is characterized by two hyperparameters. Subsection 8.2 shows that the general problem
gives the hyperparameter vector X as the sufficient statistics and provides an equation to be
satisfied by the base stock expressed as a function of X. In Subsection 8.3, we apply this analysis
to the Weibull demand case of Subsection 8.1, and obtain the base stock as a function of the
two Gamma hyperparameters. We also apply the developed theory to two numerical examples
to illustrate its implementation. That is, we simulate demands according to supposedly true
exponential and Weibull densities, obtain the sequence of optimal base stocks as learned from
the simulated demands, order accordingly, and evolve the inventory dynamics in each of the two
examples. We also validate the model by simulating demands for one thousand periods and see

that the sequence base stocks is tending to converge to the true base stocks in each case.

We set

bz, X) = ffx(n)g(zm)dn, (69)

[ fx(n)dn

which defines a probability density. We assume that

T heydn =X T o tman (70)

which defines a coupling between the family fx(£) and the probability density g(z|¢). H(z,X) is
a vector of same size as X. These are known as conjugate probabilities.

8.1. Example of Weibull Demand

As a special example, we consider the demand to be distributed according to Weibull probability

density

9(2[€) =mgzm"lem ", (71)
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which was also studied in Azoury (1985) and Bensoussan (2011). In this parametrization, m is

/m is the scale parameter. The mean demand is £~ Y/"T(1 + 1/m),

the shape parameter and £~
and thus as £ decreases, the mean demand increases. As is common in the related literature, we

assume that the shape parameter m is known and £ is not known. Note that when m =1, (71)

reduces to the exponential density with the mean given by 1/¢.

As for our belief of &, we will consider the Gamma family fx(§) given by

fx(€)=¢"Te™, (72)

with the hyperparameter X = (A, a), a > 0, where A and a are known as the rate and shape

hyperparameters, respectively, in this shape-rate parametrization of the unnormalized Gamma

r
density. For this unnormalized version of the Gamma density, / fx(n)dn = )(\ZL), where
+o00 a
[(a)= / 2 'e " dz is the Gamma function and the normalized version is )\Ff(X()g) Further-
0 a

more, a reflects the number of prior observations, A denotes the sum of prior observations, and

the mean is given by a/A\.

One can also see from (15) and (72) that the posterior Gamma density

()‘ + Z?:1 D?)a+n§a+n_16_()\+z?:1 Di™)¢

= 73
fn+1(§) F(a+n) ( )
ith its mean given b atn Substituting (69) in (70), we get
w v ——— , Wi
given by Yo S~ p g g
[ fx(mgzln)dn [ fuex)(mdn’
and substituting (71) and (72) in (69) yields the conditional demand density
ma®zm !
b(z,X) = ——7— 75
given the hyperparameter X = (\,a), with the mean demand given by
A/mal(a—1/m)T(1+1
al'(a = 1/m)I'{1 + /m)7 ma > 1. (76)

I'(a+1)
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m—1

)\12/m applied to (75) gives b(z, X) = AT which s

(1 + :Em)a+1 ’
1
Burr Type XII distribution, with CDF B(z, X)=1— —. This distribution will be useful

(14 a2m™)

in reducing the dimension of the hyperparameter from (A,a) to just a, as we will see later when

Note that a change of variable z =

we reduce the integral equation (86) to (88).

The updated demand is (first-order) stochastically decreasing in a and stochastically increasing
in A. Thus, both hyperparameters are measures of the predicted size of the underlying demand.
However, since the shape hyperparameter reflects the number of observations, it is the sole measure
of the precision with which the underlying demand is known. Indeed, as the number of demand
observations increases, the uncertainty about the unknown parameter £ in the demand density
decreases. In the limit, while demand remains stochastic, £ is known exactly. Using (71)-(75) in (70)
we can see that it is satisfied with H(z, X) = (A+ 2™, a+1), i.e., fu x)(€) =& A8,

8.2. Sufficient Statistics

Back to the general case, we want to study equation (55) for conjugate probabilities. We shall see
that our infinite dimensional problem reduces to a problem of the dimension equals to the size of
the vector X of hyperparameters. We first note that Z'(z, f(.)) has the same property as W (z, f(.))
in (37), namely,

Z'(,uf(.) = nZ'(z, f(.), Ypu>0. (77)

We write (55) as

2. fx() = ((el1=a) +ah) [ fx(ndn=ath+p) [ Glalm fx(ndn

- ) (78)
+a/0 Z(a = fxOg(el))dz)
Using the property (77), we can write
o IO ol o J G(x[n) fx (n)dn
2T man) = <( e ral) =t D= -

e IxQgCl) [ FxmgCelndn
va [ 2o ) T s d)



Alain Bensoussan et al.: Inventory Control Driven by Demand Data: Optimality and Computation of Base Stocks

28
Then we let
(o IO
R(g:,X)—Z< ’ffx(n)dn> (80)
and
500 ) J G ixmdn _ 7=,
Bl X) = O _/x e -

The important point is to note that

fX(E)g(Z|€) _ fH(Z7X)(£) (82)
[ ixmgzindn [ faex)(n)dn’

Therefore, (79) becomes

“+o0

R(z,X) = ((c(1 —a)+tah—ah+p) Bz, X)+a | R(z-z, H(z,X))b(z,X)dz)+. (83)

0

This is a finite dimensional functional equation. It has one and only one solution on the set of
bounded functions of z and X. We have R(x, X) =0 for z <0, and there exists a single Sgr(X) >0

such that R(z,X) =0 for x < Sg(X). Moreover, Sg(X) can be obtained as the unique solution of

(c(l—a)—I—ah)—a(h—I—p)B(S’R(X),X)+oz/0+OOR(SR(X)—z,H(z,X))b(z,X)dz)Jr:O. (84)

8.3. Computation of Base Stock for Weibull Demand
We consider the Weibull demand example given by (71) and (72). We have X = (\,a) and H(z, X ) =

(A+2",a+1), and therefore using (75) in (81) and (84), we have

_ A o
B(z,X)= (Hzm) , (85)
and
R(z, A\ a)= (c(l—a)—i—ozh—a(h—i—p)()\_i_xm)a—i—oz/wR(:c—z,)\%-zm, a+ I)Mdz>+,
0
(86)
x > 0. We find easily that
Rz Xa)=U, ({7 ). (87)

with U, (z) satisfying

U,(z) = <c(1 —a) +och—a(h+p)(1+1xm>a+ama/ox Ua+1<(1j-2”§)71n> a fzml)a+1dC)+. (88)
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We have U,(z) =0 for 2 < 0. We have thus reduced the dimensionality of the problem from (z, A, a)
to just (z,a) and have obtained a simpler recursion (88), as is common in the related literature.

From (84) we see that the base stock Sy (A, a) =A™ Ly (a), where Ly (a) is the solution of

Ly(a)—¢
(1+¢m)m

)(1fzm)a+1dC=0~ (89)

1 a Ly(a)
c(loz)—l—aha(h—f—p)(m;?(a)) +ama/0 Ua+1(
This allows managers to use (88) and (89) to first compute in advance a surrogate base stock
Ly (a) for each period that depends only on the shape hyperparameter a of that period and not
on the scale (size) of the demand. Then determine the optimal base stock \/™ Ly (a) to use in
each period by scaling the surrogate by the current best estimate of the demand, given by the
scale hyperparameter consisting of the sum of the initial belief of the demand and the observed

past demands, each raised to the power m.

We approximate the solution of (88) by the recursive scheme

Uk (z) = (c(l—a)+ah—a(h+p)<1+1mm>“+ama/0w Ufﬁ((li;fﬁ)(1f;;a+ld¢)+’ (90)

for k=1,2,---, with the initial guess UJ ;(z) = 0. The solution U,(x) is given by klirgo UF(z). We
illustrate the procedure numerically for the parameter values « =0.9, p=4, ¢c=10, h=1, and

m=1 and 2.

8.3.1. Case m=1, g(z[¢) =& **
We carry out our computations for a =1,---6, but display the results for only a=1 and a =2 in

Figure 1 and Figure 2, respectively.
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The sequence Ulk(x) — The function U, (x) The sequence Uzk(x) — The function U, (x)

Figure1  Convergence to the function U, (z). Figure 2  Convergence to the function U(z)

Once Uy (z), Us(z),--- ,Us(z) are obtained, (89) can be used to find Ly (1) =2.316, Ly (2) = 0.823,
Ly(3) =0.493, Ly (4) = 0.351, and Ly (5) = 0.272. So, the formula Sy (), a) = A" Ly (a) yields the
base stocks Sy (A1,1) =2.316A;, Sy(Ag,2) =0.823X2, Syr(A3,3) =0.493)3, Spr(Ag,4) =0.351\,, and

Sir(As,5) = 0.272)s.

To illustrate how to implement our model, let us suppose that the true demand, which is
exponential when m =1, has £ = 0.25, and thus has 4 as its mean. Then, the true base stock as
computed using (6) is S; = 4.795. However, the IM does not know this value, and so he must
make an initial guess of the hyperparamater X. We will illustrate with two different guesses:
X; = (M1,a1) = (3,1) and Xy = (A1,a1) = (5,1), respectively, where A;/a; represents the mean

value of ¢ according to the conjugate Gamma distribution.

Next, we use the predefined Matlab function exprnd(1/£,1,N) to generate N =5 simulated
demands from the exponential distribution with £ = 0.25. These are D; = 6.418, Dy = 0.409,

Dy =0.458, D, = 3.895, and Dy = 5.542.
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We first start with our guess of the hyperparameter X; = (3,1) and consider the inventory evolu-
tion (14) with, say, the initial inventory x; = 0. We compute the base stock Sy (3,1) = 2.316)\; =
6.948, and so we order up to it to obtain the order quantity v; = 6.948, which gives x5 =x; +v; —
D, =0.530. In period 2, (Ag,a2) = (A1 + D1,a1 + 1) = (9.418,2), and the base stock Sy (Aq,a2) =
0.823)\y =7.751. Thus, the order quantity vy =7.221 and x3 = x5 + vy — Dy = 7.342. Following this
process, we obtain the inventory dynamics for the first five periods presented in Table 1. Similarly,

we obtain Table 2 with a different initial guess Xo = (A1,a1) = (5,1).

Table 1 Optimal path starting with X; = (3,1). Table 2  Optimal path starting with X, =(5,1).
D, 6.41810.409|0.458 | 3.895 | 5.542 D, 6.418 | 0.409 | 0.458 | 3.895 | 5.542
G, 1 2 3 4 5 G, 1 2 3 4 5
An 3 19.418(9.827]10.285|14.180 An 5 |11.418]11.827|12.285|16.180

Su(An,ay)|6.948|7.751 (4.845| 3.610 | 3.857 Sv(An,a,)[11.580] 9.397 | 5.831 | 4.312 | 4.401
Uy 6.948(7.221| 0 0 0.868 Uy 11.580{4.235| 0 0 0
Ty 0 10.530(7.342| 6.884 | 2.989 Ty 0 |5.162|8.988|8.530 | 4.635

In the fourth row in each table, we see that the base stock appears to be moving toward its true

value of 4.795.

We also run the simulation for N = 1000 periods and compute Ly (ay) = 0.0012. For each of the
N

two initial guesses Ay =3 and 5, we obtain Ay = A + Z D; =3988.4 and 3990.4 and the respective
i=1

base stocks Sy (An,an) =0.0012\y = 4.786 and 4.788. As we can, these values are very close to

the true base stock of 4.795.

8.3.2. Case m=2, g(z[§) = 2526_5Z2
We now suppose the true demand to be Weibull with m = 2 and £ = 0.25. The mean demand is 1.772,
and the true base stock as computed using (6) is Sy = 2.190. As before, the IM makes two initial

guesses of the hyperparameter: X; = (A;,a1) =(3,1) and X, = (A1, a;) = (5,1), respectively, where
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we note that A;/a; represents the mean value of ¢ according to the conjugate Gamma distribution.
We use the same technique to obtain Sy (A1, 1) = 1.522A1, Spr(A2,2) =0.910)\;, Sir(A3,3) =0.701 )3,
Sv(A4,4) = 0.593\4, and Sy (As,5) = 0.521A5. Now the method for generating Weibull random
demands is based on the standard inverse transform technique. These are D; = 2.769, D, = 1.315,
D3=1.973, D;=1.697, and D5 = 1.175. We present the inventory dynamics for the first five periods

in Table 3 and Table 4 corresponding to the two initial guesses.

Table 3  Optimal path starting with X; = (3,1). Table 4  Optimal path starting with X, = (5,1).
D,  |2.769| 1.315 | 1.973 | 1.697 | 1.175 D,  |2.769/1.315 |1.973 | 1.697 | 1.175
an 1 2 3 4 5 an 1| 2 3 | 4 5
An 3 |10.667|12.396|16.289 | 19.169 An 5 |12.667|14.396(18.289|21.169
St (An,an) |2.636 | 2.972 | 2.468 | 2.393 | 2.281 St(Ans an)|3.403] 3.239 | 2.660 | 2.536 | 2.397
v, |2.636] 3.105 | 0.811 | 1.898 | 1.585 v, |3.403[2.604 | 0.736 | 1.849 | 1.558
, 0 |-0.133| 1.657 | 0.495 | 0.696 z, 0 |0.634|1.923|0.686 | 0.838

From the fourth row in each table, we see that the base stock appears to be moving toward its

true value of 2.190.

As in Subsection 8.3.1, we also run the simulation for N = 1000 periods and compute Ly (ay) =
N

0.034. For each of the two initial guesses A\; =3 and 5, we obtain Ay = A; + ZDZ2 =4164.6 and
=1

4166.6 and the respective base stocks Sy (An,an) = 0.034)\}\{2 =2.194 and 2.195. As we can see,

these values are very close to the true base stock of 2.190.

9. When Demand Follows One of Two Distributions

In this section we consider the special case when the demand is known to come from one of
two possible distributions, but we don’t know which. An example would be high demand and
low demand environments. Thus, we model this in Subsection 9.1 by a belief function with

a two-dimensional hyperparameter, which can be reduced in this case to simply their ratio,
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and rewrite the functional equation for a special case of exponential demand. This case affords
us a possibility of convenient approximations. In Subsections 9.1.1 and 9.1.3, we develop two
approximation procedures involving the iteration of the unique solution of the functional equation
and the iteration by piecewise constant functions, respectively. We show in EC.10 that the two
approximations produce results that are very close. In Subsection 9.1.2 we illustrate the method

in Subsection 9.1.1 by applying it to an example of high and low exponential demands.

We should mention that the methods developed here can handle very general demand distributions
including nonparametric ones. For example, we can have bimodal distributions that cannot be
treated in the conjugate probability framework of Section 8. Moreover, the methodology can be

easily generalized to permit a finite number of possible general distributions.

Let us consider the belief function

f(&) = Bod(§) + Ar16(§ — 1), (91)

where 0(£) and §(£ — 1) represent the Dirac masses at 0 and 1, respectively, and 3, and f; are
hyperparameters. Since it is not a probability density, so this writing is formal. We set the demands

go(z) = g(z|0) and ¢;(z) = g(z|1), which can be very general. We have

9(2[€) (&) = 90(2)500(&) + 91(2)516(§ — 1), (92)

which gives us a formal representation the demand measure given the values of the hyperparameters
Bo and B;. Note that it preserves, in relation to f(£), the fact that it is also the sum of two Dirac
measures at 0 and 1, respectively. The functional Z'(z, 5y0(§) + 816(§ — 1)) in (55) can be written
as Z'(x, By, 1), depending on the hyperparameters 3, and 3; instead of f(.), and it satisfies the

equation
Z'(x,Bo, B1) = ((C(l —a)+ah)(Bo+ B1) — alh+p)(BoGo(z) + B1G1(z))

oo (93)
+04/0 Z/<l‘*2,5090(2)75191(2)>d2>

+
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We can assume both S, and (; to be strictly positive and set 8 = fy/f1, since if we begin with
one of them to be zero then we know the true demand and there is no need of learning. Since

Bo + B1 =1, we have

Bo=pB/(B+1) and By =1/(B+1).
(94)

Then noting (77), we have Z'(z, By, 51) = Z'(x, 851, 1) = Z'(x, 3,1)51. Then by setting Z'(x, 3) =

Z'(z,,1), we obtain immediately from (93) the equation

Z'(x,8) = ((e(1 =) +ah)(B+1) = alh+p) (3Go(x) + Cr(2))

+a/0+°° 91(2)7' (az - ’Z’Bz?z;)‘h)Jr

Thus, we are left only with one hyperparameter 8 to learn from the demand observations.

The remainder of Section 9 will be devoted to solving this equation by using approximation meth-
ods. For convenience in exposition, we will only consider the case of exponential demands, and
develop two approximations in Subsections 9.1.1 and 9.1.3, respectively. In Subsection 9.1.2, we

will illustrate the first of these two methods by a numerical example.

9.1. Exponential Demand Case

Let the demand densities be denoted as

go(2) =doe™ 0%, gi(z) =dre "%, 8§ >0y (96)

Since their mean demands satisfy 1/dy < 1/d;, the densities represent the low and high demands

environments, respectively. Finally, we have the functional equation

Zl(l'vﬁ) = ((C(l - Oé) + Oéh)(,ﬁ + 1) — a(h +p)(ﬁe—50$+ + 6—51x+)

+o0 60 +
+a/ 616_5”2’(1:7z,ﬁé—e_(‘so_‘sl)z)dz) )
0 1
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9.1.1. Approximation through Iteration
We go back to (97) and consider the iteration
! —8pazt —81zT
Zia(@,8) = ((c(1=a) +ah)(B+1) — a(h+p)(Be~o" +e017)
“+o00 50 + (98)
+a 5177 (2 — 2, f—e C0=00= ) gz )
[ b d(emzsgeo)a:)
starting with
+
Zi(x,8) = ((c(l —a)+ah)(B+1)—alh+p)(Be ™ + e"s”ﬁ)) . (99)
We define first S;(3) by solving
femsi6) 1 i) - (g )AL TR g gy (100)

a(h+p)

The function S;(f) is decreasing and Z;(z, 3) is given by

0, if x<S1(8),
Zy(x,B) = (101)
(c(1 =) +ah)(B+1) —a(h+p)(Be " +e %), if ©>51(8).

Note that a straightforward but lengthy calculation shows (see EC.8 for details) that Z,(z, 3) can

be obtained as

0, if x<52(5),

Zy(x, B) = (102)
(c(I—a)+ah)[B(1+a(l—e 1)) +14+ a1 - e“slzl(m’ﬁ))}

—a(h+p) [e“sowﬂ(l +adoz(z,B)) + e (1+adizi(z,8))], if x> S.(B),

where z = S5() > 0 is the solution of

(c(1— ) +ah)[B(1+a(l — e P0xl=R)) +1+a(1—e‘61z1(””3))] (168)
103

—a(h+p) [6*50$B(1+Oé502’1($a6)) +e*511(1+a5121(ﬂ?,5))} =0.
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For k > 2, we can only consider approximate solutions for (98). First, we note that the upper limit

for the integral in (98) can be replaced by x because Z, (x,3) =0 for all § when 2 <0. Let

R={(z,0) | 0<x<X, 0<S<B} (104)

be a rectangle in the x-plane, and define a grid on R with grid spacings Az and A such that
NAz =X and MAS = B. We compute Z,,,(x,3) at the grid points (z,,5,) = (nAz,mAS),
0<n<N,0<m< M, by approximating the integral in (98) using a composite trapezoidal formula

as follows

L (s ) = ((0(1 — )+ ah) (B + 1) — a(h+p)(Bne D0 470
N-1

+ Oé% [’YZ]; (.'Ii'n, 25m) +2 Z rye—’YZl Z]/C (mn — 2z, 2Bme—'yzl) (105)
=1

+9e7 7 24,(0,28,07)] )

where 2, = 1Az, 1 =1,2,---,N — 1. Note that since Z{(z,3) is given explicitly by (99) during
the computation of Z(z,,5y,), n=0,1,2,--- ,N, m=0,1,--- , M, the right hand side of (105) is
known exactly. For k > 2, the second component of (:rn — zl,2ﬁme_”2l) in general is not a grid
value and, therefore, we obtain Z; (xn -z, 2,8m677zl) by interpolation using the neighboring grid

point values.

Now for illustrative purpose, we set the previous parameter values as in Section 8, and let N =40,
M =80, with Az =0.1, A =0.05. Below we show the structure of the curves Z;(z, 3), Zy(z, 3),

and Z4(x,3) in R®.
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I The domain [0 <x< SS(B)]
Il The function Z', (x, B)

The function 7', (x, B)

Il The function Z'S(X, B)

Figure 3  The functions Zi(z,3), Z5(x, B), Z5(x, B).

Knowing the data points (wn, Bums Zy (20, ﬁm)) ...N , we can extract the values
M

Sk(Bm) =sup{z, | Zi (s, Bm) =0} (106)
In Table 5 we display Sy(5) for k=1,2,3,4 and #=0,1,2,---,10.

Table 5  Approximation of Si(3), S2(3), Ss(8), Si(B).

B 0 1 2 3 4 b} 6 7 8 9 10

S1(B) 0.8622|0.604810.5376]0.5076|0.490810.4800|0.4725{0.4670|0.4628|0.4594 |0.4567

S2(B) 0.8622|0.6021]0.5360|0.5067|0.4901]0.4795|0.4722]0.4667|0.4626 | 0.4593 |0.4566

S3(8) 0.8622/0.6017/0.53540.5059|0.49000.4795|0.4722|0.4667 | 0.4626 | 0.4593 | 0.4566

S4(B) 0.8622]0.6012]0.5351]0.5058|0.4900]0.4795|0.4722|0.4667|0.4626 | 0.4593 |0.4566

Ss(B)—S4(B)] 0 [5107*{310°* 10°* 0 0 0 0 0 0 0

Based on Table 5 we use the approximation S(5) &~ S4(3).
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9.1.2. Computation of Base Stock for Exponential Demand
We now consider the demand densities (96) with dy =2 and J; = 1, and the parameter values
a=0.9,p=4,c=10, and h =1 as in Section 8. To show how to implement our model, we suppose
that the true demand density is go(2) = e °°*. Then the true mean is 1/d, = 1/2 and the true base
stock as computed using (6) is S =0.4311. As in Subsection 8.3, the IM does not know the true
demand, and so he must make an initial guess of the hyperparamaters Sy > 0 and 5; > 0 such that

Bo+B1=1and 8=,/ is defined.

We use the predefined Matlab function exprnd(1/2,1,5) to generate N =5 simulated demands
according to the true probability density e ?*. These are D; = 0.1522, D, = 0.9613, D3 = 0.1323,

D, =0.0338, and Dj = 0.2135.

In view of (92), we obtain the posteriors of 3, and (3, as follows:

5090(D1)
Bogo(Dr) + Brg1(Dr)

Blgl(Dl) (107)

and posterior [3; = Bogo(Dv) + Brgn (DY)

posterior By =

It is straightforward to see from (107) that posterior By + posterior [y =1 in each period. We
will illustrate our model with two different guesses: (5o, ;) = (0.6,0.4) and (5o, 5;) = (0.4,0.6),

respectively. These gives us the initial 5 =1.5 and f=2/3.

We first start with an initial guess (S, 51) = (0.6,0.4) and consider the inventory evolution (14),
with, say, the initial inventory z; = 0. The initial g = By/81 = 1.5, for which we compute the

base stock S(1.5) = 0.5512. So we order up to it and obtain the order quantity v; = 0.5512,
0690(D1)
0.690(D1) +0.4g,(Dy)

which gives z, = x; + vy — D; = 0.3990. In period 2, By = =0.7207, B, =

0.49:(Dh) 0.6g0(D:1)
=0.2796, 8 = ———= = 4.432, and the base stock S(2.5776) = 0.5072.
0.6g0(D1) +0.49:(D) ’ 0.4g,(Dy) ( )
Thus, the order quantity vy = 0.1082 and x3 = —0.4541. Following a similar process as in the second

period, we present the inventory dynamics for the first five periods in Table 6 starting with 3 = 1.5.

Similarly, we obtain Table 7 with a different initial guess 5 =2/3.



Alain Bensoussan et al.: Inventory Control Driven by Demand Data: Optimality and Computation of Base Stocks

39

Table 6  Optimal path starting with §=1.5. Table 7 Optimal path starting with 3 =2/3.
D, ]0.1522 ] 0.9613 | 0.1323 | 0.0338 | 0.2135 D, |0.1522 | 0.9613 | 0.1323 | 0.0338 | 0.2135
1.5 | 25776 | 1.9704 | 3.4522 | 6.6752 0.6667 | 1.1451 | 0.8757 | 1.5344 | 2.9668
S(B) | 0.5512 | 0.5072 | 0.5271 | 0.4882 | 0.4588 S(B) | 0.5512 | 0.5779 | 0.6065 | 0.5491 | 0.5074
v, |0.5512 | 0.1082 | 0.9812 | 0.0934 | 0.0044 v, | 0.5512 | 0.1788 | 0.9899 | 0.0749 0
T 0 0.3990 | -0.4541 | 0.3948 | 0.4544 T 0 0.3990 | -0.3835 | 0.4741 | 0.5152

From the fourth row in each table, we see that the base stock appears to be moving toward its

true value of 0.4311.

We now generate N = 1000 simulated demands according to the exponential distribution go(z)
and run the simulation for N periods. If N = 1000, we compute 5(1.5 LNl Z5\51131’) = S(1.5-
29%9¢=012155) — (4312 and §(2/3 -2V le Dt Pi) = §(2/3- 299 ~501215%) — 0.4312. We see that
both values are the same and very close to the true base stock of 0.4311. We can also realize that
in period N, our method has lead to the value of the hyperparameter 5, very close to its true value

of 1.
0.6-2N-1e—2X 7' D; 0.6 . 2999, —1002.4310

0.6-2N-1e-2580'Di 1 0 4. - SN Ds T 0.6 2999¢-1002.4310 1 () 4 . ¢—501.2155

posterior o=

0.4-2N-1=2%05 " Ds 0.4 . 2999 ,—1002.4310

- 0.4- 2N71672Zf\’:—11 Di 1 ().6-e Zf\f:—ll D; = 0.4 - 2999-1002.4310 4 () G . ¢—501.2155 ~ 1.

9.1.3. Approximation by Piecewise Constant Functions
Here we provide an alternate approximation procedure with technical details in EC.9 and show
in EC.10 that it gives essentially the same results as obtained using the procedure in Subsec-
tion 9.1.1. Here we approximate the function Z'(x,) by a piecewise constant function in the

hyperparameter 3, so we write

Z'(x,B) = Zig (), [B]<B<[B]+1, (108)
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where [(] is the integer part of 5. We can therefore approximate (97) as

Zy(x) = ((0(1 —a)+ah)(k+1) —a(h+p)(ke ™ + efalgﬁ)

“+o0 5 + (109)
+a51/ e~ =y (ac—z,ké—oe*(‘sof‘sl)z)dz) ,
0

1

where k is an integer. For instance, suppose do/d; = 2, then by setting d; =, we compute Z, (z)
by approximating the integral on its right hand side using the composite trapezoidal formula.

See EC.9 for details.

We illustrate our findings by displaying Z)(x), Z;(x), Zy(z), and Z;(x) on Figure 4 for the special

case of parameter values as in Subsection 9.1.1 and §, = 1.

— The function Z'((x) — The function Z',(x) — The function Z',(x) — The function Z's(x)‘
24—:
22—- _____________________________________________________________ I'
20—:
3 Z' (x)
18 )
z | by
16
14—: _________________________________________________
7' (x 3
n(X) 3 '
E Zg(X)
10—:
s
6 —
-
2
l
L L o o o B T o o B B e e
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
X

Figure 4  The functions Z,(z), Z1(x), Z3(x), Z5(x).
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Since this method provides the approximation only at integer values of 5, we show in EC.10 that

it produces results that are very close to the method in Subsection 9.1.1 at the integer values of 5.

10. Concluding Remarks

In this paper we have considered a standard discrete-time infinite-horizon inventory problem with
an unknown general demand with backlog allowed. We begin with a general belief density prior and
update it as the demand history unfolds. We analyze the resulting functional Bellman equation for
the value function that depends on the current inventory level and the current (updated) infinite-
dimensional belief. We prove the optimality of the base stock policy with the base stock dependent
only on the current belief. We provide an algorithm to solve for the base stock policy and prove
its convergence. We apply our methodology to the important case when the initial belief takes the
form of a conjugate prior, which generalizes the related papers devoted to showing the optimality
of the base stock policy in conjugate probability settings. Since we can set a completely general
belief, we are also able to entertain the case when the true demand density belongs to a set of
possible densities including nonparametric ones. To keep things simple, we only focus on the case
of two possible densities. We illustrate our theory by solving a few numerical examples. Finally,
given that our method is quite general, it is therefore applicable to inventory problems with lost
sales, lead times, and fixed ordering costs. We leave analysis of these problems as future research
topics.
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Proofs of Statements

EC.1. Brief Review of the Additional Literature on Partially
Observed Inventory Control Problems with Demand Learning

Murray and Silver (1966) study a style good inventory problem of a firm where a number of
known customers in a period purchase the firm’s product with an unknown probability. Even
though they assume unmet demands to be lost, they observe full demands and use the Beta prior
to update the purchase probability. They do not characterize the optimal policy, but numerically
solve a two-period example. On the other hand, Harpaz et al. (1982) take the Bayesian approach
to the inventory problem with demand learning when unmet demands are lost and thus not
fully observed. Braden and Freimer (1991) develop what they call newsvendor distributions that
allow for a parsimonious updating process of the prior distribution in censored demand settings.
Lariviere and Porteus (1999) consider an inventory problem of a new product that is about to
be offered for sale under the lost sales regime. They use Weibull, a newsvendor distribution, to
model market demand. They follow the methods of Scarf (1960a) and Azoury (1985) to obtain
a dimensionality reduction. Miller (1986) shows that such reduction can also be achieved with
exponentially smoothed forecasts. Under additional restrictions, Lariviere and Porteus (1999)
obtain insights into the optimal order such as whether to drop a product or to overstock it to
obtain more demand information. These restrictions ensure the distribution of demand in the
future to be stochastically increasing in the demand that has been observed in the past. Hakzos
and Seshadri (2004) named this property of distributions as conditional monotonicity and supplied
the necessary and sufficient conditions for it to hold. Chen and Plambeck (2008) show that this
“stock more” result can be reversed in the case of nonperishable inventory with unobserved lost
sales. Bisi and Dada (2007) consider both the cases of perishable and nonperishable inventory

under additive as well as multiplicative demand models.

Another stream of literature assumes general demand distributions and focus on showing that the

conditional probability of demand and or inventory given past observations is a sufficient statistic,
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which in general is infinite dimensional. This allows the use of dynamic programming to analyze the
problem and prove the existence and uniqueness of a solution of the resulting functional infinite-
dimensional Bellman equation as well as the existence of an optimal feedback policy and some of
its properties. This extends the idea of Kalman filtering to inventory problems, which are nonlinear
in general, as carried out in (2016). The interested reader can consult Ding et al. (2002), Lu et al.
(2005), Treharne and Sox (2002), Sethi (2010), Bensoussan et al.((2007), (January 2008), (February

2008), (2009a), (2009¢), (2010), (2016)), and references therein.

(EC.1)

EC.2. Proof of Lemma 1

For the lower bound, let the control sequence V = {yy, -+ ,yn, -}, with y; =y >z, y, > x,,. Then

—cx, + cy, > 0. We first obtain estimates. We have

Ty Z Tp—1— Dn—h

hence,
n—1
vy >2t | —D, >z} ,—D, 1 —D, 5> >x+—ZDZ
i=1
Next, we have
+oo
Loy (V)= o 'Elhx! +px;, +c(y, — z0) ],
0 (V) ; [ P (y )]
>0
+oo
>Za”_1E[hx:+pw;]
n=1
o~ 1E D, +pa:
> 5 blpe -5 ) B02)
h
—hZa” 'E[(n—1)D]
n=1
hxt =
_ lfa +pz~ —hE[D]Y a"H(n—1)
n=1
hx™ hao
= ~————F[D
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where the arithmetico-geometric series

nz:‘:anl(n— 1) :;na” = A=a)y _aa)2,

and where we assume that

BID)= [ Bl adn= [ otn) fonin < +oc, with o) = [ G-

Hence,

rt

Dl () =ind T (V) 2 o g pu 5«)2 / o(n) f(m)dn. (EC.3)

11—« (1
Of course, this estimate is not useful when |z| is small, since we already know that ®(z, f(.)) is
positive. However, it will be for large values of |x|. We can thus replace the right hand side of
equation (EC.3) by its positive part, and write

+

2, £()) 2 (12

1_a+p1: a

(1ﬁi&3/w0ﬂfWﬂm)f (EC4)

We next obtain an estimates from above by evaluating the cost of a specific policy. We can take in

particular the control y,, = x,". Denoting this control sequence by V*, we get

+o00
Tepy (V) =D o' Elhaf + (p+ o)z,

n=1

We have z,,,, <D, and z,41 =2} — D, <z}, so z, <z! , and z} , <z} <-.-<az*. Then,

ha* o
oo (V) S 7o+ (p+e)a” +(p+) Yo" BID].
Hence,
s
®(z, f(.) = inf Jo sy (V) < 1hf -t (p+c)x™ + @/gp(n)f(n)dn, (EC.5)

and, of course, the right hand side is a real constraint since we have assumed

/wmﬂmm<+m. (EC.6)



eC4c-companion to Alain Bensoussan et al.: Inventory Control Driven by Demand Data: Optimality and Computation of Base Stocks

EC.3. Proof of Proposition 1

We shall prove that

Oz, () <D™ (x, f() = Jup)(V), YV. (EC.7)

If ®(x, f(.)) solves (29) with the inequalities (23), then for y > = we can assert that

O(x, f(.) < ha™ +pa” —cx—i—cy—l—aECI)(y D, ff()j(D’) ) (EC.8)

Take now any V = (y1, -+ ,yn, -+ ) and by (18) and (19), we construct sequentially the state (z,,

fn(2)), with y,, > x,,. We can apply (EC.8) with x =z,, and f(.) = f.(.). Note that

E/w(n)fn(n)dnsz(n)f(n)dn<+oo,

therefore, /(p(n)fn(n)dn < 400, a.s. Taking the account of (18) and (19) and by a clear interpre-

tation, we can write

D,
D, () < hay 4y — e, ey + B (g, Dy )g(D b))
ffn n)g(Dy|n)dn (EC.9)
= ha} +pr, +c(yn — 0) + QB [®(T41, fura ()| D]
Therefore,
a" TE®(x,, () < a"ilE[hxf{ +px, +c(y, — xn)] +a"E®(xp41, fni1(L))- (EC.10)

Summing these relations between n =1 and n = N, it follows

Oz, ()<Yo E[ha +pz, + (Y — 20)] + 0V EB (11, fvsa () (EC.11)

n=1

But from the right inequality of (EC.5), we get

E®(xni1, fria() < E$N+1+(P+0)Exzv+1+W/w(n)f(n)dn

11—«

1-

Thanks to the admissibility interval Z, ¢y, we have

alN
Ty S+

c(1—a)2(h+(p+c)(1—a))/@(n)f(n)dn,

(EC.12)

Tysr <@+ D+ + Dy.
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It follows immediately that o™ E®(xx1, fx1i(.)) = 0 as N — +o00. Therefore, from (EC.11) we

obtain ®(z, f(.)) < J, 5()(V), from which we get the result (EC.7). O

EC.4. Proof of Theorem 1

The proof is long and it is divided into four segments or subsections.

Preliminaries

From (40), we neglect the sharper constraint on the left of W (x, f(.)), introduce the set I" of

functionals on R x L, (R) such that

I'= {W(a:,f())\ W is continuous,

0<Wi(z, f(.) < <1hf+ +(p+o)z /f C)/w(n)f(n)dn},

(EC.13)

and define the operator on I as follows:
+o00
T(W)(, f(.)) = (ha™ +pa~ —cw)/f(n)dnJr inf cy/f )dn + Wy — 2, f(.)g(2|.))dz].
La,£() 0

(EC.14)

This operator is monotone in the following sense:
W(z, f(.) SW (. f(.), Vo, f(.)=TW)(x, f()) <TW)(x, f(), Yz, f(.).
(EC.15)

The operator 7" maps I’ into itself

We begin with the following important result.
ProprosITION EC.1. Assume the properties (31)-(33). The operator T maps I" into itself.

Proof. From the assumptions, we obtain immediately that f(.)g(z|.) belongs to L (R) for any

z>0. Since W belongs to I', for any z >0, W(y — z, f(.)g(z|.)) is well defined and

2)" ( +C)

0< Wiy~ f(g(el ) < (M2

+(p+co)(y—=2) /f (z|n)dn + /w(n)f(n)g(zm)dn-
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This is well defined since f(.)g(z|.) belongs to Ly, (R). We may integrate in z >0 to obtain

+oo

+oo
Wiy- =gz < [ (MU d e aw-27) [ fonaelmnts

a(p+c)
11—«

0

+

/ ©(n)f(n)dn.

Therefore,

TOV) (o £) < O +pa =) [ $apn+ 22D [ o) sy

. T (h(y—2)t
—l—yegim (cy/f(n)dn—l—a/o < & +(p+o)(y—=2) /f g(z|n) dndz>

(EC.16)
We bound the right hand side of (EC.16) by picking y =z, and use (7 —2)* <az™, (27 —2)” <z,

and obtain
T(W)(z, f(.))
< (hz"+(p+ec) /f a p—;c / dn+ah$+/f d77+a(p+0)/ (n) f(n)dn

= (2w o+ on) [ ran+ 22D o

Since, obviously T'(W)(z, f(.)) > 0, the constraint in (EC.13) is satisfied for T'(W)(z, f(.)). We

have next to prove that the map =z, f(.) = T (W)(x, f(.)) is continuous. We first define for y > z,

+oo

JOW)(z, £()) —4w/f Jnta [ Wy -z f()g(z]))dz (EC.17)

0

Since W (x, f(.)) is continuous in both arguments, the function y — J(W)(z, f(.))(y) is continuous
and thus attains its minimum in y on the bounded interval £, ;). Then, by the measurable selection
theorem (see, e.g., Bensoussan et al. (1983) or Bensoussan (2011)), we can find a Borel function

g(x, f(.)) that realizes the infimum in (EC.14) for any (z, f(.)) in R x L, (R) i.e.,

T(W)(x,f(~))=(hx++pw—cw)/f(n)dn+J(W)(vaf(-))(z»)(x,f(-))), vz, f(),

9(x, £()) € La 50)-
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Let us show that z, f(.) = T(W)(z, f(.)) is continuous. Let z,, z € R, z, — = and f,(.), f(.) €
L, (R), fu(-) = f(.) in L (R). We call y,, = §(2n, fu(.)). Clearly y,, is bounded, so we can extract

a subsequence, still denoted z,,, y,, f.(.) = x, ¥, f(.). Since

1 « fgp
<y,<zxrF+-—-—(h 1—q))
tn S ST+ g ot ()= a) ffn ,
we get
1
r<i<att O (g (ot (1 - )l LD

c(1—a)?

From the assumptions (31)-(33), we can assert that

ffn

Fa(g(zl) = f()g(z].)in Ly (R), Vz>0.

From the continuity of W, it follows that

W (yn — 2, fa(.)9(2].) = Wy — 2, f()g(z].)), ¥z>0.
Moreover,

W =2 Fu00(e) < (M2 ot )= 2)7) [ s

ipj g / e(n) fn(n)g(z|n)dn.

(07

Since f,(.) = f(.) in L, (R), we can find a new subsequence, still denoted by f,(.) such that

[ttt + 15w 1y < o

This is a classical result whose proof is as follows. The sequence ¢(n)f,(n) is a Cauchy sequence

in L'(R). Therefore, there exists a subsequence ¢(n) f,, (1) such that

)+ 01— foy ()l < o

Then,

B0 < (o (n) + 1) fua (0 +erw — fus )]
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is in L'(R) and (¢(n) 4 1) f», (1) < h(n), which implies

/(90(77) + 1) sup fn, (n)dn < +oo0.
J
So, for some subsequence, and using (31), we can assert that for z >0,

< (M=t o —2)7) [ fatmalmn+ 5D [ o sup g (el

< (w +(p+o)(supy, +2)) / sup fu(m)g(zn)dn + aipjac) / p(n)sup fu(m)g(zln)dn,
(EC.18)
which is a fixed integrable function of z. So, we can apply Lebesgue’s dominated convergence
theorem (see, e.g., Royden (1968) or Brezis (2011)) to assert that
+o0 too

W (yn = 2, fu()g(2].))dz — W =z f()g(z].))dz. (EC.19)

0 0

Going back to (EC.17), we obtain

T(W) (@, fu(.)) = (ha +py — cz,) / Fa)dn -+ T (W) £2()) (02)

(EC.20)
= (et 4 ) [ Fa)dn+ IOV (o, £ (D)
It remains to show that
(ha* +(p+c)a7) / fmdn+ J(W)(z, f())(@G) =TW)(z, f(.))- (EC.21)
Take first y € (:E,:c+ + i(lj.dOé)Q(h_‘_ (p+c)(1— f(pff j; ) For n large enough we have

(h+ (p+)(1— ”—,

J fa(n)

1
T, <y<wzl+-

c(1—a)?

and thus,

T(W)(fvmfn(-))Z(thIJr(p+6)$;)/fn(n)dﬁ+J(W)(fvmfn(-))(y)-

Going to the limit, this implies that

(ha™ + (p+c) /f )dn+J(W )(%f(-))(z?)z(hl“++(p+6)x_)/f(ﬁ)d77+J(W)(Sv,f(-))(y)-
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Also,
TV, o) 2 (bl + (0 c)y) [ Fuln)dn-+ IOV s Ful D)o,
TV (@ £a()) > (bt + (0 + O)z;) / fuln)dn

(e (+ (1 — ) LA 000,

J fa(m)

+ J(W)(zn, ful.)) (“’C;izr + i(lfdoz)Q

and going to the limit, it follows that
(ha* + (p+ c)a™) / Fydn+ TV (&, £() (@) > (ha* + (p+ €)x) / Fndn+ T(OW) (x, £() (@),

(ha* + (p+ c)a™) / Fdn+ JW) (&, £() (@) > (hat + (p+ e)x) / f(n)dn

L1« N fso )f(n
+ (W), £() (= g oap it ro-a) s = )

Collecting results, we obtain

(ha™ + (p+ C)fﬂ_)/f(n)dn +JW) (@, F())(@) = TW)(x, f(.))-

Since the opposite is obviously true, we obtain (EC.21). So we have proven that T'(W)(z,, f.(.)) =
T(W)(x, f(.)), at least for the subsequence that has been constructed. But for any converging
subsequence, a similar reasoning will prove that the limit is T'(W)(z, f(.)). This implies that the
whole sequence T'(W)(x,, f.(.)) converges towards T'(W)(z, f(.)), which proves the continuity and

completes the proof of the proposition. [

Existence of a Solution
We proceed with the proof of existence of a solution of (39) and (40). In fact (39) is a fixed point

equation. The functional W (z, f(.)) must satisfy

Wz, f(.) =TW)(x, f(.))- (EC.22)

We define two iterations

Wi (z, f(.) =T(Wy)(x, f(.)), (EC.23)

Wo(z, f(.) =
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Wt (z, f() =T(W™)(z, f(.)),

- (EC.24)
WO fO) = (et +0e) [ s+ 22D [ o) sy
It is standard to check the sequence of inequalities
Wo<Wi < W, <--- < WY, (EC.25)
WoSWE>...W">...>W,. (EC.26)

The first iteration is called the monotone increasing iteration and the second one is called the

monotone decreasing iteration. It follows that

W (z, f() T W (z, f(.)) pointwise, W"(z, f(.)) LW (z, f(.)) pointwise, (EC.27)

and necessarily,

Wo<W <W <W". (EC.28)

We are going to show that W and W are solutions. First, from (EC.23) and the monotonicity

property, we get

Woii(z, f(.)) TW)(x, f(.))-

Going to the limit, we obtain

Wz, f(.)) <TW)(x, f(.), Y, f(), (EC.29)

and similarly,

Wz, f(.)) =2T(W)(2, f(), Yz, (). (EC.30)

The functions W,,(z, f(.)) and W"(z, f(.)) are continuous. The limits are not necessarily continuous,

but it is standard that

W(z, f(.)) is Ls.c., W(x, f(.)) is us.c. (EC.31)
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Next, from (EC.23) again we have

W™ (e, () < (ha* +pr— — ca) / Fmdn+ JOV™) (@ () w)., Yy € Lo o).

Looking at formula (EC.17) for J(W")(z, f(.))(y), we have

Wy =z, f()g(2| )L Wy — 2, f(.)g(2].)). (EC.32)

Therefore, by Lebesgue’s Lemma (see, e.g., Royden (1968) or Brezis (2011)) we have

—+oo +oo

Wy -z, f()g(z].))dz | i W(y—zf()g(z].)dz, (EC.33)

0

therefore, it follows easily that J(W™)(z, f(.))(y) L J(W)(z, f(.))(y). Also,

Wiz, () < (ha* +pr~ —ex) / Fndn+ T(7) (. £() (w).

This implies W (z, f(.)) <T(W)(z, f(.)), since y is arbitrary in the interval £, ;). From the oppo-
site inequality (EC.30), we conclude that W (x, f(.)) is a solution of (EC.22). Consider next the

monotone increasing sequence W, (x, f(.)) and m >n, so W,,(z, f(.)) > W, (z, f(.)). We have

Wi (z, f(.)) =T(W) (2. f(.)) = (h$+ +pr — Cx)/f(ﬁ)d’?Jr JWo) (@, () (Ym)

since the inf is attained, in the definition of T'(W,,)(z.f(.)), thanks to the continuity of W,,(z, f(.)),

at some y,,, depending on (z, f(.)). Therefore,

Wm+1($,f(-))2(h$++pﬂf—Cx)/f(n)dnJrJ(Wn)(w,f(-))(ym)-

Recalling that the sequence y,, is bounded, we can extract a subsequence that converges as m —

400 to some y,. We can pass to the limit in m in the preceding inequality to obtain

W(z, f(.) = (ha™ +pa” —C:L“)/f(??)dn+J(Wn)(ﬂf,f())(y*)-
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Letting then n — +o00, we obtain

W(w,f(-))Z(h$++px—cw)/f(n)dnJrJ(W)(@‘,f(-))(y*)ZT(W)(waf(-)%

since y, lies in the admissibility interval. Comparing with (EC.29) we see that W (x, f(.)) is also
a solution. So, we have two solutions of (EC.22), W (x, f(.)) and W (z, f(.)) with W (z, f(.)) <
W (z, f(.)). The first one is Ls.c. and the second one is w.s.c. In fact W (z, f(.)) is the smallest
solution and W (x, f(.)) is the largest solution, in the sense that if W (x, f(.)) is a solution satisfy-

ing (40), then necessarily
Wz, f(.) < W(a, f()) W (x, £(.)- (EC.34)
Indeed, we have, by virtue of (40)

Wolz, f(.) <W (2, () <W (=, f()).

Suppose that for some n

W(z, f(.) < W (, f(.)) < W"(z, f(.)). (EC.35)

Then, by the monotonicity of the operator T'

Wi (2, f()) =T(Wo) (2, f() ST(W)(x, () = W(z, f(.)) ST(W") (2, f() =W (2, (1)),

so, (EC.35) holds for any n. Going to the limit, we obtain (EC.34). We check next that there exists

a Borel function g(x, f(.)) such that

Wz, f(.) = (ha™ +pr~ - cx) /f(??)dﬁ +JW) (@, F( )@, £()))- (EC.36)
This is because W (z, f(.)) is l.s.c. We have to prove that

T(W)(fﬂaf(-))Z(h$++pr_—C:v)/f(??)d77+J(W)(%f(«))(@?(%f(-)))-

But because W (z, f(.)) is L.s.c., we see easily that y — J(W)(x, f(.))(y) is l.s.c. Therefore, we can

find a Borel selection (x, f(.)) that attains the inf in y in the admissibility interval £, y(.).
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Uniqueness of the Solution

Going back to functions f(.) that are probability densities, we can transpose the results in W into
results in ® and thus we obtain that there is a minimum and a maximum solution ®(z, f(.)) and
®(x, £(.)) of (23) and (29). Recall that (29) is a rewriting of (22). Thanks to the feedback §(z, f(.)),

we construct the process Z,,, 9,, and fn() by the iterations

G = 9(&n, fu (), (EC.37)
Zpy1=Yn — D, (EC.38)
2 9(Dy§)

Far1(©) = Fu(9) (EC.39)

[ 9(Duln) fu(n)dn’

starting with #; =z, and f;(.) = f(.). The measurability property of the selection § implies that
the process 9, > &, is adapted to D"'. We set V= (U1, yUn,--) and define J_T,f(.)(f/). We are

going to show that

@(z, f(.) = Jr,f(‘)(V). (EC.40)

Indeed, we proceed as in Proposition 1. We write the equation for ®(z, f(.)) as

e i i £0g(D.)
Oz, /() = hat +pa” — cx+ i, () + aB2(§(, /() - D, TF a0 dn). (EC.41)

Applying this relation with z =2, f(.) = f.(.), we can write as Proposition 1

(&, ful.)) = hit} +piy, = dn + i+ AB[@(Ens1, fusa ()|D"].

Multiplying by a"~!, taking the mathematical expectation and summing up for n running from 1

to IV, we obtain, after elimination of identical terms in both sides,
N A
Bz, f()=>_a" 'E[hi} +pi, +c(in — 20)] + &V EQ(Ena1, fyaa (). (EC.42)

n=1

Since ®(z, f(.)) > 0, by letting N — +o0,

D (2, () = Jo sy (V) 2 @ (2, f(.)) =inf T s, (V).
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Since ®(z, f(.)) is the smallest solution satisfying (23), it follows that all solutions are larger
than the value function. On the other hand, by the comparison result of Proposition 1, all solu-
tions are smaller than the value function. Necessarily, the solution is unique and coincides with
the value function. The feedback (z, f(.)) allows to construct an optimal control, by formu-
las (EC.37), (EC.38) and (EC.39). The base stock result is proved in Section 7. The proof of

Theorem 1 has been completed. [

EC.5. Proof of Lemma 2
From the relation (47), we get
Z(y—=f()9(z].)) =Wy -z f()g(z].) — (h(y —2)"+ply—2)" —cly— z)) /f(n)g(z!n)dn
(EC.43)

So,

2w, () =rgg{cy [ s [ 2tz 1001
+a/0+oo (h(y—2)++p(y —c(y—2) /f (Im) dndZ}

_rynzig{cy [ fonina [ 202, 100(e1 i

v [ (hy=2 o= ety ely—27) [ sy Indzdn}
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—gg{cy [ todn+a /0+m2(y—z,f(.>g<z|->>dz " / ~2) [ rn)g(ein)dzdn
—ah / (v-2) [ F0)AG Iy

=ah [§ [ f()G(zIn)dzdn=ahy [ f(n)dn—ah [ f(n) [ G(zIn)dzdn

+c>o “+o0 +oo
+ ap/ y—z /f (z|n)dzdn —acy/ /f g(z|n)dzdn+ ac/ /f g(z|n)dzdn }

— ap /y o) / F(n)dG(zln)dn o = —ac / f(n) A LG el

—ap [ £(m)G(zIn)dn ac [ f(n) [oF° Gzln)dzdn=ac [ f(n)e(n)dn

—ac [t ()dn+m1n{cl— v [ £ dn+a/+m 2y~ = FO9(el))dz +ahy [ )y

~ah / "t / G(zln)dn +ap +Oof(n)G(2\n)dn}

0 Yy

+o0
alc—h /f d77+m1n{(c(1—a)—l—ah)y/f(n)dn+a/0 Z(y—=z,f()g(z|.))dz

+oo
a(p+h) / fn In)dn}

O

EC.6. Proof of Proposition 2

Set

400

QZ)(y. £()) = (c(1 — ) + ah)y / F(n)dn + a(h+p) / / G (zln) f (n)dndz
" v (EC.44)

ta / Z(y— 2 f()g(z])dz

The function y — Q(Z)(y, f(.)) is differentiable in y, and denoting the derivative in y by

Q(Z2)(y, f(.)), we have
Q(Z)’(y,f(-)):(C(l—a)+ah)/f(n)dn—a(h+p)/G(y\n)f(n)dn
va f 2y 2 fOa(el)dz

Q(2)(y, f(.)) <0,if y<0 and Q(Z)’(JrOO?f(-))Z(C(l—a)+ah)/f(ﬁ)dn- (EC.45)
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Therefore, there exists a single Sz (f(.)) such that

Q(Z)'(Sz(f(), f(.)) =0. (EC.46)
Necessarily Sz(f(.)) > 0. Therefore, clearly

Q(2)(Sz(f()), f(), if 2 <Sz(f()),

O(2)(x, (.)) = ale—h) / () () + (BC.AT)

Q(Z)(x, f(), if ©=52(f()),

and
0, if x<Sz(f(.)),

O(2) (z, f(.) =

Q(Z2) (z,f(.), if x=82(f())-

We see that ©(Z)'(z, f(.)) >0, and increasing in . This proves that ©(Z)(x, f(.)) is increasing

and convex. Moreover,

sup 1Q(Z) (2, f())]
wf(y J F(m)dn

|2 f0)
scll=ma)rohtasm =g,

< 400,

hence,

INCIEAUCNIB)]

z,f(.) ff(n)dn < ee

Also, O(Z)'(z, f(.)) =0 for = <0. Hence (53) is also satisfied. The proof is completed. [

EC.7. Proof of Theorem 2

We consider the increasing sequence

Zr(z, £(.)) = O(Z)(x, f(.)),
(EC.48)

Zo(o F) = (i + 0 [ s+ SLED [ ot snyan.
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Clearly Zy(z, f(.)) is globally continuous and C', increasing, and convex in x. It satisfies (52)
and (53). By the stability properties of Proposition 2, we get sequentially the same properties for

all the terms Z,(x, f(.)), and therefore for the limit Z(x, f(.)). Also, we can check sequentially that

(Z1) (z, f(.) _ c—ac+ah
ST ra ST e

which carries to the limit

Z'(x, f(.)) < c—ac+ah
= Jfmdn T 1-a

The optimal feedback is then defined by a base stock policy, with a base stock Sz(f.)) unique

(EC.49)

solution of (EC.46). This complete the proof. [

EC.7.1. Proof of Proposition 3

Since (¢(1 — a) + ah)/f(n)dn —ah +p)/@(x]n)f(n)dn satisfies (58), we see easily that the

contraction mapping theorem can be applied for the fixed point equation (55), hence the result.
O

EC.8. Computation of Zj(x,[)

We have

Zy(x,B) = <(C(1 —a)+ah)(B+1)—alh+p)(Be ™ e 01eT)

oo 5 . (EC.50)
+a/ Sie = 7! (:L“—z,ﬁ—e_(‘so_‘sl)z)dz) ,
0 01
so we need to compute first
! 50 —(80—901)=
Zl(:r—z,ﬁ(s—e 0=0F) ¥z > 0. (EC.51)
1

From (101) we have

0
0, if t—2<5; (66—06_(50_51)2),
1

2y (w2, e C00) = .
! (c(l—a)—i—ozh)(ﬁ(s—oe_(‘so_él)z—i-l)

1

1) )
—a(h+p) (56%6*(50*51)26*50(13*27) + 6*51(41?*2)), if x—2>8, (/857?6*(50*51)2).
(EC.52)
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We can define

s1(z) =245 <5@67(50751)z). (EC.53)
o1
The function s;(z) is monotone increasing and s;(0) =.5; (ﬁ%) $1(00) = 0. We can see that if
1
% ! do . .
T <5 <35*) < S1(8), Zy(x,8) =0. We may assume that z > S <ﬂ—>. There exists a single value
! 1

z1(x) such that

si(z1(z)) ==z, and x> s,(2) = 2<z(2). (EC.54)

Note that z (Sﬂﬂg?)) =0, so we may set z;(z) =0, if =<5 (ﬁgi). The function z;(z) is

monotone increasing. From (EC.52) we can write

0, if 2>z (x),

/ @ —(6p—61)z |
Zl(x_z’ﬂ‘gle >_ 00 (505 512 (3% s 5
(c(1 =) +ah)(B32e @7 41) —a(h+p)e (85007 +e70),

1 1

if z <z (z).

Therefore,

o0 S
a/ IR (x—z,ﬁéoe*(‘sof‘sl)z)dz
0

1

|
Q

21 (z)
/ [(c(l —a)+ah) (,3506_602 + 516_5”) —a(h+p) (/3506_5095 + 516_6”)} dz
0

=« [(c(l —a) +ah) (ﬂ(l —e 0nl)) 41— 6_5121(””)) —a(h+p) (5506_60”” + 516_‘51”) zl(x)} .

(EC.55)
So we get
Zy(w. )= ((c1 =)+ ah)[B(1 +a(1 —e 02 0) 414 a(l— e 90
X (EC.56)
—a(h+p) [e";o”ﬁﬂ(l + adozi(z)) + e’ (14 adiz (x))D .
The function
(c(I—a)+ah)[B1+a(l—e 1)) +1+a(l— 6_5121(””))]
(EC.57)

—a(h+p) [e*‘sozﬁ(l + adoz (z)) + e (1+ bz (x))}
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is continuous monotone increasing from (¢(1 —a) +ah)(B8+1) —a(h+p)(f+1) <0 , for z = —o0

o (c(l1—a)+ah)(f+1)(1+«), for z =4o00. Hence, there exists a unique x = Sy() > 0 such that
(c(I—a)+ah)[B(1+a(l—e 1)) +14+ a1 - 6_5121($’B)):|
(EC.58)
—a(h+p) [6_50365(1 + adoz (2, B)) + e_élm(l + a5121(f’375))} =
where we have reinserted the fact that z;(z) depends on . Finally,
0, if z< SQ(B),

Zy(x,B) =
(c(I—a)+ah)[B(1+a(l—e 1)) 14+ a(l - eiélzl(gﬂ’ﬂ))}

—a(h+p){e‘éowﬁ(l—l—aéozl(a@,ﬁ))+e‘51$(1+a6121($,6))], if x>55(0).

(EC.59)
J
Consider next the case where — =2 and §; =~. Then we can state, see (100)
1
_ c(l—a)+ah
s _ T VIHB3 + )G (EC.60)
23 '
Hence,
1 28
51(B) = - log (EC.61)
Y . c(1— a)+ah :
L /1 4B8(8 + 1)Lt
And thus, from (EC.53),
1 4Be~7*
s1(z) =2+ 5 log Calten (EC.62)
—1 -+ \/1 + 8/66—’yz(1 —+ 266_72)W
For = > S1(23), we get the formula
()= log ud
zi(x)=— EC.63
v 71+\/1+866*W(1+2/36*W)% ( )
Since Z;(x,28) >0 for x > S;(20), the condition for x means
1— h
2Be=217 e < (14 28) L) Fah (EC.64)

alh+p)
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and equation (EC.58) reduces to

(1= )+ ah)[(14+a) (14 B) — afe 715 — qe 510+

(EC.65)
—alh+p) [BL+2072(2 B))e 7 + (1+ayz (e, B)e 7] =0.
It is convenient to solve (EC.65) in terms of x as a function of z. We obtain
26(1+2
z(z(x)) = 1 log Pl 12077 () : (EC.66)
T = Fayza(x) +/ f(a(@)

where f(z(x)) is given by

(@) = (14-aym ()1 PAH2002@) (1 — @) +ah)[(1+ )1 +5) — afe™ 1 —aeTm 0]

a(h+p)
(EC.67)

and S»(8) solves the fixed point equation x =xz(2z(z)). O
EC.9. Computation of Zj(z), Zi(x), Zj(x) and Z3(x)
We approximate the function Z'(x, ) by a piecewise constant function in the parameter /3, so we

write

Z'(x, ) ~ Zig (x), 1B <B<[B]+1, (EC.68)
where [(] is the integer part of 5. We can therefore approximate (97) as
Z3(w) = ((e(1— a) + ah)(k+ 1) — (b + p)(he 0"+ 5")

oo 5 N (EC.69)
—0812 rz! o Y0 —(80—61)2
—|—oz51/0 A (x Z,]{Z516 )dz) ,

where k is an integer, and find it by by approximating the integral on its right hand side. We have

kdo
1 5 kSo 5
0<z< log —L :z( 00 0 mz)%Z/ ’
IR C B 5
kdo kdg
1 5 1 5 ko 5
lo L <2< lo L :>Z’( JRUALPECY 61>z) ~ 7 7
bo—0r PR T G- BTER—(+1) s [ty
k6o
0<j<[20]_q
<i<l5 -1

(EC.70)
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and with that (EC.69) becomes

Z(x) = ((0(1 —a)+ah)(k+1)—a(h +p)(ke*50w+ + eﬂslﬁ)

1 kdg kg
W(IOEJ}T—IOg[jTD 5 ,
+oz(51/ e 1ZZ[m] (x —z)dz (EC.71)
o1

[k60

Z gy (o8 52 —los((gH]=i-1) *
+ ady e V7 s (x—2)dz | .

sty (log 50 —log([%£2]-1) o] -1

We will focus on the approximations of Z(x), Z; (), and Z,(x), and see how the algorithm evolves.
We cannot use (EC.71) with k£ =0, which corresponds to the case that the true distribution is

g1(x). In this case there is no belief, and (97) yields

+oo +
Zy(z) = (C(l —a)+ah—alh+p)e e’ —I—a/ S1e” 7} (z — z)dz) . (EC.72)
0

The solution of (EC.72) is explicit (see Section 3), namely,

1—
0, if <S5y, where e %1% = w’
a(h+p)
%le) = (EC.73)
! (C(l_ )+OJh a(h+p) (1—a)dyz *045150) if z>5,.
1—a ) -

From (EC.71) we see that Z, (z) depends on Zy(x), - 7Z’[,€5@] _1(95). There is a slight simplification
1
/[,ﬂgo] 1(1‘) For instance,

51

when 0y/d; is an integer, in which case Z,(z) depends on Z(z),--

suppose 0y/0; =2, in which case Z,(z) depends on Zj(z),- -, Zy._,(x). Then by setting 6; =y

Zi(w) = ((e(1=a) + ah)(k+1) — a(h+p)(ke =" +e7)

2k—1 %longflog@kfjfl)) n (EC74)
+ay Z / e”ZZékfjfl(x—z)dz> .
(log 2k—log(2k—3))
We can in particular compute Z;(x) by solving the equation
log2
il
Zi(z) = <2(c(1 —a)+ah) —a(h+p) (e +e77 ) +ay / e 7l (x — 2)dz
0 (EC.75)

+o0 +
+a7/ , e‘”ZZ(’)(m—z)dz) .

log
—
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+oo

log 2 log 2
From (EC.73) we compute a’y/ eV Z)(x—2)dz. Ttis 0 if z<Sy+ 8% Forz> So+ o8 ,
log2 v
we obtain, after easy calculations,
+oo z—Sg
ory/ eV Zy(x—2)dz= ory/ e Z(x—2)dz
log2 log2
Y
vz e -5 eva(z—>5o)
=1-a¢ ((c(l—a)+ah)(7—e 0)—(h+p)(T—1>
By the definition of Sy and (EC.73), we obtain
z—Sp y(z—Sp) avy(z—Sp) 1 2
cw/ e’”ZZ(’)(yc—z)dz:L(h—i—p)e’”(l—a—kae - ), Vo > Sy + o8 ,
1052 ]_ — 2 2a Yy
(EC.76)

and we check immediately that the expression (EC.76) is positive. We next define S; such that
2(c(1—a)+ah) —a(h+p)(e % +e7%1) =0, (EC.77)

and we clearly have S; < Sy. Then we can write equivalently for (EC.75) that

O, if l’<Sl,

log 2
2(c(1—a)+ah) —alh+p)(e”®* +e 1)+ a’y/ ’ e 71 (x — 2)dz,
0

, log2
Zi(z) = |if S, <z < S+ Of : (EC.78)

o ae'Y(I_SO) ea'Y(z_SO)
2(c(l—a)+ah)—a(h%—p)e*zw—i—i(h—i—p)e*”( — )
11—« 2 2«
o log 2
—i—a’y/ eV Z(x—2)dz, if x> S+ ikl
0 v

Indeed, the integral equation (EC.78) has a unique positive, continuous, bounded, and monotone
increasing solution Z;(x). Unfortunately, unlike for Z)(x), we cannot give a closed-form formula
for Z{(x). On the other hand, using a composite trapezoidal formula to approximate the integral

in (EC.78), i.e.,

__log?2
- 2vN

N—-1
log 2
[Z{(:C)—FQZe—vsz{(x—zk)—i—Z{(x— Of )}, (EC.79)

k=1
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log 2
where z, = —Oif k,k=1,---,N —1, we get the algebraic equation
v

log 2 = log 2
Zi(x) =W (z)+a gif [z;(:c>+2ze—wz;(x—zk>+z;(x— %841 (EC.80)
k=1
where
—2vx —yx 3 10g2
2(c(l1—a)+ah) —alh+p)(le " +e ), if S;<z<Sy+ v
Wi(z) = o eV @=S0)  garv(z—So)
2(c(1~a)+ah) = a(h+p)e > + = (h+p)e ™ ( - ).
1—a 2 20
log 2
if 2> 8+ —82
v

Using (EC.80) as a forward marching scheme, we can obtain the value of Z](z) at the points

log 2
S1+ %k, k=1,2,---. We define Z|(z) for all finite = as the piecewise linear function that is 0
Y

for < Sy, and connecting the above data points for z > S;. Note that (EC.80) yields the limiting

W()

relation Z](c0) = —a/3"

Unfortunately, the computation of Z,(x) cannot be obtained by a single equation. Indeed,

from (EC.74) we have

“+oo
Zi(z) = (3(c(1 —a)+ah)—alh+p)(2e 2 4o ) cw[ / € Ty 2)dz
logd log2 log 4 (EC.81)
Y

+
+/ ’ e”ZZ{(a;—z)dz—k/ 4 e”ZZé(:r—z)dz—k/ ’ e’WZ:’,)(:c—z)dzD .
log2 log 3

0

The right hand side of (EC.81) depends on Zj(x), which cannot be computed before Z;(x). If we
write the equation for Zj(z), it will involve Zj(z) and Z.(x) which are not known. To close the

chain we take Zj(x) and Z.(x) equal to Z;(x). So we write the equation Z;(z) as follows:

+oo
Zi(x) = (4(0(1 —a)+ah) —a(h —i—]D)(Be’QW“’+ + e’WJr) +ay { [DgG e " Zy(x—2z)dz
log 6 log 3 log2 | (EC.82)

+
+/ ’ e‘”ZZ{(:U—z)dz%—[ ’ e‘“Zé(x—z)dsz/ ’ e‘”zZé(:E—z)dzD .
og3 og?2 0
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We obtain in this way a system for Z,(z) and Z;(z). It can be slightly simplified, considering Ss
to be the solution of
4(c(1—a) +ah) — a(h +p) (32758 4 e77%) = 0. (EC.83)

We then have to find Sy, 73, Z; satisfying S3 < Sy < S; and

4

tos 4
3(c(1—a)+ah) —a(h+p)(2e” 2752 4 e7792) 4 ow/ ! e Z5(Sy — 2)dz =0, (EC.84)
0
0, if < 52,
Z/ — —+o00
2(2) 3(c(1—a)+ah)—a(h+p)(2e™ " + e 1) + ow(% \ e Zi(x—2)dz
log2
v
log4 log2 log §
Y Y Y
—1—ﬁ . e_'YZZ{(J:z)dz+/g4 e‘”zZé(xz)dz—l—/ e_“’zZé(xfz)dz), x> Sy,
log2 83 0
k i (EC.85)
0, if x <S5,
Zé((lf): —2vx —yT e —yz 7/
4(c(l —a)+ah)—a(h+p)(3e " + e )+a7( e 70 (x— 2)dz
10g6
log6 log3 ! log 2
il ol vy
—|—[ \ e”ZZ{(ac—z)dz—i—/ , e"*zZé(x—z)dz—i—/ e*”ZZé(x—z)dz>, x> Ss.
log 3 log2 0
! i (EC.86)

REMARK EC.1. As a very crude approximation to obtain S5, we may approximate in equa-

tion (EC.86) the function Z;(z) by

0, if x <S5,

Zi(x) = (EC.87)
4(c(1—a)+ah) —alh+p)(3e 27" +e777)

+o0 log 6
+a’y<[ eWzZé(w—Z)dz—i—[ ’ e’”ZZ{(x—Z)dz>, x> Ss.
log 6 og3
5

~
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Of course, we loose the continuity at point S;. We can compute S; from (EC.83) and then Z;(x)
from (EC.87) using Z;(x) and Zj(z), (and a process similar to (EC.79) to approximate the second
integral in (EC.87)). Knowing Z;(x), we go back to (EC.84) and (EC.85) and find respectively

the approximation of Sy and Z)(z).

REMARK EC.2. It is interesting to point out that the above approximation should not be con-
sidered as an approximation for the pair {Zj(x), Z5(z)}, but for Zj(z) and S, only. We have
approximated Zj(z) and S3 only in the context of Z;(z) and S,.

O

EC.10. Some Observations of the Approximations (9.1.1) and (9.1.3)

The approximations defined in Subsections 9.1.1 and 9.1.3 produce functions of one variable and
two variables, respectively. Based on the numerical experiments, it is our objective to compare the
two computational approaches with 5 =0,1,2. First, if 5 =0, there is no learning and (EC.72)
yields exactly (98). Second, if § = 1,2, we graph Zj(z) and Z'(z,53) through the data points

x, =nAz with N =600, and see how the values of the functions compare.

| The function Z'; (x)  —The function Z'(x, 1)] | The function Z',(x)  —The function Z'(x, 2)]

7' (x)
Z'(X, 1) 12

Z,(x)
Z'(x,2) "

Figure EC.1  The functions Z;(z) and Z'(z,8), =1,2.
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We can see that Zj(x) and Z'(x,[) are very close for 8 =1,2. In the implementation of the
approximation by iteration, we first use the analytical expression (EC.59) of Z)(z,3) to see how a
change to a finer grid improves the accuracy of our results. Our numerical simulation shows that
Az =0.1, A5 =0.05 give us good grids and so they can be used in the grid point values for (105).

Next, we resume the values Sz and S(f) obtained for 5=0,1,2,3.

Table EC.1 Approximation for 5 =0,1,2,3.

B 0 1 2 3

Ss 0.8622]0.604810.5370|0.5076

S(5) 0.8622]0.6012|0.5351|0.5058

1S5 —S(B)|| 0 [0.0036/0.0019|0.0018

Our numerical results indicate that Sz ~ S(/3). Note that S(0) =Sy (no learning if 5 =0). Also,

1S5 — S(3)] < |Ss — S(2)] < ]S, — S(1)]. (EC.88)

For k£ > 2, we have to approximate the solution of the functional equation by computational means,
e.g., by applying piecewise constant approximations or preferably, by using successive approxima-

tions.
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