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a b s t r a c t 

The fMRI community has made great strides in decoupling neuronal activity from other physiologically induced 
T 2 

∗ changes, using sensors that provide a ground-truth with respect to cardiac, respiratory, and head movement 
dynamics. However, blood oxygenation level-dependent (BOLD) time-series dynamics are also confounded by 
scanner artifacts, in complex ways that can vary not only between scanners but even, for the same scanner, 
between sessions. Unfortunately, the lack of an equivalent ground truth for BOLD time-series has thus far stymied 
the development of reliable methods for identification and removal of scanner-induced noise, a problem that 
we have previously shown to severely impact detection sensitivity of resting-state brain networks. To address 
this problem, we first designed and built a phantom capable of providing dynamic signals equivalent to that 
of the resting-state brain. Using the dynamic phantom, we then compared the ground-truth time-series with its 
measured fMRI data. Using these, we introduce data-quality metrics: Standardized Signal-to-Noise Ratio (ST- 
SNR) and Dynamic Fidelity that, unlike currently used measures such as temporal SNR (tSNR), can be directly 
compared across scanners. Dynamic phantom data acquired from four “best-case ” scenarios: high-performance 
scanners with MR-physicist-optimized acquisition protocols, still showed scanner instability/multiplicative noise 
contributions of about 6–18% of the total noise. We further measured strong non-linearity in the fMRI response for 
all scanners, ranging between 8–19% of total voxels. To correct scanner distortion of fMRI time-series dynamics 
at a single-subject level, we trained a convolutional neural network (CNN) on paired sets of measured vs. ground- 
truth data. The CNN learned the unique features of each session’s noise, providing a customized temporal filter. 
Tests on dynamic phantom time-series showed a 4- to 7-fold increase in ST-SNR and about 40–70% increase in 
Dynamic Fidelity after denoising, with CNN denoising outperforming both the temporal bandpass filtering and 
denoising using Marchenko-Pastur principal component analysis. Critically, we observed that the CNN temporal 
denoising pushes ST-SNR to a regime where signal power is higher than that of noise (ST-SNR > 1). Denoising 
human-data with ground-truth-trained CNN, in turn, showed markedly increased detection sensitivity of resting- 
state networks. These were visible even at the level of the single-subject, as required for clinical applications of 
fMRI. 

1. Introduction 

Large-scale investments in the identification of fMRI-derived 
biomarkers for brain-based disorders are a testament to the anticipated 
promise of fMRI as a neurodiagnostic tool. Yet even once clinical neu- 
roscience establishes reliable biomarkers, a critical rate-limiting factor 
in the use of fMRI in clinical practice will be fMRI’s poor signal/noise 
profile for single-subject level analyses. The task-free, “resting-state ”
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paradigms most likely to be utilized in a clinical setting (because of 
their limited reliance on patient training, engagement, and compliance) 
only exacerbate this problem. Task-based designs, in principle, clearly 
delineate between activation in response to a task (signal) and activa- 
tion during baseline (noise). However, task-free paradigms, by defini- 
tion, lack the experimental manipulation that would typically be used 
to distinguish between fluctuations of interest (signal) from fluctuations 
of nuisance (noise) ( DeDora et al., 2016 ). Without a principled way to 
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distinguish between signal and noise, we lack the feedback necessary to 
optimize for one while removing the other, thereby limiting our abil- 
ity to achieve the kind of advances in detection sensitivity required to 
enhance fMRI’s utility in evaluating the single patient. 

FMRI’s signal is conventionally derived from the blood oxygenation 
level-dependent (BOLD) contrast. This activity represents regional time- 
varying changes in the concentration of deoxygenated hemoglobin, fol- 
lowing neural-activity induced by exogenous stimuli or spontaneous 
fluctuations of the resting state. These time-varying changes reflect 
changes in apparent transverse relaxation time T 2 

∗ , an MR parameter 
sensitive to levels of deoxyhemoglobin, and hence responsible for the 
observed BOLD contrast. Ideally, the value measured at each voxel at a 
given time point should only change in response to T 2 

∗ changes driven 
by neural activity (fluctuations of interest, signal). However, in practice, 
the measurement is dependent on a complex interaction between acqui- 
sition parameters (flip-angle: 𝛼, echo-time: TE, repetition-time: TR), MR 
parameters (longitudinal relaxation time T 1 , apparent transverse relax- 
ation time T 2 

∗ , proton density within a voxel) and background noise 
( Lauterbur, 2000 ). Change in any of these parameters introduces vari- 
ance (fluctuations of the nuisance, noise) in the observed voxel time- 
series. The difficulty of maintaining fidelity to actual (neuronal) time- 
series dynamics is made even more acute by the fact that BOLD contrast 
constitutes only a small fraction (typically, less than 5%) of the total 
measured signal. 

Fluctuations of nuisance in the fMRI time-series originate from two 
sources: the individual being scanned (physiological noise, due primar- 
ily to cardiac, respiratory, and motion effects) as well as the scanner 
itself. Physiological processes like respiration or cardiac pulsations can 
cause changes in blood flow (affecting T 1 and T 2 

∗ ), and thus tempo- 
ral variations in magnetization that might artifactually appear to be a 
BOLD effect. Subject head motion causes relative displacement of vox- 
els leading to temporally correlated non-stationary noise and can in- 
duce spurious correlations in the resting-state analysis ( Power et al., 
2012 ). As significant as these artifacts are, the fact that cardiac, respi- 
ratory, and motion variables permit external measurements (e.g., ECG 
for heart rate) have permitted the field to develop an impressive ar- 
ray of well-validated methods with which to both identify and mitigate 
their influence. Examples of strategies for targeting physiological and 
motion confounds include: selecting acquisition parameters designed to 
permit thermal noise to dominate physiological noise ( Wald and Poli- 
meni, 2017 ); techniques to address breathing-related field fluctuations 
both prospectively ( Duerst et al., 2015 ) and at image reconstruction 
stage ( Bollmann et al., 2017 ); use of simultaneously recorded measure- 
ment of heart-rate, respiration, and motion to retrospectively remove 
physiological confounds ( Caballero-Gaudes and Reynolds, 2017 ); and 
motion-correction implemented prospectively ( Zaitsev et al., 2017 ) or 
retrospectively through registration. 

In contrast, the lack of a ground truth for fMRI time-series has not 
permitted the same strategies for identification and removal of scanner- 
induced noise, which can vary not only between scanners of the same 
make and model, but even within the same scanner during different 
sessions. These fluctuations of nuisance originate from imperfections of 
the instrumentation and the electromagnetic fields used for the measure- 
ment and are normally referred to as “scanner instability. ” This nomen- 
clature is, itself, potentially misleading, since detection-sensitivity of 
resting-state networks requires simultaneously amplifying fluctuations 
of interest while suppressing fluctuations of nuisance. Indeed, we have 
previously shown that typical methods that focus entirely on suppress- 
ing fluctuations (optimizing solely for scanner “stability ”), such as tem- 
poral signal/noise (tSNR), actually deoptimize detection-sensitivity of 
resting-state networks, because the damped fluctuations include not 
only suppressed noise but also suppressed signal ( DeDora et al., 2016 ). 

Different approaches tackle the problem of minimizing scanner arti- 
facts based upon models of MR-physics. Such methods include reducing 
the effects of eddy currents by the use of actively shielded gradients 
and pre-emphasis filters, the use of navigators and calibration echoes, 

or NMR probes ( Kasper et al., 2015 ) that provide concurrent field moni- 
toring with correction during image reconstruction. Yet modeling-based 
approaches, while valuable in their own right in terms of contributing 
to our understanding, can fall short as a practical tool for optimizing 
resting-state signal/noise (SNR). The reason for this is that they tend to 
oversimplify processes that, in an actual testing environment, are fun- 
damentally complex —involving multiple factors, both known and un- 
known, which interact with one another in nonlinear and nonstationary 
ways. For example, scanner instabilities may be caused by variation in 
flip angle over time, imperfections in gradient system, heating, time- 
varying eddy current effects, or gain changes in transmit and receive 
chains ( Greve et al., 2013 ; Liu, 2016 ). Time-varying gradients in fast 
imaging methods, such as interleaved echo-planar imaging (EPI), re- 
quire high-gradient amplitudes and slew-rates, pushing the scanner to 
its limits and causes image artifacts due to k-space trajectory deviations. 
Inhomogeneity in B 0 field and perturbations in gradient field cause eddy 
currents, ghosting, geometric distortions, errors in phase encoding lead- 
ing to voxel displacement, gain-drifts, and other distortions ( Jezzard and 
Clare, 1999 ). While scanner instability is multiplicative, the impact of 
thermal/background noise on fMRI time-series is additive and can arise 
due to a random process like Brownian motion of ions in MR electronics 
or the human subject, external RF noise sources in the scanner room, 
or RF spikes dues to intermittent contact between metallic components 
( Greve et al., 2013 ; Liu, 2016 ). 

In a clinical setting involving decision-making for a single patient, 
the impact of errors that fluctuate over time and are signal dependent 
cannot be remedied by increasing sample size, under the assumption 
that signal amplifies while noise cancels. Longitudinal comparison of 
scans acquired pre and post treatment cannot be interpreted if both 
the subject and scanner are changing over time (for example, in us- 
ing resting-state fMRI in pre-surgical localization, surgical planning in 
epilepsy, and identifying subjects with Alzheimer’s Disease ( Lee et al., 
2013 )). Moreover, biomarkers used at one site may be difficult to com- 
pare across other sites. Even in the research domain, recent years have 
seen a tremendous increase in efforts in pooling fMRI data for increas- 
ing sample size, enhancing statistical power for detecting subtle ef- 
fects, including diverse populations and disease etiologies ( Van Horn 
and Toga, 2009 ), either via multi-site studies or data-sharing initia- 
tives. Combining data from multiple sites presents an unavoidable chal- 
lenge in the form of scanner-induced inter-site variability due to differ- 
ences in field strength, imaging parameters, image reconstruction, or 
scanner manufacturer ( Glover et al., 2012 ) and can lead to systematic 
confounds in time-series data. In one recent example ( Friedman et al., 
2008 ), between-site reliability showed median intra-class correlation of 
just r = 0.22. 

In summary, efforts to make the application of resting-state fMRI 
clinically useful must necessarily address SNR from the perspective of 
not only physiological, but scanner, artifact —and in ways that make 
sense given the ubiquity of task-free designs. While efforts to mitigate 
physiological artifact can and have benefited from external measure- 
ments ( Caballero-Gaudes and Reynolds, 2017 ), until recently such a 
strategy has not been available for scanner artifact. Static phantoms op- 
timize purely for general stability ( Friedman and Glover, 2006 ), thereby 
suppressing the fluctuations responsible for resting-state signal. More- 
over, the brain (non-static but, by definition, the unknown variable) like- 
wise cannot serve as a calibration device. Finally, physics-based models 
cannot, in principle, approximate the impact of complex nonstation- 
ary distortion on time-series without empirical measurement of that 
distortion. To address these issues, we approached the problem from 

the perspective of creating a “brain-like ” calibration device, capable 
of producing a dynamic ground-truth input signal similar to a typical 
resting-state time-series. Because such a device would provide a ground 
truth for both fluctuations of interest (signal) as well as fluctuations of 
nuisance (noise), it could permit optimization for signal-to-noise, rather 
than simply stability. Because of the consequent ability to obtain, and 
therefore compare, time-series distortion between true and measured 
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time-series, we could develop a purely data-driven —rather than mod- 
eled —distortion correction. Doing so would potentially permit cleaning 
data of scanner-induced artifact while remaining agnostic with respect 
to the diversity of known and unknown sources of distortion and their 
behavior over time. 

2. Results 

2.1. We designed and engineered a commercial-grade dynamic phantom 

capable of producing brain-like dynamic signals. 

Our previous work ( R ǎdulescu and Mujica-Parodi, 2014 ; Mujica- 
Parodi et al., 2017 ) and those of others ( Ciuciu et al., 2012 ) shows 
that healthy resting-state fMRI signals follow 1/f (pink noise) frequency 
spectra; therefore, our pseudo-brain “input ” signal was engineered to 
achieve equivalent dynamics (custom dynamics can also be easily pro- 
grammed). To create a dynamic signal, our phantom ( Fig. 1 A) uses dif- 
ference in agarose gel concentration across voxels; the phantom, when 
rotated in-plane across a voxel during the data acquisition, produces a 
changing T 2 

∗ signal. Rotations occur at the start of each TR of a scan 
and are limited to around 250 milliseconds. 

The phantom consists of three distinct parts: a) an agarose gel cylin- 
der assembly, having two concentric cylinders; b) a control unit provid- 
ing control logic for rotation of the inner cylinder; and, c) an air motor 
assembly with a gearbox and an optical encoder for position tracking. 
Within the agarose gel cylinder assembly, the inner cylinder rotates dur- 
ing the scan and is coupled to the air motor and the optical encoder, 
while the outer cylinder contains a reference gel and remains static. 
The outer cylinder’s reference agarose gel is made at 2.2% concentra- 
tion by weight, whereas the inner cylinder contains two different gel 
concentrations at 2.2% and 2.3% by weight, split into four quadrants in 
a configuration as shown in Fig. 1 B. Within each quadrant, a variation 
in T 2 

∗ values exist across voxels because of imperfect agarose network 
formation, chemical heterogeneity, and polydispersity of gel networks 
( Djabourov et al., 1989 ). The control unit for driving the phantom uses 
a feedback control strategy with control logic implemented in PSoC mi- 
crocontroller, feedback sensing via an optical encoder, and actuation 
through solenoid valves. The control unit contains some other custom 

circuitry for fast valve response time (spike-up voltage circuit), touch- 
screen user-interface running on raspberry-pi, and UART communica- 
tion between the raspberry-pi and the PSoC microcontroller. The phan- 
tom is MR-compatible (agarose gel cylinder assembly and air motor as- 
sembly) and uses polycarbonate (body), delrin (air motor), glass-nylon 
(ball bearings), and G11 garolite (motor shaft) in construction. The con- 
trol unit containing electronics and pneumatic compressor for driving 
the air motor stays outside in the MR control room. 

2.2. Using ground truth brain-like dynamic signals, we quantified a 
Standardized Signal-to-Noise Ratio (ST-SNR) and Dynamic Fidelity; these 
demonstrated wide variance across scanners, even for the “best case 
scenario ” of high-performance scanners utilizing acquisition parameters 
individually optimized by a highly experienced MR physicist. 

While the definition of signal-to-noise ratio (SNR) is well defined 
across the engineering domain, use of the term within the fMRI field 
has colloquially co-opted its definition in ways that can dilute its mean- 
ing and utility. Currently in fMRI, multiple definitions and variants for 
computing SNR exist ( Welvaert and Rosseel, 2013 ), leading to diffi- 
culty in interpreting and comparing SNR values. Normally used to op- 
timize for scanner stability with the use of a static phantom, temporal 
SNR (tSNR) is defined as the ratio of mean signal to standard deviation 
of a time-series. However, for reasons described above, optimizing for 
tSNR (i.e., solely for stability) will suppress not only the fluctuations re- 
sponsible for noise but also the fluctuations responsible for resting-state 
signal, effectively de-optimizing for detection of resting-state networks 
( DeDora et al., 2016 ). Furthermore, mean-signal in tSNR calculation is 

highly dependent on acquisition parameters, making the interpretation 
for comparison difficult. For example: tSNR has been reported across 
two orders of magnitude (e.g., between 4.42 and 280 for a recent re- 
view of studies ( Welvaert and Rosseel, 2013 )). To address both issues, 
we quantified the accuracy with which fMRI time-series follow the true 
signal using two data-quality metrics: Standardized Signal-to-Noise Ratio 
(ST-SNR) and Dynamic Fidelity. “ST-SNR ” is defined as the ratio of signal 
power and the background noise power and is calculated accordingly, 
where power is the sum of the absolute squares of time-domain sam- 
ples divided by the time-series length. We define “Dynamic Fidelity ” as 
the accuracy with which an MR scanner tracks changes in the input sig- 
nal and calculate it as the Pearson correlation coefficient between the 
ground-truth signal and fMRI output. 

The programmed rotation of the dynamic phantom, along with the 
optical encoder feedback, provides a mechanism for rotation control and 
sensing. The phantom tracks the programmed rotation at an accuracy of 
0.2°. With the rotation generating voxel-wise time-series, the feedback 
sensing provides data on the actual rotation that occurs. This feedback 
data enables calculation of the ground-truth time-series and the noise 
estimate for each voxel, as shown in Fig. 2 , for quantifying ST-SNR and 
Dynamic Fidelity. In Table 1 , we show both ST-SNR and Dynamic Fi- 
delity for four scanners, showing the potential for wide variance across 
scanners, even for a “best case scenario ” of high-performance scanners 
utilizing acquisition parameters individually optimized by a highly ex- 
perienced MR physicist. Importantly for multi-site or longitudinal ap- 
plications, these two metrics (ST-SNR and Dynamic Fidelity) provide a 
direct assessment and comparison of data-quality over different scan- 
ners, as well as the same scanner over time. As ST-SNR and Dynamic 
Fidelity have standardized and interpretable range of values, the direct 
comparison of these metrics longitudinally or across scanners becomes 
possible. For example, for the same make and model of a scanner (the 
two Siemens PRISMA scanners, described in Table 1 ) having equivalent 
voxel-size, the ST-SNR observed is markedly different. Inspecting fur- 
ther, while one may attribute this difference to the different head-coil 
arrays used between the two scanners ( Table 3 ), the comparison of ST- 
SNR with 3T SKYRA ( Table 1 ) at the same site with equivalent voxel-size 
and head-coil suggests otherwise: that the Site 2 PRISMA scanner is an 
outlier. 

2.3. Using the dynamic phantom generated ground-truth, we quantified the 
ratio of scanner instability to background noise in fMRI time-series, thereby 
identifying multiplicative versus thermal noise components. 

We analyzed time-series of the noise (residual time-series as cal- 
culated above, refer to Fig. 2 ), using power spectral density plots, to 
identify spectral-features arising from scanner artifacts. Fig. 3 illustrates 
the mean power spectral density across all voxels for the ground-truth 
and the estimated noise time-series. Each voxel time-series’ power spec- 
tral density was normalized by its maximum power before calculating 
mean at each frequency bin across all voxels. The power spectral density 
of the noise closely matches that of the ground-truth signal, indicating 
the presence of a multiplicative noise (scanner instability) component 
alongside thermal/background noise. 

Multiplicative noise modulates the MR signal, is known to exhibit 
some temporal and spatial correlation ( Greve et al., 2013 ), and cannot 
be removed using smoothing or frequency-based temporal filtering. The 
presence of multiplicative noise diminishes the advantages offered by 
hardware improvements (increase in signal to thermal noise ratio with 
higher field strength and more sensitive head-coil arrays) and can exac- 
erbate the false-positives problem ( Eklund et al., 2016 ), alongside spu- 
rious correlations and poor reproducibility of functional connectivity. 
Band-limited programmed rotation of our phantom produces a band- 
limited ground-truth signal, and thus the associated multiplicative noise 
can be directly observed in this narrow band —see Fig. 3 (in the 0–0.1 
Hz range). At frequencies higher than 0.1 Hz where the ground-truth 
signal is absent, scanner noise shows a flat spectrum or white-noise be- 
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Fig. 1. A. Isometric view of the Dynamic Phantom . The cylindrical head is the agarose gel cylinder assembly, which is coupled to a pneumatic motor and an 
optical encoder on the other end. All components remain intact via fastening to an outer frame and go inside the MR scanner with the cylindrical head placed 
inside the head-coil. The black box shown is the control unit, which interfaces with the optical encoder, pneumatic input from an air compressor and the pneumatic 
motor. B. Distribution of T2 ∗ values across voxels in four quadrants at 3T (Site 1). The agarose gel is prepared using the recipe provided by Friedman et al. 
( Friedman and Glover, 2006 ). Even though the agarose gel is prepared only at 2.2% and 2.3% concentration, the heterogeneity in T 2 

∗ values can be attributed to 
imperfect agarose network formation, chemical heterogeneity, and polydispersity of gel networks( Djabourov et al., 1989 ). C. Feedback control system for rotating 
the inner cylinder . At each trigger from the MR scanner, the PSoC controller compares the current position F(t) with the programmed target position R(t) and 
opens the solenoid valve proportionally to the magnitude of the error signal E(t) to actuate the pneumatic motor. Here, U(t) is the actuating signal, and M(t) is the 
manipulated variable. The system uses no braking mechanism, and accurate positioning is achieved through a predetermined linear relationship established between 
open-state time for solenoid valve and the corresponding rotation achieved at a given pneumatic pressure. 

havior (thermal noise). This multiplicative noise behavior is further cor- 
roborated by a linear scaling of noise power (logarithmic scale) with 
an increase in signal (ground-truth) standard deviation. We observed a 
moderate correlation between noise power and signal standard devia- 
tion for all scanners (Site 1: PRISMA– r = 0.35, Site 2: PRISMA– r = 0.32, 
SKYRA– r = 0.33, and MAGNETOM– r = 0.35). 

Using the ground-truth dynamic signal and the measured fMRI out- 
put, we quantified the ratio of multiplicative noise (scanner instability) 
to thermal/background noise using a probabilistic description of the two 
noise-sources. Scanner instability is signal-dependent and thus propor- 
tional to the signal intensity, while thermal noise is independent of the 

MR signal. Background noise and scanner-instability are temporally in- 
dependent, and therefore, their variances add. With 𝜎𝑇 as the standard 
deviation of the thermal noise and 𝛽 as the proportionality constant for 
the multiplicative noise, we can write: 

𝜎2 
𝑓𝑀𝑅𝐼 = 𝜎2 

𝐺𝑇 + 𝜎2 
𝑇 + 𝛽2 𝜎2 

𝐺𝑇 = 𝜎2 
𝐺𝑇 + 𝜎2 

𝑛𝑜𝑖𝑠𝑒 , (1) 

where 𝜎2 
𝑓𝑀𝑅𝐼 

and 𝜎2 
𝐺𝑇 
, are the variances of the observed fMRI output 

and the ground-truth, respectively. The model for the probability of ob- 
serving the measured signal, given ground-truth Y GT and noise param- 
eters can then be written as: 

𝑃 
(

𝑌 𝑓𝑀𝑅𝐼 𝑌 𝐺𝑇 , 𝜎𝑇 , 𝛽
)

= 𝑁 
(

𝜇 = 𝑌 𝐺𝑇 , 𝜎
2 = 𝜎2 

𝑇 + 𝛽2 𝑌 2 
𝐺𝑇 

)

, (2) 
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Fig. 2. Creating ground-truth using the Dynamic Phantom. During each phantom scan, 200 static volumes were acquired and were averaged voxel-wise to obtain 
a close approximation to true intensity values. The mean volume was then rotated 600 times synthetically at angles obtained from the optical encoder during the 
actual run. This yielded ground-truth volumes, which then were compared to the volumes acquired during the scan. 

Fig. 3. Qualitative comparison of mean power spectral density of the ground- 
truth and noise time-series provides signatures for the presence of signal- 
dependent (non-white) scanner confounds in fMRI data, in addition to the back- 
ground noise. Voxel-wise noise time-series is calculated by subtracting measured 
fMRI time-series and the ground-truth time-series. 

We estimate the parameters 𝜎𝑇 , and 𝛽 by Monte-Carlo simulation 
using Y fMRI and Y GT . Specifically, we model Eq. 1 to sample from the 
posterior distribution that is proportional to Eq. 2 while assuming con- 
stant priors for the parameter distributions. The relative contribution of 
multiplicative noise to that of the total noise is listed in Table 1 for each 
scanner. The results indicate that even in modern high-performance 
scanners with acquisition parameters optimized by a trained MR physi- 
cist, the scanner-induced variance due to instability is around 6–18% of 
the contribution of the total scanner noise. This range is consistent with 
Greve et al. (2011 ), in which the authors measured scanner instability 
by scanning an agar phantom at two varying flip-angles to separate in- 
stability from background noise. Because we use different metrics, we 
included a detailed comparison between the Greve et al. (2011 ) find- 

ings (Supplementary Material, Table 1 ) and our study in the Supple- 
mentary Material. Finally, we provide a case-study comparing the two 
methods, using modern imaging hardware and acquisition parameters 
(multi-channel coils and parallel imaging) in the Supplementary Mate- 
rial. We found agreement between the two methods, except when the 
background noise variance becomes space-variant. This suggests Greve 
et al.’s method risks inaccuracy for modern acquisition protocols, as pre- 
viously discussed in Greve et al. 

2.4. Using the dynamic phantom generated ground-truth, we quantified 
scanner-induced non-linearity in fMRI response. 

Finally, we observe scanner-induced temporal non-linear distor- 
tion of fMRI response using a tree-partition non-linearity estimator 
( Ljung, 2019 ) (a piece-wise linear function defined by the binary tree 
over partitions of the regressor space) with ground-truth as the regres- 
sor. Non-linearity is detected in the observed fMRI data if a nonlin- 
ear function explains significant variance in the observed data beyond 
the variance explained by the linear function of the ground-truth. Non- 
linearity estimation was performed using ‘isnlarx’ function provided in 
System Identification Toolbox, Matlab ( Ljung, 2019 ), which categorizes 
non-linearity as strong, weak or not significant based on reliability of the 
nonlinearity detection test. We observed that the 7T scanner showed the 
highest non-linearity in response, with 19% of voxels exhibiting strong 
non-linearity ( Table 1 ). 

2.5. Using the dynamic phantom generated ground-truth, we evaluated the 
efficacy of applying random matrix theory to remove scanner-induced 
noise; thereby, demonstrating the utility of the dynamic phantom for 
comparing retrospective denoising techniques against a ground-truth. 

A method based on principal component analysis (PCA) coupled with 
random matrix theory (RMT), called MP-PCA) ( Veraart et al., 2016a,b ), 
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has been introduced recently for denoising diffusion MRI) ( Veraart et al., 
2016a,b ) and fMRI data ( Adhikari et al., 2018 ). MP-PCA is a 4d im- 
age denoising technique that exploits redundancy in the PCA domain 
using the universal Marchenko–Pastur distribution to remove scanner- 
induced noise. MP-PCA denoising, followed by bandpass filtering in the 
frequency-band of interest (0.008-0.1Hz), showed increases in ST-SNR 
and Dynamic Fidelity over the observed fMRI data and the conventional 
bandpass filtering (0.008-0.1Hz). MP-PCA denoising showed a signif- 
icant increase in Dynamic Fidelity with around 40%, 60%, 48%, and 
35% increase and a ~2- to 3-fold increase in ST-SNR, for Site 1: PRISMA, 
Site 2: PRISMA, SKYRA, and MAGNETOM respectively, compared to the 
observed fMRI data. 

2.6. We designed a data-driven temporal filter and observed robust 
increases in ST-SNR and Dynamic Fidelity of fMRI time-series after 
denoising. 

We provide a deep-learning framework using a Convolutional Neu- 
ral Network (CNN) for learning an equivalent of a temporal filter. Given 
that we now have known dynamic inputs, we developed an end-to- 
end trainable CNN architecture that uses discriminative denoising to 
remove noise in the hidden layers. We provided pairs of measured fMRI 
time-series and known signal to learn a mapping from noisy to clean 
time-series implicitly. We used batch regularization with small batches 
of batch-size = 8 within CNN to avoid internal covariate shift, acceler- 
ate the training process, and reduce dependence on network parame- 
ter initialization ( Sergey Ioffe, 2015 ). Sigmoid activation function has 
been used for non-linear mapping and a dropout layer for regularization 
( Nitish Srivastava, 2014 ). The architecture details of CNN are specified 
in Fig. 4 . 

For evaluating the performance and generalizability of the CNN, 
we compare the results of CNN denoised fMRI time-series, as shown 
in Fig. 5 , with the original data-quality and temporal de-noising us- 
ing a standard third-order Butterworth bandpass filter (0.008–0.1 Hz). 
CNN de-noising showed a significant increase in Dynamic Fidelity with 
around 53%, 72%, 58%, and 38% increase, for Site 1: PRISMA, Site 
2: PRISMA, SKYRA, and MAGNETOM respectively, compared to the 
observed fMRI data. Further, the CNN de-noising showed a ~4- to 7- 
fold increase in ST-SNR compared to the observed fMRI data. Finally, 
CNN de-noising outperforms the conventional temporal bandpass filter- 
ing and the MP-PCA denoising ( Table 1 ) in terms of improving both the 
ST-SNR and the Dynamic Fidelity. While optimal denoising requires col- 
lecting both the training and test data during the same session as shown 
in Table 1 , the CNN denoising shows improvement in both ST-SNR and 
Dynamic Fidelity even with training datasets acquired a few weeks apart 
from the test dataset (Supplementary Material, Table 4). 

2.7. Removing scanner-induced variance from human fMRI data increased 
the detection sensitivity of brain networks, visible even at the single-subject 
level. 

For assessing the effects of CNN de-noising on human fMRI data, 
the detection sensitivity of brain networks engaged in movie watch- 
ing was calculated as a measure of the ability to preserve fluctuations 
of interest (signal) while removing scanner confounds (noise) from the 
time-series, and was quantified using the ratio of mean absolute Z-score 
inside and outside well-defined resting-state network masks in subject- 
specific ICA maps. A ratio > 1 indicates that Z-score inside the mask 
is higher compared to voxels outside. Higher this ratio, the easier it is 
to detect the brain/resting-state networks. We observed an increase in 
detection sensitivity at the single-subject level for all three scanners af- 
ter accounting for scanner-related noise, for both the MP-PCA denoising 
and the CNN denoising method. For MP-PCA denoising, permutation- 
testing revealed a significant increase in detection sensitivity for all 
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Fig. 4. Architecture of the convolutional neural network used for discriminative denoising. Each convolution layer (except the last) contains 18 filters with 
a kernel size of 9 and a stride of 1. Sigmoid is used as the activation function. A dropout of 0.2 is used in the dropout layer. The last convolution layer contains only 
one filter. Negative of R-squared between the ground-truth and the denoised time-series used as the loss function (minimize) with Adam optimizer for stochastic 
optimization (Diederik P. Kingma and Ba 2014 ). 

Fig. 5. Exemplar denoising of fMRI output using the trained CNN for two voxels with A. low ST-SNR (0.06), and B. high ST-SNR (0.31) levels. 

three scanners (3T PRISMA: percent-change = 9.06% p-value = 0.016; 
3T SKYRA: percent-change = 13.03%, p-value = 0.016; 7T MAGNE- 
TOM: percent-change = 9.3%, p-value = 0.015). Similar trends were ob- 
served for CNN denoising (3T PRISMA: percent-change = 13.63% p- 
value = 0.016; 3T SKYRA: percent-change = 20.7%, p-value = 0.015; 7T 
MAGNETOM: percent-change = 18.74%, p-value = 0.015). Furthermore, 
the CNN denoising outperformed MP-PCA denoising as evident from 

Table 2 (3T PRISMA: percent-difference = 4.19% p-value = 0.016; 3T 
SKYRA: percent-difference = 6.78%, p-value = 0.03; 7T MAGNETOM: 
percent-difference = 8.64%, p-value = 0.015). 

3. Discussion 

3.1. Why should one use a dynamic phantom rather than a static phantom? 

Static phantoms are commonly used for quality assurance 
( Friedman and Glover, 2006 ) to assess and minimize scanner fluctua- 
tions due to background noise and instability. However, the resting-state 
fMRI or naturalistic paradigms depend not only upon suppressing fluc- 
tuations due to noise but equally upon sensitivity towards signal change, 
which can only be assessed by a phantom that produces a known and 
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changing (dynamic) signal. The importance of a dynamic phantom is 
that it is the only method, to our knowledge, that can quantifiably as- 
sess the most basic assumption underlying all task-free fMRI: fidelity be- 
tween input (brain) dynamics and output (measured fMRI time-series) 
dynamics. We introduced a novel method for generating ground-truth 
using the dynamic phantom and estimating voxel-wise noise time-series. 
The dynamic phantom additionally provides an estimate of standard- 
ized signal-to-noise ratio (ST-SNR) and non-linearity, quantifying actual 
measurement error in fMRI response as compared to static-phantom de- 
rived temporal stability of the mean signal (tSNR). While static phan- 
toms estimate only flat-spectrum noise ( Expert et al., 2011 ), the dynamic 
phantom can detect both signal-dependent and background noise. Us- 
ing Bayesian parameter estimation, we quantified the ratio of instabil- 
ity/multiplicative noise to the background noise. Although fMRI time- 
series have several sources of confounds and variance contributed by 
scanner-instability is relatively small, the reliability of the longitudinal 
data may be seriously affected without proper characterization. Using 
data metrics introduced, quality assurance protocols can be established 
for scanner health monitoring. Any deviations in ST-SNR, Dynamic Fi- 
delity or scanner-instability, compared against longitudinally tracked 
measurements, would indicate scanner problems. 

3.2. Why did we use a deep-learning approach for temporal denoising? 

Scanner-instability and background noise in resting-state data lead 
to decreased detection-sensitivity of resting-state networks, which have 
been typically addressed by increasing the amount of data collected 
or increasing the scan-time per subject. These methods are not only 
expensive but lead to other problems such as subject-fatigue and in- 
creased head-motion, which are especially acute in clinical populations. 
In the current report, we propose a fundamentally different approach 
for removing scanner confounds from fMRI time-series, which may cir- 
cumvent the need for collecting more data, and which is ideally suited 
for single-subject level analyses required for clinical and computational 
modeling applications, as well as large-scale multi-site and longitudinal 
studies. Our method exploits the availability of paired measured fMRI 
and ground-truth data to perform discriminative denoising using CNN. 
Developing a denoising algorithm for correcting time-series distortions 
can be framed as a system-identification problem, wherein the goal is to 
infer a functional relationship between the system input (measured fMRI 
data) and the system output (denoised fMRI data). Convolution of the 
measured signal with the identified filter produces the denoised signal. 
While dealing with linear systems, this system-identification problem re- 
duces to the characterization of impulse response using delta function or 
observing the system’s frequency response using sinusoids. However, for 
non-linear systems, there exists no canonical representation of the sys- 
tem that will capture “all possibilities ” of mapping inputs to transformed 
outputs. The convolution integral for linear systems can be extended to 
convolution-like Volterra series for non-linear systems, which can fur- 
ther be extended to Weiner series where each component of the series 
is orthogonal to all lower-order components. Lee and Schetzen ( Lee and 
Schetzen, 1965 ) provided a simple method based on cross-correlation 
for estimating Weiner kernels. However, the cross-correlation method 
is fundamentally limited by the fact that inputs must be Gaussian. Fur- 
ther, the kernel estimation suffers in cases of strongly nonlinear systems. 
To overcome these problems, we used deep learning for performing tem- 
poral filtering. Intuitively, the trained CNN can be thought of as a tem- 
poral filter (like a bandpass-filter), but with filter parameters estimated 
in an automated data-driven manner optimized for a specific scanner 
performing a session. 

3.3. Why is a dynamic phantom more useful than ICA-based techniques in 
mitigating scanner-effects for multi-site studies? 

Different sites generally have very different-levels of scanner-noise 
( Greve et al., 2011 ), causing heteroscedasticity when using ordinary 
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least-squares estimator and skewing the p-values to be smaller than 
they should be. Scanner-differences can be reduced by data-processing 
techniques before analysis (resting-state data), or scanner-effects can 
be adjusted statistically (task-based data). Feis et al. ( Feis et al., 2015 ) 
recently showed the successful application of FMRIB’s ICA-based X- 
noiseifier (FIX) ( Salimi-Khorshidi et al., 2014 ) to remove scanner- 
specific structured noise components that diminished differences in de- 
tected resting-state networks across sites. However, the complexity in 
re-training the FIX classifier for a dataset from every new scanner is non- 
trivial and requires manual component labeling using data from multi- 
ple subjects by an expert. While our measurement of ST-SNR provides a 
way for statistical adjustment of scanner effects in task-based paradigm 

using ST-SNR as a covariate in ANCOVA designs, the CNN denoising can 
remove scanner-induced effects before analysis for resting-state fMRI or 
naturalistic paradigms in an automated fashion. 

3.4. Future directions 

Our work has direct implications in moving towards single-subject 
imaging, which is necessary for clinical purposes as well as for fMRI 
driven computational neuroscience. Ensuring the stability of time-series 
adds statistical power to draw useful conclusions from a limited amount 
of data. Although first-level analysis is dominated by physiological noise 
( Greve et al., 2011 ; Triantafyllou et al., 2005 ; Wald and Polimeni, 2017 ), 
we observed a ~13–20% increase in detection sensitivity of resting- 
state networks after removal of scanner-related noise. The fact that 
the dynamic phantom can provide, for the first time, a ground truth, 
permits identification and removal of scanner-related noise. It also en- 
ables rigorous evaluation of new data-driven denoising methods under 
“real-world ” conditions that may deviate from idealized a priori assump- 
tions (i.e., physical models) of scanner noise characteristics. The dy- 
namic phantom’s optical encoder provides precise information (resolu- 
tion = 0.04392 degrees) about phantom rotation, which can be used 
for evaluating both prospective and retrospective in-plane motion cor- 
rection algorithms. Using the dynamic phantom for establishing data- 
quality metrics, will provide an evaluation of modern imaging protocols, 
for example compressed sensing fMRI or 3D EPI. Future studies with a 
larger sample-size will focus on the effects of removing scanner con- 
founds on reliability estimates of functional connectivity analysis and 
computational neuroscience circuits. Low reliability causes low repro- 
ducibility of functional connectomics ( Zuo et al., 2019 ). Reproducibility 
across sessions while scanning the same patient affects the clinical de- 
cision making and thus is an active concern for the use of resting-state 
fMRI as a clinical tool ( O’Connor and Zeffiro, 2019 ). Further, as phys- 
iological noise, thermal noise, and scanner instability are temporally 
independent, the effect of physiological noise and scanner-induced fluc- 
tuations can be regressed out using a general linear model (GLM) frame- 
work. The second-order effects/interaction between physiological noise 
and scanner-induced fluctuations can easily be modeled using interac- 
tion terms in the GLM if external physiological recordings are available. 
The CNN output (denoised fMRI signal) and input (measured fMRI sig- 
nal) can be used to obtain the regressors (subtracting denoised fMRI sig- 
nal from the measured fMRI signal) for scanner-induced fluctuations, to 
model the interaction effects. Additionally, future directions include in- 
vestigating effects of dynamic phantom estimated ST-SNR on activation 
effect size in task-based studies, combining multi-site task-based studies 
using ST-SNR as a covariate, and using CNN denoising to normalize data 
across sites as required for multi-site studies. 

4. Methods 

4.1. Study design 

We performed imaging at two sites: the SCAN Center at Stony Brook 
University in Stony Brook, New York (Site 1) and the Athinoula A. Marti- 
nos Center for Biomedical Imaging at the Massachusetts General Hospi- 

tal in Charlestown, Massachusetts (Site 2). We designed and engineered 
a dynamic phantom for producing ground-truth time series, based on 
differences in T 2 

∗ values of agarose gel across voxels of interest. Con- 
trolled rotation of the dynamic phantom produces variation in the T 2 

∗ 

values within a voxel, tuned to generate amplitude changes/signal as 
observed with BOLD contrast in humans (see Results for a detailed de- 
scription of the design). At Site 1 (3T Siemens PRISMA scanner), we 
scanned the phantom during a single session with five acquisition runs, 
with each successive run separated by a 20-minute interval. Each run 
had a unique programmed rotation profile as input to the phantom. No 
human data acquisition occurred at Site 1. At Site 2, we acquired data 
from three human subjects (two males and one female aged 55, 56, 
and 47 years, respectively) and the phantom, using three scanners: 3T 
Siemens SKYRA, 3T Siemens PRISMA, and 7T Siemens MAGNETOM. We 
acquired data in three imaging sessions: one session per scanner. Dur- 
ing each imaging session, we acquired three phantom scans, each with 
a unique rotation profile, and six human scans, with two scans per sub- 
ject. The first phantom scan took place at the beginning of each session. 
Next, each of the three human subjects were scanned while they viewed 
a naturalistic movie (no audio, see Supplementary Material for video) 
inside the scanner. Afterward, we acquired the second phantom scan, 
followed by a repeated acquisition for all three human subjects under 
identical conditions. Finally, we acquired the third phantom scan. The 
Institutional Review Board at Massachusetts General Hospital (Partner’s 
Healthcare) provided approval for the human study, and all participants 
provided written informed consent prior to participating in the study. 

4.2. Data acquisition parameters 

To ensure that results conservatively reflect actual data-quality met- 
rics within the neuroimaging field, we asked each scanner’s MR physi- 
cist to independently provide the optimal acquisition parameters for 
modern fMRI studies conducted on that specific scanner. The details 
of the protocol parameters are as follows. (1) Site 1 (phantom imaging 
only): The phantom was scanned on a 3T Siemens PRISMA scanner with 
a 64-channel head coil. For relaxation rate measurements, multi-echo 
gradient-echo images were acquired at twelve echo times equally spaced 
between 5 ms and 60 ms with TR = 70 ms, FOV = 192 mm × 192 mm, 
flip angle = 20°, slice thickness = 1.5 mm, and readout bandwidth = 320 
Hz/px. For the time-series data, standard single-shot gradient-echo EPI 
data were acquired with the parameters as listed in Table 3 . (2) Site 2: 
Three different scanners were used for data acquisition. For phantom 

measurement, only EPI scans were acquired. For human measurements, 
structural scans based on a standard T 1 -weighted MPRAGE and B 0 field 
maps were acquired in addition to the EPI scans. EPI scan parameters for 
all three scanners are listed in Table 3 . Specifics of structural scans and 
B 0 field maps are: (a) 3T Siemens SKYRA: Structural scans, for spatial co- 
registration, were acquired as multi-echo MPRAGE with 1 mm isotropic 
voxel size and four echoes with TE 1 , TE 2 , TE 3 , TE 4 = 1.69, 3.55, 5.41, 
7.27 ms, TR = 2530 ms, flip angle = 7°, and GRAPPA acceleration = 2. B 0 
field map images, calculated using phase differences between gradient- 
echo images at TE = 3.47 ms and 5.93 ms, were acquired (TR = 500 
ms, flip angle = 47°, voxel-size = 3.0 × 3.0 × 3.0 mm 3 and 44 slices) for 
EPI distortion correction arising due to susceptibility-induced magnetic 
field inhomogeneity; (b) 3T Siemens PRISMA: Structural scans were ac- 
quired using a single-echo MPRAGE with 1 mm isotropic voxel size, TE = 

2.9 ms, TR = 2500 ms, flip angle = 8° and GRAPPA acceleration = 2. B 0 
field maps were acquired with TE = 3.47 and 5.93 ms, TR = 500 ms, flip- 
angle = 47°, voxel-size = 3 × 3 × 3 mm and 52 slices; (c) 7T Siemens MA- 
GENETOM: Structural scans were acquired as multi-echo MPRAGE with 
1 mm isotropic voxel size at four echoes with TE 1 , TE 2 , TE 3 , TE 4 = 1.61, 
3.47, 5.33, 7.19 ms, TR = 2530 ms, flip angle = 7°, and GRAPPA accel- 
eration = 2. B 0 field map images were acquired at TE = 4.60 and 5.62 
ms, TR = 723 ms, flip angle = 47°, voxel-size = 1.7 × 1.7 × 1.5 mm 3 and 
89 slices. 
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Table 3 
Acquisition parameters for functional EPI datasets for both the phantom and human subjects. ∗ Only 600 volumes 
acquired in the case of human subjects. 

Parameter Site 1 Site 2 

Scanner Siemens PRISMA Siemens PRISMA Siemens SKYRA Siemens MAGNETOM 

B0 Field 3T 3T 3T 7T 

Head Coil 64 32 32 32 

TR (msec) 1000 800 748 802 

TE (msec) 33 30 31 20 

Flip Angle (degrees) 52 52 52 33 

EPI Factor 84 90 80 96 

Voxel Size 2.5mm Isotropic 2.4mm Isotropic 2.5mm Isotropic 2 mm x 2mm x 1.5mm 

Number of Slices 28 60 48 85 

Number of Volumes ∗ 800/600 800/600 800/600 800/600 

Echo-Spacing 0.58 0.51 0.59 0.55 

iPAT 1 1 1 2 

Multiband Factor 4 6 6 5 

Bandwidth (Hz/Px) 2990 2778 2232 2368 

4.3. Preprocessing of phantom data for calculating data quality metrics 
and training the convolutional neural network (CNN) 

Acquisition of phantom EPI data involved acquiring the first 200 
volumes without any programmed rotation, followed by 600 rotating 
volumes with the rotation synchronized to the scanner’s TR (repetition 
time) trigger signal. The phantom rotation was limited to around 250 ms 
from the start of each TR and was quantified using the optical encoder’s 
feedback ( Fig. 1 A, C). Before analysis, we corrected all phantom acqui- 
sitions for smooth spatial intensity variations caused by nonuniformity 
in the B0 field, B1 + field, and receiver coil sensitivity ( Sled et al., 1998; 
Sled and Bruce Pike, 1998 ) using the N4ITK algorithm ( Tustison et al., 
2010 ), implemented in ANTs toolbox. N4ITK offers improved bias field 
correction over the original nonuniform intensity normalization (N3) 
algorithm ( Sled et al., 1998 ), via robust b-spline approximation and a 
hierarchical optimizer to model a range of bias modulation. Addition- 
ally, to further minimize the effect of spatial intensity variations for cal- 
culating ground truth ( Fig. 2 ), we limit the phantom rotation within 10 
degrees clockwise or anti-clockwise relative to the start position at time, 
t = 0. Based on the optical encoder’s feedback and scanner’s slice timing 
information, all the slices acquired during in-plane rotation within a TR 
were discarded from the respective EPI dataset for any further analy- 
sis. The remaining slices were manually inspected, and bad slices due to 
susceptibility artifacts (towards the top and bottom face of the cylinder) 
were thrown out. The final set of slices then underwent an automated 
procedure based on contour finding and the Hough transform for gen- 
erating masks used to select the voxels of interest located in the inner 
cylinder of each slice. The first 200 volumes of all the remaining slices 
were averaged voxel-wise to create a mean functional dataset to obtain 
close approximations to the true voxel intensity. Synthetic rotation of 
the mean functional dataset, to create ground-truth time-series, involved 
up-sampling the mean images by a factor of 5 (3rd order spline inter- 
polation), followed by rotation at angles provided by optical encoder’s 
feedback and down-sampling by local averaging to original dimensions 
of the mean functional slice. Fig. 5 (Supplementary Material) shows that 
the ground truth signal created using acquisitions at different static po- 
sitions closely match each other. Subtracting the noisy fMRI output from 

the corresponding ground-truth time-series yields voxel-wise noise time- 
series. Power spectrum density ( Fig. 3 ) was calculated using the Welch 
method implemented in SciPy library ( Virtanen et al., 2020 ). Monte- 
Carlo simulations for parameter estimation to quantify multiplicative- 
to-thermal noise ratio were carried out in PyMC3 ( Salvatier et al., 2016 ). 
We estimated the percentage of voxels exhibiting nonlinearity for each 
scanner. For a given voxel with ground-truth time series G(t) and a mea- 
sured fMRI time series Y(t), we express the measured fMRI time series 
as 

Y ( t ) = L ( t ) + F ( t ) + E ( t ) 

where L(t) represents the portion of data explained by a linear func- 
tion of the ground-truth time series, F(t) represents the portion of data 
explained by a nonlinear function of the ground-truth time series and 
E(t) represents unexplained residual variance. If the nonlinear function 
explains a significant portion of variance after regressing out the lin- 
ear model L(t) from Y(t), a nonlinearity is detected in the time series 
Y(t) ( Ljung et al., 2006 ; Sjöberg et al., 1995 ). F(t) models the nonlin- 
earity based on a nonlinear function/estimator ( Sjöberg et al., 1995 ; 
Ljung et al., 2006 ) of the ground-truth time series, which can be a bi- 
nary partition tree, a radial basis function network based on wavelets, 
a piecewise linear estimator, a multi-layer neural network or custom- 
built non-linearity regressors (for example, quadratic or polynomial re- 
gressors of ground-truth time series). We used a binary tree partition 
( Vanli and Kozat, 2014 ; Ljung et al., 2006 ) as nonlinearity estimator, 
which splits the data into two subsets followed by iterative splitting of 
each subset into smaller subsets to partition the entire regressor space 
(ground-truth time series) into a binary tree. After this, linear regression 
is performed at each level of the binary tree to complete the estimation 
procedure ( Vanli and Kozat, 2014 ). We performed the nonlinearity esti- 
mation with a binary partition tree using the “isnlarx ” function provided 
in System Identification Toolbox, Matlab ( Ljung, 2019 ). 

For all voxels, the measured and the ground-truth time-series pairs 
were used for end-to-end training of the CNN (see Fig. 4 for architec- 
ture). Given that multiple phantom scans were acquired for each scan- 
ner, CNN training involved combining data acquired with different pro- 
grammed motion sequences (Supplementary Materials: Suppl. Fig. 2 ) on 
a scanner for data-augmentation. Within each training dataset, 33% of 
data was used as validation split and model weights with lowest vali- 
dation loss was saved as the trained CNN. For Site 1, three CNNs were 
trained using data from scans 1 and 3, scans 2 and 4, and scans 3 and 
5. For Site 2, three phantom scans were acquired at each scanner, and 
CNNs were trained using data from scans 1 and 2, scans 2 and 3, and 
scans 1 and 3. For testing denoising performance, the test data were 
denoised using a trained CNN which did not use the test data during 
training (out-of-sample denoising), for example: at Site 2, for denoising 
scan 2, we used a CNN trained on scans 1 and 3. 

4.4. Preprocessing of human data 

Spatial preprocessing was performed in the Statistical Paramet- 
ric Mapping (SPM12) software package ( http://www.fil.ion.ucl.ac.uk/ 
spm ) using the pipeline provided in the CONN toolbox ( Whitfield- 
Gabrieli and Nieto-Castanon, 2012 ). Functional images were motion 
(rigid alignment, six-degrees-of-freedom) and B 0 field map corrected, 
and a mean functional image was calculated for each subject. The mean 
functional images were then co-registered to high-resolution structural 
images followed by segmentation to generate gray matter, white mat- 
ter, and cerebrospinal fluid images. Each voxel time-series was de- 
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meaned and underwent quadratic de-trending. For further temporal pre- 
processing, the data went through two different pipelines to generate 
three datasets as discussed below: (a) Standard Method: Physiological 
confounds were removed using the Component-Based Noise Correction 
Method ( Behzadi et al., 2007 ) (CompCor) implemented through Nipype 
interface ( Gorgolewski et al., 2011 ). CompCor regresses out the con- 
founding effects of multiple empirically estimated noise sources calcu- 
lated from variability in BOLD time-series of cerebrospinal fluid and 
white matter (based on principal component analysis). Five components 
of white matter and cerebrospinal fluid, and six motion parameters, 
along with temporal bandpass filtering (0.008–0.1 Hz), were used for 
physiological denoising. Removal of confounds was orthogonal to the 
bandpass filtering( Lindquist et al., 2019 ); (b) CNN Denoising : Spatially 
preprocessed functional data (motion and fieldmap corrected and nor- 
malized to MNI) underwent denoising (voxels in gray-matter only) us- 
ing trained scanner-specific CNN, followed by physiological confound 
removal as in the standard method (CompCor, motion, and bandpass 
filtering); (c) MP-PCA denoising: We repeated the spatial preprocess- 
ing of functional data and applied the standard method of temporal 
preprocessing, on MP-PCA denoised raw functional data, to generate 
a third dataset in addition to the standard method and CNN denoising 
datasets. Finally, datasets obtained from all three denoising methods 
were smoothed with a 4-mm full width at half-maximum Gaussian ker- 
nel, followed by normalization to 2 × 2 × 2 mm Montreal Neurological 
Institute (MNI) EPI template. 

4.5. Calculating detection sensitivity of resting-state networks 

To identify functionally connected networks in a data-driven man- 
ner, we performed group spatial ICA on the preprocessed data us- 
ing the GIFT v3.0b fMRI Toolbox ( https://trendscenter.org/software/ ), 
separately for each scanner and temporal processing scheme (stan- 
dard method and CNN denoising). For each dataset, 20 independent 
components were obtained, after ten runs of ICASSO ( Himberg et al., 
2004 ) procedure for ensuring component stability. Subject-specific spa- 
tial maps and associated time courses were estimated using back- 
reconstruction (GICA) ( Erhardt et al., 2011 ). We used the Infomax al- 
gorithm for performing ICA. ICA spatial maps were converted to Z val- 
ues. We spatially matched the subject-specific ICA maps to seventeen 
well-defined resting-state network templates obtained from Yeo et al. 
( Yeo et al., 2011 ), for obtaining each subject’s corresponding network 
ICA maps. Detection sensitivity was then calculated as the ratio of mean 
absolute Z-score inside and outside of each of the seventeen resting-state 
network masks applied to the matched subject-specific ICA spatial maps. 
The mean of detection sensitivity values, across all seventeen networks, 
for each subject, yielded a total of six values (three subjects with two 
runs) for every scanner. These six values were compared between the 
standard method, MP-PCA denoising, and the CNN temporal denoising 
for each scanner using permutation testing (100,000 repetitions). 
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