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An agent has access to multiple information sources, each modeled as a Brownian
motion whose drift provides information about a different component of an unknown
Gaussian state. Information is acquired continuously—where the agent chooses both
which sources to sample from, and also how to allocate attention across them—until
an endogenously chosen time, at which point a decision is taken. We demonstrate con-
ditions on the agent’s prior belief under which it is possible to exactly characterize the
optimal information acquisition strategy. We then apply this characterization to de-
rive new results regarding: (1) endogenous information acquisition for binary choice,
(2) the dynamic consequences of attention manipulation, and (3) strategic information
provision by biased news sources.

KEYWORDS: Information acquisition, dynamic Blackwell, binary choice.

1. INTRODUCTION

WE STUDY dynamic acquisition of information when a decision-maker has access to mul-
tiple sources of information, and limited resources with which to acquire that information.
Our decision-maker seeks to learn a Gaussian state, and each information source is mod-
eled as a diffusion process whose drift is an unknown “attribute” that contributes linearly
to the state. Attributes are potentially correlated. This structure captures information ac-
quisition in many economic settings, including for example:
e A governor wants to learn the number of cases of a disease outbreak, and can acquire
information about the incidence rate of the disease in different cities.
e An investor wants to assess the value of an asset portfolio, and acquires information
about the value of each asset included in the portfolio.
e An analyst wants to forecast a macroeconomic variable such as GDP growth, and
aggregates recent economic activities across different industries and locations.
At every instant of continuous time, the decision-maker allocates a fixed budget of atten-
tion/resources across the information sources, where this allocation determines the pre-
cision of information extracted from each source. For example, the governor may have
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a limited number of tests to allocate across testing centers each day, where more tests
lead to a more precise estimate of the incidence rate at that testing center. The decision-
maker acquires information until an endogenously chosen stopping time, at which point
he makes a decision whose payoff depends on the unknown state.

Our contribution is to demonstrate that the optimal dynamic acquisition strategy can be
explicitly characterized under certain conditions on the prior belief, and to explain what
those conditions are. Under the optimal strategy, the decision-maker initially exclusively
acquires information from the single most informative source, where “more informative”
is evaluated with respect to his prior belief over the unknown attribute values. At fixed
times, the decision-maker begins learning from additional sources, and divides attention
over these new sources as well as the ones he was learning from previously. Eventually, the
decision-maker acquires information from all sources using a final and constant mixture.
Notably, the optimal information acquisition strategy is not only history-independent but
also robust across all decision problems. This implies, for example, that one does not
need to solve for the optimal stopping time and information acquisition strategy jointly
in this problem—optimal information acquisition is independent of when the decision-
maker stops. We make use of this implication in Section 5.1 to derive new results about
the optimal stopping behavior in a binary choice problem.

To gain some intuitions for the optimal information acquisition strategy, it is useful to
compare our problem with a simpler one, in which the decision-maker acquires infor-
mation for a decision at a fixed end date. Since the payoff-relevant state and all sources
of information are Gaussian in our setting, the Blackwell-optimal solution would then
be to acquire information in any way that minimizes posterior variance of the state at
the known end date (Blackwell (1951), Hansen and Torgersen (1974)). We show that
under certain conditions on the prior belief, it is possible to “string together” these so-
lutions across different end dates using a single history-independent dynamic strategy,
which thus minimizes posterior variance at every moment of time. Generalizing a result
of Greenshtein (1996), we show that this strategy—which we call the “uniformly optimal”
strategy—is best for every decision problem and every distribution over stopping times,
including those that are endogenously chosen.

When a uniformly optimal strategy does not exist, the variance-minimizing strategies
for some end dates are in conflict with one another. In these environments, the decision-
maker must trade off across possible end dates, where the optimal way of doing this in
general depends on the stopping time distribution and details of the payoff function. Thus,
the existence of a uniformly optimal strategy is key to guaranteeing the properties of
history independence and robustness across decision problems that we have outlined for
our solution.

The question of whether a uniformly optimal strategy exists turns out to relate to a
classic problem in consumer theory regarding the normality of demand—that is, whether
a consumer’s demand for various goods is weakly increasing in income. In our setting, the
decision-maker’s “utility function” is the negative of the posterior variance function, and
his “income” is the budget constraint on attention. When a uniformly optimal strategy
exists, this means that the decision-maker’s demand for information from each source
is weakly increasing in his overall attention budget. One of our sufficient conditions for
existence of a uniformly optimal strategy—“perpetual complementarity” of the different
sources—directly connects to a known sufficient condition in the literature for normality
of demand. We additionally utilize the specific structure of our problem to provide two
new sufficient conditions, and show that all of these conditions can be simply stated in
terms of the decision-maker’s prior belief. See Section 4 for further details.
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Beyond the specific statements of the results, a main contribution of this paper is
demonstrating that in the present framework: (i) the study of endogenous information
acquisition is quite tractable, permitting explicit and complete characterizations; and (ii)
there is enough richness in the setting to accommodate various economically interesting
questions (e.g., about the role of primitives such as correlation across attributes). This
makes the characterizations useful for deriving new substantive results in settings moti-
vated by particular economic questions. We illustrate this with three applications, where
we use our main results to generalize (Application 1) and complement (Application 2)
existing results in the literature, as well as to solve for the equilibrium in a new game be-
tween competing news sources (Application 3). In all three applications, we discover new
economic insights.

Application 1: Binary Choice. A large literature in economics and neuroscience (orig-
inating with Ratcliff and McKoon (2008)) considers a consumer’s decision process for
choosing between two goods with unknown payoffs. Recently, Fudenberg, Strack, and
Strzalecki (2018) proposed a model in which a decision-maker endogenously allocates at-
tention across learning about two normally distributed, but i.i.d., payoffs. This model is
nested in our framework. We use our main result to generalize Fudenberg, Strack, and
Strzalecki’s (2018) Proposition 3 and Theorem 5 beyond i.i.d. payoffs to settings with (1)
correlation in the payoffs and (2) asymmetry in the consumer’s initial uncertainty about
the two payoffs. These generalizations bring important realism to the setting, since cor-
relation and asymmetry are common features of choice environments. We characterize
the optimal attention allocation given an arbitrary normal prior about the payoffs, and
show that Fudenberg, Strack, and Strzalecki’s (2018) main economic insight regarding
the relationship between choice speed and accuracy holds in this general setting.

Application 2: Attention Manipulation. Next, we use our framework to study the dy-
namic consequences of a one-time attention manipulation. Recently, Gossner, Steiner,
and Stewart (2021) studied this question in a model where a decision-maker chooses
between goods with independent payoffs. Under some assumptions, they showed that
a one-time manipulation of attention towards a given good leads to persistently higher
cumulative attention devoted to that good, and persistently lower cumulative attention to
every other good. We derive a complementary result in our setting, focusing on how corre-
lation across the unknown attributes affects the consequences of attention manipulation.
We show that with two sources, Gossner, Steiner, and Stewart’s (2021) insights hold un-
der flexible patterns of correlation. On the other hand, with more than two sources, the
nature of correlation matters. We identify a property of the prior belief under which all
sources provide substitutable information, and show that under this property (but not in
general), attention manipulation leads to persistently higher attention for that source and
lower attention for others.

Application 3: Biased News Sources. In our final application, we consider a stylized
game between a liberal and a conservative news source that report on a common un-
known (e.g., the fiscal cost of a policy proposal), where their reporting is biased in oppo-
site directions. The sources choose the size of their bias, as well as the informativeness
of their reporting, and compete over readers’ attention. Using our characterization of in-
formation acquisition, we are able to derive the complete time path of readers’ attention
allocations given any precision and bias choices by the sources, which allows us to charac-
terize equilibrium news provision in this model. One particular insight that emerges from
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this analysis is that incentives for bias not only lead to greater polarization in equilibrium,
but also lead to lower-quality news provision (i.e., larger noise choices). This analysis con-
tributes to a literature about how competition across news sources affects the quality of
news (Gentzkow and Shapiro (2008), Galperti and Trevino (2020), Chen and Suen (2019),
Perego and Yuksel (2021)), where our work is distinguished in considering the role of the
time path of information demand.

1.1. Related Literature

Our work builds on a large literature regarding dynamic acquisition of information.
One part of this literature considers choice between unconstrained information struc-
tures at entropic (or more generally, “posterior-separable”) costs; see, for example, Yang
(2015), Steiner, Stewart, and Mat¢jka (2017), Hébert and Woodford (2021), Morris and
Strack (2019), and Zhong (2019).! Under this modeling approach, the cost to acquiring
information depends on the decision-maker’s current belief, and is often interpreted as a
mental processing cost (Mackowiak, Matéjka, and Wiederholt (2021)). In contrast, a sec-
ond set of papers—to which our paper belongs—models agents as dynamically allocating
a fixed budget of resources across a prescribed (and finite) set of experiments; see, for
example, Che and Mierendorff (2019), Mayskaya (2020), Fudenberg, Strack, and Strza-
lecki (2018), Gossner, Steiner, and Stewart (2021), and Azevedo, Deng, Olea, Rao, and
Weyl (2020). These papers, and ours, assume that the cost of information is independent
of what the decision-maker currently knows. We view such information costs as a better
match for applications in which the cost to information acquisition is physical, for exam-
ple, a limit on the number of available COVID tests that can be administered in a given
day.

Relative to this latter strand of literature, a distinguishing feature of our work is the
presence of flexible correlation. Dynamic learning about correlated unknowns is gener-
ally intractable, so there has been relatively little work done in this area. An exception
is a model introduced by Callander (2011), where the available signals are the realiza-
tions of a single Brownian motion path at different points, and the agent (or a sequence
of agents) chooses myopically. This informational setting has since been extended by
Garfagnini and Strulovici (2016), which considers the optimal experimentation strategy
for a forward-looking agent with acquisition costs, and Bardhi (2020), which introduces
a potential conflict between an agent acquiring the information and a principal making
the decision. These models differ from ours in that agents can perfectly observe any of an
infinite number of attributes, and the correlation structure across the attributes is derived
from a primitive notion of similarity or distance. We show that in a different model with
flexible correlation across a finite number of sources (and with noisy observations), it is
sometimes possible to exactly characterize the optimal forward-looking solution.?

Our work additionally connects to a large literature on sequential sampling in statis-
tics and operations research. Since the information acquisition decisions in our model

!t is interesting that Steiner, Stewart, and Mat&jka (2017) also showed how the solution to their dynamic
problem reduces to a series of static optimizations, similar to our multi-stage characterization. However, their
argument is based on the additive property of entropy and differs from ours.

2Also related are Klabjan, Olszwski, and Wolinsky (2014) and Sanjurjo (2017), which study learning about
multiple attributes. Besides having noisy Gaussian signals, the main distinction of our informational setting is
again that we allow for correlation across attributes and focus on what this correlation implies for the optimal
learning strategy.
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are not directly linked to flow payoffs, our model does not fall under the classic multi-
armed bandit framework (Gittins (1979), Bergemann and Viliméki (2008)). This feature
also distinguishes our results relative to a classic literature on “learning by experimenta-
tion” (Easley and Kiefer (1988), Aghion, Bolton, Harris, and Jullien (1991), Keller, Rady,
and Cripps (2005)). The “best-arm identification” problem (Bubeck, Munos, and Stoltz
(2009), Russo (2016)) is more closely related to us, as it considers a decision-maker who
samples for a number of periods before selecting an arm and receiving its payoff. Indeed,
the special case of two arms with jointly normal payoffs is nested in our framework un-
der the case of two attributes and equal payoff weights. Our Theorem 1 thus builds on a
prior result of Frazier, Powell, and Dayanik (2008), which showed that myopic informa-
tion acquisition—or the “knowledge gradient” policy in the language of that literature—is
optimal when the two arms have independent normal payoffs. Our result generalizes Fra-
zier, Powell, and Dayanik’s (2008) result by allowing for correlated payoffs and a broader
class of decision problems.

The best-arm identification problem between three or more arms falls outside of our
framework, since payoffs in that problem depend on a multi-dimensional unknown.?
From a number of papers including Chick and Frazier (2012) and Ke and Villas-Boas
(2019), it is well-understood that characterizing the optimal strategy in those problems is
quite challenging (although Frazier, Powell, and Dayanik (2008, 2009) showed that the
knowledge gradient policy performs well asymptotically). Our setting also involves multi-
dimensional uncertainty, but we assume that the unknowns are linearly aggregated into
a one-dimensional payoff-relevant variable. We show that under this restriction, exact
characterization of the optimal strategy is feasible, and in fact it is the knowledge gradi-
ent policy (suitably defined in continuous time). We also discover new properties of the
knowledge gradient policy in our continuous-time setting: In each of a finite number of
stages, the policy attends to a fixed set of attributes with a constant ratio of attention, until
this set expands and the next stage commences.

A key technical tool behind our characterization builds on a literature about the com-
parison of normal experiments. Following the classic work of Blackwell (1951), Hansen
and Torgersen (1974) showed that in a static decision problem, different normal sig-
nals about a one-dimensional payoff-relevant state can be Blackwell-ranked based on
how much they reduce the variance of the state. Greenshtein (1996) subsequently de-
rived comparisons between deterministic sequences of conditionally independent normal
signals about an unknown state. His Theorem 3.1 implies that one sequence Blackwell-
dominates another if and only if it leads to lower posterior variances about the state at
every time. Our Lemma 5 shows that Greenshtein’s (1996) characterization is valid in a
more general setting, in which time is continuous, and the sequence of signals can be cho-
sen in a history-dependent manner (i.e., the first signal’s realization can determine which
signal is chosen next).

2. MODEL

An agent has access to K > 2 information sources, each of which is a diffusion pro-
cess that provides information about an unknown attribute 6; € R. The random vector
(64, ..., 0k) is jointly normal with a known prior mean vector u and prior covariance
matrix 3. We assume 2, has full rank, so the attributes are linearly independent.

3With two arms, the difference in their payoffs is a sufficient statistic for choosing which arm is better. Such
reduction to a one-dimensional unknown is not available in the case of many arms.
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As we describe in more detail below, the agent’s decision depends on a payoff-relevant
state w € R. We assume the state is a linear combination of the attributes:

ASSUMPTION 1: @ = a,0; + - - - + ag Ok for known weights o, ..., ax € R.

It is equivalent (up to a constant) to assume that the vector (w, 6y, ..., Ox) is jointly
normal, and that there is no residual uncertainty about @ conditional on the attribute
values.* Because any attribute value can be replaced with its negative, assuming «; > 0 is
without loss. For ease of exposition, we will further assume that each weight «; is strictly
positive.

Time is continuous, and the agent has a unit budget of attention to allocate at ev-
ery instant of time. Formally, at each ¢ € [0, o0), the agent chooses an attention vector

Bi1(t), ..., Bk (t) subject to the constraints B;(¢) > 0 (attention allocations are positive)
and ), B:(¢) <1 (allocations respect the budget constraint).
Attention choices influence the diffusion processes Xi, ..., Xk observed by the agent

in the following way:
dX! = Bi(t) - 0, - di +/Bi(1) - dB.. (1)

Above, each B; is an independent Brownian motion, and the term /B;(¢) is a standard
normalizing factor to ensure constant informativeness per unit of attention devoted to
each source. Thus, devoting T units of time to observing source i is equivalent to ob-
serving the normal signal 6; + A (0, 1/ T), or receiving T independent observations of the
standard normal signal 6; 4+ (0, 1). This formulation treats “attention” and “time” in the
same way, in the sense that devoting 1/2 attention to source i for a unit of time provides
the same amount of information about 6, as devoting full attention to source i for a 1/2
unit of time. We also note that since all sources are assumed to be equally informative
about their corresponding attributes, it is with loss to further normalize the payoff weights
a; to be equal to one another.’

REMARK 1: As these comments suggest, there is a natural discrete-time analogue to
our continuous-time model: At each period ¢ € Z,, the agent has a unit budget of pre-
cision to allocate across K normal signals. Choice of attention vector ((t), ..., mx(t))
results in one observation of the normal signal 6; + N (0, 1/m(t)) for each source i =
1,..., K. All of our main results have an immediate corollary in that model. See Sec-
tion 6 for further discussion.

Let (Q, P, {F}.cr, ) describe the relevant probability space, where the information F,
that the agent observes up to time 7 is the collection of paths {X '} (with X' repre-
senting the sample path of X; from time 0 to time ¢). An information acquisition strategy S

is a map from {X'};, into A({1, ..., K}), representing how the agent divides attention at

“If w, 6y, ..., O are jointly normal, then w can be rewritten as a linear combination of the 6; plus a residual
term that is independent of each 6,. The assumption of no residual uncertainty means that the residual term
is a constant, returning Assumption 1 up to an additive constant (which can be normalized to zero in our
problem).

SIn fact, our subsequent results indicate that the case of equal weights is special. For example, with two
sources, the conclusions of Theorem 1 always hold when «; = @, but do not hold in general.



DYNAMICALLY AGGREGATING DIVERSE INFORMATION 53

each instant of time as a function of the observed diffusion processes.® In addition to allo-
cating his attention, the agent chooses how long to acquire information for; that is, at each
instant of time, he determines (based on the history of observations) whether to continue
acquiring information, or to stop and take an action. Formally, the agent chooses a stop-
ping time 7, which is a map from () into [0, +o0] satisfying the measurability requirement
{r<t}e F forallt.

At the endogenously chosen end time 7, the agent chooses an action a from the set of
actions A and receives the payoff u(r, a, w), where u is a payoff function that depends
on the stopping time 7, the action taken a, and the payoff-relevant state w. This formula-
tion allows for additively separable waiting costs, u(7, a, w) = u;(a, w) — c(7), as well as
geometric discounting, u(7, a, @) = 8™ - u,(a, w). The agent’s posterior belief about w at
time 7 determines the action that maximizes his expected flow payoff E[u(7, a, w)]. We
will only impose the following weak assumption on the payoff function:

ASSUMPTION 2: Given any (normal) belief about w, max, E[u(t, a, w)] is decreasingin 7.

That is, holding fixed the agent’s belief at the time of decision, we assume that an earlier
decision is better. In the case of u(r, a, w) = u,(a, ) — ¢(7), this assumption requires
the waiting cost ¢(7) to be non-decreasing in 7; in the case of u(r, a, w) =86" - ux(a, ),
the assumption is that the optimal flow payoff max, E[u,(a, w)] is non-negative (which is
satisfied, for example, if there is a default action that always yields zero payoff).

To summarize, the agent chooses his information acquisition strategy and stopping time
(S, 7) to maximize E[max, E[u(7, a, w)|F,]]. In this paper, we primarily focus on charac-
terizing the optimal information acquisition strategy S. In general, the strategies S and 7
should be determined jointly, but our results will show that in many cases, the optimal §
can be characterized independently from the choice of 7.

3. MAIN RESULTS

In Section 3.1, we consider the case of two attributes, where we are able to derive a
slightly stronger result. In Section 3.2, we characterize the optimal attention allocation
strategy for any finite number of attributes. All proofs appear in the Appendix, and we
provide an extended explanation of these results in Section 4.

3.1. Two Attributes

Suppose there are two attributes 6, and 6,, and the payoff-relevant state is w =
a1 6, + ay6,, with each «; > 0. The agent’s prior over the unknown attributes is (6, 6,) ~
N (w, 2. Then the prior covariance between each attribute i and the payoff-relevant state
w is cov; := Cov(w, 6;) = o;2;; + ;2 ;, and we assume that these covariances satisfy the
following relationship:

ASSUMPTION 3: cov; +covy, = a; (2 + 212) + aa (B0 + 222) > 0.

®We assume that given the agent’s attention strategy, the stochastic differential equations in (1) have a
solution. This is true, for example, if each B;(¢) is a deterministic function of ¢ (as in the optimal strategy that
we describe in Theorems 1 and 2), or if /B8;(¢) satisfies standard Lipschitz conditions (see Section 6.1 of Yong
and Zhou (1999)).
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Since both variances X,;, 3,, are positive, this property holds if the covariance %, is
not too negative relative to the size of either variance. If the weights on the two attributes
are equal (i.e., @; = ay), this property holds for all prior beliefs over the attributes (since

2- |12 £2-y/201 - 20 <301+ 20). If the attributes are positively correlated (2, = 3, >
0), then this property holds for all payoff weights «; and «,.

THEOREM 1: Suppose K =2 and Assumption 3 is satisfied. Without loss of generality, let
cov; > cov;. Define

P COV; — COV;
CE G det(3)

Then there exists an optimal information acquisition strategy which is history-independent
and hence can be expressed as a deterministic path of attention allocations (B1(t), B2(t)):>o-
This path consists of two stages:

o Stage 1: At all times t < t}, the agent optimally allocates all attention to attribute i (i.e.,

o Stage 2: At all times t > t}, the agent optimally allocates attention in the constant pro-
portion (B1(t), B2(1) = (35> o)

There are two stages of information acquisition. In the first stage, which ends at some
time ¢, the agent allocates all of his attention to the attribute i with higher prior co-
variance with the payoff-relevant state. After time ¢, he divides his attention across the
attributes in a constant ratio, where the long-run instantaneous attention allocation is
proportional to the weights «. Note that depending on the agent’s stopping rule, Stage
2 of information acquisition may never be reached along some histories of the diffusion
processes. But as long as the agent continues acquiring information, his attention allo-
cations are as given above. In Appendix O.1 of the Supplemental Material (Liang, Mu,
and Syrgkanis (2022)), we show that under mild technical assumptions, the optimal atten-
tion strategy is in fact unique up to the stopping time 7 (after which attention allocations
obviously do not matter).

The characterization reveals that the optimal information acquisition strategy is com-
pletely determined from the prior covariance matrix 3, and the payoff weight vector « (the
prior mean vector p does not play a role). In particular, the strategy does not depend on
details of the agent’s payoff function u(7, a, w), including his time preferences. When the
prior belief satisfies Assumption 3, the optimal information acquisition strategy is thus
constant across different objectives and also across different stopping rules. Relatedly, as
we demonstrate in Section 5.1, we can solve for the optimal stopping rule in this setting
as if information acquisition were exogenously given by Theorem 1. In Appendix O.2.1 of
the Supplemental Material, we provide an example to illustrate that these properties can
fail when Assumption 3 is violated. Appendix O.2.2 further shows that for the case of two
attributes, Assumption 3 is not only sufficient but also necessary for our characterization
to hold independently of the agent’s payoff criterion.

Below, we illustrate this optimal strategy using a few simple examples.

EXAMPLE 1—Independent Attributes: Suppose (61, 6,) ~ N (u, ({)) and the payoff-
relevant state is w = 6; + 6,. Then, applying Theorem 1, the agent initially puts all at-
tention towards learning 6,. At time ¢/ = %, his posterior covariance matrix is the identity
matrix. After this time, he optimally splits attention equally between the two attributes,
which are now symmetrically distributed.
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EXAMPLE 2—Correlated Attributes: Suppose (61, 62) ~ N (u, ($7)) and the payoff-
relevant state is still w = 6; + 6,. Applying Theorem 1, the agent initially puts all attention
towards learning 6;. At time ¢; = 2, his posterior covariance matrix becomes (i;g ;;2)
Compared to the previous example, it takes longer for the agent’s uncertainty about the
two attributes to equalize, since information about 6, also reduces the agent’s uncertainty

about 6,. After ¢; = 3, he optimally splits attention equally between the two attributes.

EXAMPLE 3—Unequal Payoff Weights: Consider the prior belief given in the previous
example, but suppose now that the payoff-relevant state is w = 6; 4+ 26,. As before, the
agent initially puts all attention towards learning 6;. Stage 1 ends at time #; = 3, when the
posterior covariance matrix is (iﬁ ;g) Note that because of the asymmetry in the payoff
weights, the agent’s posterior uncertainty about the two attributes is not the same at this
switch point. As we will discuss in Section 4, however, the marginal values of learning
about the two attributes are equal to one another at time #;. After this time, the agent
optimally acquires information in the mixture (1/3,2/3).

3.2. K Attributes

We now consider the case of multiple attributes. We provide three different sufficient
conditions under which the optimal information acquisition strategy can be exactly char-
acterized.

ASSUMPTION 4—Perpetual Substitutes: 3! has non-positive off-diagonal entries.

ASSUMPTION 5—Perpetual Complements: 3 has non-positive off-diagonal entries and
3, . a has non-negative coordinates.

ASSUMPTION 6—Diagonal Dominance: 3! is diagonally-dominant. That is, [S~']; >
Zj;éi |[271],j,-|f01” all1 <i<K.

Assumption 4 generalizes a previous sufficient condition X, > 0 to more than two at-
tributes. It requires that the partial correlation between any two attributes—controlling
for all other attributes—is positive.”-® Proposition 7 in Appendix O.3 of the Supplemen-
tal Material shows that Assumption 4 is an if and only if condition for information from
any pair of sources to be “perpetually substitutable.” By this we mean that the value of
acquiring information from one source is decreasing in the amount of information from
the other source, and that this property holds not only at time ¢ = 0 but also along any
path of information acquisitions.

Assumption 5 imposes that all attributes are negatively correlated with one another, but
that each attribute is initially positively correlated with the payoff-relevant state. Under
this assumption, prior covariances are “mildly” negative. Proposition 8 in Appendix O.3

"The partial correlation between attributes 6; and 6; under covariance matrix X is equal to
[/ VIE T2y

8Positive-definite matrices with non-positive off-diagonal entries are known as M -matrices (Plemmons
(1977)). It is well-known that the inverse of such matrices has positive entries everywhere. Thus, Assump-
tion 4 implies positive correlation ¥; > 0, but is strictly stronger when K > 2. We mention that assuming
3,; > 0 for all i # j does not guarantee Theorem 2 to hold. A counterexample with three sources is presented
in Appendix O.2.3 of the Supplemental Material.
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of the Supplemental Material shows that Assumption 5 is an if and only if condition for
information from any pair of sources to be perpetually complementary, in the sense that
the value of acquiring information from one source is increasing in the amount of infor-
mation from the other source, again along the entire path of information acquisitions.

The last Assumption 6 requires the inverse of the prior covariance matrix to be
diagonally-dominant. Roughly speaking, this assumption allows for some pairs of at-
tributes to be complements and other pairs to be substitutes, but puts an upper bound
on the magnitude of any complementarity or substitution effects. When K = 2, Assump-
tion 6 reduces to the simple condition [%,] < min{3,;, 2}, which is sufficient for our
previous Assumption 3. For general K, Assumption 6 is implied by a similar condition
13| < 5252 for all i # j (see Appendix A.3) We explain the role of these assumptions
in Section 4.

THEOREM 2: Suppose any of Assumption 4, 5, or 6 is satisfied.’ Then, there exist times
O=t<t<---<tp=4
and nested sets
@B C---CB,={1,...,K},

such that an optimal information acquisition strategy is described by a deterministic path
of attention allocations (B(t)):so. This attention path consists of m < K stages: For each
1 <k <m, B(¢) is constant at all times t € [t,_4, t,) and supported on the sources in By. In
particular, the optimal attention allocation at any time t > t,,_, is proportional to «.

The full path of attention allocations (B1(¢), ..., Bx(¢)) (including the times ¢, the
nested sets By, and the constant attention allocation at each stage k) can again be de-
termined directly from the primitives % and «. In Appendix D, we provide an algorithm
for computing this path. Theorem 2 thus tells us that the agent can reduce the dynamic
information acquisition problem to a sequence of m < K static problems, each of which
involves finding the optimal constant division of attention for a fixed period of time (from
t._1 to t;). Moreover, as in the K =2 case, the optimal information acquisition strategy
does not depend on the agent’s payoff function, and is history-independent.

We note that each of Assumption 4, 5, or 6 is “absorbing” in the following sense: If
the prior covariance matrix satisfies any of these conditions, then so does any posterior
covariance matrix. Propositions 7 and 8 respectively show that this is true for Assumptions
4 and 5, whereas diagonal dominance is absorbing because any information acquisition
strategy only increases the diagonal entries of the precision matrix 1.1 The absorbing
property implies that our characterization not only applies to the prior belief, but also
to any posterior belief even if the history involves sub-optimal attention allocations. This
feature enables us to study the effect of attention manipulation, an application that we
pursue in Section 5.2.

Finally, we mention that starting from any prior belief (including those that fail all
three of the sufficient conditions we have provided), so long as the agent does not stop

9We point out that while Assumptions 4, 5, and 6 are each sufficient for the theorem to hold, they are not in
general necessary (unlike Assumption 3 in the K =2 case).

0By directly computing cov; and cov, at posterior beliefs, it can be shown that our previous Assumption 3
for the case of two attributes is also absorbing.
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learning about any attribute, his posterior belief must eventually satisfy Assumption 6.
I Theorem 2 applies at these posterior beliefs, implying in particular that the agent’s
optimal attention allocation is eventually constant and proportional to the weight vector
a.

4. EXPLANATION OF RESULTS
4.1. Fixed Stopping Time t

Consider the simpler problem in which the agent makes a decision at an exogenously
fixed and known time ¢. Because normal signals can be completely Blackwell-ordered
based on their precisions (Hansen and Torgersen (1974)), different mixtures over the
sources can be compared based on how much they reduce the variance of the payoff-
relevant state.

Formally, the agent’s past attention allocations integrate to a cumulative attention vector
q(t) =(qi(t) ..., qx(¢)) € RX at time ¢, describing how much attention has been paid to
each attribute thus far. The agent’s posterior variance of w is

V(g) =/ (37" +diag(q(1))) e, ®)

where 2 is the prior covariance matrix over the attribute values, and diag(q(¢)) is the di-
agonal matrix with entries ¢, (¢), ..., gx(¢). This posterior variance depends solely on the
payoff weights «, the prior covariance matrix %, and the cumulative acquisitions g(). It
does not depend on the realizations of the diffusion processes or the order of informa-
tion acquisitions. So the problem of optimizing for a fixed end date ¢ reduces to a static
problem of optimally allocating ¢ units of attention.

Define the t-optimal attention vector

n(t)= argmin V(qi,...,qx)

q15---qK=0,)_; qi=t

to be the allocation of ¢ units of attention that minimizes the posterior variance of w,
which is unique by Lemma 4 in the Appendix. Every information acquisition strategy that
cumulates to the attention vector n(¢) at time ¢ is optimal for any decision problem at that
time.

4.2. Uniformly Optimal Strategy: Definition

In general, the family of solutions {n(¢)},so corresponding to optimal allocation of ¢
units of attention does not determine the solution to the dynamic problem. To see this,
suppose n(1) = (0, 1), so that the optimal way to allocate attention for a decision at time
t = 1 s to allocate it all to the second attribute, but n(2) = (2, 0), so that the optimal way
to allocate attention for a decision at time ¢ = 2 is to allocate it all to the first attribute.
Clearly, these t-optimal attention vectors are incompatible under a single dynamic strat-
egy: Optimal attention allocation for a decision at time ¢ = 1 precludes achieving the
optimal attention allocation for time ¢ = 2.!> So when the agent faces the possibility of

"UThis is because any attention devoted to attribute i simply increases the ith diagonal entry of the preci-
sion matrix 3~!. With sufficient attention devoted to each attribute, the posterior precision matrix must be
diagonally-dominant.

2That a decision-maker cannot choose to forget or undo past information acquisitions is a standard prop-
erty satisfied by any learning or information acquisition strategy. In Nieuwerburgh and Veldkamp (2010), this
is referred to as the no-forgetting constraint.
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stopping at either time ¢ = 1 or # =2 (depending on the realizations of the diffusion pro-
cesses), he must trade off between achieving more precise information about the payoff-
relevant state at either time. The optimal resolution of this trade-off depends on the spe-
cific decision problem.

If, however, it were possible to continuously string together the ¢-optimal attention vec-
tors n(¢) along the path of one information acquisition strategy, then such intertemporal
trade-offs would not arise, and we might further conjecture such a strategy to be optimal
for all stopping problems. This turns out to be true.

DEFINITION 1: Say that an information acquisition strategy S is uniformly optimal if it
is deterministic (i.e., history-independent) and its induced cumulative attention vector at
each time ¢ is the t-optimal vector n(¢).

A uniformly optimal strategy, by definition, minimizes posterior variance at every in-
stant . A result of Greenshtein (1996) implies that such a strategy is best among all
history-independent information acquisition strategies. In Lemma 5, we extend Green-
shtein’s (1996) result to show that a uniformly optimal strategy is best among a/l strategies,
including those that condition attention allocations on past signal realizations. In brief, we
first observe that compared to any alternative information acquisition strategy, the uni-
formly optimal strategy achieves the same precision of beliefs about the state at earlier
times. We then use this observation to show that any decision rule (i.e., any stopping time
and final action) achievable under the alternative strategy can be replicated under the
uniformly optimal strategy in a way that makes the agent stop earlier, but maintains his
belief at the time of stopping. This “replicating” decision rule, together with the uniformly
optimal attention strategy, yields a higher expected payoff. We note that this proof relies
crucially on the normal environment, which allows us to capture the agent’s uncertainty
through the single statistic of posterior variance.

Thus, whenever a uniformly optimal strategy exists, it must be an optimal strategy in
our problem.” It remains to show that under the assumptions we provided, a uniformly
optimal strategy does exist, and has the structure described in Theorems 1 and 2.

4.3. Uniformly Optimal Strategy: Existence

LEMMA 1—Monotonicity: A uniformly optimal strategy exists if and only if the t-optimal
attention vector n(t) weakly increases (in each coordinate) over time.

In words, a uniformly optimal strategy exists if and only if, for every ¢’ > ¢, the optimal
allocation of # units of attention devotes a (weakly) higher amount of attention to each
source compared to the optimal allocation of ¢ units. Thus, monotonicity of n(¢) and
existence of a uniformly optimal strategy are equivalent.

Whether n(¢) is monotone turns out to be closely related to a classic problem in con-
sumer theory: Suppose a consumer has a utility function U(qy, ..., gx) over consumption
of g, units of each of K goods, and let D(p, w) denote his Marshallian demand subject to
the budget constraint p - q < w. Then, the consumer’s demand is normal if each coordi-
nate of D(p, w) increases with income w. In our setting, we can set U = -V (q, ..., qx)

3Qur argument based on Blackwell comparisons gets to the optimal policy (i.e., attention allocation) with-
out going through the HIB equation and value function, which may be difficult to solve for explicitly.
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to be the negative of the posterior variance, so that minimizing V" is the same as maxi-
mizing U. Our ¢-optimal attention vector n(t) is then precisely the Marshallian demand,
when prices are identically equal to 1 and income is equal to ¢. Thus, normality of the con-
sumer’s demand under utility function U = —V is equivalent to existence of a uniformly
optimal strategy.

The literature on consumer demand provides conditions on U that imply normality of
demand. When there are just two goods, Alarie and Bronsard (1990) and Bilancini and
Boncinelli (2010) showed that demand is normal if and only if 9;U - ;U > 9,U - 9;;U
for i, j € {1, 2}. For more than two goods, a sufficient condition for normality of demand
given by Chipman (1977), and more recently generalized by Quah (2007), is concavity and
super-modularity of U."

The key difference between these conditions and ours is that the known conditions
apply to the utility function U. In our environment, U = —V = —o/(37! + diag(q)) '«
is a composite function of the primitive objects 3 (prior belief) and « (payoff weights).
Our Assumptions 3-6 apply to these primitives, which have no natural analogue in the
consumer demand problem. Moreover, the conditions in the literature are stated for the
utility function U evaluated at all demand levels g. In contrast, we show it is possible to
reduce such conditions to conditions on %, and « only, which are much easier to verify.

Specifically, our Assumption 3 for the K = 2 case is necessary and sufficient for the
resulting function —V to satisfy the condition given in Alarie and Bronsard (1990) and
Bilancini and Boncinelli (2010), and our Assumption 5 (“Perpetual Complementarity”)
can be shown to imply that U = —V is not only concave but also super-modular, thus
coinciding with the condition given by Chipman (1977) and Quah (2007). Generalizing
beyond Perpetual Complementarity, we use the special form of I to develop alternative
sufficient conditions. Perhaps surprisingly, we show that if the sources are substitutes at
every posterior belief (i.e., —} is sub-modular), then n(#) is also monotone. This “Per-
petual Substitution” property, too, can be stated as a simple condition on the prior co-
variance matrix (our Assumption 4). Finally, if correlation is not too strong—as implied
by Assumption 6, which bounds the size of the covariances between the attributes relative
to the size of their variances—then again we obtain monotonically increasing ¢-optimal
attention vectors.

In our proof of Theorem 2, we show that these three different economic conditions
are each sufficient to imply the following technical property: At every moment of time,
those attributes that covary most strongly with the payoff-relevant state w all have positive
covariance with o (Lemma 8). As demonstrated in Lemma 9, this key technical prop-
erty delivers monotonicity of n(¢). In fact, we show in the Supplemental Material that
a weaker version of this technical property is also necessary for our characterization to
hold. Further exploration of our sufficient conditions, and whether they imply results for
other utility functions U besides our special case of U = —V/, is an interesting topic for
subsequent work.

4.4. Uniformly Optimal Strategy: Structure

When n(¢) is indeed monotone in ¢, the uniformly optimal strategy that achieves these
vectors is simply the one that sets each attention allocation B(¢) to be the time-derivative
of n(t). Under this strategy, the agent divides attention at every moment across those

4The super-modularity property is also called “ALEP-complementarity” to distinguish from Marshallian
and Hicksian complementarity.
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attributes that maximize the instantaneous marginal reduction of posterior variance V.
While the set of attributes is pinned down by first-order conditions, the precise mixture
over those attributes is pinned down by second-order conditions, which ensure that this
set of attributes continue to have equal and marginal values at future instants. Specifi-
cally, for each set of attributes, there is a unique linear combination that corresponds to
the “learnable component” of w given those attributes (formally, it is a projection of w).
It turns out that at each stage, it is optimal to acquire information in a mixture propor-
tional to the weights of this linear combination, thus producing an unbiased signal about
the learnable component of w. In the final stage, when the agent pays attention to ev-
ery attribute—so that the learnable component of w is w itself—the optimal mixture is
proportional to the payoff weights «.

As beliefs about a set of attributes become more precise, their shared marginal value
decreases continuously relative to the marginal value of learning about other attributes.
Eventually the marginal value of learning about some other attribute “catches up” and
joins the set of maximizers. This yields the nested-set property in Theorems 1 and 2.

5. APPLICATIONS

The characterizations in Theorems 1 and 2 suggest that the study of dynamic informa-
tion acquisition in our setting is quite tractable. We now apply this characterization to
derive new results in a diverse set of applications.

In Section 5.1, we consider optimal attention allocation for choice between two goods
and generalize recent results from Fudenberg, Strack, and Strzalecki (2018). In Sec-
tion 5.2, we consider the dynamic implications of a one-time attention manipulation, com-
plementing a recent exercise in Gossner, Steiner, and Stewart (2021). In Section 5.3, we
develop a game between biased news sources, and characterize the degree of polarization
and the quality of information in equilibrium. The applications in Sections 5.1 and 5.2
show that we can use our main results to tractably introduce correlation in settings that
have been previously studied under strong assumptions of independence. Our applica-
tions in Sections 5.1 and 5.3 show how our results about information acquisition can be
used as an intermediate step to derive results about other economic behaviors.

5.1. Application 1: Binary Choice

Building on a large literature regarding “binary choice” problems, Fudenberg, Strack,
and Strzalecki (2018) (henceforth FSS) recently proposed the uncertain drift-diffusion
model: An agent has a choice between two goods with unknown payoffs v; and v,, and
can learn about those payoffs before making a choice. The two payoffs are jointly normal

and i.i.d.:
oy~ A (e (G ) G)

The agent observes two Brownian processes whose drifts are the unknown payoffs. He
then chooses a stopping time 7 to maximize the objective

E[E[max{vl, U2} | }",] - CT]’

where c7 is a linear waiting cost.
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FSS’s main economic insight is that earlier decision times are associated with more
accurate decisions. Formally, let p(#) be the probability of choosing the higher-value good
conditional on stopping at time ¢. FSS’s Proposition 3 shows that p(#) is monotonically
(weakly) decreasing over time. This comparative static is not obvious because two forces
push in opposite directions: On the one hand, the agent has more information at later
times, suggesting that later decisions may be more accurate. On the other hand, because
the stopping time is endogenously chosen, the agent is more likely to stop earlier when
the decision is easy (i.e., when one good’s value is much higher than the other). FSS’s
result implies that this second force dominates.

FSS showed, moreover, that this result is robust to endogenous attention allocation
under a budget constraint. Specifically, suppose that at each moment of time, the agent
has one unit of attention to allocate across learning either v; or v,. Then, FSS’s Theorem 5
shows that the agent optimally divides attention equally between learning about the two
payoffs at every moment of time, similar to the exogenous process specified in their main
model.

FSS’s model of endogenous attention and binary choice is nested within our framework.
To map this setting back into our main model, define 6; = v; and 6, = —v,. Then, since
the payoff difference v; — v, is a sufficient statistic for the agent’s decision, this problem
corresponds to the payoff-relevant state w = v; — v, = 6; + 6, in our framework.

We now show that we can use our results to go beyond the case of independent and
identically distributed payoffs (as imposed in the prior in (3)). Different from FSS, sup-
pose that the agent’s prior over (6;, 6;) is normal with an arbitrary covariance matrix

3= @; ?2; ). Since the payoff weights are a; = @, = 1, our Theorem 1 applies and char-
acterizes the agent’s optimal attention allocations over time given any 2. The following

corollary is an immediate generalization of FSS’s Theorem 5:

COROLLARY 1: Suppose 21, > 2. The agent’s optimal information acquisition strategy
(B1(t), B2(2)) =0 in this binary choice problem consists of two stages:
e Stage 1: At all times

oy Iu—3n
1T e )

the agent optimally allocates all attention to 0.
o Stage 2: At times t > t}, the agent optimally allocates equal attention to 6, and 0,.

Thus, when the agent is initially more uncertain about one of the two payoffs, he spends
a period of time exclusively learning about that payoff. Starting at time ¢}, the agent di-
vides attention equally across learning about the two goods, as in FSS’s i.i.d. case. From
the closed-form expression for £}, it is straightforward to show that the length of the first
stage is increasing in the asymmetry of initial uncertainty, and also increasing in the de-
gree of correlation between the two payoffs.

We now use this characterization of optimal attention allocation to further generalize
FSS’s main economic insight regarding the relationship between choice speed and accu-
racy.

PROPOSITION 1: Forany 3., p(t) is weakly decreasing in t. Thus, choice accuracy is weakly
higher at earlier stopping times.
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The logic of this result is as follows (see Appendix O.4 of the Supplemental Material for
detailed analysis). First, Corollary 1 implies that we can separate the problem of optimal
stopping from the problem of optimal information acquisition. That is, we can take in-
formation as exogenously given by the process described in Corollary 1, and characterize
properties of optimal stopping within this problem. In particular, Corollary 1 pins down
the evolution of the agent’s posterior covariance matrix 3, which will be important for
the subsequent arguments.

While 2, is a deterministic process, the agent’s posterior expectation for the payoff dif-
ference 0, + 6, evolves according to a random process Y;. As in FSS, the symmetric stop-
ping boundary at time ¢ is given by a function k*(2,) of the agent’s posterior covariance
matrix 3,; that is, the agent optimally stops at time ¢ if and only if |Y;| > k*(Z,). Given
these stopping boundaries, the choice accuracy p(¢) conditional on stopping at time ¢ has

the following simple form:
k(X
pi=o( <50, 4)
gy

where o7 is the agent’s posterior variance of 6, + 6, at time ¢, and ® is the normal c.d.f.
function.

So it remains to understand how (4) evolves. There are two forces, which turn out to
go in the same direction. First, uncertainty about the payoff difference 6, 4+ 6, decreases
over time. As FSS already showed in the i.i.d. case, this effect weakly decreases the ratio
k*(X,)/o,. Roughly speaking, stopping at an earlier time when there is more residual un-
certainty requires the agent to have received disproportionately stronger signals to forgo
the option value. In our Lemma 16, we generalize this insight to arbitrary prior beliefs.

Second, our characterization in Corollary 1 reveals that the optimal attention strat-
egy continuously reduces the asymmetry in uncertainty between the two attributes. We
show in Lemma 15 that holding fixed uncertainty about the sum 6, + 6,, asymmetry in
uncertainty about the two attributes 6; and 6, allows the agent to learn faster. That is,
comparing an agent with an asymmetric prior to another agent with a symmetric prior, if
the two agents have the same prior variance of 6, + 6,, then the asymmetric prior leads to
lower posterior variance of 6, + 6, at every future time (when both agents adopt the opti-
mal attention strategy).'> So asymmetric uncertainty increases the option value to waiting,
and thus also the stopping boundary relative to the symmetric baseline. This effect, too,
causes the ratio k*(2,)/o; to decrease over time. Combining both effects yields the result
that p(¢) decreases over time.

In fact, using similar arguments, we can further generalize Proposition 1 to asymmetric
learning speeds about the two unknown payoffs. See Appendix O.4.5 of the Supplemental
Material.

A simple informal argument is as follows. Given any prior, we can upper-bound the posterior variance
under the optimal strategy by the posterior variance under a strategy that devotes equal attention to 6, and 6,
at all times, which is equivalent to receiving the pair of signals 6; +A (0, 2) and 6, + N (0, 2) over every unit of
time. This pair must be weakly more informative than any summary statistic of the two signals—for example,
their sum. Thus the agent learns about 6, + 6, at least as fast as if he received the signal 6, + 6, + N'(0, 4) over
every unit of time. When the prior is symmetric, then the equal-attention strategy considered above is optimal,
and this lower bound on the speed of learning is tight. But when the prior is asymmetric, then the agent can
improve upon this bound. This suggests that the agent can learn more quickly under an asymmetric prior than
a symmetric one, holding fixed his prior uncertainty about 6; + 6,.
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5.2. Application 2: Attention Manipulation

So far, we have assumed that the agent has complete control over how to allocate his at-
tention. In practice, businesses expend substantial effort to divert attention towards their
products. Such “attention grabbing” often takes the form of a one-time intervention (e.g.,
an ad) rather than a continual shift in exposure, so the value of the attention diversion
depends on how it shapes subsequent allocation of attention. Two questions thus natu-
rally arise: (1) Does a one-time manipulation of attention towards a given source lead to
a persistently higher amount of attention devoted to that source, or will the decision-
maker quickly “compensate” for the manipulation? (2) What are the externalities on
other sources—in particular, is it the case that manipulating attention towards one source
decreases the amount of attention devoted to others?

Gossner, Steiner, and Stewart (2021) (henceforth GSS) recently studied this question
in a model in which an agent sequentially learns about the quality of a number of goods
by allocating attention to one good each period. One of their main results (Theorem 1)
resolves the two questions posed above in the following way:

(1) the cumulative amount of attention paid to that good remains persistently higher

following the attention manipulation, and

(2) the cumulative amount of attention paid to any other good remains persistently

lower following the attention manipulation.
A key assumption in GSS is that the attention strategy used by the agent satisfies a ver-
sion of Independence of Irrelevant Alternatives (IIA): Conditional on not focusing on
the good to which attention is diverted, the agent’s belief about that good does not affect
the relative probabilities of focusing on the remaining goods. Proposition 5 in Gossner,
Steiner, and Stewart (2021) shows that when the agent adopts a class of “satisficing” stop-
ping rules, the optimal attention strategy satisfies ITA for goods with independent values.'

We can use our framework and main characterization to study a related but differ-
ent problem, where the agent learns about multiple attributes of an unknown (one-
dimensional) payoff-relevant state, and—importantly—those attribute values can be cor-
related. Additionally, we differ from GSS by focusing on the optimal attention allocation
strategy and how it is affected by attention manipulation. Outside of the special case of
independent attributes, the optimal strategy in our setting fails IIA when there are more
than two attributes. Nevertheless, we show that GSS’s finding in (1) holds for flexible pat-
terns of correlation, and the finding in (2) holds under an additional condition that we
provide.

Formally, suppose in our framework attention is manipulated such that the agent only
attends to source 1 from time zero to time 7', where 7" > 0 is fixed. After time 7', the agent
adopts the optimal attention strategy given his posterior belief at 7. The dynamic effect
of the one-time attention manipulation is then understood by comparing the cumulative
attention vectors under the optimal strategy and under the manipulated strategy. We as-
sume throughout that our previous conditions on the prior covariance matrix apply (i.e.,
Assumption 3 if K =2 and Assumption 4, 5, or 6 if K > 2).

PROPOSITION 2: Let T* > T be the earliest time at which the cumulative attention towards
source 1 exceeds T under the baseline (unmanipulated optimal) strategy. Then, cumulative
attention towards source 1 is strictly larger under the manipulated attention strategy at every
moment of time t € (T, T*), and equal to the baseline at all later times t > T*.

16This additional assumption on the stopping rule is not required in our setting, since we focus on the
uniformly optimal attention strategy, which is independent of stopping behavior.
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Thus, the finding in (1) holds under arbitrary correlation (so long as our characteriza-
tions apply): Attention manipulation towards source 1 has a persistent positive effect on
the cumulative amount of attention that source 1 receives up to every future time. On the
other hand, we show that this increase in cumulative attention vanishes in the long run,
with the cumulative attention paid to source 1 under the baseline strategy “catching up”
to the manipulated strategy by time 7.

The proof of this proposition is simple given our previous analysis. The cumulative
attention vector under the optimal strategy is the #-optimal vector defined as

n(t) = (ni(1),...,nk(r))= argmin V(q), (5)

q15-5qK Z0:3; qi=t

where V' is the posterior variance function given by (2). On the other hand, the manipu-
lated strategy induces the following constrained t-optimal vector 7(t) at any time ¢ > T:"7

at) = (n(1), ..., k(1)) = argmin V(q). (6)

q15+qK 203 qi=t and ¢ =T

If n,(¢t) > T, then the unconstrained ¢-optimal vector n(t) satisfies the constraint in (6),
so it coincides with the constrained z-optimal vector 7(¢). Moreover, n;(¢) — 0o as t — 00
because our characterization says that source 1 receives positive and constant attention
at every instant in the final stage. Thus, while initially source 1 must receive higher cu-
mulative attention under the manipulated strategy, eventually the cumulative attention
devoted to source 1 must be the same under the baseline and manipulated strategies.
To show that T is this switch point, note that ¢t > T* implies n,(¢) > T (by definition of
T* and monotonicity of n,(¢)), in which case n;(¢) = n,(t). And if T <t < T*, we have
n(t) < T < ny(t), so the manipulated amount of attention devoted to source 1 strictly
exceeds that of the baseline strategy. This yields the result.

When there are only two attributes, Proposition 2 also delivers GSS’s second finding,
namely, that diversion of attention towards learning about one attribute weakly reduces
cumulative attention towards learning about the other attribute at every moment of time.
With more than two attributes, however, correlation between the attributes can overturn
this result.

EXAMPLE 4: Suppose there are three attributes, the payoff-relevant state is w = 6, +
0, + 65, and the prior covariance matrix is

3 -2 0
5=1-2 3 0
0o 0 2

Since 3! is diagonally-dominant, Theorem 2 applies.

Without attention manipulation, the optimal strategy devotes the first 0.5 units of at-
tention towards 6;. At t = 0.5, the three sources have exactly equal marginal values (and
equal payoff weights), so equal attention is optimal afterwards. Thus, n(¢) = (0, 0, ¢) for
t<05and n(r) = (2, 52, &) for 1 > 0.5.

17 As discussed, the “absorbing property” of our sufficient conditions implies that our characterizations apply
to the posterior belief at time 7' after the agent has paid 7" units of attention to source 1. Thus, the cumula-
tive attention vector at time ¢ > 7" must minimize the posterior variance V' among feasible attention vectors
following the manipulation. This leads to the constrained ¢-optimal vector 7(¢).
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Now suppose instead that the agent is forced to attend to source 1 for 0.1 unit of time.
Then, after the first 0.1 units of attention devoted towards 6, the agent optimally still
begins by learning about 5. This lasts until £* = L < 0.5, at which time source 2 has the
same marginal value as source 3. The second stage then involves learning about 6, and
05 using the constant attention ratio 3 : 7. The third stage begins at ** = 0.8, after which
equal attention across the three sources is optimal.

It can be checked that the manipulation of attention towards source 1 weakly increases
the cumulative attention towards source 2 at all times, and strictly so during the period

te(%,0.8).

In this example, sources 1 and 2 provide complementary information (since %, < 0).
Manipulating attention towards source 1 thus increases the marginal value of source 2,
and the agent begins observing source 2 earlier than he would have otherwise. In con-
trast, we might expect that when all sources are substitutes with one another, attention
manipulation to source 1 must decrease the amount of attention devoted to every other
source. The challenge is understanding what the appropriate notion of “substitutes” is.
This turns out to be the property given earlier in Assumption 4, which guarantees that
each pair of attributes has a positive partial correlation coefficient.

PROPOSITION 3: Suppose all pairs of sources are substitutes (i.e., Assumption 4 is sat-
isfied). Then cumulative attention towards every source i > 1 is weakly smaller under the
manipulated strategy than under the baseline strategy, at every moment of time.

This result complements GSS by demonstrating a class of correlated attributes for
which manipulation of attention towards one reduces cumulative attention towards all
others. Together with our previous Proposition 2, it shows that GSS’s Attention Theorem
extends beyond their IIA assumption. Since our environment and GSS’s are non-nested,
these results collectively point to the possibility of a more general set of sufficient condi-
tions, which we leave to future work.

5.3. Application 3: Biased News Sources

Our previous two applications demonstrate that we can use our results to build on
existing results from the literature. We now propose a new model—specifically, a game
between strategic information providers—and show that our characterization of optimal
information acquisition can be used to derive qualitative insights in this new setting.

In our model, a representative news reader seeks to learn an unknown state w ~
N (w,, 02), and can learn about @ from either of two news sources labeled i € {1, 2},
which are associated with opposite political parties. Source 1’s political party would like
for the reader to perceive the state to be w + b, while source 2’s political party would like
for the reader to perceive the state to be w — b. The bias b is unknown to the reader, and
the reader’s prior is that b ~ N (s, 07).

Each news source decides how much to bias their reporting in the direction favorable
to their party, and how accurate to make their reporting. Formally, each source chooses
a bias intensity ¢; > 0 and noise parameter {; > 0. A unit of time spent on source 1 is
informationally equivalent to a realization of the random variable

Zl va(w—{— ¢1b’ 512)3
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while a unit of time spent on source 2 is informationally equivalent to a realization of the
random variable

Zy~N (o — ¢, 55).

Both choices ¢, and {; are fixed across time and observable to the reader.'®

For any given choices of precisions and bias intensities (¢, {) = (b1, ¢2; {1, £2), the
reader’s optimal attention allocations are denoted (Bi‘b’g)(t), Bg‘b’o (#)) =0 and can be de-
rived from the characterization in Theorem 1. Each source i’s payoff is a combination
of a preference for viewership and a preference for bias:

Ui(b, £) = [ e B0 () di — A(1— ).

The first part, [~ re™" B"9 (1) dt, is the discounted average attention paid to source i
given the common discount rate r,”” which we interpret as a reduced form for advertising
revenue. The second part, —A(1 — ¢,)?, penalizes the news source for distance from the
ideal bias for its party. This part of the payoff function is maximized by choosing ¢; =1,
in which case source 1’s signal is centered at w + b and source 2’s signal is centered at
w — b. The parameter A € R, determines the strength of incentive for bias, relative to the
incentive for viewership.

The following proposition reports equilibrium in this game between the two sources.
For technical reasons, we require an assumption that the incentive for bias is not too
weak.

PROPOSITION 4: Suppose A > 1.6.*' The unique pure strategy equilibrium is (3, {7;

(;b;aé;)’W]E ¢
*— hF = — -
¢1_¢2_ ( —|—‘/| )
1 2 2«/_1' <+V 2*)'

8For example, a source may have a reputation for providing very biased information but having high-quality
reporting.
YTo apply this theorem, we can transform the current setting to our main model: Define 6, = % (0 + ¢1b)

and

and 6, = {i? (w — ¢2b), so that a unit of time spent on each source i produces an equally informative (standard

normal) si-gnal about 6;. The payoff-relevant state can be rewritten as w = a; 6, + a,6, with payoff weights
a =1 - ﬁ and a, =, - ﬁ. It can be checked that Cov(w, 0;) = 02/{; > 0, so our Assumption 3 is
satisfied and Theorem 1 holds.

PNote that in this formulation, we implicitly assume that the reader never stops information acquisition,
which simplifies our subsequent analysis. However, [, re™""B;(¢)dt can be interpreted as the limiting dis-
counted average attention that source i receives when the reader chooses an endogenous stopping time under
vanishingly small information acquisition costs. Never stopping can also be justified in an extension of our main
model where the agent faces multiple decisions across time (see Section 6).

2 This assumption is imposed to guarantee the existence of a pure strategy equilibrium. Our analysis shows

that A > 1.6 is sufficient for existence, whereas a weaker condition A > % is necessary.
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Given these equilibrium choices, the reader optimally devotes equal attention to the two
sources at every moment.

The subsequent corollary regarding the informativeness of news in equilibrium follows
immediately.”

COROLLARY 2—Informativeness of News: The equilibrium noise level, {* = %(1 +

1
V1=3)
(a) is increasing in the incentive for bias, \;

(b) is increasing in the prior uncertainty about partisan implications, oy;
(c) is decreasing in the discount rate, r.

Part (a) says that incentives for greater bias not only increase polarization, which is
expected, but also lead to a reduction in the quality of news. To understand this result,
consider the incentives for source i’s choice of precision. Applying our characterization
in Theorem 1, there are up to two stages of information acquisition: In Stage 1, if there
is a strictly more informative source, then that source receives all viewership; in Stage 2,
both sources receive a constant proportion of viewership. We show that, for any equal
bias intensity choices ¢, = ¢, source i’s long-run share is ;Tf{z, while source i is chosen
in Stage 1 if and only if its noise term is smaller ({; < {5_;). Thus, sources face a trade-
off between optimizing for greater long-run viewership—where a larger noise choice ¢;
increases the long-run share—versus competing to be chosen in the short run—which
encourages smaller ¢;. Intuitively, more precise information improves the competitive
value of a source at the beginning of time, but reduces the value of continual engagement
with that source. In equilibrium, sources choose the same ¢;, thus washing out the first
stage of information acquisition.

The size of this common noise level, however, depends on the incentives for bias. When
sources provide biased news, the reader must attend to both sources to learn the truth.
Polarized news sources thus live in symbiosis, where the extremity of bias on one side
increases the value of information from the other. In the language of our paper, two
sufficiently polarized news sources on opposite sides provide complementary information
(while in contrast, two unbiased sources about w provide fully substitutable information).
The strength of complementarity increases monotonically with the degree of polarization.

Since the reader has stronger preferences for mixing over the two sources when they
are complements, this means that the length of Stage 1 (when it exists) is decreasing in the
degree of polarization. Thus, the more polarized the news sources are, the more emphasis
these sources place on the long run, which in turn leads to lower quality news provision as
we have discussed. This gives the conclusion in Part (a) of Corollary 2. In addition, larger
prior uncertainty about b implies higher value of de-biasing and thus also a shorter Stage
1, leading to Part (b).

Part (c) of Corollary 2 holds by very similar reasoning. Less patient news sources com-
pete over short-run profits (i.e., being chosen in Stage 1), and thus prefer precise signals,
while patient sources compete for long-run profits (i.e., long-run proportion), and thus

221t can be computed that when the sources choose ¢ = ¢, = {* and ¢ = ¢,, the news reader’s posterior

variance of the payoff-relevant state w at time ¢ is (”% +1 !,f()z )~L. This confirms why {* is a sufficient statistic

for equilibrium informativeness.
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prefer imprecise signals. So the less patient the sources are (larger r), the more precise
their signals will be in equilibrium (smaller {*).

We believe that some of these qualitative insights may extend to a richer model; for
example, if sources simultaneously report on multiple states, the reader endogenously
stops acquiring news once his belief is sufficiently precise, or if the sources have direct
preferences over the reader’s beliefs. We leave exploration of these interesting extensions
to future work.

6. DISCUSSION

Information acquisition is a classic problem within economics, but there are relatively
few dynamic models that are simultaneously rich and tractable. In this paper, we present
a class of dynamic information acquisition problems whose solution can be explicitly char-
acterized in closed form. We show that a complete analysis is feasible if we assume:
(1) Gaussian uncertainty, (2) a one-dimensional payoff-relevant state, and (3) correla-
tion across the unknowns that satisfies certain assumptions (e.g., if correlation is not too
strong). Given these restrictions, a great deal of generality can be accommodated in other
aspects of the problem, such as the decision problem and the agent’s time preferences.
The tractability of the solution and the flexibility of the environment open the door to
interesting applications.

We conclude by briefly mentioning a few other potential extensions and variations.

Discrete Time. Although our main model is in continuous time, our results have di-
rect analogues in a related discrete-time model. Specifically, for the model previously
described in Remark 1, we have the following result: Suppose any of Assumption 4, 5, or 6
holds. Then, at each period t € Z,, the optimal allocation of precision is (m(t), ..., wx(t)),
where ;(t) = ftHl Bi(s)ds for each i, with B;(s) being the optimal attention allocation for
the continuous-time model as described in Theorem 2.%

Exogenous Stoppmg Although we have assumed that the agent endogenously chooses
when to stop acquiring information, our results hold without modification if instead the
end date arrives according to an arbitrary exogenous distribution. Additionally, in that
alternative model, the optimal path of attention allocations is uniquely characterized by
our results so long as the exogenous distribution of end date has full support.

Intertemporal Decision Problems. Our main model assumes that the agent takes only
one action, which simplifies the exposition. But since our analysis based on the notion of
uniform optimality is independent of details of the payoff function, it can be easily gener-
alized to a setting where the agent takes N actions ay, ..., ay at times 7; <--- < 7y. Our
characterization of the optimal attention strategy extends for any (intertemporal) payoff
function u(ry, ..., Ty, a1, ..., ay, ) that is decreasing in the decision times 74, ..., Ty.

APPENDIX A: PRELIMINARIES
A.1. Posterior Variance Function

Given g; units of attention devoted to learning about each attribute i, the posterior
variance of @ can be written in two ways:

»1n a companion piece, Liang, Mu, and Syrgkanis (2019), we discretized not only time but also information
acquisitions: At each period ¢, the agent has to choose one of K standard normal signals, without the ability to
allocate fractional precisions. The necessity of integer approximation complicates the characterization of the
full sequence of signal choices. In that paper, we instead provide conditions under which myopic acquisition is
(eventually) optimal.
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LEMMA 2: It holds that
V(qi,....qx) = [+ diag(q))_l]a =d[Z-3(=+ diag(l/q))_IE]a,
where diag(1/q) is the diagonal matrix with entries 1/q,, ..., 1/qk.

This function V extends to a rational function (quotient of polynomials) over all of R¥;
that is, even if some q; values are negative.

PROOF: The equality (3! + diag(q)) ' =3 — 3(2 + diag(1/g)) 'Y is well-known. To
see that 1/ is a rational function, simply note that (27! + diag(g))~' can be written as
the adjugate matrix of 37! + diag(q) divided by its determinant. Thus, each entry of the
posterior covariance matrix is a rational function in g. Q.E.D.

Below, we calculate the first and second derivatives of the posterior variance function
V.

LEMMA 3: Given a cumulative attention vector q > 0, define
yi=v(q) = (" +diag(q)) e, (7
which is a vector in RX. Then the first and second derivatives of V' are given by
oV ==y 9V =2vy [E+ diag(q))_l]ij.
PROOF: From Lemma 2 and the formula for matrix derivatives, we have
gV =—a/ (37" +diag(q)) " Ax(S " + diag(q)) " a = —[¢](X " + diag(q)) ] = —v7,

where e; is the ith coordinate vector in R¥, and A; = e; - €} is the matrix with “1” in the
(i, i)th entry and “0” elsewhere. For the second derivative, we compute that

(?'yl'
oV =2y
j Y P

=2y, ¢)(37" +diag(q)) A, (3" + diag(q)) @
J

— 2y, [(37' + diag(9)) '], - v

as we desire to show. The last equality follows by writing A; = e, - ¢/, and using ¢;(X~" +
diag(q))'e; =[(2~" + diag(q))']; as well as ¢/ (X7"' +diag(q)) 'a=¢;y=v;. QE.D.

COROLLARY 3: V is decreasing and convex in qy, ..., qx whenever q; > 0.

PROOF: By Lemma 3, the partial derivatives of I are non-positive, so V' is decreasing.
Additionally, its Hessian matrix is

2diag(y) - (37! + diag(q)) " - diag(y),

which is positive semi-definite whenever g > 0. So V' is convex. Q.E.D.
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We use these properties to show that, for each ¢, the t-optimal vector n(z) is unique:
LEMMA 4: For each t > 0, there is a unique t-optimal vector n(t).

PROOF: Suppose for contradiction that two vectors (74, ..., rx) and (s, ..., Sx) both
minimize the posterior variance at time ¢. Relabeling the sources if necessary, we can
assume r; —s; is positive for 1 < i < k, negative fork+1 <i </, andzerofor/+1 <i<K.
Since ) ,r; =) _;s; = t, the cutoff indices k, / satisfy 1 <k </ <K.

For A € [0, 1], consider the vector g* = A - r + (1 — A) - s which lies on the line segment
between r and s. Then, by assumption, we have V' (r) =V (s) <V (q"). Since V' is convex,
equality must hold. This means V' (¢") is a constant for A € [0, 1]. But V' (¢") is a rational
function in A, so its value remains the same constant even for A > 1 or A < 0. In particular,
consider the limit as A — +o00. Then the ith coordinate of ¢* approaches +oo for 1 <i <
k, approaches —oo for k + 1 <i </, and equals r; for i > .

For each ¢*, let us also consider the vector |g*| which takes the absolute value of each
coordinate in ¢*. Note that as A — 400, diag(1/|¢*|) has the same limit as diag(1/q").
Thus, by the second expression for V' (see Lemma 2), lim, .., V' (|¢*|) = lim,_- V' (¢") =
V7 (r). For large A, the first / coordinates of |g*| are strictly larger than the corresponding
coordinates of r, and the remaining coordinates coincide. So the fact that 1 is decreasing
and V' (|¢g*)) =V (r) implies 9,V (r)=0for 1 <i <|.

Consider the vector y = (27! 4 diag(r)) '@. By Lemma 3, 3,/ (r) = —y? for 1 <i < K.
Thus, y; =--- =y, = 0. Since « and thus v is not the zero vector, there exists j > [ s.t.
v; # 0. It follows that ¢,V (r) = 0 > ;1 (r). But then the posterior variance V' would
be reduced if we slightly decreased the first coordinate of r (which is strictly positive
since r; > §1) and increased the jth coordinate by the same amount. This contradicts the
assumption that r is a f-optimal vector. Hence the lemma holds. Q.E.D.

A.2. Optimality and Uniform Optimality

The following result ensures that a strategy that minimizes the posterior variance uni-
formly at all times is an optimal strategy in any decision problem.

LEMMA 5: Suppose the payoff function u(r, a, w) satisfies Assumption 2; then a uniformly
optimal attention strategy is dynamically optimal.

PROOF: Without loss of generality, we may assume the prior mean of w is zero; oth-
erwise shift w by a constant and modify the utility function accordingly. Let S* be the
uniformly optimal attention strategy, and {F;} be the induced filtration. Given S*, the
optimal stopping rule 7 is a solution to

supE[maxIE[u(T, a, o) | .7-";‘]].

Note that the stochastic process of posterior means M; = E[w | F/] is a continuous mar-
tingale adapted to the filtration {F;}, with M = 0. Moreover, since information is Gaus-
sian, the quadratic variation (M*), is simply v, — v}, where v’ is the posterior variance of
o at time ¢ under the strategy S*, and vy is the prior variance. By definition of uniform
optimality, for each ¢, the random variable v! is deterministic and, moreover, smallest
among possible posterior variances at time f.
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Thus, by the Dambis—Dubins—-Schwartz theorem (see Theorem 1.7 in Chapter V of
Revuz and Yor (1999)), there exists a Brownian motion (B),<[o,,,) such that

B*

vt = E[w | .7-1*]
This allows us to change variable from the time ¢ to the cumulative precision vy, — v}.

To formulate the resulting optimization problem, for each » € [0, vy) we denote by
T*(v) the time ¢ such that v; = vy — v; T* is a deterministic and increasing function of
v. Then, under the attention strategy S*, the agent’s optimal payoff can be rewritten as

supE[m;le[u(’r, a, ) | Ff]] = supE[mfxE[u(T*(v), a, )| B:]] (8)

In other words, instead of optimizing over stopping times 7 adapted to {F;}, we can think
of the agent choosing an optimal » = vy, — vf adapted to the Brownian motion B*.

We will show this payoff is greater than the optimal payoff under any other attention
strategy S. To do this, let {#,} be the induced filtration under S. Similarly to the above, we
consider the stochastic process M, = E[w | F;], adapted to {F;}. Applying the Dambis—
Dubins-Schwartz theorem again, there exists a Brownian motion (B, ),¢[o,v,) such that

Bvo—vt = ]E[w | ‘F‘t]

Here, v, is the posterior variance under strategy .S, which is in general random but always
satisfies v, > v}. Note also that B may not be the same process as B*.

Observe that for any ¢ > 0, we have t = T*(vy — v}) > T*(vy — v,). Thus, the agent’s
payoff under strategy S is bounded above by

supE[maxE[u(T, a, o) | ]-"T]] < sup]E[maxE[u(T*(vo —-,),4, ) | ]—"T]],

where we used Assumption 2. Now we can make another change of variable from 7 to
v = vy — v,, and rewrite the payoff as

supE[mfxE[u(T*(v), a, w) | BV]]. 9)

14

This is the same as the RHS of (8), since B and B* are both Brownian motions. Hence the
payoff under S does not exceed the payoff under $*, completing the proof. Q.E.D.

We also have a simple converse result:

LEMMA 6: Fix 3 and a. Suppose an information acquisition strategy is optimal for all
payoff functions u(r, a, w) that satisfy Assumption 2; then it is uniformly optimal.

PROOF: Take an arbitrary time ¢ and consider the payoff function with u(7, a, w) =
—(a — w)?* — ¢(7), where ¢(7) =0 for 7 < t and ¢(7) very large for 7 > ¢. Then the agent’s
optimal stopping rule is to stop exactly at time ¢. Since his information acquisition strategy
is optimal for this payoff function, the induced cumulative attention vector must achieve
t-optimality. Varying ¢ yields the result. Q.E.D.
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A.3. Sufficient Condition for Assumption 6

LEMMA 7: Suppose the prior covariance matrix %, satisfies %; > (2K — 3) - || for all
i # j. Then its inverse matrix satisfies [%']; > (K — 1) - [[27');| for all i # j, and is thus
diagonally-dominant.

PROOF: By symmetry, we can focusoni=1.Lets; = [27'];; for 1 <j < K, and without
loss assume s, has the greatest absolute value among s,, ..., sk. It suffices to show

S1 = (K — 1)|Sz|

From 37! -3 =1, we have ZI 27 - 252 =0. Thus, Zjil 8; - 27 = 0 because 3., = 2,;.
Rearranging yields

|S2'222|
2K -3’

1+ 21| = 52'222+Zsj'22j

Jj>2

> |85+ 20| — lej 20 > 180 - 2| —

j>2 i>2

where the last inequality uses |s;| < |s,| and |2,;] < ﬁmm for j > 2. The above inequal-
ity simplifies to

K —
sy - 21| >

K — 3 |8y - 222|

And since 2,; < 77|25, we conclude that |s;| > (K — 1)|s,| as desired. Note that s, =
[2-']y; is necessarily positive, thus s, > (K — 1)]s,]. Q.E.D.

APPENDIX B: PROOF OF THEOREM 1

Define covy, cov, as in the statement of Theorem 1, and define x; = o, det(2) to ease
notation.

Given a cumulative attention vector g, let Q be a shorthand for the diagonal matrix
diag(q). Then, by direct computation, we have

y:i=C"+0) a=E"-(I+30)"
—(+30)"S . a=I+30)" (“’“)

COV,

_ 1 1+ ¢ —q:20 SOV _ 1 X142 + COVy
detI +30) \ —¢12a  1+q:2u) \covy) ~ det(I +3Q) \x2q1 +covy )
By Lemma 3, this implies the marginal values of the two sources are given by

X1, + covy)?
WV (qi, q2) = M, 3V (q1, q2) =

det(l +30) det([ +20)

(xzéh + COV2) (10)

Note that Assumption 3 translates into cov; 4+ cov, > 0. Under this assumption, we will
characterize the t-optimal vector (n,(¢), n,(¢)) and show it is increasing over time. With-
out loss assume cov; > cov,; then cov, is non-negative. Let #; = % Then, when
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g1 + g2 < t7, we always have
X1¢> + COV] > COVy > X3¢ + COVa,
since x1g> > 0 and x,q; < x2(q1 + q2) < x»2tf = cov; — cov,. We also have
X1q> + covy > —(x,q1 + covy),

since x1¢», xq; > 0 and by assumption cov;+cov, > 0. Thus, (10) implies that
WV (qi, q2) < 3.V (g1, q2) at such attention vectors g. So for any budget of attention ¢ < £/,
putting all attention to source 1 minimizes the posterior variance V. That is, n(¢) = (¢, 0)
fort <.

For t > ¢}, observe that (10) implies 4,V (0,¢) < 8,/ (0, t) as well as ¢,V (¢,0) >
8,V (¢, 0). Thus, the ¢-optimal vector n(¢) is interior (i.e., n;(¢) and n,(¢t) are both strictly
positive). The first-order condition ¢,V = 4,1, together with (10) and the budget con-
straint n,(t) + ny(t) = t, yields the solution

B (xlt + COV; —COV, Xt — COV; + covz)
n(t) = , .
X1+ x, X1+ X

Hence n(¢) is indeed increasing in ¢. The instantaneous attention allocations B(f) are
the time-derivatives of n(¢), and they are easily seen to be described by Theorem 1. In
particular, the long-run attention allocation to source i is ——, which simplifies to —=:

x1+xp?
This completes the proof. o

ajtap”

APPENDIX C: PROOF OF THEOREM 2

We will first prove the result under Assumption 6. The proof is similar under the alter-
native Assumption 4 or 5, and is presented at the end.

Given Lemma 5, it is sufficient to show that the ¢-optimal vector n(¢) is weakly increas-
ing in ¢, that its time-derivative is locally constant, and that the time-derivative has an
expanding support set (as described in the theorem). The proof is divided into several
sections below.

C.1. Technical Property of vy

We will use the following lemma regarding the marginal values of different sources:

LEMMA 8: Suppose %' is diagonally-dominant. Given an arbitrary attention vector q,
define vy as in Lemma 3 and denote by B the set of indices i such that |vy;| is maximized. Then
v, is the same positive number for every i € B.

PROOF: We use Q to denote diag(q). Since (27! 4+ Q) 'a = vy, we equivalently have
a=(3"+0)y.

Suppose for contradiction that y; < 0 for some i € B. Using the above vector equality for
the ith coordinate, we have

K

O<a;,= Z[E_l + Q]ij Y

j=1
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Rearranging, we then have
E'+0], (=) <D 3 +0], - v=D |IZ"+2L] vl
J#L J#L

which is impossible because —y, > |y;| for each j#iand [X7' 4+ Qi = >, [[Z7" + O],
Thus, v; is positive for any i € B. The result that these vy; are the same follows from the
definition that their absolute values are maximal. QO.E.D.

C.2. The Last Stage

To prove Theorem 2, we first consider those times ¢ when each of the K sources has
been sampled. The following lemma shows that after any such time, it is optimal to main-
tain a constant attention allocation proportional to «.

LEMMA 9: Suppose 27" is diagonally-dominant. If, at some time t, the t-optimal vector

satisfies o,V (n(t)) = --- = dgV (n(t)), then the t-optimal vector at each time t > t is given
by
-t 24
nt)=n(t)+ ——— - a.
(0 =n()+ ———

PROOF: Consider increasing n(¢) by a vector proportional to «. If we can show the
equalities d;V = - -- = J¢ V" are preserved, then the resulting cumulative attention vector
must be #-optimal. This is because for the convex function V/, a vector ¢ minimizes V' (q)
subject to ¢; > 0 and ), q; =t if and only if it satisfies the KKT first-order conditions.

We check the equalities J;V = - -- = d¢ V' by computing the marginal changes of each
d;V when the attention vector g = n(¢) increases in the direction of a. Denoting diag(q)

by QO to save notation, this marginal change equals

5; _Za,/V a,—QZ%’)’/ [(E'+0) ],

j=1
by Lemma 3. Applying Lemma 8, we have y; = - - - = yx. Thus, the above simplifies to

K

0;= 27% Z[(Eq + Q)_l]ij Q= 27%%' = 27%'

j=1

Hence ¢,V = --- = dxV continues to hold, completing the proof. Q.E.D.

C.3. Earlier Stages

In general, we need to show that even when the agent is choosing from a subset of the
sources, the f-optimal vector n(?) is still increasing over time. This is guaranteed by the

%That is, n;(¢) = n;(t) + —~— - a; for each i.

g+ +a1\
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following lemma, which says that the agent optimally attends to those sources that max-
imize the marginal reduction of V/, until a new source becomes another maximizer. For
ease of exposition, we work under the stronger assumption that 3! is strictly diagonally-
dominant, in the sense that [X7']; > 3., |[27'];| for all 1 <i < K. Later, we discuss how
the lemma should be modified without this strictness.

LEMMA 10: Suppose 37" is strictly diagonally-dominant. Choose any time t and denote

B =argmin &iV(n(g)) = argmax |y;|.

Then there exists B € AX~! supported on B and t > t such that n(t) =n(t) + (t — t) - B at
times t € [t, t].

The vector B depends only on X, a, and B. The time t is the earliest time after t at which
argmin, 8,V (n(¥)) is a strict superset of B. Moreover, when |B| < K, it holds that t < oo,
whereas when |B| = K, it holds that t = oo and B is proportional to a.

PROOF: The case when |B| = K has been proved in Lemma 9, so we only consider
|B| < K. Without loss we assume B={1, ..., k} with 1 <k < K. Let ¢ = n(¢) and define
v as before. By Lemma 8§, v; is the same positive number for i < k. Moreover, ¢-optimality
implies that g; = 0 whenever j > k. Otherwise, the posterior variance could be reduced by
decreasing g; and increasing g, as source 1 has strictly higher marginal value than source
J-

We now use a trick to deduce the current lemma from the previous Lemma 9. Specif-
ically, given the prior covariance matrix X, we can choose another basis of the attributes

Or,..., 6k, 07, ..., 0% with two properties:
1. each 07 (j > k) is a linear combination of the original attributes 6,, 65, ..., 0x;
2. Cov[6;, 67] =0 for all i < k < j, where the covariance is computed according to the
prior belief 3.

Denote by 6 the vector (61, ..., 6;), and by 6* the vector (6;,15-..,0%)". The payoff-
relevant state w = o - @ can thus be rewritten as & - 6+ «* - 6* for some constant coefficient

vectors & € R¥ and o* € R€~*. Using property 2 above, we can solve for & from 3, «, and
B:

a=Cmn)" G, 2r) - @ (11)

where 3y is the k x k top-left sub-matrix of 3 and 3y is the k x (K — k) top-right block.

With this transformation, we have reduced the original problem with K sources to a
smaller problem with only the first k sources. To see why this reduction is valid, recall
that sampling sources 1 ~ k only provides information about 6, which is orthogonal to 6*
according to the prior. So as long as the agent has only looked at the first k sources, the
transformed attributes continue to satisfy property 2 above (zero covariances) under any
posterior belief. It follows that the posterior variance of w is simply the variance of & - 6
plus the variance of a* - 6*. Since the latter uncertainty cannot be reduced, the agent’s
objective (at those times when only the first k sources are attended to) is equivalent to
minimizing the posterior variance of & = & - 6.

Thus, in this smaller problem, the prior covariance matrix is 3y, and the payoff weights
are a. Assuming that & has strictly positive coordinates, we can then apply Lemma 9: As
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long as the agent attends to the first k sources proportional to &, ¢, = --- = J,V contin-
ues to hold.” Moreover, at g = n(t), the definition of the set B implies that these k partial
derivatives have greater magnitude (i.e., more negative) than the rest. By continuity, the
same comparison holds until some time 7 > ¢. Thus, when ¢ € [¢, f), the cumulative atten-
tion vector (under this strategy) still satisfies the first-order condition B = argmin,_;_, J;}’
and g; =0 for j ¢ B. Since V' is convex, this must be the #-optimal vector as we desire to
show. It also follows that # < oo, because at ¢ = oo the minimum possible posterior vari-
ance is zero, which cannot be achieved by attending only to a subset B of sources.

It remains to prove that & is positive for 1 < i < k. To this end, define Q =
diag(qi, ..., qx) to be the k x k top-left sub-matrix of O, and let

7=(CEn) ' +0) & (12)

We will show that ¥ is just the first k coordinates of y. Indeed, for 1 <i <k, ¥, is by
definition the covariance between 6, and & = & - 8 under the posterior belief at time ¢.
Since @ = @ + a* - 6*, and the vector 6* is by construction independent of 6;, we deduce
that Cov(6;, ®) = Cov(0;, ). Thus, y; = vy; as desired.

Given this, Lemma 8 tells us that ¥; is the same positive number for 1 < i < k. Rewriting
(12) asa@ = ((Z1L) ' + Q) - ¥, we see that a; is proportional to the ith row sum of the matrix
(1) "'+ O, which is just the row sum of (S )" plus g;. By Carlson and Markham (1979),
if 371 is (strictly) diagonally-dominant, then so is (21;) ! for any principal sub-matrix Sy
(because ()" is the Schur complement of 2! with respect to its bottom-right block).
So the row sums of (Z1;)~! are all strictly positive, implying &; > 0. QE.D.

C.4. Piecing Together Different Stages

We now apply Lemma 10 repeatedly to prove Theorem 2. Continuing to assume strict
diagonal dominance, we can apply Lemma 10 with ¢t = 0 and deduce that, up to some
time ¢, = ¢ > 0, t-optimality can be achieved by a constant attention strategy supported
on By = argmin, _;_, 4,/ (0). Applying Lemma 10 again with ¢ = ¢, we know that the agent
can maintain 7-optimality from time ¢, to some time #, with a constant attention strategy
supported on B, = argmin, _,_, ;)" (n(#;)). So on and so forth. The sets ¥ = By, By, Bs, ...
are nested by construction, so eventually B,, = {1, ..., K}. This delivers the result.

C.5. The Case of Weak Diagonal Dominance

Here, we demonstrate how to prove Theorem 2 assuming only that %' is weakly
diagonally-dominant. The new difficulty is that in the proof of Lemma 10, we cannot
conclude the optimal attention allocation (which is proportional to @) has strictly positive
coordinates on B. Thus, the agent does not necessarily mix over all of the sources that
maximize marginal reduction of variance. This might lead to the failure of Theorem 2 for
two reasons. First, it is possible that the agent optimally divides attention across a subset of
the sources that he has paid attention to in the past, which would violate the requirement
of nested observation sets. Second, when a new source achieves maximal marginal value,
the agent might (not attend to it and) use a different mixture over the sources previously

®Lemma 9 implies (?1!7 =...= &,(17, where I7(q1, ..., qx) is the posterior variance of & - 6 in the smaller
problem. But as discussed, I differs from I by a constant, so its derivatives are the same as those of /.
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sampled, which would violate the requirement of constant attention allocation for a given
observation set.

We now show that neither occurs in our setting. In response to the first concern above,
note that we can still follow the proof of Lemma 10 to deduce that the optimal instanta-
neous attention @; given to a source i € argmin; J;V(t) is proportional to the ith row sum
of (Zr.)~" plus g;. Since (S1.)~" is weakly diagonally-dominant, its row sums are weakly
positive. Thus, @; > 0 whenever ¢; > 0. In words, any source that has received attention in
the past will be allocated strictly positive attention at every future instant.

To address the second concern, consider two times 7 < 7 with argmin; d, WV (n(@)) €

argmin; d; V (n(f)). Reordering the attributes, we may assume that at time 7 the first k
sources have the highest marginal value, whereas at time 7 this set expands to the first
k > k sources. Let & € R¥ and @ € R be the optlmal attentions associated with these sub-
sets, as given by (11). We want to show that if @ is supported on the same set of sources
as &, then @ coincides with @ on their support. Indeed, by definition of @ (see the proof of
Lemma 10),

w= Z&,ﬂi + residual term orthogonal to 6, ..., 63.

isZ
If @ has the same support as &, then the above implies

w= Za,ﬂi + residual term orthogonal to 6y, ..., 67,
is?

where we use the fact that any term orthogonal to the first k attributes is clearly orthog-
onal to the first k attributes. This last representation of w reduces to the definition of a.
Hence o, =q;forl <i< k, as we desire to prove.

C.6. The Case of Perpetual Substitutes or Perpetual Complements

We now prove Theorem 2 under Assumption 4 or 5. Our proof above uses the diag-
onal dominance assumption at two places. It is crucial for proving Lemma 8 (i.e., the
coordinates of vy with greatest magnitude are all positive), as well as for showing that the
transformed weight vector « is positive in the proof of Lemma 10. Thus, we just need to
verify these two steps under the alternative assumptions.

Lemma 8 continues to hold because, as we show in the proof of Propositions 7 and 8
in Appendix O.3 of the Supplemental Material, these alternative assumptions imply that
vy=(2""+ Q)!- a has non-negative coordinates for any g > 0. It trivially follows that
those coordinates with maximal absolute value must be strictly positive.

As for & in the proof of Lemma 10, first consider Assumption 4 which imposes that
3! is an M-matrix. We use the matrix identity (1) - Sr = — (1= - [(E 7 sr]7
which can be proved using ¥ - 37! = Iy and comparing the top-right block. By assump-
tion, (2~')7r has non-positive entries, since it only consists of off-diagonal entries of %~
Moreover, [(27")sx]~" has non-negative entries, since (2!)pg is an M-matrix. We thus
conclude that (311)' - 2 is a matrix with non-negative entries. From (11), we have
a= )" G, 21r) - @ = (Ir, (2r) '21r) - @. So each coordinate of & is larger than
the corresponding coordinate of «, and is thus strictly positive.

If instead Assumption 5 is satisfied, then ¥ itself is an M-matrix, and so is the princi-
pal sub-matrix 2. Thus, (1)~ has non-negative entries off the diagonal and strictly
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positive entries on the diagonal. From (12), we have & = ((31.)~' + Q) - 7. Since ¥ is a
positive vector (with equal coordinates), we deduce a >> 0. This completes the proof of
Theorem 2.

APPENDIX D: ALGORITHM FOR COMPUTING THE OPTIMAL STRATEGY

Here, we provide an algorithm for recursively finding the times ¢, and sets B, in Theo-
rem 2. Set O, to be the K x K matrix of zeros, and # = 0. For each stage £ > 1:

1. Computation of the observation set B;. Define the K x 1 vector y* = (2 '+ Q1) - o,
where 2, is the prior covariance matrix, and « is the weight vector. The set of attributes
that the agent attends to in stage k is

By = argmax|y/|.

These sources have highest marginal reduction of posterior variance (see Lemma 3).

2. Computation of the constant attention allocation in stage k. If By is the set of all
sources, then we are already in the last stage and the algorithm ends. Otherwise let
¢ = |By| < K. We can re-order the attributes so that the ¢ attributes in B, are the first
¢ attributes. In an abuse of notation, let 2 be the covariance matrix for the re-ordered
attribute vector 0. Define 31y to be the ¢ x £ top-left submatrix of 3 and g to be the
£ x (K — ¢) top-right block. Finally, let

ot = (ETL)_I (21, 21R) - @

be an ¢ x 1 vector. The agent’s optimal attention allocation in stage k is proportional to

ak:

of /Y af ifi<,

0 otherwise.

Bk =

As the agent acquires information in this mixture during stage k, the marginal values of
learning about different attributes in B, remain the same, and strictly higher than learning
about any attribute outside of the set.

3. Computation of the next time t,. For arbitrary ¢, define

QX(1) := Q1 + (¢ — t_y) - diag(B").

Let ; be the smallest 7 > #,_; such that the coordinates maximizing (2! + QX(¢)) ! - «
are a strict superset of By. At this time, the marginal value of some attribute(s) outside of
B, equalizes the attributes in By, and stage k + 1 commences, with Q; = Q% ().

The time ¢, can be computed as follows. For each source j > ¢, consider the following
(polynomial) equation in ¢:

e;. . (E*l + Qk(t))‘l o= j:e/l . (271 + Qk(t))_l o

Any solution ¢ > #,_; is a time at which source j has the same marginal value as sources
1,...,£.So t; is the smallest such solution ¢ across all j > .
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