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The fMRI community has made great strides in decoupling neuronal activity from other physiologically induced
T,* changes, using sensors that provide a ground-truth with respect to cardiac, respiratory, and head movement
dynamics. However, blood oxygenation level-dependent (BOLD) time-series dynamics are also confounded by
scanner artifacts, in complex ways that can vary not only between scanners but even, for the same scanner,
between sessions. Unfortunately, the lack of an equivalent ground truth for BOLD time-series has thus far stymied
the development of reliable methods for identification and removal of scanner-induced noise, a problem that
we have previously shown to severely impact detection sensitivity of resting-state brain networks. To address
this problem, we first designed and built a phantom capable of providing dynamic signals equivalent to that
of the resting-state brain. Using the dynamic phantom, we then compared the ground-truth time-series with its
measured fMRI data. Using these, we introduce data-quality metrics: Standardized Signal-to-Noise Ratio (ST-
SNR) and Dynamic Fidelity that, unlike currently used measures such as temporal SNR (tSNR), can be directly
compared across scanners. Dynamic phantom data acquired from four “best-case” scenarios: high-performance
scanners with MR-physicist-optimized acquisition protocols, still showed scanner instability/multiplicative noise
contributions of about 6-18% of the total noise. We further measured strong non-linearity in the fMRI response for
all scanners, ranging between 8-19% of total voxels. To correct scanner distortion of fMRI time-series dynamics
at a single-subject level, we trained a convolutional neural network (CNN) on paired sets of measured vs. ground-
truth data. The CNN learned the unique features of each session’s noise, providing a customized temporal filter.
Tests on dynamic phantom time-series showed a 4- to 7-fold increase in ST-SNR and about 40-70% increase in
Dynamic Fidelity after denoising, with CNN denoising outperforming both the temporal bandpass filtering and
denoising using Marchenko-Pastur principal component analysis. Critically, we observed that the CNN temporal
denoising pushes ST-SNR to a regime where signal power is higher than that of noise (ST-SNR > 1). Denoising
human-data with ground-truth-trained CNN, in turn, showed markedly increased detection sensitivity of resting-
state networks. These were visible even at the level of the single-subject, as required for clinical applications of
fMRI.

1. Introduction paradigms most likely to be utilized in a clinical setting (because of

their limited reliance on patient training, engagement, and compliance)

Large-scale investments in the identification of fMRI-derived
biomarkers for brain-based disorders are a testament to the anticipated
promise of fMRI as a neurodiagnostic tool. Yet even once clinical neu-
roscience establishes reliable biomarkers, a critical rate-limiting factor
in the use of fMRI in clinical practice will be fMRI’s poor signal/noise
profile for single-subject level analyses. The task-free, “resting-state”

only exacerbate this problem. Task-based designs, in principle, clearly
delineate between activation in response to a task (signal) and activa-
tion during baseline (noise). However, task-free paradigms, by defini-
tion, lack the experimental manipulation that would typically be used
to distinguish between fluctuations of interest (signal) from fluctuations
of nuisance (noise) (DeDora et al., 2016). Without a principled way to
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distinguish between signal and noise, we lack the feedback necessary to
optimize for one while removing the other, thereby limiting our abil-
ity to achieve the kind of advances in detection sensitivity required to
enhance fMRD’s utility in evaluating the single patient.

FMRTI’s signal is conventionally derived from the blood oxygenation
level-dependent (BOLD) contrast. This activity represents regional time-
varying changes in the concentration of deoxygenated hemoglobin, fol-
lowing neural-activity induced by exogenous stimuli or spontaneous
fluctuations of the resting state. These time-varying changes reflect
changes in apparent transverse relaxation time T,*, an MR parameter
sensitive to levels of deoxyhemoglobin, and hence responsible for the
observed BOLD contrast. Ideally, the value measured at each voxel at a
given time point should only change in response to T,* changes driven
by neural activity (fluctuations of interest, signal). However, in practice,
the measurement is dependent on a complex interaction between acqui-
sition parameters (flip-angle: «, echo-time: TE, repetition-time: TR), MR
parameters (longitudinal relaxation time T, apparent transverse relax-
ation time T,*, proton density within a voxel) and background noise
(Lauterbur, 2000). Change in any of these parameters introduces vari-
ance (fluctuations of the nuisance, noise) in the observed voxel time-
series. The difficulty of maintaining fidelity to actual (neuronal) time-
series dynamics is made even more acute by the fact that BOLD contrast
constitutes only a small fraction (typically, less than 5%) of the total
measured signal.

Fluctuations of nuisance in the fMRI time-series originate from two
sources: the individual being scanned (physiological noise, due primar-
ily to cardiac, respiratory, and motion effects) as well as the scanner
itself. Physiological processes like respiration or cardiac pulsations can
cause changes in blood flow (affecting T; and T,*), and thus tempo-
ral variations in magnetization that might artifactually appear to be a
BOLD effect. Subject head motion causes relative displacement of vox-
els leading to temporally correlated non-stationary noise and can in-
duce spurious correlations in the resting-state analysis (Power et al.,
2012). As significant as these artifacts are, the fact that cardiac, respi-
ratory, and motion variables permit external measurements (e.g., ECG
for heart rate) have permitted the field to develop an impressive ar-
ray of well-validated methods with which to both identify and mitigate
their influence. Examples of strategies for targeting physiological and
motion confounds include: selecting acquisition parameters designed to
permit thermal noise to dominate physiological noise (Wald and Poli-
meni, 2017); techniques to address breathing-related field fluctuations
both prospectively (Duerst et al., 2015) and at image reconstruction
stage (Bollmann et al., 2017); use of simultaneously recorded measure-
ment of heart-rate, respiration, and motion to retrospectively remove
physiological confounds (Caballero-Gaudes and Reynolds, 2017); and
motion-correction implemented prospectively (Zaitsev et al., 2017) or
retrospectively through registration.

In contrast, the lack of a ground truth for fMRI time-series has not
permitted the same strategies for identification and removal of scanner-
induced noise, which can vary not only between scanners of the same
make and model, but even within the same scanner during different
sessions. These fluctuations of nuisance originate from imperfections of
the instrumentation and the electromagnetic fields used for the measure-
ment and are normally referred to as “scanner instability.” This nomen-
clature is, itself, potentially misleading, since detection-sensitivity of
resting-state networks requires simultaneously amplifying fluctuations
of interest while suppressing fluctuations of nuisance. Indeed, we have
previously shown that typical methods that focus entirely on suppress-
ing fluctuations (optimizing solely for scanner “stability”), such as tem-
poral signal/noise (tSNR), actually deoptimize detection-sensitivity of
resting-state networks, because the damped fluctuations include not
only suppressed noise but also suppressed signal (DeDora et al., 2016).

Different approaches tackle the problem of minimizing scanner arti-
facts based upon models of MR-physics. Such methods include reducing
the effects of eddy currents by the use of actively shielded gradients
and pre-emphasis filters, the use of navigators and calibration echoes,
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or NMR probes (Kasper et al., 2015) that provide concurrent field moni-
toring with correction during image reconstruction. Yet modeling-based
approaches, while valuable in their own right in terms of contributing
to our understanding, can fall short as a practical tool for optimizing
resting-state signal/noise (SNR). The reason for this is that they tend to
oversimplify processes that, in an actual testing environment, are fun-
damentally complex—involving multiple factors, both known and un-
known, which interact with one another in nonlinear and nonstationary
ways. For example, scanner instabilities may be caused by variation in
flip angle over time, imperfections in gradient system, heating, time-
varying eddy current effects, or gain changes in transmit and receive
chains (Greve et al., 2013; Liu, 2016). Time-varying gradients in fast
imaging methods, such as interleaved echo-planar imaging (EPI), re-
quire high-gradient amplitudes and slew-rates, pushing the scanner to
its limits and causes image artifacts due to k-space trajectory deviations.
Inhomogeneity in B field and perturbations in gradient field cause eddy
currents, ghosting, geometric distortions, errors in phase encoding lead-
ing to voxel displacement, gain-drifts, and other distortions (Jezzard and
Clare, 1999). While scanner instability is multiplicative, the impact of
thermal/background noise on fMRI time-series is additive and can arise
due to a random process like Brownian motion of ions in MR electronics
or the human subject, external RF noise sources in the scanner room,
or RF spikes dues to intermittent contact between metallic components
(Greve et al., 2013; Liu, 2016).

In a clinical setting involving decision-making for a single patient,
the impact of errors that fluctuate over time and are signal dependent
cannot be remedied by increasing sample size, under the assumption
that signal amplifies while noise cancels. Longitudinal comparison of
scans acquired pre and post treatment cannot be interpreted if both
the subject and scanner are changing over time (for example, in us-
ing resting-state fMRI in pre-surgical localization, surgical planning in
epilepsy, and identifying subjects with Alzheimer’s Disease (Lee et al.,
2013)). Moreover, biomarkers used at one site may be difficult to com-
pare across other sites. Even in the research domain, recent years have
seen a tremendous increase in efforts in pooling fMRI data for increas-
ing sample size, enhancing statistical power for detecting subtle ef-
fects, including diverse populations and disease etiologies (Van Horn
and Toga, 2009), either via multi-site studies or data-sharing initia-
tives. Combining data from multiple sites presents an unavoidable chal-
lenge in the form of scanner-induced inter-site variability due to differ-
ences in field strength, imaging parameters, image reconstruction, or
scanner manufacturer (Glover et al., 2012) and can lead to systematic
confounds in time-series data. In one recent example (Friedman et al.,
2008), between-site reliability showed median intra-class correlation of
just r=0.22.

In summary, efforts to make the application of resting-state fMRI
clinically useful must necessarily address SNR from the perspective of
not only physiological, but scanner, artifact—and in ways that make
sense given the ubiquity of task-free designs. While efforts to mitigate
physiological artifact can and have benefited from external measure-
ments (Caballero-Gaudes and Reynolds, 2017), until recently such a
strategy has not been available for scanner artifact. Static phantoms op-
timize purely for general stability (Friedman and Glover, 2006), thereby
suppressing the fluctuations responsible for resting-state signal. More-
over, the brain (non-static but, by definition, the unknown variable) like-
wise cannot serve as a calibration device. Finally, physics-based models
cannot, in principle, approximate the impact of complex nonstation-
ary distortion on time-series without empirical measurement of that
distortion. To address these issues, we approached the problem from
the perspective of creating a “brain-like” calibration device, capable
of producing a dynamic ground-truth input signal similar to a typical
resting-state time-series. Because such a device would provide a ground
truth for both fluctuations of interest (signal) as well as fluctuations of
nuisance (noise), it could permit optimization for signal-to-noise, rather
than simply stability. Because of the consequent ability to obtain, and
therefore compare, time-series distortion between true and measured
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time-series, we could develop a purely data-driven—rather than mod-
eled—distortion correction. Doing so would potentially permit cleaning
data of scanner-induced artifact while remaining agnostic with respect
to the diversity of known and unknown sources of distortion and their
behavior over time.

2. Results

2.1. We designed and engineered a commercial-grade dynamic phantom
capable of producing brain-like dynamic signals.

Our previous work (Radulescu and Mujica-Parodi, 2014; Mujica-
Parodi et al., 2017) and those of others (Ciuciu et al., 2012) shows
that healthy resting-state fMRI signals follow 1/f (pink noise) frequency
spectra; therefore, our pseudo-brain “input” signal was engineered to
achieve equivalent dynamics (custom dynamics can also be easily pro-
grammed). To create a dynamic signal, our phantom (Fig. 1A) uses dif-
ference in agarose gel concentration across voxels; the phantom, when
rotated in-plane across a voxel during the data acquisition, produces a
changing T,* signal. Rotations occur at the start of each TR of a scan
and are limited to around 250 milliseconds.

The phantom consists of three distinct parts: a) an agarose gel cylin-
der assembly, having two concentric cylinders; b) a control unit provid-
ing control logic for rotation of the inner cylinder; and, c) an air motor
assembly with a gearbox and an optical encoder for position tracking.
Within the agarose gel cylinder assembly, the inner cylinder rotates dur-
ing the scan and is coupled to the air motor and the optical encoder,
while the outer cylinder contains a reference gel and remains static.
The outer cylinder’s reference agarose gel is made at 2.2% concentra-
tion by weight, whereas the inner cylinder contains two different gel
concentrations at 2.2% and 2.3% by weight, split into four quadrants in
a configuration as shown in Fig. 1B. Within each quadrant, a variation
in To* values exist across voxels because of imperfect agarose network
formation, chemical heterogeneity, and polydispersity of gel networks
(Djabourov et al., 1989). The control unit for driving the phantom uses
a feedback control strategy with control logic implemented in PSoC mi-
crocontroller, feedback sensing via an optical encoder, and actuation
through solenoid valves. The control unit contains some other custom
circuitry for fast valve response time (spike-up voltage circuit), touch-
screen user-interface running on raspberry-pi, and UART communica-
tion between the raspberry-pi and the PSoC microcontroller. The phan-
tom is MR-compatible (agarose gel cylinder assembly and air motor as-
sembly) and uses polycarbonate (body), delrin (air motor), glass-nylon
(ball bearings), and G11 garolite (motor shaft) in construction. The con-
trol unit containing electronics and pneumatic compressor for driving
the air motor stays outside in the MR control room.

2.2. Using ground truth brain-like dynamic signals, we quantified a
Standardized Signal-to-Noise Ratio (ST-SNR) and Dynamic Fidelity; these
demonstrated wide variance across scanners, even for the “best case
scenario” of high-performance scanners utilizing acquisition parameters
individually optimized by a highly experienced MR physicist.

While the definition of signal-to-noise ratio (SNR) is well defined
across the engineering domain, use of the term within the fMRI field
has colloquially co-opted its definition in ways that can dilute its mean-
ing and utility. Currently in fMRI, multiple definitions and variants for
computing SNR exist (Welvaert and Rosseel, 2013), leading to diffi-
culty in interpreting and comparing SNR values. Normally used to op-
timize for scanner stability with the use of a static phantom, temporal
SNR (tSNR) is defined as the ratio of mean signal to standard deviation
of a time-series. However, for reasons described above, optimizing for
tSNR (i.e., solely for stability) will suppress not only the fluctuations re-
sponsible for noise but also the fluctuations responsible for resting-state
signal, effectively de-optimizing for detection of resting-state networks
(DeDora et al., 2016). Furthermore, mean-signal in tSNR calculation is
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highly dependent on acquisition parameters, making the interpretation
for comparison difficult. For example: tSNR has been reported across
two orders of magnitude (e.g., between 4.42 and 280 for a recent re-
view of studies (Welvaert and Rosseel, 2013)). To address both issues,
we quantified the accuracy with which fMRI time-series follow the true
signal using two data-quality metrics: Standardized Signal-to-Noise Ratio
(ST-SNR) and Dynamic Fidelity. “ST-SNR” is defined as the ratio of signal
power and the background noise power and is calculated accordingly,
where power is the sum of the absolute squares of time-domain sam-
ples divided by the time-series length. We define “Dynamic Fidelity” as
the accuracy with which an MR scanner tracks changes in the input sig-
nal and calculate it as the Pearson correlation coefficient between the
ground-truth signal and fMRI output.

The programmed rotation of the dynamic phantom, along with the
optical encoder feedback, provides a mechanism for rotation control and
sensing. The phantom tracks the programmed rotation at an accuracy of
0.2°. With the rotation generating voxel-wise time-series, the feedback
sensing provides data on the actual rotation that occurs. This feedback
data enables calculation of the ground-truth time-series and the noise
estimate for each voxel, as shown in Fig. 2, for quantifying ST-SNR and
Dynamic Fidelity. In Table 1, we show both ST-SNR and Dynamic Fi-
delity for four scanners, showing the potential for wide variance across
scanners, even for a “best case scenario” of high-performance scanners
utilizing acquisition parameters individually optimized by a highly ex-
perienced MR physicist. Importantly for multi-site or longitudinal ap-
plications, these two metrics (ST-SNR and Dynamic Fidelity) provide a
direct assessment and comparison of data-quality over different scan-
ners, as well as the same scanner over time. As ST-SNR and Dynamic
Fidelity have standardized and interpretable range of values, the direct
comparison of these metrics longitudinally or across scanners becomes
possible. For example, for the same make and model of a scanner (the
two Siemens PRISMA scanners, described in Table 1) having equivalent
voxel-size, the ST-SNR observed is markedly different. Inspecting fur-
ther, while one may attribute this difference to the different head-coil
arrays used between the two scanners (Table 3), the comparison of ST-
SNR with 3T SKYRA (Table 1) at the same site with equivalent voxel-size
and head-coil suggests otherwise: that the Site 2 PRISMA scanner is an
outlier.

2.3. Using the dynamic phantom generated ground-truth, we quantified the
ratio of scanner instability to background noise in fMRI time-series, thereby
identifying multiplicative versus thermal noise components.

We analyzed time-series of the noise (residual time-series as cal-
culated above, refer to Fig. 2), using power spectral density plots, to
identify spectral-features arising from scanner artifacts. Fig. 3 illustrates
the mean power spectral density across all voxels for the ground-truth
and the estimated noise time-series. Each voxel time-series’ power spec-
tral density was normalized by its maximum power before calculating
mean at each frequency bin across all voxels. The power spectral density
of the noise closely matches that of the ground-truth signal, indicating
the presence of a multiplicative noise (scanner instability) component
alongside thermal/background noise.

Multiplicative noise modulates the MR signal, is known to exhibit
some temporal and spatial correlation (Greve et al., 2013), and cannot
be removed using smoothing or frequency-based temporal filtering. The
presence of multiplicative noise diminishes the advantages offered by
hardware improvements (increase in signal to thermal noise ratio with
higher field strength and more sensitive head-coil arrays) and can exac-
erbate the false-positives problem (Eklund et al., 2016), alongside spu-
rious correlations and poor reproducibility of functional connectivity.
Band-limited programmed rotation of our phantom produces a band-
limited ground-truth signal, and thus the associated multiplicative noise
can be directly observed in this narrow band—see Fig. 3 (in the 0-0.1
Hz range). At frequencies higher than 0.1 Hz where the ground-truth
signal is absent, scanner noise shows a flat spectrum or white-noise be-
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Fig. 1. A. Isometric view of the Dynamic Phantom. The cylindrical head is the agarose gel cylinder assembly, which is coupled to a pneumatic motor and an
optical encoder on the other end. All components remain intact via fastening to an outer frame and go inside the MR scanner with the cylindrical head placed
inside the head-coil. The black box shown is the control unit, which interfaces with the optical encoder, pneumatic input from an air compressor and the pneumatic
motor. B. Distribution of T2* values across voxels in four quadrants at 3T (Site 1). The agarose gel is prepared using the recipe provided by Friedman et al.
(Friedman and Glover, 2006). Even though the agarose gel is prepared only at 2.2% and 2.3% concentration, the heterogeneity in T,* values can be attributed to
imperfect agarose network formation, chemical heterogeneity, and polydispersity of gel networks(Djabourov et al., 1989). C. Feedback control system for rotating
the inner cylinder. At each trigger from the MR scanner, the PSoC controller compares the current position F(t) with the programmed target position R(t) and
opens the solenoid valve proportionally to the magnitude of the error signal E(t) to actuate the pneumatic motor. Here, U(t) is the actuating signal, and M(t) is the
manipulated variable. The system uses no braking mechanism, and accurate positioning is achieved through a predetermined linear relationship established between
open-state time for solenoid valve and the corresponding rotation achieved at a given pneumatic pressure.

havior (thermal noise). This multiplicative noise behavior is further cor-
roborated by a linear scaling of noise power (logarithmic scale) with
an increase in signal (ground-truth) standard deviation. We observed a
moderate correlation between noise power and signal standard devia-
tion for all scanners (Site 1: PRISMA- r=0.35, Site 2: PRISMA- r=0.32,
SKYRA- r=0.33, and MAGNETOM- r=0.35).

Using the ground-truth dynamic signal and the measured fMRI out-
put, we quantified the ratio of multiplicative noise (scanner instability)
to thermal/background noise using a probabilistic description of the two
noise-sources. Scanner instability is signal-dependent and thus propor-
tional to the signal intensity, while thermal noise is independent of the

MR signal. Background noise and scanner-instability are temporally in-
dependent, and therefore, their variances add. With o as the standard
deviation of the thermal noise and f as the proportionality constant for
the multiplicative noise, we can write:

2 _ 2 2. 22 _ 2 2
O¢mrr = %gr tor+ B oGy = 0Gr + Cupiser (¢))
where o2 ury and o-éT, are the variances of the observed fMRI output
and the ground-truth, respectively. The model for the probability of ob-
serving the measured signal, given ground-truth Ysr and noise param-
eters can then be written as:

P(Y;priYer-or.B) = N(p= Yor.0” = ‘7% + ﬂzyéT)’ @
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Fig. 3. Qualitative comparison of mean power spectral density of the ground-
truth and noise time-series provides signatures for the presence of signal-
dependent (non-white) scanner confounds in fMRI data, in addition to the back-
ground noise. Voxel-wise noise time-series is calculated by subtracting measured
fMRI time-series and the ground-truth time-series.

We estimate the parameters o, and f by Monte-Carlo simulation
using Ypyr; and Ygr. Specifically, we model Eq. 1 to sample from the
posterior distribution that is proportional to Eq. 2 while assuming con-
stant priors for the parameter distributions. The relative contribution of
multiplicative noise to that of the total noise is listed in Table 1 for each
scanner. The results indicate that even in modern high-performance
scanners with acquisition parameters optimized by a trained MR physi-
cist, the scanner-induced variance due to instability is around 6-18% of
the contribution of the total scanner noise. This range is consistent with
Greve et al. (2011), in which the authors measured scanner instability
by scanning an agar phantom at two varying flip-angles to separate in-
stability from background noise. Because we use different metrics, we
included a detailed comparison between the Greve et al. (2011) find-

ings (Supplementary Material, Table 1) and our study in the Supple-
mentary Material. Finally, we provide a case-study comparing the two
methods, using modern imaging hardware and acquisition parameters
(multi-channel coils and parallel imaging) in the Supplementary Mate-
rial. We found agreement between the two methods, except when the
background noise variance becomes space-variant. This suggests Greve
et al.’s method risks inaccuracy for modern acquisition protocols, as pre-
viously discussed in Greve et al.

2.4. Using the dynamic phantom generated ground-truth, we quantified
scanner-induced non-linearity in fMRI response.

Finally, we observe scanner-induced temporal non-linear distor-
tion of fMRI response using a tree-partition non-linearity estimator
(Ljung, 2019) (a piece-wise linear function defined by the binary tree
over partitions of the regressor space) with ground-truth as the regres-
sor. Non-linearity is detected in the observed fMRI data if a nonlin-
ear function explains significant variance in the observed data beyond
the variance explained by the linear function of the ground-truth. Non-
linearity estimation was performed using ‘isnlarx’ function provided in
System Identification Toolbox, Matlab (Ljung, 2019), which categorizes
non-linearity as strong, weak or not significant based on reliability of the
nonlinearity detection test. We observed that the 7T scanner showed the
highest non-linearity in response, with 19% of voxels exhibiting strong
non-linearity (Table 1).

2.5. Using the dynamic phantom generated ground-truth, we evaluated the
efficacy of applying random matrix theory to remove scanner-induced
noise; thereby, demonstrating the utility of the dynamic phantom for
comparing retrospective denoising techniques against a ground-truth.

A method based on principal component analysis (PCA) coupled with
random matrix theory (RMT), called MP-PCA) (Veraart et al., 2016a,b),
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Table 1

Data-quality metrics for quality control, quantification of scanner-instability, and performance of bandpass filtering, MP-PCA and CNN temporal denoising scheme - evaluated for each
scanner using phantom data. CNN denoising increases ST-SNR by ~4-7 times the measured time-series, bringing ST-SNR to a regime where signal power is higher than that of noise (ST-SNR

> 1). Fidelity, ST-SNR and Instability are calculated on a single time series obtained after temporally concatenating voxels of interest.

Temporal Denoising
MP-PCA + Bandpass Filter

Fidelity
0.53
0.51

Instability
Contribution of Total Noise (%)

Data Quality

Scanner

CNN

Fidelity
0.58
0.55
0.52
0.51

Bandpass Filter

Fidelity

ST-SNR  Non-Linearity (% of Total Voxels)
Weak

Fidelity

ST-SNR

ST-SNR
0.82
0.72
0.79
0.88

ST-SNR

Strong

1.5
1.44
1.37
1.35

0.72
0.59
0.45
0.77

0.51
0.46
0.66
0.47

10.06
5.7
17.15

18
25
32

0.27
0.2

8
32

0.3

Site 1: PRISMA 3T

Site 2: PRISMA 3T

Site 2: SKYRA 3T
Site 2: MAGNETOM 7T

10
15
19

0.

0.49

0.27
0.34

0.33

0.5

17.94

24

0.37
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has been introduced recently for denoising diffusion MRI) (Veraart et al.,
2016a,b) and fMRI data (Adhikari et al., 2018). MP-PCA is a 4d im-
age denoising technique that exploits redundancy in the PCA domain
using the universal Marchenko-Pastur distribution to remove scanner-
induced noise. MP-PCA denoising, followed by bandpass filtering in the
frequency-band of interest (0.008-0.1Hz), showed increases in ST-SNR
and Dynamic Fidelity over the observed fMRI data and the conventional
bandpass filtering (0.008-0.1Hz). MP-PCA denoising showed a signif-
icant increase in Dynamic Fidelity with around 40%, 60%, 48%, and
35% increase and a ~2- to 3-fold increase in ST-SNR, for Site 1: PRISMA,
Site 2: PRISMA, SKYRA, and MAGNETOM respectively, compared to the
observed fMRI data.

2.6. We designed a data-driven temporal filter and observed robust
increases in ST-SNR and Dynamic Fidelity of fMRI time-series after
denoising.

We provide a deep-learning framework using a Convolutional Neu-
ral Network (CNN) for learning an equivalent of a temporal filter. Given
that we now have known dynamic inputs, we developed an end-to-
end trainable CNN architecture that uses discriminative denoising to
remove noise in the hidden layers. We provided pairs of measured fMRI
time-series and known signal to learn a mapping from noisy to clean
time-series implicitly. We used batch regularization with small batches
of batch-size=8 within CNN to avoid internal covariate shift, acceler-
ate the training process, and reduce dependence on network parame-
ter initialization (Sergey loffe, 2015). Sigmoid activation function has
been used for non-linear mapping and a dropout layer for regularization
(Nitish Srivastava, 2014). The architecture details of CNN are specified
in Fig. 4.

For evaluating the performance and generalizability of the CNN,
we compare the results of CNN denoised fMRI time-series, as shown
in Fig. 5, with the original data-quality and temporal de-noising us-
ing a standard third-order Butterworth bandpass filter (0.008-0.1 Hz).
CNN de-noising showed a significant increase in Dynamic Fidelity with
around 53%, 72%, 58%, and 38% increase, for Site 1: PRISMA, Site
2: PRISMA, SKYRA, and MAGNETOM respectively, compared to the
observed fMRI data. Further, the CNN de-noising showed a ~4- to 7-
fold increase in ST-SNR compared to the observed fMRI data. Finally,
CNN de-noising outperforms the conventional temporal bandpass filter-
ing and the MP-PCA denoising (Table 1) in terms of improving both the
ST-SNR and the Dynamic Fidelity. While optimal denoising requires col-
lecting both the training and test data during the same session as shown
in Table 1, the CNN denoising shows improvement in both ST-SNR and
Dynamic Fidelity even with training datasets acquired a few weeks apart
from the test dataset (Supplementary Material, Table 4).

2.7. Removing scanner-induced variance from human fMRI data increased
the detection sensitivity of brain networks, visible even at the single-subject
level.

For assessing the effects of CNN de-noising on human fMRI data,
the detection sensitivity of brain networks engaged in movie watch-
ing was calculated as a measure of the ability to preserve fluctuations
of interest (signal) while removing scanner confounds (noise) from the
time-series, and was quantified using the ratio of mean absolute Z-score
inside and outside well-defined resting-state network masks in subject-
specific ICA maps. A ratio > 1 indicates that Z-score inside the mask
is higher compared to voxels outside. Higher this ratio, the easier it is
to detect the brain/resting-state networks. We observed an increase in
detection sensitivity at the single-subject level for all three scanners af-
ter accounting for scanner-related noise, for both the MP-PCA denoising
and the CNN denoising method. For MP-PCA denoising, permutation-
testing revealed a significant increase in detection sensitivity for all
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De-noised
Time-Series

Fig. 4. Architecture of the convolutional neural network used for discriminative denoising. Each convolution layer (except the last) contains 18 filters with
a kernel size of 9 and a stride of 1. Sigmoid is used as the activation function. A dropout of 0.2 is used in the dropout layer. The last convolution layer contains only
one filter. Negative of R-squared between the ground-truth and the denoised time-series used as the loss function (minimize) with Adam optimizer for stochastic

optimization (Diederik P. Kingma and Ba 2014).
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three scanners (3T PRISMA: percent-change= 9.06% p-value=0.016;
3T SKYRA: percent-change= 13.03%, p-value=0.016; 7T MAGNE-
TOM: percent-change=9.3%, p-value=0.015). Similar trends were ob-
served for CNN denoising (3T PRISMA: percent-change= 13.63% p-
value=0.016; 3T SKYRA: percent-change= 20.7%, p-value=0.015; 7T
MAGNETOM: percent-change=18.74%, p-value=0.015). Furthermore,
the CNN denoising outperformed MP-PCA denoising as evident from
Table 2 (3T PRISMA: percent-difference = 4.19% p-value=0.016; 3T
SKYRA: percent-difference = 6.78%, p-value=0.03; 7T MAGNETOM:

percent-difference =8.64%, p-value=0.015).
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3. Discussion

3.1. Why should one use a dynamic phantom rather than a static phantom?

Static phantoms are commonly used for quality assurance
(Friedman and Glover, 2006) to assess and minimize scanner fluctua-
tions due to background noise and instability. However, the resting-state
fMRI or naturalistic paradigms depend not only upon suppressing fluc-
tuations due to noise but equally upon sensitivity towards signal change,
which can only be assessed by a phantom that produces a known and
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Table 2

Detection Sensitivity of resting-state networks. Denoising of human fMRI data for removing scanner-confounds showed an increase in the detection sensitivity of resting-state networks. Here,

detection sensitivity refers to the ratio of mean absolute Z-score inside and outside a well-defined resting-state network mask in subject-specific ICA maps. Detection sensitivity >1 indicates higher

contrast of voxels-of-interest inside the brain network compared to voxels outside. The higher score is in bold.

3T SKYRA 7T MAGNETOM

MP-PCA Denoising

3T PRISMA
MP-PCA Denoising

Standard Method ~ MP-PCA Denoising ~ CNN Denoising

CNN Denoising

Standard Method

CNN Denoising
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1.88
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changing (dynamic) signal. The importance of a dynamic phantom is
that it is the only method, to our knowledge, that can quantifiably as-
sess the most basic assumption underlying all task-free fMRI: fidelity be-
tween input (brain) dynamics and output (measured fMRI time-series)
dynamics. We introduced a novel method for generating ground-truth
using the dynamic phantom and estimating voxel-wise noise time-series.
The dynamic phantom additionally provides an estimate of standard-
ized signal-to-noise ratio (ST-SNR) and non-linearity, quantifying actual
measurement error in fMRI response as compared to static-phantom de-
rived temporal stability of the mean signal (tSNR). While static phan-
toms estimate only flat-spectrum noise (Expert et al., 2011), the dynamic
phantom can detect both signal-dependent and background noise. Us-
ing Bayesian parameter estimation, we quantified the ratio of instabil-
ity/multiplicative noise to the background noise. Although fMRI time-
series have several sources of confounds and variance contributed by
scanner-instability is relatively small, the reliability of the longitudinal
data may be seriously affected without proper characterization. Using
data metrics introduced, quality assurance protocols can be established
for scanner health monitoring. Any deviations in ST-SNR, Dynamic Fi-
delity or scanner-instability, compared against longitudinally tracked
measurements, would indicate scanner problems.

3.2. Why did we use a deep-learning approach for temporal denoising?

Scanner-instability and background noise in resting-state data lead
to decreased detection-sensitivity of resting-state networks, which have
been typically addressed by increasing the amount of data collected
or increasing the scan-time per subject. These methods are not only
expensive but lead to other problems such as subject-fatigue and in-
creased head-motion, which are especially acute in clinical populations.
In the current report, we propose a fundamentally different approach
for removing scanner confounds from fMRI time-series, which may cir-
cumvent the need for collecting more data, and which is ideally suited
for single-subject level analyses required for clinical and computational
modeling applications, as well as large-scale multi-site and longitudinal
studies. Our method exploits the availability of paired measured fMRI
and ground-truth data to perform discriminative denoising using CNN.
Developing a denoising algorithm for correcting time-series distortions
can be framed as a system-identification problem, wherein the goal is to
infer a functional relationship between the system input (measured fMRI
data) and the system output (denoised fMRI data). Convolution of the
measured signal with the identified filter produces the denoised signal.
While dealing with linear systems, this system-identification problem re-
duces to the characterization of impulse response using delta function or
observing the system’s frequency response using sinusoids. However, for
non-linear systems, there exists no canonical representation of the sys-
tem that will capture “all possibilities” of mapping inputs to transformed
outputs. The convolution integral for linear systems can be extended to
convolution-like Volterra series for non-linear systems, which can fur-
ther be extended to Weiner series where each component of the series
is orthogonal to all lower-order components. Lee and Schetzen (Lee and
Schetzen, 1965) provided a simple method based on cross-correlation
for estimating Weiner kernels. However, the cross-correlation method
is fundamentally limited by the fact that inputs must be Gaussian. Fur-
ther, the kernel estimation suffers in cases of strongly nonlinear systems.
To overcome these problems, we used deep learning for performing tem-
poral filtering. Intuitively, the trained CNN can be thought of as a tem-
poral filter (like a bandpass-filter), but with filter parameters estimated
in an automated data-driven manner optimized for a specific scanner
performing a session.

3.3. Why is a dynamic phantom more useful than ICA-based techniques in
mitigating scanner-effects for multi-site studies?

Different sites generally have very different-levels of scanner-noise
(Greve et al., 2011), causing heteroscedasticity when using ordinary
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least-squares estimator and skewing the p-values to be smaller than
they should be. Scanner-differences can be reduced by data-processing
techniques before analysis (resting-state data), or scanner-effects can
be adjusted statistically (task-based data). Feis et al. (Feis et al., 2015)
recently showed the successful application of FMRIB’s ICA-based X-
noiseifier (FIX) (Salimi-Khorshidi et al., 2014) to remove scanner-
specific structured noise components that diminished differences in de-
tected resting-state networks across sites. However, the complexity in
re-training the FIX classifier for a dataset from every new scanner is non-
trivial and requires manual component labeling using data from multi-
ple subjects by an expert. While our measurement of ST-SNR provides a
way for statistical adjustment of scanner effects in task-based paradigm
using ST-SNR as a covariate in ANCOVA designs, the CNN denoising can
remove scanner-induced effects before analysis for resting-state fMRI or
naturalistic paradigms in an automated fashion.

3.4. Future directions

Our work has direct implications in moving towards single-subject
imaging, which is necessary for clinical purposes as well as for fMRI
driven computational neuroscience. Ensuring the stability of time-series
adds statistical power to draw useful conclusions from a limited amount
of data. Although first-level analysis is dominated by physiological noise
(Greve et al., 2011; Triantafyllou et al., 2005; Wald and Polimeni, 2017),
we observed a ~13-20% increase in detection sensitivity of resting-
state networks after removal of scanner-related noise. The fact that
the dynamic phantom can provide, for the first time, a ground truth,
permits identification and removal of scanner-related noise. It also en-
ables rigorous evaluation of new data-driven denoising methods under
“real-world” conditions that may deviate from idealized a priori assump-
tions (i.e., physical models) of scanner noise characteristics. The dy-
namic phantom’s optical encoder provides precise information (resolu-
tion = 0.04392 degrees) about phantom rotation, which can be used
for evaluating both prospective and retrospective in-plane motion cor-
rection algorithms. Using the dynamic phantom for establishing data-
quality metrics, will provide an evaluation of modern imaging protocols,
for example compressed sensing fMRI or 3D EPI. Future studies with a
larger sample-size will focus on the effects of removing scanner con-
founds on reliability estimates of functional connectivity analysis and
computational neuroscience circuits. Low reliability causes low repro-
ducibility of functional connectomics (Zuo et al., 2019). Reproducibility
across sessions while scanning the same patient affects the clinical de-
cision making and thus is an active concern for the use of resting-state
fMRI as a clinical tool (O’Connor and Zeffiro, 2019). Further, as phys-
iological noise, thermal noise, and scanner instability are temporally
independent, the effect of physiological noise and scanner-induced fluc-
tuations can be regressed out using a general linear model (GLM) frame-
work. The second-order effects/interaction between physiological noise
and scanner-induced fluctuations can easily be modeled using interac-
tion terms in the GLM if external physiological recordings are available.
The CNN output (denoised fMRI signal) and input (measured fMRI sig-
nal) can be used to obtain the regressors (subtracting denoised fMRI sig-
nal from the measured fMRI signal) for scanner-induced fluctuations, to
model the interaction effects. Additionally, future directions include in-
vestigating effects of dynamic phantom estimated ST-SNR on activation
effect size in task-based studies, combining multi-site task-based studies
using ST-SNR as a covariate, and using CNN denoising to normalize data
across sites as required for multi-site studies.

4. Methods
4.1. Study design
We performed imaging at two sites: the SCAN Center at Stony Brook

University in Stony Brook, New York (Site 1) and the Athinoula A. Marti-
nos Center for Biomedical Imaging at the Massachusetts General Hospi-
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tal in Charlestown, Massachusetts (Site 2). We designed and engineered
a dynamic phantom for producing ground-truth time series, based on
differences in T,* values of agarose gel across voxels of interest. Con-
trolled rotation of the dynamic phantom produces variation in the T*
values within a voxel, tuned to generate amplitude changes/signal as
observed with BOLD contrast in humans (see Results for a detailed de-
scription of the design). At Site 1 (3T Siemens PRISMA scanner), we
scanned the phantom during a single session with five acquisition runs,
with each successive run separated by a 20-minute interval. Each run
had a unique programmed rotation profile as input to the phantom. No
human data acquisition occurred at Site 1. At Site 2, we acquired data
from three human subjects (two males and one female aged 55, 56,
and 47 years, respectively) and the phantom, using three scanners: 3T
Siemens SKYRA, 3T Siemens PRISMA, and 7T Siemens MAGNETOM. We
acquired data in three imaging sessions: one session per scanner. Dur-
ing each imaging session, we acquired three phantom scans, each with
a unique rotation profile, and six human scans, with two scans per sub-
ject. The first phantom scan took place at the beginning of each session.
Next, each of the three human subjects were scanned while they viewed
a naturalistic movie (no audio, see Supplementary Material for video)
inside the scanner. Afterward, we acquired the second phantom scan,
followed by a repeated acquisition for all three human subjects under
identical conditions. Finally, we acquired the third phantom scan. The
Institutional Review Board at Massachusetts General Hospital (Partner’s
Healthcare) provided approval for the human study, and all participants
provided written informed consent prior to participating in the study.

4.2. Data acquisition parameters

To ensure that results conservatively reflect actual data-quality met-
rics within the neuroimaging field, we asked each scanner’s MR physi-
cist to independently provide the optimal acquisition parameters for
modern fMRI studies conducted on that specific scanner. The details
of the protocol parameters are as follows. (1) Site 1 (phantom imaging
only): The phantom was scanned on a 3T Siemens PRISMA scanner with
a 64-channel head coil. For relaxation rate measurements, multi-echo
gradient-echo images were acquired at twelve echo times equally spaced
between 5 ms and 60 ms with TR = 70 ms, FOV = 192 mm X 192 mm,
flip angle = 20°, slice thickness= 1.5 mm, and readout bandwidth = 320
Hz/px. For the time-series data, standard single-shot gradient-echo EPI
data were acquired with the parameters as listed in Table 3. (2) Site 2:
Three different scanners were used for data acquisition. For phantom
measurement, only EPI scans were acquired. For human measurements,
structural scans based on a standard T;-weighted MPRAGE and B, field
maps were acquired in addition to the EPI scans. EPI scan parameters for
all three scanners are listed in Table 3. Specifics of structural scans and
By, field maps are: (a) 3T Siemens SKYRA: Structural scans, for spatial co-
registration, were acquired as multi-echo MPRAGE with 1 mm isotropic
voxel size and four echoes with TE,, TE,, TE;, TE, = 1.69, 3.55, 5.41,
7.27 ms, TR= 2530 ms, flip angle = 7°, and GRAPPA acceleration =2. B,
field map images, calculated using phase differences between gradient-
echo images at TE = 3.47 ms and 5.93 ms, were acquired (TR = 500
ms, flip angle = 47°, voxel-size = 3.0 x 3.0 x 3.0 mm? and 44 slices) for
EPI distortion correction arising due to susceptibility-induced magnetic
field inhomogeneity; (b) 3T Siemens PRISMA: Structural scans were ac-
quired using a single-echo MPRAGE with 1 mm isotropic voxel size, TE=
2.9 ms, TR= 2500 ms, flip angle = 8° and GRAPPA acceleration= 2. B,
field maps were acquired with TE= 3.47 and 5.93 ms, TR= 500 ms, flip-
angle = 47°, voxel-size = 3 X 3 x 3 mm and 52 slices; (c) 7T Siemens MA-
GENETOM: Structural scans were acquired as multi-echo MPRAGE with
1 mm isotropic voxel size at four echoes with TE,, TE,, TE3, TE, = 1.61,
3.47, 5.33, 7.19 ms, TR= 2530 ms, flip angle = 7°, and GRAPPA accel-
eration =2. B, field map images were acquired at TE = 4.60 and 5.62
ms, TR = 723 ms, flip angle = 47°, voxel-size = 1.7 x 1.7 x 1.5 mm?® and
89 slices.
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Table 3
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Acquisition parameters for functional EPI datasets for both the phantom and human subjects. *Only 600 volumes

acquired in the case of human subjects.

Parameter Site 1 Site 2
Scanner Siemens PRISMA Siemens PRISMA Siemens SKYRA Siemens MAGNETOM
BO Field 3T 3T 3T 7T
Head Coil 64 32 32 32
TR (msec) 1000 800 748 802
TE (msec) 33 30 31 20
Flip Angle (degrees) 52 52 52 33
EPI Factor 84 90 80 96
Voxel Size 2.5mm Isotropic 2.4mm Isotropic 2.5mm Isotropic 2 mm x 2mm X 1.5mm
Number of Slices 28 60 48 85
Number of Volumes* 800/600 800/600 800/600 800/600
Echo-Spacing 0.58 0.51 0.59 0.55
iPAT 1 1 1 2
Multiband Factor 4 6 6 5
Bandwidth (Hz/Px) 2990 2778 2232 2368

4.3. Preprocessing of phantom data for calculating data quality metrics
and training the convolutional neural network (CNN)

Acquisition of phantom EPI data involved acquiring the first 200
volumes without any programmed rotation, followed by 600 rotating
volumes with the rotation synchronized to the scanner’s TR (repetition
time) trigger signal. The phantom rotation was limited to around 250 ms
from the start of each TR and was quantified using the optical encoder’s
feedback (Fig. 1A, C). Before analysis, we corrected all phantom acqui-
sitions for smooth spatial intensity variations caused by nonuniformity
in the BO field, B1* field, and receiver coil sensitivity (Sled et al., 1998;
Sled and Bruce Pike, 1998) using the N4ITK algorithm (Tustison et al.,
2010), implemented in ANTs toolbox. N4ITK offers improved bias field
correction over the original nonuniform intensity normalization (N3)
algorithm (Sled et al., 1998), via robust b-spline approximation and a
hierarchical optimizer to model a range of bias modulation. Addition-
ally, to further minimize the effect of spatial intensity variations for cal-
culating ground truth (Fig. 2), we limit the phantom rotation within 10
degrees clockwise or anti-clockwise relative to the start position at time,
t = 0. Based on the optical encoder’s feedback and scanner’s slice timing
information, all the slices acquired during in-plane rotation within a TR
were discarded from the respective EPI dataset for any further analy-
sis. The remaining slices were manually inspected, and bad slices due to
susceptibility artifacts (towards the top and bottom face of the cylinder)
were thrown out. The final set of slices then underwent an automated
procedure based on contour finding and the Hough transform for gen-
erating masks used to select the voxels of interest located in the inner
cylinder of each slice. The first 200 volumes of all the remaining slices
were averaged voxel-wise to create a mean functional dataset to obtain
close approximations to the true voxel intensity. Synthetic rotation of
the mean functional dataset, to create ground-truth time-series, involved
up-sampling the mean images by a factor of 5 (3rd order spline inter-
polation), followed by rotation at angles provided by optical encoder’s
feedback and down-sampling by local averaging to original dimensions
of the mean functional slice. Fig. 5 (Supplementary Material) shows that
the ground truth signal created using acquisitions at different static po-
sitions closely match each other. Subtracting the noisy fMRI output from
the corresponding ground-truth time-series yields voxel-wise noise time-
series. Power spectrum density (Fig. 3) was calculated using the Welch
method implemented in SciPy library (Virtanen et al., 2020). Monte-
Carlo simulations for parameter estimation to quantify multiplicative-
to-thermal noise ratio were carried out in PyMC3 (Salvatier et al., 2016).
We estimated the percentage of voxels exhibiting nonlinearity for each
scanner. For a given voxel with ground-truth time series G(t) and a mea-
sured fMRI time series Y(t), we express the measured fMRI time series
as

Y(t) = L(t) + F(t) + E(t)

where L(t) represents the portion of data explained by a linear func-
tion of the ground-truth time series, F(t) represents the portion of data
explained by a nonlinear function of the ground-truth time series and
E(t) represents unexplained residual variance. If the nonlinear function
explains a significant portion of variance after regressing out the lin-
ear model L(t) from Y(t), a nonlinearity is detected in the time series
Y(t) (Ljung et al., 2006; Sjoberg et al., 1995). F(t) models the nonlin-
earity based on a nonlinear function/estimator (Sjoberg et al., 1995;
Ljung et al., 2006) of the ground-truth time series, which can be a bi-
nary partition tree, a radial basis function network based on wavelets,
a piecewise linear estimator, a multi-layer neural network or custom-
built non-linearity regressors (for example, quadratic or polynomial re-
gressors of ground-truth time series). We used a binary tree partition
(Vanli and Kozat, 2014; Ljung et al., 2006) as nonlinearity estimator,
which splits the data into two subsets followed by iterative splitting of
each subset into smaller subsets to partition the entire regressor space
(ground-truth time series) into a binary tree. After this, linear regression
is performed at each level of the binary tree to complete the estimation
procedure (Vanli and Kozat, 2014). We performed the nonlinearity esti-
mation with a binary partition tree using the “isnlarx” function provided
in System Identification Toolbox, Matlab (Ljung, 2019).

For all voxels, the measured and the ground-truth time-series pairs
were used for end-to-end training of the CNN (see Fig. 4 for architec-
ture). Given that multiple phantom scans were acquired for each scan-
ner, CNN training involved combining data acquired with different pro-
grammed motion sequences (Supplementary Materials: Suppl. Fig. 2) on
a scanner for data-augmentation. Within each training dataset, 33% of
data was used as validation split and model weights with lowest vali-
dation loss was saved as the trained CNN. For Site 1, three CNNs were
trained using data from scans 1 and 3, scans 2 and 4, and scans 3 and
5. For Site 2, three phantom scans were acquired at each scanner, and
CNNs were trained using data from scans 1 and 2, scans 2 and 3, and
scans 1 and 3. For testing denoising performance, the test data were
denoised using a trained CNN which did not use the test data during
training (out-of-sample denoising), for example: at Site 2, for denoising
scan 2, we used a CNN trained on scans 1 and 3.

4.4. Preprocessing of human data

Spatial preprocessing was performed in the Statistical Paramet-
ric Mapping (SPM12) software package (http://www.fil.ion.ucl.ac.uk/
spm) using the pipeline provided in the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Functional images were motion
(rigid alignment, six-degrees-of-freedom) and B, field map corrected,
and a mean functional image was calculated for each subject. The mean
functional images were then co-registered to high-resolution structural
images followed by segmentation to generate gray matter, white mat-
ter, and cerebrospinal fluid images. Each voxel time-series was de-
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meaned and underwent quadratic de-trending. For further temporal pre-
processing, the data went through two different pipelines to generate
three datasets as discussed below: (a) Standard Method: Physiological
confounds were removed using the Component-Based Noise Correction
Method (Behzadi et al., 2007) (CompCor) implemented through Nipype
interface (Gorgolewski et al., 2011). CompCor regresses out the con-
founding effects of multiple empirically estimated noise sources calcu-
lated from variability in BOLD time-series of cerebrospinal fluid and
white matter (based on principal component analysis). Five components
of white matter and cerebrospinal fluid, and six motion parameters,
along with temporal bandpass filtering (0.008-0.1 Hz), were used for
physiological denoising. Removal of confounds was orthogonal to the
bandpass filtering(Lindquist et al., 2019); (b) CNN Denoising: Spatially
preprocessed functional data (motion and fieldmap corrected and nor-
malized to MNI) underwent denoising (voxels in gray-matter only) us-
ing trained scanner-specific CNN, followed by physiological confound
removal as in the standard method (CompCor, motion, and bandpass
filtering); (c) MP-PCA denoising: We repeated the spatial preprocess-
ing of functional data and applied the standard method of temporal
preprocessing, on MP-PCA denoised raw functional data, to generate
a third dataset in addition to the standard method and CNN denoising
datasets. Finally, datasets obtained from all three denoising methods
were smoothed with a 4-mm full width at half-maximum Gaussian ker-
nel, followed by normalization to 2 x 2 X 2 mm Montreal Neurological
Institute (MNI) EPI template.

4.5. Calculating detection sensitivity of resting-state networks

To identify functionally connected networks in a data-driven man-
ner, we performed group spatial ICA on the preprocessed data us-
ing the GIFT v3.0b fMRI Toolbox (https://trendscenter.org/software/),
separately for each scanner and temporal processing scheme (stan-
dard method and CNN denoising). For each dataset, 20 independent
components were obtained, after ten runs of ICASSO (Himberg et al.,
2004) procedure for ensuring component stability. Subject-specific spa-
tial maps and associated time courses were estimated using back-
reconstruction (GICA) (Erhardt et al., 2011). We used the Infomax al-
gorithm for performing ICA. ICA spatial maps were converted to Z val-
ues. We spatially matched the subject-specific ICA maps to seventeen
well-defined resting-state network templates obtained from Yeo et al.
(Yeo et al., 2011), for obtaining each subject’s corresponding network
ICA maps. Detection sensitivity was then calculated as the ratio of mean
absolute Z-score inside and outside of each of the seventeen resting-state
network masks applied to the matched subject-specific ICA spatial maps.
The mean of detection sensitivity values, across all seventeen networks,
for each subject, yielded a total of six values (three subjects with two
runs) for every scanner. These six values were compared between the
standard method, MP-PCA denoising, and the CNN temporal denoising
for each scanner using permutation testing (100,000 repetitions).
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