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We study infinite-horizon stochastic inventory problems with general demand distributions and piecewise-

linear concave ordering costs. Such costs arise in the important cases of quantity discounts or multiple

suppliers. We consider the case of concave cost involving two linear segments. This corresponds to the case

of one supplier with a fixed cost, a variable cost up to a given order quantity, and a quantity discount beyond

that or, equivalently, the case of two suppliers, one with a low fixed cost along with a high variable cost

and the other with a high fixed cost along with a low variable cost. We show that certain three and four

parameter generalizations of the classical (s, S) policy are optimal. Our contributions consist of generalizing

the demand, solving a functional Bellman equation for the value function that arises in the infinite-horizon

framework, and providing an explicit solution in a special case of the exponential demand. We also give

conditions under which our generalizations of the (s, S) policy reduce to the standard (s, S) policy. Finally

and importantly, our method is also new in the sense that we construct explicitly the value function and we

do not therefore need to utilize the notion of K-convexity used in the literature of inventory problems with

fixed costs.

Key words : generalized (s, S) policy, inventory-production : stochastic, dynamic programming-optimal

control : applications, functional Bellman equation, quantity discounts, contraction mapping.

1. Introduction

This paper studies the optimality of generalized (s,S) policies for infinite-horizon stochastic inventory

control problems with quantity discounts or, equivalently, multiple suppliers. We choose to do this

in the case of lost sales, although our method can be easily applied to the backlog case. The works
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most relevant to our study are Benjaafar et al. (2018) and Porteus (1971). The main differences

between the problems we consider and the classical (s,S) framework of Scarf (1960) are that our

cost structure, as in Porteus (1971) and Benjaafar et al. (2018), has a fixed ordering cost plus a cost

that is concave in order quantity and, importantly, our horizon is infinite. The first difference gives

rise to a generalized (s,S) policy and the second difference requires us to solve a functional Bellman

equation.

Porteus (1971) was the first to study the problems with this kind of concave cost structure. He

introduced the notion of a generalized (s,S) ordering policy (defined in Section 2) and proved its

optimality, albeit under the restrictive assumption of only one-sided Polya density demands. Recently,

Benjaafar et al. (2018) visited this inventory problem with a general demand. They specialized

the cost function to be piecewise-linear concave and showed numerically its optimality under a long

enough horizon, and conjectured the optimality of a generalized (s,S) policy provided the problem

horizon is sufficiently long or infinite.

In this paper, we further specialize the piecewise-linear concave ordering costs treated in Benjaafar

et al. (2018) by assuming only two linear segments for ease of exposition and prove analytically the

optimality of a generalized (s,S) policy. This cost structure arises, for instance, when a supplier offers

a buyer an incremental quantity discount for large orders. Specifically, this means that every order

incurs a fixed cost (also known as a setup cost in the case of production) plus a per-unit cost which

is identical for the first few items, and then a lower per-unit cost for the subsequent items beyond

a given threshold. Sellers usually employ such a scheme to give buyers an incentive to order more.

There is a considerable amount of literature on the practice of quantity discounts; see for example

Sethi (1984), Chen and Robinson (2012), and references therein. The cost structure studied in this

paper also results when ordering from two suppliers, one with a low fixed cost along with a high

proportional cost and the other with a high fixed cost along with a low proportional cost. A typical

case would be that of a local supplier with high labor cost of production and low shipping cost of a

container and an overseas supplier with low labor cost of production and high cost of air-shipping
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a container. Moreover, a common assumption about production functions in economics is that of

the economies of scale. The more a firm produces the same item, the lower the production cost will

be. Our cost function structure is applicable to this case as well. Most economics platform such as

Economicshelp (2017) discuss examples where such economies arise.

Specifically we address four different situations with regards to the cost structure. The first one

is the classical case involving only one linear segment to illustrate our methodology in proving the

optimality of the well known (s,S) policy shown in Figure 2. Here we offer a rigorous theory of

solving stationary infinite-horizon optimal inventory control problems with general demands and cost

parameters satisfying some technical assumptions usual in infinite-horizon settings. It is important

to mention that our methodology does not require the notion of K-convexity, introduced in Scarf

(1960), in proving our optimality results. This situation is treated in Section 4.

The second situation depicted in Figure 1(a) is the case of two suppliers, the first of whom charges

a positive fixed ordering cost plus a proportional cost and the second one charges a higher fixed

cost plus a lower proportional cost. Here we consider only an exponential demand for simplicity in

exposition. In this case, we show that a generalized (s,S) policy, called a (σ, s,Σ, S) policy, where

σ < s ≤ Σ < S, is optimal. According to this policy if the beginning inventory is more than σ and less

or equal to s, then order up to Σ; if it is less or equal to σ, then order up to S; and if it is more than

s, then do not order. Moreover, we obtain these four parameters explicitly due to the simplicity of

the exponential demand. This situation is treated in Section 7.

The third situation is an intermediate case that forms a bridge between the first and the third,

and therefore it will be treated in Section 5. The idea is that if we introduce another supplier in the

classical case of one supplier whose fixed cost is just slightly lower and/or proportional cost is slightly

higher than the existing supplier, i.e., ǫ in Figure 1(a) is small, then we may still find a standard two

parameter policy to remain optimal. What we find that it depends critically on the unit penalty cost

of lost sales. Specifically, we show that for small penalty costs, in addition to some other conditions,

two parameter policies remain optimal, whereas for large penalty costs, the optimal policies switch

to generalized four parameter policies.
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The fourth situation still considers two suppliers. However, now the fixed cost of the first supplier

is zero as shown in Figure 1(b), and we allow the demand distribution to be general. We show that

the four parameter policy of the second case reduces to a generalized three parameter policy, called a

(σ,Σ, S) policy depicted in Figure 3, where σ < s = Σ < S. According to this policy, if the beginning

inventory in any given period is more than σ and less or equal to Σ, then one should order up to Σ

from the high proportional cost supplier; if it is less or equal to σ, then one should order up to S

from the low proportional cost supplier; and if it is more than Σ, then do not order. Moreover, we

provide a complete analytic solution in this case when the demand distribution is exponential. This

situation is treated in Section 8 and Section 9.

In the process of obtaining our results, we also make the following contributions. We allow demand

distributions which are more general than those considered by Porteus (1971). We also prove the

conjecture of Benjaafar et al. (2018) about the infinite-horizon setting. Additionally we also make

the following significant contributions:

• We offer a rigorous theory of the stationary infinite-horizon optimal inventory control problems

with piecewise-linear concave ordering cost.

• The theory is constructive and does not rely on generalized K-convexity. We construct the value

function explicitly by solving a functional Bellman equation in our infinite-horizon setting.

• We give conditions for optimality of the classical (s,S) policy and of the generalized (s,S) policy.

This is achieved via an analysis conducted in several steps. First, we show that the generalized (s,S)

policies reduce to standard two parameter policies under a cost assumption stated in equation (24)

which necessarily requires that the unit penalty of lost sales is less than the unit purchase cost from

the first supplier. Also required in addition are two necessary and sufficient condition that involves

the fixed cost of the second supplier and possibly other problem parameters. Second, we prove that

a four parameter generalization of the classical (s,S) policy is optimal under some precisely stated

conditions that necessarily require the lost sales penalty to be larger than the proportional cost

charged by the first supplier. We conduct this analysis only for the exponential demand case for
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simplicity in the exposition, but more importantly for obtaining policy parameters explicitly. Third,

we prove that the aforementioned four parameter policy reduces to a three parameter policy provided

that the first supplier’s fixed cost is zero. Moreover, we are able to obtain closed form expressions of

the policy parameters in this case.

• We offer a complete analytical solution when the demand density is exponential.

1.1. Organization of the paper

The balance of the paper is organized as follows. In the next section, we briefly review the most

relevant literature that would allow us to articulate the precise contributions of the paper. Section 3

provides a mathematical formulation of the problem under consideration in this paper. In Section 4

and Section 5, we introduce the Bellman equation and illustrate its use to demonstrate the optimal-

ity of the (s,S) policy for the classical inventory problem with a view toward extending it to the

problems under study in this paper. The general problem is studied in Section 6. We construct a

methodology and the road map in Section 6.1 and Section 6.2 to analyze the full problem. We use

this methodology and a road map in Section 7 and prove in Theorem 2, the optimality of a general-

ized four parameter policy alluded to before. In Section 8 we consider general demand densities and

perform a detailed analysis by using the road map provided in Section 6.2 and find a three parameter

solution for the value function. In Section 9, we prove in Theorem 3 that this three parameter policy

is optimal. Moreover, we provide the aforementioned analytic solution for the exponential demand

case in Section 9.3. Figure 3 and Figure 4 in Section 9.2 give a pictorial representation of the type

of results that we provide. Finally, Section 10 concludes the paper. The proofs of several preliminary

technical results are relegated to the online companion of the paper.

2. Review of Literature

Arguably, the field of inventory management can be said to have begun in 1913 when Ford Whitman

Harris came up with the Economic Order Quantity (EOQ) formula that balances the fixed ordering

cost and inventory holding cost in the case of a constant demand rate and gives the optimal lot size
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or, equivalently, the optimal ordering frequency; see Erlenkotter (1990) for a historical account. It

took many years before a decade long flurry of research activity, beginning with Arrow et al. (1951),

which advanced the frontiers of inventory management by considering the realistic case of stochastic

demand. The results on the optimality of the base stock and (s,S) policies were established during

the 1950s, culminating in Arrow et al. (1958), long considered by many to be the Bible of Inventory

Theory.

The classical paper Scarf (1960) proves the optimality of an (s,S) policy for a dynamic stochastic

inventory problem where the costs structure consists of a fixed set-up or ordering cost, a unit cost,

a linear holding cost, and a linear backlog cost. Whereas Scarf treated the case of backlog, Shreve

(1976) extended it to the lost sales case. We should mention that the arguments employed by Shreve

(1976) apply as well to many corresponding inventory problems with backlog. Following Scarf (1960),

there has been a considerable amount of literature devoted to extending the optimality of (s,S) type

policies to a variety of situations, which in some cases also necessitates the modification of the policy

itself.

While the optimality of (s,S) policies has been explored in many different contexts, the direction

that is most relevant to our paper are the works of Porteus (1971), Porteus (1972), Fox et al. (2006)

and Benjaafar et al. (2018). A generalized K-convex function is used by Porteus (1971) to examine

an inventory problem with an increasing concave ordering cost. He introduces a generalized (s,S)

policy and proves its optimality when the demands follow one-sided Polya distributions. Porteus

(1972) extends his earlier analysis to either uniform or convolutions of a finite number of uniform

distributions. Fox et al. (2006) use a log-concave demand density distribution to show that a certain

three parameter policy, which they call the (s,SHV C , SLV C) policy, is optimal by using the notions

of K-convexity and quasi-convexity. Even though they are broader than the class of one-sided Polya

densities, log-concave densities still only account for a limited range of distributions.

In practice, it frequently happens that an ordering cost or production cost has a number of break

points, which results in a piecewise-linear concave cost function. Benjaafar et al. (2018) assumes this
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cost structure with arbitrary number n of break points along with a general demand. Under some

limitations specified in Theorem 4 and Proposition 2 in their paper, they prove the optimality of a

generalized (s,S) policy. This policy is characterized by a sequence of nested thresholds

sn < sn−1 < · · · < s1 ≤ S1 < S2 < · · · < Sn, (1)

such that when the beginning inventory is (i) > s1, do not order; (ii) in (si, si−1], order up to Si,

i = 2,3, · · ·n−1; (iii) ≤ sn, order up to Sn. In the absence of these limitations, however, they show via

a two-period counterexample that the policy may fail to be optimal outside an interval of beginning

inventory levels. Moreover, their numerical experiments seem to suggest that the policy becomes

optimal provided the problem horizon is sufficiently long. In their Theorem 6, they make a restrictive

assumption on the cost and the demand density in order to establish the optimality of a generalized

(s,S) policy. We can therefore take it as a conjecture that a generalized (s,S) policy will be optimal

for an infinite-horizon problem. Moreover, we would like to establish this optimality without their

restrictive assumption. While they consider the backlog case, they also mention that similar results

can also be derived in the lost sales case. In this paper we take up the lost sales case and prove the

optimality of a generalized (s,S) policy for an infinite-horizon problem. This is done with a general

demand without the limitations and the restrictions imposed in Benjaafar et al. (2018). Before

we describe the other contributions of this paper, we mention that our results easily extend to the

backlog case as well.

Our method constructs the value function explicitly by solving the required functional Bellman

equation in the stationary infinite-horizon setting. This setting causes the difficulty of having to solve

a functional equation as opposed to solving a sequence of optimization problems in finite horizon

cases. Thus, our method does not rely on the notion of K-convexity used in the literature for solving

inventory problems with fixed ordering costs. In particular, the method used by Benjaafar et al.

(2018) relies on the concept of c-convexity that generalizes the standard notion of K-convexity, and

the resulting characterization of the policy parameter thresholds does not lead easily to constructive

algorithms. Our method, on the other hand, provides an explicit formula for the value function in the
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general demand case. Moreover, in the case of exponential demand, we are able to give a closed-form

solution for the value function as well as for the policy parameters. We consider only two linear

segments in equation (2) in this paper for reasons of mitigating technical complexities, and leave the

case of more than 2 segments as a topic of future research.

3. Problem Formulation

We study an infinite-horizon discrete-time stochastic inventory control problem where an order at

the beginning of a period can be placed from one of two available sources, one charging a fix ordering

cost of K1 and a unit cost of c1 and the other charging K2 > K1 ≥ 0 and 0 ≤ c2 < c1, respectively.

This cost structure is equivalent to ordering from a single source charging a fixed ordering cost of K1

and a unit ordering cost of c1 if an order does not exceed (K2 −K1)/(c1 − c2) := ǫ, and if it does, then

charging a unit ordering cost of c2 for units in excess of ǫ; see Figure 1(a). The cost is incurred when

the order is placed and its delivery is assumed to be instantaneous. After that, a random demand is

realized and it is satisfied fully if less than or equal to the inventory on hand; if not then the demand

in excess of the on-hand inventory is lost. A holding cost h ≥ 0 is incurred at the end of the period,

(or, equivalently at the beginning of the next period) for each unit carried to the next period or

a penalty p > c2 is incurred for each unit of unfilled demand, depending on the situation realized.

The assumption p > c2 is standard in the literature, without which it would always be optimal to

order nothing and lose sale in each period. It is just by choice that we are choosing the lost sales

case, while mentioning at the same time that the backlog case can be treated in a similar manner.

Our purpose is to find an optimal ordering policy that minimizes the expected present value of the

costs of ordering, holding and penalty over the infinite horizon. We shall define below the notation

and then provide the mathematical formulation of the problem along with the functional Bellman

equation that its value function satisfies.

Let us now introduce the following notation:

• K1 - fixed cost to place an order from the first supplier; K1 ≥ 0

• K2 - fixed cost to place an order from the second supplier; K2 > K1
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• D - one period demand (random variable); D ≥ 0 a.s.

• c1 - per unit purchase cost from the first supplier

• c2 - per unit purchase cost from the second supplier; 0 ≤ c2 < c1

• h - inventory holding cost per unit per period; h ≥ 0

• p - penalty cost per unit incurred when the demand is not met and thus lost; p > c2

• f(x) - probability density function (pdf)

• F (x) - cumulated distribution function (CDF); F ′(x) = f(x)

• α - discount factor; α > 0

• x - initial inventory level; x ≥ 0

• v - total amount of order; v ≥ 0

• y - inventory after receiving the order; y = x + v

We assume our cost function to be given by the formula

c(v) = min
i=1,2

(Ki + civ). (2)

The problem we are considering with two linear segments in (2), arises in many practical situations.

It not only arises in a problem of choosing amongst two suppliers but also represents the situation

of rebate for large quantities in the case of a single supplier.

K1

K2

c1

c2

c(v)

vǫ

(a) Case K1 > 0

ǫ

K
=

K
2
+
c
ǫ c1

c2
= c

v

c(v)

K1 = 0

(b) Case K1 = 0

Figure 1 Figure (a) is the graph of cost function given in equation (2). Figure (b) is the specialization of Figure

(a) to the case K1 = 0. This defines the quantities c2, K and c1 in Section 8.1.
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Indeed, set ǫ :=
K2 − K1

c1 − c2

, then it is easy to see that

c(v) = K1✶v>0 + c1v✶v<ǫ + (c2(v − ǫ) + c1ǫ)✶v≥ǫ.

Here as usual ✶v is the indicator function1. So the variable ordering cost per unit is reduced from c1

to c2, when the volume is larger than ǫ.

Let x be the initial inventory level and y be the inventory level after the order is received. The

generic demand is denoted by D, which is a random variable with probability density f(ξ) with its

support on [0,∞). The CDF is denoted by F (d) =
∫ d

0 f(ξ)dξ and F̄ (d) = 1−F (d). Let u(x) denote the

expected value of the discounted costs for an inventory problem. Then, u(x) satisfies the functional

equation

u(x) = hx + inf
y≥x

{
K1✶y>x + c1(y − x)✶y−x<ǫ + (c2(y − x) + (c1 − c2)ǫ)✶y−x≥ǫ

+ pE(D − y)+ + αEu((y − D)+)

}
, x > 0,

(3)

where h is the unit holding cost and pE(D − y)+ represents the penalty cost. Equation (3) is a

Bellman functional equation for the value function u(x), for an initial inventory x. We can write

equation (3) as

u(x) = (h − c2)x + inf
y≥x

{
c2y + K1✶y>x + (c1 − c2)(y − x)✶y−x<ǫ + (c1 − c2)ǫ✶y−x≥ǫ

+ pE(D − y)+ + αEu((y − D)+)

}
, x > 0.

(4)

We make the transformation

u(x) = (h − c2)x + H(x) + ρ, (5)

where ρ is a constant to be chosen. Substitute equation (5) into equation (4). This defines H for

which we get the expansion

H(x)+ρ(1−α) = inf
y≥x

{
K1✶y>x +(c1 −c2)(y −x)✶y−x≤ǫ +(c1 −c2)ǫ✶y−x>ǫ +g(y)+αEH((y −D)+)

}
,

(6)

where

g(y) = c2y + pE(D − y)+ + α(h − c2)E(y − D)+. (7)
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The idea is to find an optimal policy that minimizes the expected total discounted cost, or in other

words, that achieves the minimum of the right hand side of equation (6). We give conditions that

guarantee that a standard (s,S) policy will remain optimal. With regard to the generalized (s,S)

policies, we categorize our work in two different cases, namely, K1 > 0 and K1 = 0. In general, we

develop a common methodology which is applicable to both cases in Section 6.1, and we lay out a

road map for completing the analysis in Section 6.2. In the non-case-specific context, we explain all

the steps, but in the K1 > 0 case, we solve the problem completely only for an exponential demand.

For K1 > 0, we show that a generalized (s,S) policy is optimal, which we call a (σǫ, sǫ,Σǫ, Sǫ)

policy, where σǫ < sǫ ≤ Σǫ < Sǫ. This can be written as an (s2, s1, S1, S2) policy, which is a special

case of (1) for two linear segments in the cost function. In the case K1 = 0, we solve the problem

for a general demand, because then Σǫ = sǫ, and the policy simplifies from four parameters to three.

In particular, this happens because equation (31) in Section 6.2, which is the most intricate step in

Section 6.2, greatly simplifies. Similarly, when K1 > 0 and the demand is exponential, equation (31)

is again quite manageable. Therefore, we obtain a complete solution for the four policy parameters

in this case. We are also able to obtain a closed-form solution when K1 = 0 and the demand is

exponential. In this case, all steps in the road map have explicit solutions.

For a graphical interpretation of our results, see Figure 3 and Figure 4. Figure 3 visualizes the

results in the case where both suppliers impose a set up cost. We observe that, with a lower fixed

cost from the first supplier, if the beginning inventory is more than σǫ and less or equal to sǫ, then

order up to Σǫ; if it is less or equal to σǫ, then order up to Sǫ; and if it is more than sǫ, then do not

order.

Figure 4 illustrates a situation in which the first supplier’s fixed cost is zero. We see that if inventory

level is between σǫ and sǫ = Σǫ, then ordering up to Σǫ is optimal with zero or negligible fixed cost

from the first supplier. In the case of a second supplier with a substantial amount of fixed cost and

a relatively small variable cost, if the beginning inventory in any given period is more than σǫ and

less or equal to Σǫ, then one should order up to Σǫ from the high proportional cost supplier; if it is

less or equal to σǫ, then one should order up to Sǫ from the low proportional cost supplier; and if it

is more than Σǫ, then do not order.
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4. Preliminaries

In this section we briefly outline the classical case of the (s,S) policy in Section 4.1, obtained when

there is only one supplier. We rewrite in Section 4.2 the Bellman equation, formulated in the previous

section. Here we see that for a sufficiently small ǫ, the optimal policy remains a two parameter policy.

We analyze this case as a bridge to solving the problem for any arbitrarily given positive ǫ.

4.1. Classical Case

The classical case involves just one supplier with fixed ordering cost K and per unit purchase cost c. It

can be viewed as a limiting case of our problem formulated in Section 3 by considering K1 = K2 = K,

c1 = c2 = c, and ǫ = 0, so that equation (6) specializes to

H(x) + ρ(1 − α) = inf
y≥x

{K✶y>x + g(y) + αEH((y − D)+)}.

We already know in this case that an (s,S) policy is optimal. Nevertheless, we describe briefly how to

use our methodology in this special case so as to foresee the steps needed for the analysis of equation

(6) in general. This analysis begins with any s > 0, chooses ρ(1 − α) = g(s), and then obtains Hs(x)

as the solution of 



Hs(x) = g(x) − g(s) + αEHs((x − D)+), if x > s,

Hs(x) = 0, if x ≤ s.

Since g(x) is a convex function, Hs(x) attains its minimum at a point (if there are several points we

will take the smallest one). We define the minimum point to be S so that Hs(S) = inf
y>s

Hs(y). Then

define s so that

0 = K + inf
y≥s

Hs(y).

A unique s can be defined, leading to a function S(s). This is the well-known (s,S) policy, an optimal

feedback law given by

v(x) =





S − x, if x ≤ s,

0, if x > s.

For more details, see Chapter 9 in Bensoussan (2011). We follow such a procedure to show that a

two parameter policy remains optimal for ǫ sufficiently small.
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4.2. Rewriting Bellman Equation

Returning to the case ǫ > 0, one can expect that as ǫ is small, an (sǫ, Sǫ) policy will be optimal. To

show that, we first rewrite the Bellman functional equation defined in equation (6) as follows:

H(x) + ρ(1 − α) = min

{
g(x) + αEH((x − D)+),

K1 + inf
x<y≤x+ǫ

((c1 − c2)(y − x) + g(y) + αEH((y − D)+)),

K2 + inf
y>x+ǫ

(g(y) + αEH((y − D)+))

}
.

(8)

To reconcile this with a two parameter (sǫ, Sǫ) policy, we show that in equation (8) the intermediate

term in the right-hand side can be dispensed with to get

H(x) + ρ(1 − α) = min

{
g(x) + αEH((x − D)+),K2 + inf

y>x+ǫ
(g(y) + αEH((y − D)+))

}
. (9)

In other words, we have to show that the term K1 + inf
x<y≤x+ǫ

((c1 −c2)(y −x)+g(y)+αEH((y −D)+))

of equation (8) is not relevant for the minimization in equation (8). In the next section, we provide the

necessary conditions for the optimality of an (sǫ, Sǫ) policy, where the pair (sǫ, Sǫ) satisfies equation

(9). Then we show that equation (5) is the value function (3), and hence the (sǫ, Sǫ) policy is optimal.

5. Optimality of (sǫ, Sǫ) Policy

In this section we show that there exists a threshold sǫ such that if x ≤ sǫ then it is optimal to

order, and not to order otherwise. Further, there exists a smallest minimizer Sǫ such that ordering

up to that point is optimal. By analogy with the case ǫ = 0 described above, for any s > 0, we take

ρ(1 − α) = g(s) and solve the problem




Hs(x) = g(x) − g(s) + αEHs((x − D)+), if x > s,

Hs(x) = 0, if x ≤ s.

(10)

This problem has a unique solution as follows. Differentiating in x, we get




H ′
s(x) = g′(x) + αEH ′

s(x − D), if x > s,

H ′
s(x) = 0, if x ≤ s.

(11)
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Since g′(x) is bounded, this problem appears as a contraction problem on the space of bounded

functions. Therefore, by the contraction mapping theorem, the function has a unique fixed point. So,

the above problem has one and only one solution. Next from (7),

g′(x) = c2 − pF̄ (x) + α(h − c2)F (x) = c2 − p + (p + α(h − c2))F (x). (12)

As p > c2 by assumption, the function g′(x) is increasing from −(p − c2) to c2(1 − α) + αh, and we

have −(p − c2) ≤ g′(x) ≤ c2(1 − α) + αh. Also by standard estimates from equation (11), we have

−
p − c2

1 − α
≤ H ′

s(x) ≤ c2 +
αh

1 − α
, (13)

H ′
s(+∞) = c2 +

αh

1 − α
.

Therefore, the function Hs(x) is defined by

Hs(x) =

∫ x

s

H ′
s(ξ)dξ, x > s. (14)

The function H ′
s(x) is not continuous at s, since H ′

s(x + 0) = g′(s) and H ′
s(x − 0) = 0, unless s = s̄,

defined by

g′(s̄) = 0. (15)

This means from equation (12) we have

F (s̄) =
p − c2

p + α(h − c2)
. (16)

Additionally, Hs(x) → ∞ as x → ∞, and thus as Hs(x) is continuous, the function attains it’s

minimum on [s,∞). Therefore, we claim that there exists a unique S(s) such that

Hs(S(s)) = inf
y≥s

Hs(y). (17)

Clearly, if s ≥ s̄, then Hs(x) is increasing in x and for s < s̄, Hs(x) is decreasing on [s, s̄). Necessarily,

S(s) ≥ s̄, if s < s̄, and S(s) = s, if s ≥ s̄. (18)

Now find an sǫ such that

0 = K2 + inf
y≥sǫ+ǫ

Hsǫ
(y). (19)
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Necessarily sǫ + ǫ < s̄ (otherwise, (18) remains unsatisfied), which implies the assumption

ǫ < s̄, (20)

where s̄ is defined in (15). It is important to emphasize that when we say ǫ to be small or sufficiently

small in this paper, we only mean that it is less than s̄. We are not using it in the sense of a limit or

it being close to zero.

Now from the inequality sǫ + ǫ < s̄, the definition of s̄, and equation (11), we can assert that

H ′
sǫ

(y) < 0, if y ∈ [sǫ, sǫ + ǫ]. Therefore, y → Hsǫ
(y) is decreasing on [sǫ, sǫ + ǫ]. Hence,

inf
y∈[sǫ,sǫ+ǫ]

Hsǫ
(y) = Hsǫ

(sǫ + ǫ) ≥ inf
y≥sǫ+ǫ

Hsǫ
(y).

Therefore, to show equation (19) is satisfied, it is enough to show that

0 = K2 + inf
y≥sǫ

Hsǫ
(y). (21)

Furthermore, the function s 7→ inf
y>s

Hs(y) = Hs(S(s)) is monotone increasing on (0, s̄); see the online

companion for its proof. So, to be able to find a unique solution sǫ of (19), it is necessary and sufficient

to assume 



K2 + inf
y>0

H0(y) < 0,

K2 + inf
y>s̄−ǫ

Hs̄−ǫ(y) > 0.

(22)

Therefore, we obtain the following result.

Proposition 1. Assume ǫ < s̄ and (22). Then there exists a unique sǫ < s̄ − ǫ that solves (19) with

the function Hs(x) given by (14). Moreover, Hs(x) is the unique solution of (10).

We want to check that the solution Hsǫ
(x) is a solution of our original problem stated in equation

(8) with

ρ(1 − α) = g(sǫ). (23)

This is done next under an additional condition. Then with Sǫ = S(sǫ), the optimal (sǫ, Sǫ) policy

becomes defined.
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Theorem 1. In addition to the assumptions of Proposition 1, let

p ≤ c1(1 − α) + αc2. (24)

Then the (s,S) policy defined by (17) and (23) is optimal.

Proof. It is given in the electronic companion Section EC.1.

Remark 1. The purpose of assumptions (22) and (24) is to insure a standard (s,S) policy to be

optimal. In particular, assumption (24) requires the penalty cost to be small, without which we can

only prove that Hsǫ
(x) is the solution of (9). But this is not enough to show the optimality of an

(s,S) policy for the case under consideration. Assumption (24) ensures that Hsǫ
(x) is the solution of

equation (8). Taken together, Proposition 1 and Theorem 1 show that the (sǫ, Sǫ) policy is optimal.

On the other hand when p > c1, which necessarily means that (24) is violated, we will show in

Section 8 that a generalized (s,S) policy is optimal.

Remark 2. Since (24) implies p ≤ c1, we have c2 < p ≤ c1. This means that any purchase from

supplier 1 to meet a demand will cost c1 in addition to any fixed cost, whereas not meeting that

demand will only cost p which is less than c1, and thus only order that will be placed will be with

the second supplier. Moreover, if we make ǫ small only by increasing K1 and/or c1, then the optimal

policy will be exactly the (s,S) policy of the classical problem with only the second supplier, and

that will hold for every ǫ as long as it is small and (24) continues to be satisfied. Of course, the

optimal policy parameters will depend on ǫ, if making ǫ small includes changing K2 or c2 or both,

according as the classical solution whose single supplier will be the second supplier with the changed

values of fixed and variable costs.

Remark 3. On the other hand, if (24) does not hold and if p > c1, then it becomes economical to

order also from the first supplier. Indeed we show in Section 7, Section 8, and Section 9 that for a

large p along with some other conditions, a generalized (s,S) policy is optimal.
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6. Generalized (s,S) Policy

In view of Remark 1, we now take up the case when (24) is not satisfied. In this case, we develop

the methodology and indicate a road map to prove the optimality of generalized (s,S) policies. In

Section 7 for K1 > 0 and Section 8 for K1 = 0, we will execute the steps in this road map under

additional assumptions.

6.1. Methodology

At this stage, we look for a solution of equation (8) of the following form: there are two numbers σ

and s, with 0 < σ < s, and a function H(x) that satisfy




H(x) = H(σ), ∀x ≤ σ,

H(x) = H(s) + (c1 − c2)(s − x), σ < x ≤ s,

H(x) = g(x) − g(s) + αEH((x − D)+), x > s.

(25)

The values of H(s) and H(σ) are given by the condition that H(x) is continuous. We first have, from

the first two segments of equation (25), that H(σ) = H(s) + (c1 − c2)(s − σ). From the third, we get

H(s) = αEH((s − D)+). (26)

Next, we integrate equation (26) and plug the expressions of the first two segments of (25) into (26),

to obtain

H(s) =
α

1 − α
(c1 − c2)

∫ s−σ

0

F̄ (ξ)dξ.

So for x > s, the function H(x) is a solution of the integral equation

H(x) = α

∫ x−s

0

H(x − ξ)f(ξ)dξ + g(x) − g(s)+

α(c1 − c2)[

∫ s−σ

0

F̄ (x − s + η)dη +
α

1 − α
F̄ (x − s)

∫ s−σ

0

F̄ (ξ)dξ.

(27)

Clearly, H(x) is completely defined once the constants σ and s are fixed. To obtain them, we impose

the following two conditions:

H(s) = K1 + inf
s<y≤s+ǫ

((c1 − c2)(y − s) + H(y)). (28)
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H(σ) = K2 + inf
y>s

H(y). (29)

The challenge then is to show that equations (24) and (25), with the unknowns σ and s, define them

completely, and that the corresponding function H(x) solves equation (8) with ρ(1 − α) = g(s). We

then associate to the pair (σ, s), a pair (Σ, S) which realizes the infimum on the right-hand sides

of (28) and (29), respectively. The quartet (σǫ, sǫ,Σǫ, Sǫ), where σǫ < sǫ ≤ Σǫ < Sǫ, will define the

optimal generalized (s,S) policy.

6.2. Road Map

For 0 < σ < s fixed, we can define a unique function Hσ,s(x), x > s, as the solution of the integral

equation (27). This is done by defining its derivative H ′
σ,s(x) as the unique solution of the equation

H ′
σ,s(x) = α

∫ x−s

0

H ′
σ,s(x − ξ)f(ξ)dξ + g′(x) + α(c1 − c2)(F̄ (x − σ) − F̄ (x − s)), x > s. (30)

Just as in equation (11), this equation also has a unique solution, because it is a fixed point of a

contraction mapping on the set of bounded continuous functions on [s,+∞). Since

Hσ,s(s) =
α

1 − α
(c1 − c2)

∫ s−σ

0

F̄ (ξ)dξ,

the function Hσ,s(x), x > s, is given by the integral

Hσ,s(x) = Hσ,s(s) +

∫ x

s

H ′
σ,s(ξ)dξ.

The next steps are at the core of the difficulty. For a fixed σ, we define s(σ) > σ by solving the

algebraic equation

α

1 − α
(c1 − c2)

∫ s−σ

0

F̄ (ξ)dξ = K1 + inf
s<y≤s+ǫ

((c1 − c2)(y − s) + Hσ,s(y)), (31)

and finally we seek σ as the solution of the algebraic equation

(c1 − c2)(s(σ) − σ) +
α

1 − α
(c1 − c2)

∫ s(σ)−σ

0

F̄ (ξ)dξ = K2 + inf
y>s(σ)

Hσ,s(σ)(y).

We shall carry out this program completely in the case K1 = 0, because then the step corresponding to

equation (31) simplifies greatly. In fact, the infimum in (31) will be attained at s ( recall that Hσ,s(x)
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is a continuous function). So s(σ) will be defined by the much simpler problem H ′
σ,s(s) + c1 − c2 = 0,

which in view of equation (30) reduces to

0 = c1 − c2 + g′(s) − α(c1 − c2)F (s − σ). (32)

The last equation does not involve the function H ′
σ,s directly, and this is the simplification mentioned

above.

The case K1 > 0 will be considered only for the exponential demand, namely for f(ζ) = λe−λζ . In

this case, equation (30) has an explicit solution.

7. Case K1 > 0

Assuming the demand density to be exponential in the case K1 > 0, we will extend the methodology

described in Section 6.1. We will show that a four parameter (σǫ, sǫ,Σǫ, Sǫ) policy is optimal. We

follow the road map as outlined in Section 6.2 and find the four parameters σǫ, sǫ,Σǫ, Sǫ as described

in the last paragraph of section Section 6.1.

7.1. Preliminary Calculations

We implement the road map for f(ζ) = λe−λζ . We first consider the integral equation (30) which now

becomes

H ′(x) = λα

∫ x−s

0

H ′(x − ξ)e−λξ dξ + c2 + α(h − c2)+ (33)

+e−λx [−(p + α(h − c2)) + α(c1 − c2)(eλσ − eλs)].

It has an explicit solution given by

H ′(x) = c2 +
αh

1 − α
+ e−λ(1−α)(x−s)[α(c1 − c2)e−λ(s−σ)− (34)

−(p + α(h − c2))e−λs − α(c1 +
αh

1 − α
)].

The next step is to find the function s(σ) by solving equation (31). We expect that the infimum on

the right-hand side of equation (31) is attained at a point Σ inside the interval (s, s + ǫ). Therefore,

we have H ′(Σ) + c1 − c2 = 0, which along with equation (34) yields

eλ(1−α)(Σ−s) =
(p + α(h − c2))e−λs − α(c1 − c2)e−λ(s−σ) + α(c1 +

αh

1 − α
)

c1 +
αh

1 − α

. (35)
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Condition (31) specializes to 0 = K1 +
∫ Σ

s
(c1 − c2 + H ′(x))dx, which yields

λ(1 − α)[K1 + (c1 +
αh

1 − α
)(Σ − s)] = (36)

(1 − e−λ(1−α)(Σ−s))[(p + α(h − c2))e−λs − α(c1 − c2)e−λ(s−σ) + α(c1 +
αh

1 − α
)].

Equations (35) and (36) give s and Σ as functions of σ. It is convenient to define

X = X(σ, s) =
(p + α(h − c2))e−λs − α(c1 − c2)e−λ(s−σ)

c1 +
αh

1 − α

. (37)

Then, by combining (35) and (36), we see that X solves the algebraic equation

X = log(X + α) + (1 − α)(1 +
K1λ

c1 +
αh

1 − α

). (38)

It has a unique solution X0 > 1 − α, which is thus a fixed constant independent of σ. Therefore, s(σ)

is obtained by the formula

eλs =
p + α(h − c2) − α(c1 − c2)eλσ

X0(c1 +
αh

1 − α
)

. (39)

We naturally need σ sufficiently small. Specifically, we need σ ≤ s̄ǫ with

eλs̄ǫ =
p + α(h − c2)

X0(c1 +
αh

1 − α
) + α(c1 − c2)

. (40)

In order to get s̄ǫ > 0, we need the condition

p + α(h − c1) > X0(c1 +
αh

1 − α
) (41)

and s(s̄ǫ) = s̄ǫ. We have also s(0) = s̄∗
ǫ with

eλs̄∗

ǫ =
p + α(h − c1)

X0(c1 +
αh

1 − α
)
. (42)

Assumption (41) implies immediately s̄ǫ < s̄∗
ǫ . Recall the definition of s̄, that is g′(s̄) = 0, to obtain

eλs̄ =
p + α(h − c2)

c2 + α(h − c2)
. (43)

In view of X0 > 1 − α, comparing equations (42) and (43) yields s̄∗
ǫ < s̄. Summarizing we have:
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Proposition 2. Assume (41), i.e., p + α(h − c1) > X0(c1 +
αh

1 − α
). Then for σ ∈ [0, s̄ǫ], s(σ) is

uniquely defined by (39), i.e., eλs =
p + α(h − c2) − α(c1 − c2)eλσ

X0(c1 +
αh

1 − α
)

, and it decreases from s(0) = s̄∗
ǫ to

s(s̄ǫ) = s̄ǫ. We further have s̄ǫ < s̄∗
ǫ < s̄.

Next, Σ(σ) is defined by (35), which reads as

Σ(σ) − s(σ) =
log(X0 + α)

λ(1 − α)
. (44)

We can also define S(σ) by the condition H ′(S) = 0. From (34) and (37), we have

H ′(x) = c2 +
αh

1 − α
− (X0 + α)(c1 +

αh

1 − α
)e−λ(1−α)(x−s). (45)

Therefore,

S(σ) − s(σ) =

log


(X0 + α)

c1+
αh

1 − α

c2+
αh

1 − α




λ(1 − α)
. (46)

Looking at the form of (33) and noting σ < s, we can assert

H ′(x) ≤ λα

∫ x−s

0

H ′(x − ξ)e−λξ dξ + c2 + α(h − c2) − e−λx(p + α(h − c2)). (47)

For s < x < s̄ , we have c2 + α(h − c2) − e−λx(p + α(h − c2)) < 0. Hence,

H ′(x) ≤ λα

∫ x−s

0

H ′(x − ξ)e−λξ dξ, s < x < s̄. (48)

Also from equation (37),

H ′(s + 0) = c2 + α(h − c1) − X0(c1 +
αh

1 − α
) < −(c1 − c2). (49)

From (48) and (49), we see that

H ′(x) < 0, s < x < s̄, (50)

which implies necessarily S(σ) > s̄. Calling H̃ ′(x) = H(x) + c1 − c2 , we can write the equation for

H̃ ′(x) as

H̃ ′(x) = λα

∫ x−s

0

H̃ ′(x − ξ)e−λξ dξ + c1 + α(h − c1)+ (51)
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+e−λx[−(p + α(h − c2)) + α(c1 − c2)eλσ].

Hence, for x > s, we have

H̃ ′(x) ≤ λα

∫ x−s

0

H̃ ′(x − ξ)e−λξ dξ + c1 + α(h − c2) − (p + α(h − c2))e−λx.

We introduce the number s̄∗ defined by

eλs̄∗

=
p + α(h − c2)

c1 + α(h − c2)
. (52)

We can show, just as we had showed S(σ) > s̄, that Σ(σ) > s̄∗.

7.2. Formulae for (σǫ, sǫ,Σǫ, Sǫ)

Calling Hσ(x), the function constructed in the previous section, we can see by the above results that

Hσ(σ) − Hσ(S(σ)) =
c2 + αh

1−α

λ




c1 − c2

c2 + αh

1−α

log
(p + α(h − c2))e−λσ − α(c1 − c2)

X0(c1 +
αh

1 − α
)

(53)

+
1

1 − α
[− log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

+
(X0 + α)(c1 +

αh

1 − α
)

c2 + αh

1−α

− 1]


 .

We find σ = σǫ by the equation

Hσ(σ) − Hσ(S(σ)) = K2,

and therefore,

K2 =
c2 + αh

1−α

λ




c1 − c2

c2 + αh

1−α

log
(p + α(h − c2))e−λσ − α(c1 − c2)

X0(c1 +
αh

1 − α
)

(54)

+
1

1 − α
[− log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

+
(X0 + α)(c1 +

αh

1 − α
)

c2 + αh

1−α

− 1]


 .

Since the function Hσ(σ) − Hσ(S(σ)) is decreasing in σ, a unique solution of (54) exists provided

that K2 satisfies the conditions

H0(0) − H0(S(0)) > K2 > Hs̄ǫ
(s̄ǫ) − Hs̄ǫ

(S(s̄ǫ)). (55)
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This means that

c2 + αh

1−α

λ




c1 − c2

c2 + αh

1−α

log
p + α(h − c1)

X0(c1 +
αh

1 − α
)

+
1

1 − α

[
− log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

+
(X0 + α)(c1 +

αh

1 − α
)

c2 + αh

1−α

− 1

]

> K2 >

c2 + αh

1−α

λ(1 − α)

[
− log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

+
(X0 + α)(c1 +

αh

1 − α
)

c2 + αh

1−α

− 1

]
.

Once σǫ is defined, we can solve (54) to obtain the quantity X0 within it and then obtain sǫ, Σǫ and

Sǫ explicitly. Specifically the next equation gives sǫ in terms of X0 and σǫ.

(c1 − c2)(sǫ − σǫ) = K2 −
c2 + αh

1−α

λ(1 − α)

[
− log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

+
(X0 + α)(c1 +

αh

1 − α
)

c2 + αh

1−α

− 1

]
, (56)

Then we use the next two equations to obtain Sǫ and Σǫ.

Sǫ − sǫ =
1

λ(1 − α)
log

(X0 + α)(c1 +
αh

1 − α
)

c2 + αh

1−α

, (57)

Σǫ − sǫ =
1

λ(1 − α)
log(X0 + α). (58)

Now the function Hǫ(x) = Hσǫ
(x) is defined by the formulae

Hǫ(x) =





Hǫ(σǫ), ∀x ≤ σǫ,

Hǫ(sǫ) − (c1 − c2)(x − sǫ), σ < x < sǫ,

Hǫ(sǫ) + (c2 + αh

1−α
)(x − sǫ) −

(X0+α)

(
c1+

αh

1 − α

)

λ(1−α)
(1 − e−λ(1−α)(x−sǫ)), ∀x ≥ sǫ,

(59)

with

Hǫ(sǫ) =
α(c1 − c2)

λ(1 − α)
(1 − e−λ(sǫ−σǫ)), (60)

and

Hǫ(σǫ) = Hǫ(sǫ) + (c1 − c2)(sǫ − σǫ). (61)

Therefore, the four parameters (σǫ, sǫ,Σǫ, Sǫ) are defined explicitly. We next show the optimality of

the (σǫ, sǫ,Σǫ, Sǫ) policy.
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7.3. Optimality of (σǫ, sǫ,Σǫ, Sǫ) Policy

We begin by verifying the following proposition.

Proposition 3. We have the inequality

Σǫ − σǫ < ǫ. (62)

Proof. From (54), we can write Hǫ(σǫ) < K2 + Hǫ(Σǫ). We use the last equation in (59) to

compute

Hǫ(Σǫ) = Hǫ(sǫ) + (c2 +
αh

1 − α
)(Σǫ − sǫ) −

(X0 + α)

(
c1 +

αh

1 − α

)

λ(1 − α)
(1 − e−λ(1−α)(Σǫ−sǫ)).

Using (58), and (38), we obtain

Hǫ(Σǫ) = Hǫ(sǫ) +
X0 + α − 1

λ(1 − α)
(c2 − c1) − K1

c2 + αh

1−α

c1 + αh

1−α

.

Using (61) we can assert

(c1 − c2)(sǫ − σǫ) < K2 − K1 +
c1 − c2

λ(1 − α)

(
(1 − α)(

K1λ

c1 + αh

1−α

+ 1) − X0

)

K2 − K1 −
c1 − c2

λ(1 − α)
log(X0 + α).

Finally, by using the definition of ǫ and (58), we obtain the inequality (62). �

Collecting all the assumptions one obtains the following result.

Theorem 2. Assume

• (41), i.e., p + α(h − c1) > X0(c1 +
αh

1 − α
).

• (55), i.e., H0(0) − H0(S(0)) > K2 > Hs̄ǫ
(s̄ǫ) − Hs̄ǫ

(S(s̄ǫ)).

• s̄ǫ + ǫ < s̄.

• f(ζ) = λe−λζ.

Then the function Hǫ(x) defined by (59), with σǫ and sǫ defined by (53), (54) and (56), is the solution

of the Bellman Equation (6) with ρ(1 − α) = g(sǫ).

Proof. See the online companion.
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Remark 4. It is interesting to mention that since X0 > 1 − α, (41) implies p > c1.

Remark 5. (Structure of the four parameter (σǫ, sǫ,Σǫ, Sǫ) policy): The proof of Theorem 2

completes all the steps in the road map and thus the following ordering policy is optimal in the case

K1 > 0:

• If the beginning inventory level is less or equal to σǫ, then order up to Sǫ.

• If the beginning inventory level is less or equal to sǫ but more than σǫ, then order up to Σǫ.

• If the beginning inventory level is more than sǫ, then do not order.

8. Case K1 = 0

Similar to the previous case, we will develop the methodology described in Section 6.1 for the case

K1 = 0, with reference to the cost structure in equation (2). We allow general demands. The main

result in this section is to prove the optimality of a three parameter (σǫ,Σǫ, Sǫ) policy in Theorem 3.

This is made possible by showing that sǫ = Σǫ in this case. Figure 3 provides a pictorial illustration

of the policy.

8.1. Problem Setting

We denote c2 = c, K = K2 + cǫ, then we have c1 =
K

ǫ
. Refer to Figure 1(b) to visualize c2, K and c1.

We assume
K

ǫ
> c. Then equation (32) becomes

K

ǫ
− p + (p + α(h − c))F (s(σ)) = α(

K

ǫ
− c)F (s(σ) − σ). (63)

Define the function Hσ(x) = Hσ,s(σ)(x) as follows:

Hσ(x) =





α

1 − α
(
K

ǫ
− c)

∫ s(σ)−σ

0 F̄ (ξ)dξ + (
K

ǫ
− c)(s(σ) − σ), if x ≤ σ,

α

1 − α

(
K

ǫ
− c

)∫ s(σ)−σ

0 F̄ (ξ)dξ + (
K

ǫ
− c)(s(σ) − x), if σ < x ≤ s(σ),





α(
K

ǫ
− c)[

∫ s(σ)−σ

0 F̄ (x − s(σ) + η)dη +
α

1 − α
F̄ (x − s(σ))

∫ s(σ)−σ

0 F̄ (ξ)dξ]

+g(x) − g(s(σ)) + α
∫ x−s(σ)

0 Hσ(x − ξ)f(ξ)dξ,

if x > s(σ).

(64)

Electronic copy available at: https://ssrn.com/abstract=3601262



Bensoussan et. al.: Optimal Policies for Inventory Systems

26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

We obtain σ by solving the equation

(
K

ǫ
− c)(s(σ) − σ) +

α

1 − α
(
K

ǫ
− c)

∫ s(σ)−σ

0

F̄ (ξ)dξ = K − cǫ + inf
y>s(σ)

Hσ(y). (65)

We shall first study the definition of σ and Hσ(x), and then check whether it satisfies equation (8)

with ρ(1 − α) = g(s(σ)). Equation (8) becomes

H(x) = min

{
g(x) − g(s(σ)) + αEH((x − D)+),

inf
x<y≤x+ǫ

((
K

ǫ
− c)(y − x) + g(y) + αEH((y − D)+)),

K − cǫ + inf
y>x+ǫ

(g(y) + αEH((y − D)+))

}
.

(66)

8.2. Solution of Equation (63)

If equation (63) has a solution, then necessarily
K

ǫ
− p < α(

K

ǫ
− c), which means

K

ǫ
<

p − αc

1 − α
. (67)

Note that this is exactly the opposite of inequality (24) assumed in Theorem 1 for the classical (s,S)

case. Moreover,

0 ≤
K

ǫ
− p + (p + α(h − c))F (s(σ)) ≤ α(

K

ǫ
− c)F (s(σ)). (68)

This leads us to define s̄ǫ as follows:

s(σ) ≥ s̄ǫ, F (s̄ǫ) =
(p −

K

ǫ
)+

p + α(h − c)
. (69)

Since p <
p − αc

1 − α
in view of p > c2 = c, we have two cases: either p >

K

ǫ
or

p ≤
K

ǫ
<

p − αc

1 − α
. (70)

In the second case, the second inequality in (68) implies necessarily that p + α(h − c) ≤ α(
K

ǫ
− c),

for otherwise there will be no solution to (63). But then from (67), we have p + α(h − c) < α
p − c

1 − α
,

which implies p(1 − α) < αp. This requires α > 1/2. This is too restrictive an assumption as it would

correspond economically to offering too large a discount. So we will not consider the case (70) and

assume instead

p > c1 =
K

ǫ
> c. (71)
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Therefore, looking at (69) we have

F (s̄ǫ) =
p −

K

ǫ
p + α(h − c)

. (72)

If (71) holds, then p + α(h − c) > α(
K

ǫ
− c) and we define s̄∗

ǫ by

s(σ) ≤ s̄∗
ǫ , F (s̄∗

ǫ ) =
p −

K

ǫ

p − α
K

ǫ
+ αh

. (73)

A solution of (63) necessarily belongs to the interval

s̄ǫ < s(σ) < s̄∗
ǫ < s̄, (74)

and the last inequality comes from the definition of s̄ (see equation (16)), since
p −

K

ǫ

p − α
K

ǫ
+ αh

<

p − c

p − αc + αh
, as is easily checked. We now define for s ∈ [s̄ǫ, s̄

∗
ǫ ], the map

s 7→ Tσ(s) = σ + F −1

(
K

ǫ
− p + (p + α(h − c))F (s)

α(K

ǫ
− c)

)
.

We have Tσ(s̄ǫ) = σ and Tσ(s̄∗
ǫ ) = σ + s̄∗

ǫ . Therefore, if σ = 0, we have T0((s̄∗
ǫ )) = (s̄∗

ǫ ), i.e., (s̄∗
ǫ ) is a

fixed point of T0(s). Similarly, if σ = s̄ǫ, we have Ts̄ǫ
(s̄ǫ) = s̄ǫ, i.e., s̄ǫ is a fixed point of Ts̄ǫ

(s). For

0 < σ < s̄ǫ, we have Tσ(s̄ǫ) < s̄ǫ and Tσ(s̄∗
ǫ ) > s̄∗

ǫ . Since the function s → Tσ(s) is continuous, there

exists a fixed point of Tσ(s). If there are several, we take the smallest one and have the following

result:

Proposition 4. We assume (71),i.e., p >
K

ǫ
> c. Then for σ ∈ [0, s̄ǫ], there exists a unique smallest

fixed point of the map s 7→ Tσ(s). This fixed point is denoted as s(σ), and the inequality (74), i.e.,

s̄ǫ < s(σ) < s̄∗
ǫ < s̄, holds.

8.3. Additional Properties

We first check that the infimum inf
y>s(σ)

Hσ(y) is attained. Indeed, from equation (30), as x → +∞,

H ′
σ(x) →

lim
x→+∞

g′(x)

1 − α
= c +

αh

1 − α
. Therefore, Hσ(x) → +∞ as x → +∞. But thanks to equation

(63), Hσ(x) is continuously differentiable at s(σ) with H ′
σ(s(σ)) = −(

K

ǫ
− c). So the infimum of
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Hs(y) for y > s(σ) is attained, and we denote the smallest minimum by S(σ). Moreover, noting that

F̄ (x − σ) − F̄ (x − s(σ)) < 0, we have

g′(x) + α(
K

ǫ
− c)(F̄ (x − σ) − F̄ (x − s(σ))) < 0, ∀x ≤ s̄

Therefore, necessarily, S(σ) > s̄. This is because g′(s̄) = 0 at s̄, and consequently Hs(y) < 0 at s̄. So

the smallest minimum S(σ) satisfies the inequality S(σ) > s̄. Since we are expecting a threshold at

s(σ), it is necessary to have a downward slope for the function σ 7→ s(σ). Indeed, from equation (63),

we can compute the derivative

s′(σ) = −
α(K

ǫ
− c)f(s(σ) − σ)

(p + α(h − c))f(s(σ)) − α(K

ǫ
− c)f(s(σ) − σ)

.

We know that s̄ǫ < s(σ) < s̄∗
ǫ . So to ensure that s′(σ) < 0, it is sufficient to make the assumption

inf
s̄ǫ<ξ<s̄∗

ǫ

ξ−s̄ǫ<η<ξ

f(ξ)

f(η)
>

α(K

ǫ
− c)

p + α(h − c)
. (75)

Note that this assumption is trivially satisfied in the exponential demand case, where inf
s̄ǫ<ξ<s̄∗

ǫ

ξ−s̄ǫ<η<ξ

f(ξ)

f(η)
=

e−λs̄ǫ =

K

ǫ
+ α(h − c)

p + α(h − c)
>

α(K

ǫ
− c)

p + α(h − c)
. Based on the above discussion, we can state the following

results.

Lemma 1. Assume (75). Then the following holds:

• The function σ 7→ s(σ) is decreasing on [0, s̄ǫ] and s(0) = s̄∗
ǫ , s(s̄ǫ) = s̄ǫ.

• The function σ 7→ Hσ(x) is decreasing ∀x.

Proposition 5. The functions

• σ 7→ H ′
σ(x) increases for s(σ) < x.

• σ 7→ S(σ) and σ 7→ Hσ(σ) − Hσ(S(σ)) are decreasing.

Proof. The proofs for Lemma 1 and Proposition 5 can be found in the online companion.

To demonstrate the main results, it remains to find a solution of equation (65) for σ.
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8.4. Obtaining σ and Policy Structure

We can rewrite equation (65) as

Hσ(σ) − Hσ(S(σ)) = K − cǫ. (76)

Since the function on the left hand side is monotone decreasing on [0, s̄ǫ], there exists a unique

solution of equation (76) for σ if and only if,

(
K

ǫ
− c)s̄∗

ǫ +
α

1 − α
(
K

ǫ
− c)

∫ s̄∗

ǫ

0

F̄ (ξ)dξ − H0(S(0)) > K − cǫ > −Hs̄ǫ
(S(s̄ǫ)). (77)

This leads to the following result.

Proposition 6. Assume

• (71), i.e., p >
K

ǫ
> c.

• (75), i.e., inf
s̄ǫ<ξ<s̄∗

ǫ

ξ−s̄ǫ<η<ξ

f(ξ)

f(η)
>

α(K

ǫ
− c)

p + α(h − c)
.

• (77), i.e., (
K

ǫ
− c)s̄∗

ǫ +
α

1 − α
(
K

ǫ
− c)

∫ s̄∗

ǫ

0 F̄ (ξ)dξ − H0(S(0)) > K − cǫ > −Hs̄ǫ
(S(s̄ǫ)).

Then there exists one and only one σǫ solution of equation (65). Moreover, σǫ ∈ [0, s̄ǫ]. If we set

sǫ = s(σǫ) ∈ [s̄ǫ, s̄
∗
ǫ ] and Sǫ = S(σǫ), then the (σǫ, sǫ, Sǫ) policy is defined. We also have

sǫ − σǫ ≤ ǫ. (78)

The proof follows from the previous results. Indeed, (65) implies

Hσǫ
(σǫ) = (

K

ǫ
− c)(sǫ − σǫ) + Hσǫ

(sǫ),

(
K

ǫ
− c)(sǫ − σǫ) + Hσǫ

(sǫ) ≤ K − cǫ + Hσǫ
(sǫ).

and we can therefore conclude inequality (78).

The next section is devoted to the proof of the optimality of the proposed three parameter policy.

9. Optimality of (σǫ,Σǫ, Sǫ) Policy

In this section, we prove the optimality of the (σǫ,Σǫ, Sǫ) policy stated in Proposition 6. We show in

Theorem 3 that the function Hσ(x) satisfies the Bellman equation and hence is the value function. A

closed-form solution for the optimal (σǫ,Σǫ, Sǫ) policy in the exponential demand case will be given

in Section 9.3.
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9.1. Problem Setting

We want to show that the function Hσǫ
(x) defined by (64), (65), and σ = σǫ, is the solution of (6)

with ρ(1 − α) = g(sǫ). To simplify the notation, we suppress ǫ and use H(x) for Hσǫ
(x), σ for σǫ, and

s for sǫ. We write (6) as

H(x) = inf
y≥x

{(
K

ǫ
− c)(y − x)1Iy−x≤ǫ + (K − cǫ)1Iy−x>ǫ + g(y) − g(s) + αEH((y − D)+)}.

Taking in account the form of equation (64), we have to first verify the following three relations:

H(x) = inf
y≥x

{(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)}, if x ≥ s, (79)

H(σ)− (
K

ǫ
− c)(x−σ) = min

{
inf

s≥y≥x
[(

K

ǫ
− c)(y −x)1Iy≤x+ǫ +(K − cǫ)1Iy>x+ǫ +g(y)−g(s)+αH(σ)

− α(
K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ], inf
y>s

[(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)]

}
, if s > x > σ, (80)

H(σ) = min

{
inf

σ≥y≥x
[(

K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + g(y) − g(s) + αH(σ)],

inf
s≥y>σ

[(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ],

inf
y>s

[(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)]

}
, if x > s(σ). (81)

Then we show that the proposed (σǫ,Σǫ, Sǫ) policy is optimal. For this, we need an additional

assumption which extends the previous assumption (75).

9.2. Optimal Policy

We are going to assume

inf
0<η<ξ<η+s̄ǫ

f(ξ)

f(η)
>

α(K

ǫ
− c)

p + α(h − c)
. (82)

Note that in the exponential demand case, this condition holds trivially since

f(ξ)

f(η)
= e−λ(ξ−η) > e−λs̄ǫ =

K

ǫ
+ α(h − c)

p + α(h − c)
>

α(K

ǫ
− c)

p + α(h − c)
.
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We need also to assume that s̄ǫ < s̄− ǫ. In the exponential demand case, this, in view of the definition

of s̄ǫ and s̄ in (72) and (16), means

K

ǫ
− c ≤ (eλǫ − 1)(c(1 − α) + αh). (83)

This is an assumption about the smallness of the difference
K

ǫ
− c. We then claim the following

result.

Theorem 3. Assume

• (71), i.e., p >
K

ǫ
> c.

• (77), i.e., (
K

ǫ
− c)s̄∗

ǫ +
α

1 − α
(
K

ǫ
− c)

∫ s̄∗

ǫ

0 F̄ (ξ)dξ − H0(S(0)) > K − cǫ > −Hs̄ǫ
(S(s̄ǫ)).

• (82), i.e., inf
0<η<ξ<η+s̄ǫ

f(ξ)

f(η)
>

α(K

ǫ
− c)

p + α(h − c)
.

• s̄ǫ < s̄ − ǫ.

Then the function H(x) = Hσǫ
(x), obtained by formulae (64) and (65), satisfies the relations (79),

(80), and (81), and therefore is the value function by way of being the solution of equation (6) with

ρ(1 − α) = g(sǫ).

Proof: See the online companion.

Remark 6. (Structure of the three parameter (σǫ,Σǫ, Sǫ) policy)

• If the beginning inventory level is less or equal to σǫ, then order up to Sǫ.

• If the beginning inventory level is less or equal to Σǫ but more than σǫ, then order up to Σǫ.

• If the beginning inventory level is more than Σǫ, then do not order.
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Figure 2 The graph of the standard (s, S) policy.

Figure 3 The graph of Hσ(x) when K1 > 0. The four parameter (σǫ, sǫ, Σǫ, Sǫ) policy is optimal. The solid line

represents the optimal cost function and σǫ and sǫ are the ordering points.

Electronic copy available at: https://ssrn.com/abstract=3601262



Bensoussan et. al.: Optimal Policies for Inventory Systems

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

Figure 4 The graph of Hσ(x) when K1 = 0. The three parameter (σǫ, Σǫ, Sǫ) policy is optimal.

9.3. Explicit Solution of (σǫ,Σǫ, Sǫ) Policy for Exponential Demand

Let the demand density be f(ζ) = λe−λζ . Assume (71) and (83) and consider equations (16), (72),

(74). Then there is a σǫ that solves

1

1 − α

[ K

ε
− c

c + αh

1−α

− log(1 +
K

ε
− c

c + αh

1−α

)

]
+

+
K

ε
− c

c + αh

1−α

log

(p+α(h−c))e−λσǫ

c+ αh

1−α

− α
K

ε
− c

c + αh

1−α

(1 − α)(1 +
K
ε

−c

c+ αh

1−α

)
= λǫ

K

ε
− c

c + αh

1−α

. (84)

With the help of equation (63), we then set

sǫ = σǫ +
1

λ
log

(p + α(h − c))e−λσǫ − α(K

ǫ
− c)

K

ǫ
(1 − α) + αh

, (85)

Sǫ = sǫ +
1

λ(1 − α)
log

K

ǫ
+ αh

1−α

c + αh

1−α

. (86)

This gives a complete analytic solution for the (σǫ, sǫ = Σǫ, Sǫ) policy. The details of this explicit

solution are in the online companion Section EC.8.
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10. Conclusion

In this paper, we study an infinite-horizon stochastic inventory model when the ordering cost is

piecewise-linear concave resulting from quantity discounts or multiple suppliers. The most related

recent work to our paper is Benjaafar et al. (2018) who consider a finite-horizon problem with a

number of suppliers, and show the optimality of a generalized (s,S) policy under some assumptions

relating to demand and cost. Without these limitations, however, their numerical examples show that

the policy fails to be optimal when the problem horizon is not long enough. We take up their problem

with only two suppliers for ease of technical exposition and show a generalized (s,S) policy is optimal

without the assumptions imposed in Benjaafar et al. (2018). Of course, in our case, the generalized

(s,S) policy can be characterized by four parameters with two representing ordering points and the

other two representing order-up-to thresholds. In the special case when one of the suppliers has no

fixed ordering cost, the policy has only three parameters, as the larger ordering point and the smaller

order-up-to level equals in this situation. Moreover, when the demand distribution is exponential, we

are able to obtain the optimal policy in a closed form.

In addition to the proof of optimality, we make some important contributions. Unlike in finite-

horizon cases, an infinite-horizon problem requires a functional Bellman equation for the value func-

tion that is more difficult to solve than a sequence of optimization problems occurring in finite horizon

problems. Our method constructs the value function explicitly by solving the functional Equation,

and thus it does not rely on the notions related to K-convexity used in the literature for solving

inventory problems with our cost structure.

Although we have worked out only the two linear segment case in equation (2), our method is

general. In our future work, we plan first to look into the case of three suppliers and then extend it

to the general case of an arbitrary number of suppliers. Finally, let us mention that while we have

chosen to study the lost sales case in this paper, our methodology applies equally well to the backlog

case.
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Endnotes

1. ✶v comes with value 1 if v satisfies the indicated condition otherwise 0.
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Optimal Policies for Inventory Systems with Piecewise-Linear

Concave Ordering Costs: Electronic Companion

EC.1. Proof of Theorem 1 of Section 5.

Without assumption (24) we will prove that Hsǫ
(x) is solution of (9), i.e., we will show that

Hsǫ
(x) = min

(
g(x) − g(sǫ) + αEHsǫ

((x − D)+),K2 + inf
y>x+ǫ

(g(y) − g(sǫ) + αEHsǫ
((y − D)+))

)
.

(EC.1)

Assume first x ≤ sǫ. Then Hsǫ
(x) = 0 and g(x) − g(sǫ) + αEHsǫ

((x − D)+) = g(x) − g(sǫ) > 0, since

g(x) decreases for x < s̄. Next If x + ǫ < sǫ,

inf
y>x+ǫ

(g(y) − g(sǫ) + αEHsǫ
((y − D)+)) = min

(
inf

x+ǫ<y<sǫ

(g(y) − g(sǫ),

inf
sǫ≤y

(g(y) − g(sǫ) + αEHsǫ
((y − D)+))

)

= min( inf
x+ǫ<y<sǫ

(g(y) − g(sǫ), inf
sǫ≤y

Hsǫ(y)) = −K2,

since inf
x+ǫ<y<sǫ

(g(y) − g(sǫ)) > 0. Hence the right hand side of (EC.1) is 0, which is indeed the value

of Hsǫ
(x), when x ≤ sǫ. Hence Hsǫ

(x) is solution of (EC.1) when x + ǫ ≤ sǫ. When sǫ ≥ x > sǫ − ǫ,

inf
y>x+ǫ

(g(y) − g(sǫ) + αEHsǫ
((y − D)+)) = inf

y>x+ǫ
Hsǫ

(y) = Hsǫ
(Sǫ) = inf

y≥sǫ

Hsǫ
(y) = −K2.

Hence Hsǫ
(x) is solution of (EC.1) when x ≤ sǫ. If now x > sǫ, then (EC.1) means

Hsǫ
(x) = min(Hsǫ

(x),K2 + inf
y>x+ǫ

Hsǫ
(y)). (EC.2)

To check (EC.2) we have to prove that

Hsǫ
(x) ≤ K2 + Hsǫ

(y), ∀y > x + ǫ (EC.3)

But, in fact we have

Hsǫ
(x) ≤ K2 + Hsǫ

(y), ∀y > x, (EC.4)

which is a classical result. However, for convenience of the reader, a proof of (EC.4) is provided

following the proof of this theorem.
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So we have proven that Hsǫ
(x) is the solution of (EC.1), and thus of (9) with ρ(1 − α) = g(sǫ).

Assumption (24) is not needed for that. However, under assumption (24), to prove that Hsǫ
(x) is the

solution of (8) it suffices to show

Hsǫ
(x) ≤ K1 + inf

x<y≤x+ǫ
((c1 − c2)(y − x) + g(y) − g(sǫ) + αEHsǫ

((y − D)+)). (EC.5)

If x + ǫ ≤ sǫ , then (EC.5) becomes

0 ≤ K1 + inf
x<y≤x+ǫ

((c1 − c2)(y − x) + g(y) − g(sǫ)).

This is, of course, true because g(y) − g(sǫ) > 0 for y ≤ sǫ. So we may assume sǫ < x + ǫ. If x ≥ sǫ,

then (EC.5) becomes

Hsǫ
(x) ≤ K1 + inf

x<y≤x+ǫ
((c1 − c2)(y − x) + Hsǫ

(y))

= K1 + Hsǫ
(x).

Next we see why we need condition (24). For this let us first observe that the left inequality in (13)

can be strict when x > 0. By adding (c1 −c2) to both sides of the inequality, we get H ′
s(x)+(c1 −c2) >

c1(1 − α) + c2α − p for x > 0. Then we see that under condition (24), the function (c1 − c2)y + Hsǫ
(y)

is monotone increasing when y > sǫ. Therefore, the assertion (EC.5) is true if x ≤ sǫ − ǫ or x ≥ sǫ.

Finally if sǫ − ǫ < x < sǫ, (EC.5) reduces to

0 ≤ K1 + min

(
inf

x<y≤sǫ

((c1 − c2)(y − x) + g(y) − g(sǫ)), inf
sǫ<y≤x+ǫ

((c1 − c2)(y − x) + Hsǫ
(y))

)
.

The last inequality is correct by previously used arguments. The proof has been completed.�

EC.2. Proof of Equation (EC.4).

Equation (EC.4) is true if Hǫ(x) ≤ 0 since for x ≥ sǫ

K2 + inf
y≥x

Hǫ(y) ≥ K2 + inf
y≥sǫ

Hǫ(y) = 0 ≥ Hǫ(x).

Let xǫ be the first point such that Hǫ(xǫ) = 0. Set Sǫ = S(sǫ). Then xǫ > Sǫ and Hǫ(x) < 0 for x < xǫ.

So we need to prove equation (EC.4) only for x > xǫ. Define

Bǫ(x) = Hǫ(x) − inf
y≥x

Hǫ(y).
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Thus we need to prove

Bǫ(x) ≤ K2, ∀x > xǫ. (EC.6)

But Bǫ(x) < K2, ∀x < xǫ. Let x′
ǫ be the smallest number satisfying x′

ǫ > xǫ and Bǫ(x
′
ǫ) = K2. Let us

consider now xǫ
2 such that

Hǫ(x
ǫ
2) = inf

η≥x′
ǫ

Hǫ(η).

The point xǫ
2 is well defined since Hǫ(η) → ∞ as η → ∞. Thus Hǫ(η) has a minimum and we take xǫ

2

to be the smallest minimum. Further, xǫ
2 6= x′

ǫ since

Bǫ(x
′
ǫ) = Hǫ(x

′
ǫ) − Hǫ(x

ǫ
2) = K2 6= 0.

Next, consider xǫ
1 such that

Hǫ(x
ǫ
1) = sup

sǫ≤η≥xǫ

2

Hǫ(η).

We claim that xǫ
1 ≥ x′

ǫ. Indeed if xǫ
1 < x′

ǫ then inf
η≥xǫ

1

Hǫ(η) ≤ inf
η≥x′

ǫ

Hǫ(η) and

Bǫ(x
ǫ
1) = Hǫ(x

ǫ
1) − inf

η≥xǫ

1

Hǫ(η) ≥ Hǫ(x
′
ǫ) − inf

η≥x′
ǫ

Hǫ(η) = Bǫ(x
′
ǫ) = K2.

recalling that x′
ǫ < xǫ

2. This contradicts the definition of x′
ǫ. Therefore, xǫ

1 > x′
ǫ. Further, xǫ

1 6= xǫ
2 since

Hǫ(x
ǫ
1) − Hǫ(x

ǫ
2) ≥ Hǫ(x

′
ǫ) − Hǫ(x

ǫ
2) = Bǫ(x

′
ǫ) = K2 > 0.

Therefore we have

xǫ < x′
ǫ ≤ xǫ

1 < xǫ
2. (EC.7)

We next check the property that ∀ x ≤ y ≤ xǫ
2, we have

Hǫ(x) − Hǫ(y) ≤ Hǫ(x
ǫ
1) − Hǫ(x

ǫ
2). (EC.8)

Indeed if x′
ǫ ≤ x ≤ y ≤ xǫ

2 then Hǫ(y) ≥ Hǫ(x
ǫ
2) and Hǫ(x) ≤ Hǫ(x

ǫ
1), which proves (EC.8) in this case.

Now, if x < x′
ǫ then

Hǫ(x) − Hǫ(y) ≤ Hǫ(x) − inf
y≥x

Hǫ(y) = Bǫ(x) < K2 ≤ Hǫ(x
ǫ
1) − Hǫ(x

ǫ
2),
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which completes the proof of (EC.8). Next we write

Hǫ(x
ǫ
1) = g(xǫ

1) − g(sǫ) + αEHǫ((x
ǫ
1 − D)+),

Hǫ(x
ǫ
2) = g(xǫ

2) − g(sǫ) + αEHǫ((x
ǫ
2 − D)+).

So,

Hǫ(x
ǫ
1)−Hǫ(x

ǫ
2) = g(xǫ

1)−g(xǫ
2)+αEHǫ(x

ǫ
1 −D)+)−αEHǫ(x

ǫ
2 −D)+) ≤ g(xǫ

1)−g(xǫ
2)+α(Hǫ(x

ǫ
1)−Hǫ(x

ǫ
2)),

Hǫ(x
ǫ
1) − Hǫ(x

ǫ
2) ≤

g(xǫ
1) − g(xǫ

2)

1 − α
< 0.

This is because g is increasing on (s̄,∞). This is a contradiction since Hǫ(x
ǫ
1) > Hǫ(x

ǫ
2). Therefore

the proof of equation (EC.4) is complete. �

Note: We recommend to the reader to consult Bensoussan (2011) for a similar proof for the case

ǫ = 0.

EC.3. Proof of Monotonicity Property at page 15.

Indeed, we first write (11) as

Hs(x) = g(x) − g(s) + α

∫ x−s

0

Hs(x − ξ)f(ξ)dξ, x > s,

∂Hs(x)

∂s
is, for x > s, the solution of the equation

∂Hs(x)

∂s
= −g′(s) + α

∫ x−s

0

∂Hs(x − ξ)

∂s
f(ξ)dξ, x > s.

For s < s̄, we have g′(s) < 0, therefore
∂Hs(x)

∂s
> 0, x > s. Next, inf

y>s
Hs(y) = Hs(S(s)) and

d

ds
Hs(S(s)) =

∂Hs(S(s))

∂s
,

in view of the optimality of S(s). Therefore d

ds
Hs(S(s)) > 0, when s ∈ (0, s̄), which proves the property.
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EC.4. Proof of Theorem 2 of Section 7.3

To simplify notation, we drop the index ǫ and denote H(x), σ, s,Σ, S. We must check that

H(x) = inf
x≤y

{
K11Iy>x + (c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + g(y) − g(s) + αEH((y − D)+)

}
.

There are 3 intervals (0, σ), (σ, s), (s,+∞). The verification amounts to ascertaining that:

• (a)

H(σ) = min

{
inf

x≤y≤σ
[K11Iy>x + (c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + g(y)] − g(s) + αH(σ),

K1 + inf
σ<y≤s

[(c1 − c2)(y −x)1Iy−x≤ǫ +(c1 − c2)ǫ1Iy−x>ǫ +g(y)−g(s)+αH(σ)−α(c1 − c2)

∫ y−σ

0

F (ξ)dξ],

K1 + inf
s<y

[(c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + H(y)]

}
, if 0 ≤ x ≤ σ, (EC.9)

• (b)

H(σ)−(c1 −c2)(x−σ) = min

{
inf

x≤y<s

[
K11Iy>x +(c1 −c2)(y−x)1Iy−x≤ǫ +(c1 −c2)ǫ1Iy−x>ǫ +g(y)−g(s)

+ αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ
]
,K1 + inf

s≤y

[
(c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + H(y)

]}
,

if σ < x < s, (EC.10)

• (c)

H(x) = inf
x≤y

{
K11Iy>x + (c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + H(y)

}
, if s ≤ x. (EC.11)

We begin with (EC.11). It reduces to

H(x) = min

[
H(x),K1 + inf

x<y≤x+ǫ
((c1 − c2)(y − x) + H(y)),K2 + inf

y>x+ǫ
H(y)

]
. (EC.12)

In view of the formula (45) the function H ′(x) is increasing on (s. + +∞), and has a unique 0 at

S > s. So H(y) increases on (S,+∞) and decreases on (s,S). Clearly

H(x) < H(y) < K2 + H(y), ∀x ≥ S, y > x

H(x) < H(s) < H(σ) = K2 + H(S)
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≤ K2 + H(y), ∀y ≥ s, ∀s ≤ x ≤ S.

Therefore

H(x) < K2 + inf
y>x+ǫ

H(y), ∀x ≥ s. (EC.13)

Similarly H ′(x) + c1 − c2 is increasing on (s,+∞), and has a unique 0 at Σ > s. Therefore H(y) +

(c1 − c2)y increases for y > Σ and decreases on (s,Σ). So H(x) + (c1 − c2)x < H(y) + (c1 − c2)y <

K1 + H(y) + (c1 − c2)y, ∀x ≥ Σ, y > x and

H(x) + (c1 − c2)x ≤ H(s) + (c1 − c2)s = K1 + H(Σ) + (c1 − c2)Σ

≤ K1 + H(y) + (c1 − c2)y, ∀y ≥ s, ∀s ≤ x ≤ Σ.

Therefore,

H(x) < K1 + inf
x<y≤x+ǫ

((c1 − c2)(y − x) + H(y)), ∀x ≥ s. (EC.14)

From (EC.13) and (EC.14) we obtain immediately (EC.12).Therefore equation (EC.12) has been

proved.

We next prove (EC.10). We first consider the term

U = K1 + inf
s≤y

{
(c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + H(y)

}
.

Since σ < x < s < Σ < σ + ǫ < x + ǫ, we can write

U = min

(
K1 + inf

s≤y≤x+ǫ
[(c1 − c2)(y − x) + H(y)], K2 + inf

y>x+ǫ
H(y)

)
.

But, since Σ ∈ [s, x + ǫ], we have

K1 + inf
s≤y≤x+ǫ

[(c1 − c2)(y − x) + H(y)] = K1 + (c1 − c2)(Σ − x) + H(Σ) =

H(s) + (c1 − c2)(s − x) = H(σ) − (c1 − c2)(x − σ).

Now, since x + ǫ > s, we have inf
y>x+ǫ

H(y) > H(S). Hence

K2 + inf
y>x+ǫ

H(y) > K2 + H(S) = H(σ) > H(σ) − (c1 − c2)(x − σ).
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Therefore, collecting the above results, we can write

U = H(σ) − (c1 − c2)(x − σ). (EC.15)

Consider next

V = inf
x≤y<s

{
K11Iy>x + (c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + g(y)} − g(s)

+ αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}
.

Since y < s < x + ǫ

V = inf
x≤y<s

{
K11Iy>x + (c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}
.

Define for y < s,

Φ(y) = (c1 − c2)y + g(y) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ.

We thus have

Φ′′(y) = −α(c1 − c2)f(y − σ) + (p + α(h − c2))f(y)

= λe−λy[(p + α(h − c2)) − α(c1 − c2)eλσ].

Since σ < s̄ǫ, it follows that

Φ′′(y) ≥ λe−λy[(p + α(h − c2)) − α(c1 − c2)eλs̄ǫ ]

=
λe−λy(p + α(h − c2))X0(c1 + αh

1−α
)

X0(c1 + αh

1−α
) + α(c1 − c2)

> 0.

So Φ′(y) = c1 + α(h − c1) + α(c1 − c2)F̄ (y − σ) − (p + α(h − c2))F̄ (y) is increasing for y < s. But

Φ′(s) = c1 + α(h − c1) + α(c1 − c2)F̄ (s − σ) − (p + α(h − c2))F̄ (s)

= c1 + α(h − c1) + e−λs[−(p + α(h − c2)) + α(c1 − c2)eλσ].

Therefore from (37), we have Φ′(s) = (c1 +α(h− c1))(1−
X0

1 − α
) < 0. Hence, Φ′(y) < 0, for y < s, and

the function Φ(y) decreases for y < s. So it follows that

V > inf
x≤y<s

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}

= (c1 − c2)(s − x) + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ

= −(c1 − c2)(x − σ) + (c1 − c2)(1 − α)(s − σ) + α(c1 − c2)

∫ s−σ

0

F̄ (ξ)dξ + αH(σ)

= −(c1 − c2)(x − σ) + H(σ) = U, (from(6.2))
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and (EC.10) has therefore been proved. We finally turn to (EC.9). We first consider

J = K1 + inf
s<y

{
(c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + H(y)

}
.

If x + ǫ < s, then

J = K2 + inf
y>s

H(y) = H(σ)

If x + ǫ > s, then

J = min

{
K1 + inf

y<s≤x+ǫ
((c1 − c2)(y − x) + H(y)),K2 + inf

y>x+ǫ
H(y)

}
.

Now

K1 + inf
y<s≤x+ǫ

{
(c1 − c2)(y − x) + H(y)

}
=





K1 + (c1 − c2)(Σ − x) + H(Σ), if x + ǫ ≥ Σ,

K2 + H(x + ǫ), if x + ǫ < Σ,

and

K1 + (c1 − c2)(Σ − x) + H(Σ) = H(σ) + (c1 − c2)(σ − x) > H(σ), if x + ǫ ≥ Σ

K2 + H(x + ǫ) > K2 + H(S) = H(σ), if x + ǫ < Σ.

Therefore,

K1 + inf
y<s≤x+ǫ

{
(c1 − c2)(y − x) + H(y)

}
> H(σ), if x + ǫ > s.

On the other hand, since x < σ, and s̄ǫ + ǫ < s̄ we have that x + ǫ < σ + ǫ < s̄ǫ + ǫ < s̄. Therefore

x + ǫ < S, hence

K2 + inf
y>x+ǫ

H(y) = K2 + H(S) = H(σ).

Collecting results we have checked that J = H(σ). We next consider

X = K1 + inf
σ<y≤s

{
(c1 −c2)(y−x)1Iy−x≤ǫ +(c1 −c2)ǫ1Iy−x>ǫ +g(y)−g(s)+αH(σ)−α(c1 −c2)

∫ y−σ

0

F (ξ)dξ

}
.

If x + ǫ > s, then

X = K1 + inf
σ<y≤s

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}
.
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Since Φ(y) = (c1 − c2)y + g(y) − α(c1 − c2)
∫ y−σ

0 F (ξ)dξ is decreasing for y ≤ s, we have

X = K1 + (c1 − c2)(s − x) + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ

= K1 + (c1 − c2)(σ − x) + H(σ) > H(σ).

If x + ǫ < s, then

X = min

{
K1 + inf

σ<y≤x+ǫ

[
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

]
,

K2 + inf
x+ǫ<y≤s

[
g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

]}
.

Using the decreasing property of Φ(y), we have

K1 + inf
σ<y≤x+ǫ

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}
=

K2 + g(x + ǫ) − g(s) + αH(σ) − α(c1 − c2)

∫ x+ǫ−σ

0

F (ξ)dξ.

Thus, if x + ǫ < s, then

X = K2 + inf
x+ǫ<y≤s

{
g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}

> K2 + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ

> (c1 − c2)(s − σ) + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ = H(σ),

where we have used the fact that s − σ < ǫ. So, we have proved that X > H(σ). Finally, we consider

Y = inf
x≤y≤σ

{
K11Iy>x + (c1 − c2)(y − x)1Iy−x≤ǫ + (c1 − c2)ǫ1Iy−x>ǫ + g(y)

}
− g(s) + αH(σ).

If x + ǫ > σ, then

Y = inf
x≤y≤σ

{
K11Iy>x + (c1 − c2)(y − x) + g(y) − g(s) + αH(σ)

}

> inf
x≤y≤s

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}

> (c1 − c2)(s − σ) + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ = H(σ).

If x + ǫ < σ, we have

Y = min

{
inf

x≤y≤x+ǫ

[
K11Iy>x +(c1 −c2)(y−x)+g(y)−g(s)+αH(σ)

]
,K2 + inf

x+ε<y≤σ

(
g(y)−g(s)

)
+αH(σ)

}
.
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But

K2 + inf
x+ε<y≤σ

(g(y) − g(s)) + αH(σ) > K2 + αH(σ) > H(σ),

and

inf
x≤y≤x+ǫ

{
K11Iy>x + (c1 − c2)(y − x) + g(y) − g(s) + αH(σ)

}

> inf
x≤y≤s

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ)

}

> inf
x≤y≤s

{
(c1 − c2)(y − x) + g(y) − g(s) + αH(σ) − α(c1 − c2)

∫ y−σ

0

F (ξ)dξ

}

> (c1 − c2)(s − σ) + αH(σ) − α(c1 − c2)

∫ s−σ

0

F (ξ)dξ = H(σ).

Therefore we have obtained

Y > H(σ). (EC.16)

With previous estimates this implies (EC.9) and thus the proof of the theorem is complete. �

EC.5. Proof of Lemma 1 of Section 8.3.

The proof of the first part of the lemma follows from the consideration of the derivative s′(σ) and

assumption (75). For the second part, we first recall that

Hσ(s(σ)) =
α

1 − α
(
K

ǫ
− c)

∫ s(σ)−σ

0

F̄ (ξ)dξ,

Hσ(σ) =
α

1 − α
(
K

ǫ
− c)

∫ s(σ)−σ

0

F̄ (ξ)dξ + (
K

ǫ
− c)(s(σ) − σ),

hence

d

dσ
Hσ(s(σ)) = (s′(σ) − 1)

α

1 − α
(
K

ǫ
− c)F̄ (s(σ) − σ) < 0,

d

dσ
Hσ(σ) = (s′(σ) − 1)(

K

ǫ
− c)[

α

1 − α
F̄ (s(σ) − σ) + 1] < 0,

thanks to this lemma’s part (a). Next we take σ < σ′, then we have σ < σ′ < s(σ′) < s(σ). For x < σ,

Hσ(x) = Hσ(σ) and Hσ′(x) = Hσ′(σ′), therefore Hσ(σ) > Hσ′(σ′) and hence

Hσ(x) > Hσ′(x). (EC.17)

Take next σ < x < σ′, then

Hσ(x) = Hσ(s(σ)) + (
K

ǫ
− c)(s(σ) − x),
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Hσ′(x) = Hσ′(σ′) = Hσ′(s(σ′)) + (
K

ǫ
− c)(s(σ′) − σ′).

But Hσ(s(σ)) > Hσ′(s(σ′)) and s(σ) − x > s(σ′) − x > s(σ′) − σ′. So (EC.17) holds again. We next

take σ′ < x < s(σ′), then

Hσ(x) = Hσ(s(σ)) + (
K

ǫ
− c)(s(σ) − x),

Hσ′(x) = Hσ′(s(σ′)) + (
K

ǫ
− c)(s(σ′) − x).

Hence

Hσ(x) − Hσ′(x) = Hσ(s(σ)) − Hσ′(s(σ′)) + (
K

ǫ
− c)(s(σ) − s(σ′)).

So (EC.17) holds again.

We next take s(σ′) < x < s(σ). Then we have Hσ′(x) < Hσ′(s(σ′)) because x → Hσ′(x) is decreasing

on [0, s̄]. Then

Hσ′(x) < Hσ(s(σ)) = Hσ(x) − (
K

ǫ
− c)(x − s(σ)) < Hσ(x).

Thus (EC.17) is satisfied once more. So (EC.17) holds for x ∈ [0, s(σ)]. We may then assume x >

s(σ) > s(σ′). We can write from (64)

Hσ(x) = g(x) − g(s(σ)) + αEHσ((x − D)+),

Hσ′(x) = g(x) − g(s(σ′)) + αEHσ′((x − D)+).

Set Hσ,σ′(x) = Hσ(x) − Hσ′(x). Then Hσ,σ′(x), for x < s(σ), and

Hσ,σ′(x) = g(s(σ′)) − g(s(σ)) + αEHσ,σ′((x − D)+), x > s(σ).

But g(s(σ′)) − g(s(σ)) > 0, since s(σ′) < s(σ) < s̄. Collecting the above observations together we see

that Hσ,σ′(x) > 0, and the proof has been completed. �
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EC.6. Proof of Proposition 5 of Section 8.3.

The first part is a routine calculation. Indeed when s(σ) < x, we have, from (30)

H ′
σ(x) = g′(x) + α(

K

ǫ
− c)(F̄ (x − σ) − F̄ (x − s(σ))) + α

∫ x−s(σ)

0

H ′
σ(x − ξ)f(ξ)dξ. (EC.18)

Differentiating with respect to σ, we can write

∂

∂σ
H ′

σ(x) = α(
K

ǫ
− c)f(x − σ) + α

∫ x−s(σ)

0

∂

∂σ
H ′

σ(x − ξ)f(ξ)dξ,

which implies
∂

∂σ
H ′

σ(x) > 0. This yields the result. �

Now for the second part, using H ′
σ(S(σ)) = 0, we obtain by differentiation with respect to σ

∂

∂σ
H ′

σ(S(σ)) + H ′′
σ (S(σ))S′(σ) = 0.

From the first part of this lemma we have
∂

∂σ
H ′

σ(S(σ)) > 0. Since S(σ) is a minimum, H ′′
σ (S(σ)) > 0.

It follows that S′(σ) < 0, which is the desired result. Next

Hσ(σ) − Hσ(S(σ)) = (
K

ǫ
− c)(s(σ) − σ) −

∫ S(σ)

s(σ)

H ′
σ(ξ)dξ.

Therefore,

d

dσ
(Hσ(σ) − Hσ(S(σ))) = (

K

ǫ
− c)(s′(σ) − 1) + s′(σ)H ′

σ(ξ) −

∫ S(σ)

s(σ)

∂

∂σ
H ′

σ(ξ)dξ

= −(
K

ǫ
− c) −

∫ S(σ)

s(σ)

∂

∂σ
H ′

σ(ξ)dξ < 0,

and the proof has been completed. �

EC.7. Proof of Theorem 3 of Section 9.2

We first obtain two preliminary properties, which are consequences of the assumptions (75),(82). The

first one is

x 7→ H ′
σ(x) is monotone increasing for x > σ, (EC.19)

where Hσ(x) is defined by (64). Indeed, x → H ′
σ(x) is C1 on (σ,+∞) and H ′′

σ (x) = 0, on (σ, s(σ)).

On (s(σ),+∞), one has from (EC.18)

H ′′
σ (x) = g′′(x) + α(

K

ǫ
− c)(−f(x − σ) + f(x − s(σ)) + αH ′

σ(s(σ)) + α

∫ x−s(σ)

0

H ′′
σ (x − ξ)f(ξ)dξ

= g′′(x) − α(
K

ǫ
− c)f(x − σ) + α

∫ x−s(σ)

0

H ′′
σ (x − ξ)f(ξ)dξ.
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Now

g′′(x) − α(
K

ǫ
− c)f(x − σ) = (p + α(h − c))f(x) − α(

K

ǫ
− c)f(x − σ)

= f(x − σ)(p + α(h − c))




f(x)

f(x − σ)
−

α(
K

ǫ
− c)

p + α(h − c)


 .

Recalling that x > s(σ) > s̄ǫ and x − σ > x − s̄ǫ, and using assumption (75)), we that g′′(x) − α(K

ǫ
−

c)f(x − σ) > 0. This implies H ′′
σ (x) > 0, for x > s(σ). This proves (EC.19). Next as,

H ′
σ(x) = −(

K

ǫ
− c), for σ < x ≤ s(σ),

the monotonicity property (EC.19) implies immediately that

H ′
σ(x) +

K

ǫ
− c ≥ 0, for σ < x. (EC.20)

Hence, it follows that

inf
x≤y≤x+ǫ

[(
K

ǫ
− c)y + Hσ(y)] = Hσ(x). (EC.21)

We now turn to proving that the function H(x) = Hσǫ
(x) satisfies (79), (80), (81). For (79), this

amounts to showing

H(x) = min[H(x),K − cǫ + inf
y>x+ǫ

H(y)].

So we have to prove

H(x) ≤ K − cǫ + H(y), ∀y > x + ǫ.

But this is a consequence of

H(x) ≤ K − cǫ + H(y), ∀y > x > s,

which is same as equation (EC.4) which has already been proved. We next prove (80). Since s > x > σ

and s − σ < ǫ, we have s < x + ǫ. Therefore,

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}
=

min

{
inf

s<y<x+ǫ
[(

K

ǫ
− c)(y − x) + H(y)], K − cǫ + inf

y>x+ǫ
H(y)

}
.
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So from (EC.20) again, it follows that

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}
(EC.22)

= min

{
(
K

ǫ
− c)(s − x) + H(s), K − cǫ + inf

y>x+ǫ
H(y)

}
.

But

(
K

ǫ
− c)(s − x) + H(s) = (

K

ǫ
− c)(s − σ) − (

K

ǫ
− c)(x − σ) + H(s)

= H(σ) − (
K

ǫ
− c)(x − σ)

< H(σ) = K − cǫ + inf
y>s

H(y)

< K − cǫ + inf
y>x+ǫ

H(y).

Therefore, we have

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}
= H(σ) − (

K

ǫ
− c)(x − σ). (EC.23)

Next, since s < x + ǫ

inf
s≥y≥x

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ

}
=

inf
s≥y≥x

{
(
K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ

}
.

Now, we use the assumption (82) to check that the function

Φ(y) = (
K

ǫ
− c)y + g(y) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ,

is decreasing on y ∈ (σ, s). Indeed,

Φ′(y) =
K

ǫ
− c + g′(y) − α(

K

ǫ
− c)F (y − σ) =

K

ǫ
− p + (p + α(h − c))F (y) − α(

K

ǫ
− c)F (y − σ),

and

Φ′′(y) = (p + α(h − c))f(y) − α(
K

ǫ
− c)f(y − σ) > 0,
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thanks to the assumption (82). Therefore Φ′(y) is increasing , and since Φ′(s) = 0, we obtain Φ′(y) < 0,

on y ∈ (σ, s). Hence Φ(y) is decreasing on y ∈ (σ, s). Therefore, it follows that

inf
s≥y≥x

{
(
K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ

}

= (
K

ǫ
− c)(s − x) + αH(σ) − α(

K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ

= −(
K

ǫ
− c)(x − σ) + (

K

ǫ
− c)(s − σ)(1 − α) + α(

K

ǫ
− c)

∫ s−σ

0

F̄ (ξ)dξ + αH(σ)

= −(
K

ǫ
− c)(x − σ) + H(σ),

which, combined with (EC.23) implies the relation (80). We turn finally to (81). We note that

σ ≤ s̄ǫ < s̄ − ǫ. If x ≤ σ, then x + ǫ < s̄. Let us first check that

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}
= H(σ). (EC.24)

Indeed, suppose first that s < x + ǫ < s̄. Then

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}

= min

{
inf

s<y<x+ǫ
((

K

ǫ
− c)(y − x) + H(y)), K − cǫ + inf

y>x+ǫ
H(y)

}
.

Thanks to the assumption (75) and to the fact that x + ε < s̄, this is

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}

= min

{
inf

s<y<x+ǫ
((

K

ǫ
− c)(y − x) + H(y)), K − cǫ + inf

y>x+ǫ
H(y)

}

= min

{
(
K

ǫ
− c)(s − x) + H(s),H(σ)

}
,

and (
K

ǫ
− c)(s − x) + H(s) > (

K

ǫ
− c)(s − σ) + H(s) = H(σ), therefore (EC.24) is satisfied. In the

case x + ǫ < s, we have simply

inf
y>s

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + H(y)

}
= K − cǫ + inf

y>s
H(y) = H(σ),

and (EC.24) is again satisfied. Consider next

X = inf
s≥y>σ

{
(
K

ǫ
− c)(y −x)1Iy≤x+ǫ +(K − cǫ)1Iy>x+ǫ +g(y)−g(s)+αH(σ)−α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ

}
.
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Suppose again that the situation x + ǫ > s. Then

X = inf
s≥y>σ

{
(
K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ

}
.

But, as already seen above, thanks to assumption (82) we have

X = (
K

ǫ
− c)(s − x) + αH(σ) − α(

K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ

= −(
K

ǫ
− c)(x − σ) + H(σ) > H(σ).

If, on the other hand x + ǫ < s, we can write

X = min

{
inf

x+ǫ≥y>σ
[(

K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ],

K − cǫ + inf
s≥y≥x+ǫ

[g(y) − g(s) + αH(σ) − α(
K

ǫ
− c)

∫ y−σ

0

F (ξ)dξ]

}

= K − cǫ + min

{
g(x + ǫ) − g(s) + αH(σ) − α(

K

ǫ
− c)

∫ x+ǫ−σ

0

F (ξ)dξ,

αH(σ) − α(
K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ

}

> K − cǫ + αH(σ) − α(
K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ

≥ (
K

ǫ
− c)(s − σ) + αH(σ) − α(

K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ

= (
K

ǫ
− c)(s − σ)(1 − α) + αH(σ) + α(

K

ǫ
− c)

∫ s−σ

0

F̄ (ξ)dξ = H(σ).

So X > H(σ). It remains to consider

Y = inf
σ≥y≥x

{
(
K

ǫ
− c)(y − x)1Iy≤x+ǫ + (K − cǫ)1Iy>x+ǫ + g(y) − g(s) + αH(σ)

}
.

If x + ǫ > σ, then

Y = inf
σ≥y≥x

{
(
K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ)

}
.

Since σ < s̄ǫ, the function y → (
K

ǫ
− c)y + g(y) decreases for y ≤ σ, hence

Y = (
K

ǫ
− c)(σ − x) + g(σ) − g(s) + αH(σ) > X > H(σ)
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If x + ǫ < σ, we have

Y = min

{
inf

x+ǫ≥y≥x
[(

K

ǫ
− c)(y − x) + g(y) − g(s) + αH(σ)],

K − cǫ + inf
σ≥y>x+ǫ

(g(y) − g(s) + αH(σ))

}

= K − cǫ + min

{
g(x + ǫ) − g(s) + αH(σ), g(σ) − g(s) + αH(σ)

}

= K − cǫ + g(σ) − g(s) + αH(σ)

> (
K

ǫ
− c)(s − σ) + g(σ) − g(s) + αH(σ)

> (
K

ǫ
− c)(s − σ) + αH(σ) − α(

K

ǫ
− c)

∫ s−σ

0

F (ξ)dξ = H(σ).

Thus Y > H(σ). Therefore the proof of Theorem 3 is complete. �

EC.8. Explicit Solution for (σǫ, sǫ, Sǫ) Policy for Exponential Demand.

EC.8.1. Preliminary Assumptions

We let f(x) = λe−λx. and obtain the promised closed form solution. We begin by summarizing the

assumptions of Theorem 3. We have

p >
K

ǫ
> c. (EC.25)

Next s̄ǫ is defined by ( (72), hence

s̄ǫ =
1

λ
log

p + α(h − c)
K

ǫ
+ α(h − c)

, (EC.26)

and s̄∗
ǫ is defined by (73)

s̄∗
ǫ =

1

λ
log

p − α K

ǫ
+ αh

K

ǫ
− α K

ǫ
+ αh

. (EC.27)

Now recall that s̄ is given by (16), we get

s̄ =
1

λ
log

p + α(h − c)

c + α(h − c)
. (EC.28)

Therefore, assumption (83) becomes

K

ǫ
− c < (c + α(h − c))(eλǫ − 1). (EC.29)
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Next, assumption (82) becomes

e−λs̄ǫ >
α(K

ǫ
− c)

p + α(h − c)
,

which is automatically verified thanks to (EC.26). Next (82) reads

K

ǫ
− α K

ǫ
+ αh

p − α K

ǫ
+ αh

>
α(K

ǫ
− c)

p + α(h − c)
. (EC.30)

which is, like (EC.29), a smallness condition on
K

ǫ
− c.

EC.8.2. Solution in the Exponential Case

To apply Theorem 3, we have to verify (77). Let us first define the function s(σ). From Proposition 4,

after some easy calculations, we obtain that

s(σ) = σ +
1

λ
log

(p + α(h − c))e−λσ − α(K

ǫ
− c)

K

ǫ
(1 − α) + αh

. (EC.31)

s(σ) is defined for σ < s̄ǫ. Moreover s(σ) ≤ s(0) = s̄∗
ǫ . Next (EC.18) becomes

H ′
σ(x) = c + α(h − c) − (p + α(h − c))e−λx− (EC.32)

−α(
K

ǫ
− c)e−λx(eλs(σ) − eλσ) + αλ

∫ x−s(σ)

0

H ′
σ(x − ξ)e−λξ dξ, x > s(σ).

Combining with (EC.31) this reduces to

H ′
σ(x) = c + α(h − c) − e−λx

K

ǫ
+ α(h − c)

K

ǫ
(1 − α) + αh

(p + α(h − c) − α(
K

ǫ
− c)eλσ)+ (EC.33)

+λαe−λx

∫ x

s(σ)

H ′
σ(θ)eλθdθ, x > s(σ).

This integral equation has an analytic solution, given by

H ′
σ(x) = c +

αh

1 − α
− (

K

ǫ
+

αh

1 − α
)e−λ(1−α)(x−s(σ)), x > s(σ). (EC.34)

Since S(σ) satisfies H ′
σ(S(σ)) = 0, we get

eλ(1−α)(S(σ)−s(σ)) =
K

ǫ
+ αh

1−α

c + αh

1−α

. (EC.35)
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By integration

Hσ(x) = Hσ(s(σ)) + (c +
αh

1 − α
)(x − s(σ)) (EC.36)

−(
K

ǫ
+

αh

1 − α
)
1 − e−λ(1−α)(x−s(σ))

λ(1 − α)
, x ≥ s(σ).

We also can write

Hσ(s(σ)) =
α

λ(1 − α)
(
K

ǫ
− c)(1 − e−λ(s(σ)−σ)). (EC.37)

Then using (EC.31)

Hσ(s(σ)) =
α

λ(1 − α)
(
K

ǫ
− c)

(p + α(h − c))e−λσ + α(c − h) − K

ǫ

(p + α(h − c))e−λσ − α(K

ǫ
− c)

, (EC.38)

Hσ(σ) = Hσ(s(σ)) + (
K

ǫ
− c)(s(σ) − σ), (EC.39)

Hσ(S(σ)) = Hσ(s(σ)) + (c +
αh

1 − α
)(S(σ) − s(σ)) −

K

ǫ
− c

λ(1 − α)
. (EC.40)

Finally

Hσ(σ) − Hσ(S(σ)) = (
K

ǫ
− c)(s(σ) − σ) +

K

ǫ
− c

λ(1 − α)
− (c +

αh

1 − α
)(S(σ) − s(σ)). (EC.41)

Using (EC.31) and (EC.35) we obtain the expression

Hσ(σ) − Hσ(S(σ)) =
c + αh

1−α

λ

{
1

1 − α

[ K

ε
− c

c + αh

1−α

− log(1 +
K

ε
− c

c + αh

1−α

)

]
+ (EC.42)

+
K

ε
− c

c + αh

1−α

log

(p+α(h−c))e−λσ

c+ αh

1−α

− α
K

ε
− c

c + αh

1−α

(1 − α)(1 +
K
ε

−c

c+ αh

1−α

)





,

which is clearly a decreasing function of σ. We can then interpret condition (77) as

1

1 − α

[ K

ε
− c

c + αh

1−α

− log(1 +
K

ε
− c

c + αh

1−α

)

]
+ (EC.43)

+
K

ε
− c

c + αh

1−α

log
p + αh − α K

ǫ
K

ǫ
(1 − α) + αh

> λǫ
K

ε
− c

c + αh

1−α

,

and

λǫ
K

ε
− c

c + αh

1−α

>
1

1 − α

[ K

ε
− c

c + αh

1−α

− log(1 +
K

ε
− c

c + αh

1−α

)

]
. (EC.44)
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Then there exists a single value σǫ which is the solution of the equation

1

1 − α

[ K

ε
− c

c + αh

1−α

− log(1 +
K

ε
− c

c + αh

1−α

)

]
+ (EC.45)

+
K

ε
− c

c + αh

1−α

log

(p+α(h−c))e−λσǫ

c+ αh

1−α

− α
K

ε
− c

c + αh

1−α

(1 − α)(1 +
K
ε

−c

c+ αh

1−α

)
= λǫ

K

ε
− c

c + αh

1−α

.

Let us now set

sǫ = σǫ +
1

λ
log

(p + α(h − c))e−λσǫ − α(K

ǫ
− c)

K

ǫ
(1 − α) + αh

, (EC.46)

Sǫ = sǫ +
1

λ(1 − α)
log

K

ǫ
+ αh

1−α

c + αh

1−α

. (EC.47)

We then have the following proposition:

Proposition EC.1. We assume (EC.25), (EC.29), (EC.30), (EC.43), and (EC.44). Then the triple

(σǫ, sǫ = Σǫ, Sǫ) given by (EC.45), (EC.46), (EC.47) defines a (σǫ,Σǫ, Sǫ) policy for the Bellman

equation (6).
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