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We study infinite-horizon stochastic inventory problems with general demand distributions and piecewise-
linear concave ordering costs. Such costs arise in the important cases of quantity discounts or multiple
suppliers. We consider the case of concave cost involving two linear segments. This corresponds to the case
of one supplier with a fixed cost, a variable cost up to a given order quantity, and a quantity discount beyond
that or, equivalently, the case of two suppliers, one with a low fixed cost along with a high variable cost
and the other with a high fixed cost along with a low variable cost. We show that certain three and four
parameter generalizations of the classical (s, S) policy are optimal. Our contributions consist of generalizing
the demand, solving a functional Bellman equation for the value function that arises in the infinite-horizon
framework, and providing an explicit solution in a special case of the exponential demand. We also give
conditions under which our generalizations of the (s,.S) policy reduce to the standard (s, S) policy. Finally
and importantly, our method is also new in the sense that we construct explicitly the value function and we
do not therefore need to utilize the notion of K-convexity used in the literature of inventory problems with

fixed costs.
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1. Introduction

This paper studies the optimality of generalized (s, S) policies for infinite-horizon stochastic inventory
control problems with quantity discounts or, equivalently, multiple suppliers. We choose to do this

in the case of lost sales, although our method can be easily applied to the backlog case. The works
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most relevant to our study are Benjaafar et al. (2018) and Porteus (1971). The main differences
between the problems we consider and the classical (s,S) framework of Scarf (1960) are that our
cost structure, as in Porteus (1971) and Benjaafar et al. (2018), has a fixed ordering cost plus a cost
that is concave in order quantity and, importantly, our horizon is infinite. The first difference gives
rise to a generalized (s, S) policy and the second difference requires us to solve a functional Bellman
equation.

Porteus (1971) was the first to study the problems with this kind of concave cost structure. He
introduced the notion of a generalized (s,S) ordering policy (defined in Section 2) and proved its
optimality, albeit under the restrictive assumption of only one-sided Polya density demands. Recently,
Benjaafar et al. (2018) visited this inventory problem with a general demand. They specialized
the cost function to be piecewise-linear concave and showed numerically its optimality under a long
enough horizon, and conjectured the optimality of a generalized (s,.S) policy provided the problem
horizon is sufficiently long or infinite.

In this paper, we further specialize the piecewise-linear concave ordering costs treated in Benjaafar
et al. (2018) by assuming only two linear segments for ease of exposition and prove analytically the
optimality of a generalized (s, S) policy. This cost structure arises, for instance, when a supplier offers
a buyer an incremental quantity discount for large orders. Specifically, this means that every order
incurs a fixed cost (also known as a setup cost in the case of production) plus a per-unit cost which
is identical for the first few items, and then a lower per-unit cost for the subsequent items beyond
a given threshold. Sellers usually employ such a scheme to give buyers an incentive to order more.
There is a considerable amount of literature on the practice of quantity discounts; see for example
Sethi (1984), Chen and Robinson (2012), and references therein. The cost structure studied in this
paper also results when ordering from two suppliers, one with a low fixed cost along with a high
proportional cost and the other with a high fixed cost along with a low proportional cost. A typical
case would be that of a local supplier with high labor cost of production and low shipping cost of a

container and an overseas supplier with low labor cost of production and high cost of air-shipping
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a container. Moreover, a common assumption about production functions in economics is that of
the economies of scale. The more a firm produces the same item, the lower the production cost will
be. Our cost function structure is applicable to this case as well. Most economics platform such as
Economicshelp (2017) discuss examples where such economies arise.

Specifically we address four different situations with regards to the cost structure. The first one
is the classical case involving only one linear segment to illustrate our methodology in proving the
optimality of the well known (s,S) policy shown in Figure 2. Here we offer a rigorous theory of
solving stationary infinite-horizon optimal inventory control problems with general demands and cost
parameters satisfying some technical assumptions usual in infinite-horizon settings. It is important
to mention that our methodology does not require the notion of K-convexity, introduced in Scarf
(1960), in proving our optimality results. This situation is treated in Section 4.

The second situation depicted in Figure 1(a) is the case of two suppliers, the first of whom charges
a positive fixed ordering cost plus a proportional cost and the second one charges a higher fixed
cost plus a lower proportional cost. Here we consider only an exponential demand for simplicity in
exposition. In this case, we show that a generalized (s, S) policy, called a (o,s,%,S) policy, where
0 <s<¥<S,isoptimal. According to this policy if the beginning inventory is more than ¢ and less
or equal to s, then order up to X; if it is less or equal to o, then order up to S; and if it is more than
s, then do not order. Moreover, we obtain these four parameters explicitly due to the simplicity of
the exponential demand. This situation is treated in Section 7.

The third situation is an intermediate case that forms a bridge between the first and the third,
and therefore it will be treated in Section 5. The idea is that if we introduce another supplier in the
classical case of one supplier whose fixed cost is just slightly lower and/or proportional cost is slightly
higher than the existing supplier, i.e., € in Figure 1(a) is small, then we may still find a standard two
parameter policy to remain optimal. What we find that it depends critically on the unit penalty cost
of lost sales. Specifically, we show that for small penalty costs, in addition to some other conditions,
two parameter policies remain optimal, whereas for large penalty costs, the optimal policies switch

to generalized four parameter policies.



Bensoussan et. al.: Optimal Policies for Inventory Systems
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The fourth situation still considers two suppliers. However, now the fixed cost of the first supplier
is zero as shown in Figure 1(b), and we allow the demand distribution to be general. We show that
the four parameter policy of the second case reduces to a generalized three parameter policy, called a
(0,%,5) policy depicted in Figure 3, where 0 < s =% < S. According to this policy, if the beginning
inventory in any given period is more than ¢ and less or equal to 32, then one should order up to X
from the high proportional cost supplier; if it is less or equal to ¢, then one should order up to S
from the low proportional cost supplier; and if it is more than >, then do not order. Moreover, we
provide a complete analytic solution in this case when the demand distribution is exponential. This
situation is treated in Section 8 and Section 9.

In the process of obtaining our results, we also make the following contributions. We allow demand
distributions which are more general than those considered by Porteus (1971). We also prove the
conjecture of Benjaafar et al. (2018) about the infinite-horizon setting. Additionally we also make
the following significant contributions:

e We offer a rigorous theory of the stationary infinite-horizon optimal inventory control problems
with piecewise-linear concave ordering cost.

e The theory is constructive and does not rely on generalized K-convexity. We construct the value
function explicitly by solving a functional Bellman equation in our infinite-horizon setting.

e We give conditions for optimality of the classical (s,S) policy and of the generalized (s, S) policy.
This is achieved via an analysis conducted in several steps. First, we show that the generalized (s, S)
policies reduce to standard two parameter policies under a cost assumption stated in equation (24)
which necessarily requires that the unit penalty of lost sales is less than the unit purchase cost from
the first supplier. Also required in addition are two necessary and sufficient condition that involves
the fixed cost of the second supplier and possibly other problem parameters. Second, we prove that
a four parameter generalization of the classical (s,S) policy is optimal under some precisely stated
conditions that necessarily require the lost sales penalty to be larger than the proportional cost

charged by the first supplier. We conduct this analysis only for the exponential demand case for
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simplicity in the exposition, but more importantly for obtaining policy parameters explicitly. Third,
we prove that the aforementioned four parameter policy reduces to a three parameter policy provided
that the first supplier’s fixed cost is zero. Moreover, we are able to obtain closed form expressions of
the policy parameters in this case.

o We offer a complete analytical solution when the demand density is exponential.

1.1. Organization of the paper

The balance of the paper is organized as follows. In the next section, we briefly review the most
relevant literature that would allow us to articulate the precise contributions of the paper. Section 3
provides a mathematical formulation of the problem under consideration in this paper. In Section 4
and Section 5, we introduce the Bellman equation and illustrate its use to demonstrate the optimal-
ity of the (s,S) policy for the classical inventory problem with a view toward extending it to the
problems under study in this paper. The general problem is studied in Section 6. We construct a
methodology and the road map in Section 6.1 and Section 6.2 to analyze the full problem. We use
this methodology and a road map in Section 7 and prove in Theorem 2, the optimality of a general-
ized four parameter policy alluded to before. In Section 8 we consider general demand densities and
perform a detailed analysis by using the road map provided in Section 6.2 and find a three parameter
solution for the value function. In Section 9, we prove in Theorem 3 that this three parameter policy
is optimal. Moreover, we provide the aforementioned analytic solution for the exponential demand
case in Section 9.3. Figure 3 and Figure 4 in Section 9.2 give a pictorial representation of the type
of results that we provide. Finally, Section 10 concludes the paper. The proofs of several preliminary

technical results are relegated to the online companion of the paper.
2. Review of Literature

Arguably, the field of inventory management can be said to have begun in 1913 when Ford Whitman
Harris came up with the Economic Order Quantity (EOQ) formula that balances the fixed ordering

cost and inventory holding cost in the case of a constant demand rate and gives the optimal lot size
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or, equivalently, the optimal ordering frequency; see Erlenkotter (1990) for a historical account. It
took many years before a decade long flurry of research activity, beginning with Arrow et al. (1951),
which advanced the frontiers of inventory management by considering the realistic case of stochastic
demand. The results on the optimality of the base stock and (s,.S) policies were established during
the 1950s, culminating in Arrow et al. (1958), long considered by many to be the Bible of Inventory
Theory.

The classical paper Scarf (1960) proves the optimality of an (s, S) policy for a dynamic stochastic
inventory problem where the costs structure consists of a fixed set-up or ordering cost, a unit cost,
a linear holding cost, and a linear backlog cost. Whereas Scarf treated the case of backlog, Shreve
(1976) extended it to the lost sales case. We should mention that the arguments employed by Shreve
(1976) apply as well to many corresponding inventory problems with backlog. Following Scarf (1960),
there has been a considerable amount of literature devoted to extending the optimality of (s,.S) type
policies to a variety of situations, which in some cases also necessitates the modification of the policy
itself.

While the optimality of (s,S) policies has been explored in many different contexts, the direction
that is most relevant to our paper are the works of Porteus (1971), Porteus (1972), Fox et al. (2006)
and Benjaafar et al. (2018). A generalized K-convex function is used by Porteus (1971) to examine
an inventory problem with an increasing concave ordering cost. He introduces a generalized (s, .S)
policy and proves its optimality when the demands follow one-sided Polya distributions. Porteus
(1972) extends his earlier analysis to either uniform or convolutions of a finite number of uniform
distributions. Fox et al. (2006) use a log-concave demand density distribution to show that a certain
three parameter policy, which they call the (s, Sgvc, Srve) policy, is optimal by using the notions
of K-convexity and quasi-convexity. Even though they are broader than the class of one-sided Polya
densities, log-concave densities still only account for a limited range of distributions.

In practice, it frequently happens that an ordering cost or production cost has a number of break

points, which results in a piecewise-linear concave cost function. Benjaafar et al. (2018) assumes this
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cost structure with arbitrary number n of break points along with a general demand. Under some
limitations specified in Theorem 4 and Proposition 2 in their paper, they prove the optimality of a

generalized (s, S) policy. This policy is characterized by a sequence of nested thresholds

Sp < Sp1 < <85 <5 <G << S, (1)

such that when the beginning inventory is (i) > s;, do not order; (ii) in (s;,s;—1], order up to S;,
1=2,3,---n—1; (ili) < s,, order up to S,. In the absence of these limitations, however, they show via
a two-period counterexample that the policy may fail to be optimal outside an interval of beginning
inventory levels. Moreover, their numerical experiments seem to suggest that the policy becomes
optimal provided the problem horizon is sufficiently long. In their Theorem 6, they make a restrictive
assumption on the cost and the demand density in order to establish the optimality of a generalized
(s,S) policy. We can therefore take it as a conjecture that a generalized (s, S) policy will be optimal
for an infinite-horizon problem. Moreover, we would like to establish this optimality without their
restrictive assumption. While they consider the backlog case, they also mention that similar results
can also be derived in the lost sales case. In this paper we take up the lost sales case and prove the
optimality of a generalized (s, S) policy for an infinite-horizon problem. This is done with a general
demand without the limitations and the restrictions imposed in Benjaafar et al. (2018). Before
we describe the other contributions of this paper, we mention that our results easily extend to the
backlog case as well.

Our method constructs the value function explicitly by solving the required functional Bellman
equation in the stationary infinite-horizon setting. This setting causes the difficulty of having to solve
a functional equation as opposed to solving a sequence of optimization problems in finite horizon
cases. Thus, our method does not rely on the notion of K-convexity used in the literature for solving
inventory problems with fixed ordering costs. In particular, the method used by Benjaafar et al.
(2018) relies on the concept of c-convexity that generalizes the standard notion of K-convexity, and
the resulting characterization of the policy parameter thresholds does not lead easily to constructive

algorithms. Our method, on the other hand, provides an explicit formula for the value function in the
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general demand case. Moreover, in the case of exponential demand, we are able to give a closed-form
solution for the value function as well as for the policy parameters. We consider only two linear
segments in equation (2) in this paper for reasons of mitigating technical complexities, and leave the

case of more than 2 segments as a topic of future research.

3. Problem Formulation

We study an infinite-horizon discrete-time stochastic inventory control problem where an order at
the beginning of a period can be placed from one of two available sources, one charging a fix ordering
cost of K and a unit cost of ¢; and the other charging K, > K; >0 and 0 < ¢y < ¢1, respectively.
This cost structure is equivalent to ordering from a single source charging a fixed ordering cost of K;
and a unit ordering cost of ¢; if an order does not exceed (K — K;)/(c; —¢3) := ¢, and if it does, then
charging a unit ordering cost of ¢, for units in excess of €; see Figure 1(a). The cost is incurred when
the order is placed and its delivery is assumed to be instantaneous. After that, a random demand is
realized and it is satisfied fully if less than or equal to the inventory on hand; if not then the demand
in excess of the on-hand inventory is lost. A holding cost h > 0 is incurred at the end of the period,
(or, equivalently at the beginning of the next period) for each unit carried to the next period or
a penalty p > ¢y is incurred for each unit of unfilled demand, depending on the situation realized.
The assumption p > ¢ is standard in the literature, without which it would always be optimal to
order nothing and lose sale in each period. It is just by choice that we are choosing the lost sales
case, while mentioning at the same time that the backlog case can be treated in a similar manner.
Our purpose is to find an optimal ordering policy that minimizes the expected present value of the
costs of ordering, holding and penalty over the infinite horizon. We shall define below the notation
and then provide the mathematical formulation of the problem along with the functional Bellman
equation that its value function satisfies.
Let us now introduce the following notation:
e K - fixed cost to place an order from the first supplier; K; >0

e K, - fixed cost to place an order from the second supplier; Ky > K,
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e D - one period demand (random variable); D >0 a.s.

e ¢, - per unit purchase cost from the first supplier

® ¢, - per unit purchase cost from the second supplier; 0 < ¢y < ¢y
e h - inventory holding cost per unit per period; h >0

e p - penalty cost per unit incurred when the demand is not met and thus lost; p > ¢
e f(z) - probability density function (pdf)

e F(x) - cumulated distribution function (CDF); F'(z) = f(x)

e « - discount factor; oo >0

e 7 - initial inventory level; z >0

e v - total amount of order; v >0

e y - inventory after receiving the order; y=x + v

We assume our cost function to be given by the formula

c(v) = min(K; + ¢;v). (2)

1=1,2
The problem we are considering with two linear segments in (2), arises in many practical situations.
It not only arises in a problem of choosing amongst two suppliers but also represents the situation

of rebate for large quantities in the case of a single supplier.
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Figure 1  Figure (a) is the graph of cost function given in equation (2). Figure (b) is the specialization of Figure

(a) to the case K1 =0. This defines the quantities c2, K and c¢; in Section 8.1.



Bensoussan et. al.: Optimal Policies for Inventory Systems
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Ky —
Indeed, set €:= 2
C1 — Co

1, then it is easy to see that
C(”) = Kl ]]-'U>O + CIU]]-v<e + (CQ(U — E) -+ 016)]]_1)26.

Here as usual 1, is the indicator function'. So the variable ordering cost per unit is reduced from ¢,
to co, when the volume is larger than e.

Let = be the initial inventory level and y be the inventory level after the order is received. The
generic demand is denoted by D, which is a random variable with probability density f(£) with its
support on [0,00). The CDF is denoted by F(d) = fod f(&)d¢ and F(d) =1—F(d). Let u(x) denote the
expected value of the discounted costs for an inventory problem. Then, u(x) satisfies the functional

equation

u(z) =hx+ ;EE {Kl Lo +a(y—2)ly_peet (ca(y— )+ (c1 —c2)€)1y_y>c
- (3)
+pE(D—y)* +aBul(y— D)ﬂ}, 20,

where h is the unit holding cost and pE(D — y)* represents the penalty cost. Equation (3) is a
Bellman functional equation for the value function u(x), for an initial inventory x. We can write

equation (3) as

u(x)=(h—co)z+ ;I>1£ {ng + K 1ysr+ (1 —Co)(y—2)Ly—pee + (1 — C2)€ly_y>c
- (4)
+pE(D —y)* +aFu((y — D)*)}, x> 0.

We make the transformation

u(z) = (h—c2)z+ H(z)+p, (5)

where p is a constant to be chosen. Substitute equation (5) into equation (4). This defines H for

which we get the expansion

H(z) +p(1 =) = inf { Killya b (e = e2)(y = 2)1y et (02~ ca)ely o+ 9(0) + aEH (= D)D)},
)
where

9(y) = cay +pE(D —y)" +a(h—cy) E(y — D)*. (7)
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The idea is to find an optimal policy that minimizes the expected total discounted cost, or in other
words, that achieves the minimum of the right hand side of equation (6). We give conditions that
guarantee that a standard (s, S) policy will remain optimal. With regard to the generalized (s,.S)
policies, we categorize our work in two different cases, namely, K; > 0 and K; = 0. In general, we
develop a common methodology which is applicable to both cases in Section 6.1, and we lay out a
road map for completing the analysis in Section 6.2. In the non-case-specific context, we explain all
the steps, but in the K; > 0 case, we solve the problem completely only for an exponential demand.

For K; > 0, we show that a generalized (s,S) policy is optimal, which we call a (o, s, 2, S¢)
policy, where o, < s. <X, < S.. This can be written as an (s9,s;,S51,52) policy, which is a special
case of (1) for two linear segments in the cost function. In the case K; =0, we solve the problem
for a general demand, because then Y. = s., and the policy simplifies from four parameters to three.
In particular, this happens because equation (31) in Section 6.2, which is the most intricate step in
Section 6.2, greatly simplifies. Similarly, when K; >0 and the demand is exponential, equation (31)
is again quite manageable. Therefore, we obtain a complete solution for the four policy parameters
in this case. We are also able to obtain a closed-form solution when K; = 0 and the demand is
exponential. In this case, all steps in the road map have explicit solutions.

For a graphical interpretation of our results, see Figure 3 and Figure 4. Figure 3 visualizes the
results in the case where both suppliers impose a set up cost. We observe that, with a lower fixed
cost from the first supplier, if the beginning inventory is more than o, and less or equal to s., then
order up to ¥; if it is less or equal to o, then order up to Se; and if it is more than s., then do not
order.

Figure 4 illustrates a situation in which the first supplier’s fixed cost is zero. We see that if inventory
level is between o, and s, = .., then ordering up to 3, is optimal with zero or negligible fixed cost
from the first supplier. In the case of a second supplier with a substantial amount of fixed cost and
a relatively small variable cost, if the beginning inventory in any given period is more than o, and
less or equal to Y., then one should order up to ¥, from the high proportional cost supplier; if it is
less or equal to o, then one should order up to S, from the low proportional cost supplier; and if it

is more than X, then do not order.
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4. Preliminaries

In this section we briefly outline the classical case of the (s,S) policy in Section 4.1, obtained when
there is only one supplier. We rewrite in Section 4.2 the Bellman equation, formulated in the previous
section. Here we see that for a sufficiently small €, the optimal policy remains a two parameter policy.

We analyze this case as a bridge to solving the problem for any arbitrarily given positive e.

4.1. Classical Case

The classical case involves just one supplier with fixed ordering cost K and per unit purchase cost c. It
can be viewed as a limiting case of our problem formulated in Section 3 by considering K; = K5 = K,

c1 =cy=c¢, and € =0, so that equation (6) specializes to
H(z) +p(1 —a) = mf {K 1> +9(y) +aBH((y = D)")}.

We already know in this case that an (s,.S) policy is optimal. Nevertheless, we describe briefly how to
use our methodology in this special case so as to foresee the steps needed for the analysis of equation
(6) in general. This analysis begins with any s > 0, chooses p(1 —«a) = ¢(s), and then obtains H(x)

as the solution of

Hi(z)=g(x)—g(s)+aEH,((x—D)"), ifz>s,

H,(z)=0, ifx <s.
Since g(z) is a convex function, H,(x) attains its minimum at a point (if there are several points we
will take the smallest one). We define the minimum point to be S so that H(S) = 11}I>l£ H(y). Then
define s so that
0= K +inf H,(y).
A unique s can be defined, leading to a function S(s). This is the well-known (s, S) policy, an optimal

feedback law given by

S—ux, ife<s,

0, ifz>s.

For more details, see Chapter 9 in Bensoussan (2011). We follow such a procedure to show that a

two parameter policy remains optimal for € sufficiently small.
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4.2. Rewriting Bellman Equation

Returning to the case € > 0, one can expect that as € is small, an (s, S.) policy will be optimal. To

show that, we first rewrite the Bellman functional equation defined in equation (6) as follows:

H(z)+ p(l — @) =min {g(m) +aFEH((x— D)%),

K, + m<iy2fz+6((cl — )y —x)+g(y) +aEH((y— D)), (8)
Ko+ inf (g(y) +aBH((y— D)*))}.

To reconcile this with a two parameter (s, S,) policy, we show that in equation (8) the intermediate

term in the right-hand side can be dispensed with to get

H(z)+ p(l —a) =min {g(:c) +aFEH((x—D)"), Ky +

uf (9(0)+aBH((y-D)' )| ©)

i
y>x+e
In other words, we have to show that the term K + <iréf . ((cr—ca)(y—2x)+9g(y)+aEH((y—D)"))

r<y<z+e
of equation (8) is not relevant for the minimization in equation (8). In the next section, we provide the

necessary conditions for the optimality of an (s.,S,) policy, where the pair (s.,S.) satisfies equation

(9). Then we show that equation (5) is the value function (3), and hence the (s, S,) policy is optimal.
5. Optimality of (s, S.) Policy

In this section we show that there exists a threshold s. such that if x < s, then it is optimal to
order, and not to order otherwise. Further, there exists a smallest minimizer S, such that ordering

up to that point is optimal. By analogy with the case ¢ =0 described above, for any s > 0, we take

p(1 —a) =g(s) and solve the problem

H (x)=g(x)—g(s)+aEH,((x — D)%), ifzx>s,
Hy(z) =0, ifz <s.

This problem has a unique solution as follows. Differentiating in =, we get

H!(z)=¢'(z)+aEH(z— D), ifz>s,
(11)
Hl(z)=0, ife <s.
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Since ¢’'(z) is bounded, this problem appears as a contraction problem on the space of bounded
functions. Therefore, by the contraction mapping theorem, the function has a unique fixed point. So,

the above problem has one and only one solution. Next from (7),
g (2)=co —pF(x) +alh—c))F(z) =cy —p+ (p+a(h—c))F(z). (12)

As p > ¢y by assumption, the function ¢'(z) is increasing from —(p — ¢3) to (1 — ) + ah, and we
have —(p — ¢2) < ¢'(z) < a(1 — ) + ah. Also by standard estimates from equation (11), we have

D—Cy ah

_ < H’ < — 1
1—OJ_HS($)_02+1—O¢7 (3)
ah
H! = e
!(+00) =co + T
Therefore, the function H(x) is defined by
H,(z) :/ H(€)de, x> s. (14)

The function H.(z) is not continuous at s, since H.(z 4 0) = ¢'(s) and H.(x —0) =0, unless s = s,
defined by

¢ (3)=0. (15)

This means from equation (12) we have

F(5) = 2%. (16)

Additionally, H,(z) — oo as  — oo, and thus as Hy(z) is continuous, the function attains it’s

minimum on [s,00). Therefore, we claim that there exists a unique S(s) such that

H,(S(s)) = inf H,(y). (17)

y=>s

Clearly, if s > s, then H,(x) is increasing in « and for s < s, H,(x) is decreasing on [s, 5). Necessarily,
S(s) >s,ifs <, and S(s) =s, if s > 5. (18)
Now find an s, such that

0=K,+ inf H,, (y). (19)

Yy>sete
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Necessarily s. + € < § (otherwise, (18) remains unsatisfied), which implies the assumption
€<s, (20)

where s is defined in (15). It is important to emphasize that when we say € to be small or sufficiently
small in this paper, we only mean that it is less than 5. We are not using it in the sense of a limit or
it being close to zero.

Now from the inequality s. 4+ € < s, the definition of s, and equation (11), we can assert that

H; (y) <0, if y € [s, sc +¢|. Therefore, y — H,, (y) is decreasing on [s, s. + ¢]. Hence,

inf H, (y)=H, (sc+e€)> inf H, (y).

YE[se,5¢e+¢] T y>sete

Therefore, to show equation (19) is satisfied, it is enough to show that
0=Ky+ igf H, (y). (21)
Y=ZSse

Furthermore, the function s+— iI;f H,(y) = Hs(S(s)) is monotone increasing on (0, 5); see the online
y>s
companion for its proof. So, to be able to find a unique solution s, of (19), it is necessary and sufficient

to assume

K+ inf H()(y) <0,
y>0 (22)

Ky+ inf Hs (y)>0.

y>s—e

Therefore, we obtain the following result.

PROPOSITION 1. Assume € <5 and (22). Then there exists a unique s. < §— € that solves (19) with

the function H(x) given by (14). Moreover, H,(x) is the unique solution of (10).
We want to check that the solution H,_(x) is a solution of our original problem stated in equation
(8) with

p(1—a) =g(s). (23)
This is done next under an additional condition. Then with S, = S(s.), the optimal (s.,S) policy

becomes defined.
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THEOREM 1. In addition to the assumptions of Proposition 1, let

p<ci(l—a)+ac. (24)

Then the (s,S) policy defined by (17) and (23) is optimal.

Proof. It is given in the electronic companion Section EC.1.

REMARK 1. The purpose of assumptions (22) and (24) is to insure a standard (s,.S) policy to be
optimal. In particular, assumption (24) requires the penalty cost to be small, without which we can
only prove that H,_ (x) is the solution of (9). But this is not enough to show the optimality of an
(s,5) policy for the case under consideration. Assumption (24) ensures that H;_(z) is the solution of
equation (8). Taken together, Proposition 1 and Theorem 1 show that the (s, Sc) policy is optimal.
On the other hand when p > ¢;, which necessarily means that (24) is violated, we will show in

Section 8 that a generalized (s,.S) policy is optimal.

REMARK 2. Since (24) implies p < ¢;, we have ¢y < p < ¢;. This means that any purchase from
supplier 1 to meet a demand will cost ¢; in addition to any fixed cost, whereas not meeting that
demand will only cost p which is less than ¢;, and thus only order that will be placed will be with
the second supplier. Moreover, if we make € small only by increasing K; and/or ¢;, then the optimal
policy will be exactly the (s,S) policy of the classical problem with only the second supplier, and
that will hold for every € as long as it is small and (24) continues to be satisfied. Of course, the
optimal policy parameters will depend on ¢, if making € small includes changing K5 or ¢, or both,
according as the classical solution whose single supplier will be the second supplier with the changed

values of fixed and variable costs.

REMARK 3. On the other hand, if (24) does not hold and if p > ¢;, then it becomes economical to
order also from the first supplier. Indeed we show in Section 7, Section 8, and Section 9 that for a

large p along with some other conditions, a generalized (s,S) policy is optimal.
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6. Generalized (s, S) Policy

In view of Remark 1, we now take up the case when (24) is not satisfied. In this case, we develop
the methodology and indicate a road map to prove the optimality of generalized (s,.S) policies. In
Section 7 for K; > 0 and Section 8 for K; =0, we will execute the steps in this road map under

additional assumptions.

6.1. Methodology

At this stage, we look for a solution of equation (8) of the following form: there are two numbers o

and s, with 0 <o <s, and a function H(z) that satisfy
H(z)=H(o), Vr <o,
H(z)=H(s)+ (c1 — ) (s — ), o<zx<s, (25)

H(z)=g(z)—g(s)+aFEH((x— D)%), x>s.

The values of H(s) and H(o) are given by the condition that H(x) is continuous. We first have, from

the first two segments of equation (25), that H(o) = H(s)+ (¢1 — ¢2)(s — o). From the third, we get
H(s)=aFEH((s—D)"). (26)

Next, we integrate equation (26) and plug the expressions of the first two segments of (25) into (26),

to obtain

His) = (e —c) [ Pl

11—«

So for x > s, the function H(z) is a solution of the integral equation

Haw)=a [ H(z—&)f€)dé+g(x) - g(s)+
0 (27)

s—o 1% _ $—o _
a(cl—cg)[/o F(x—s—i—n)dn—i—mF(az—s)/O F(&)d¢.
Clearly, H(zx) is completely defined once the constants o and s are fixed. To obtain them, we impose

the following two conditions:

H(s)=K,+ inf ((c;—c)(y—s)+H(y)). (28)

s<y<s+e
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H(o) =K, +inf H(y). (29)

y>s
The challenge then is to show that equations (24) and (25), with the unknowns ¢ and s, define them
completely, and that the corresponding function H(zx) solves equation (8) with p(1 —«a) = g(s). We
then associate to the pair (o,s), a pair (3,S) which realizes the infimum on the right-hand sides
of (28) and (29), respectively. The quartet (o, s., 2., S,), where o, < s. <X, < S, will define the

optimal generalized (s,.S) policy.

6.2. Road Map

For 0 < o < s fixed, we can define a unique function H, s(z), © > s, as the solution of the integral

equation (27). This is done by defining its derivative H, _(z) as the unique solution of the equation

o) =a [ H (o= Of(©d+ @) +al—a)(Fa—0) - Fla-s) a>s (30

Just as in equation (11), this equation also has a unique solution, because it is a fixed point of a

contraction mapping on the set of bounded continuous functions on [s,4+00). Since

(0]

Hosls)= 1o ler—en) [ FlQ)de

11—«

the function H, s(x), x > s, is given by the integral

HU,S(I) = HU,S(S) + /: Hc,rs(f)df

The next steps are at the core of the difficulty. For a fixed o, we define s(c) > o by solving the

algebraic equation

«

=) [ FOE=Ki+ inf (e = ey =)+ Hauly), (31)

11—« s<y<s+e

and finally we seek o as the solution of the algebraic equation

s(o)—o
e = :
(Cr-e)s() =)t (e =) [ FOAE=Kat il Houn ()
—« 0 y>s(o)
We shall carry out this program completely in the case K; = 0, because then the step corresponding to

equation (31) simplifies greatly. In fact, the infimum in (31) will be attained at s ( recall that H, ()
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is a continuous function). So s(c) will be defined by the much simpler problem H/, (s)+c1 —c2 =0,

which in view of equation (30) reduces to
O=ci—ca+g(s)—alc; —cp)F(s — o). (32)

The last equation does not involve the function H/ _ directly, and this is the simplification mentioned
above.
The case K; > 0 will be considered only for the exponential demand, namely for f(¢) = Ae *¢. In

this case, equation (30) has an explicit solution.

7. Case K; >0

Assuming the demand density to be exponential in the case K; > 0, we will extend the methodology
described in Section 6.1. We will show that a four parameter (o, s.,%.,Sc) policy is optimal. We
follow the road map as outlined in Section 6.2 and find the four parameters o, s, 3, S. as described

in the last paragraph of section Section 6.1.

7.1. Preliminary Calculations

We implement the road map for f(¢) = Ae=*¢. We first consider the integral equation (30) which now
becomes
H'(z)—)\a/ow—sH’(a:—f)eA£d§+c2+a(h—62)+ (33)
Je A [—(p+alh—c2)) +alc; — ) (e — 6)\8)]_

It has an explicit solution given by

h
H’(l‘) =cy+ 1047 +€7)‘(17a)(m75)[04(61 o Cz)efA(sfo)_ (34)
—
s ah
—(p+a(h—cy))e —04(01—1—71_0[)].

The next step is to find the function s(o) by solving equation (31). We expect that the infimum on
the right-hand side of equation (31) is attained at a point ¥ inside the interval (s, s+ ¢€). Therefore,

we have H'(X) + ¢; — ¢ =0, which along with equation (34) yields
h
(p+a(h—cy))e™ —alc; —c)e 79 +afe; + L)
Al—a)(S—s) _ l—a 35
€ = o : (35)

o+ ——
T
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Condition (31) specializes to 0 = K; + fsz(cl — ¢y + H'(x))dz, which yields
ah
ML= a)[Ki+ (e + ) (E=s)] = (36)

h
(1= VBt alh =)o —aler —ca)e ) fafen + ).

Equations (35) and (36) give s and ¥ as functions of o. It is convenient to define

(p+a(h—c))e ™ —ale; —cy)e M=)

X =X(0,5)= —ah (37)
“ l1-a
Then, by combining (35) and (36), we see that X solves the algebraic equation
K\
X:log(X+a)+(1—a)(1+ﬁ). (38)
1+ ——
l1-a

It has a unique solution X, > 1 — a, which is thus a fixed constant independent of o. Therefore, s(o)

is obtained by the formula

o — p+alh—c) —ale; — 02)6’\"

(39)
ah
X it
ofc1 + 1= a)
We naturally need o sufficiently small. Specifically, we need o < 5. with
oo praliza) (40)
Xo(c +Lh)+oz(c )
oler+ 77 1= C2
In order to get s. >0, we need the condition
ah
p+a(h—01)>Xo(Cl+E) (41)
and s(s.) = 5.. We have also s(0) = s* with
i = prath=a) (42)
Xo(cr + Lh)
oler+ 7,

Assumption (41) implies immediately S. < 5. Recall the definition of 5, that is ¢/(5) =0, to obtain

o — p+alh—cp)

St alh—cy) (43)

In view of X, > 1 — a, comparing equations (42) and (43) yields §* < 5. Summarizing we have:
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h
PROPOSITION 2. Assume (41), i.e., p+ a(h —c¢1) > Xo(cy + 1047) Then for o € [0,5.], s(o) is
-«

~ptalh—c)—ale—c)e

uniquely defined by (39), i.e., e* = oh , and it decreases from s(0) =5 to
XO(Cl -+ ﬂ)
s(8.) = S.. We further have 5. < §F < s.
Next, ¥(o) is defined by (35), which reads as
B log(Xo + «)
E(U)—S(U)*W (44)
We can also define S(o) by the condition H'(S)=0. From (34) and (37), we have
ah ah
H/ — " (X e —A(l—a)(m—s)- 4
(z) ot T ( o—i—oz)(cl—i—l_a)e (45)
Therefore,
ah
c1+ 1—
lOg (XO + Q)Tha
“1—a
(o) — s(o) = - 46
(0) ~5(0) = (46)
Looking at the form of (33) and noting o < s, we can assert
H(x) < /\04/ H (2 —€)e 6 de+ ey alh—c3) — e (p+alh— ). (47)
0
For s <x <35, we have ¢s + a(h —c3) — e (p+ a(h — ¢3)) < 0. Hence,
H’(:E)g)\oz/ H'(z—&)e ™ d¢, s<x <. (48)
0
Also from equation (37),
, ah
H(S+O):CQ'FOé(h—Cl)—Xo(Cl—’—E)<—(C1—02). (4.9)
From (48) and (49), we see that
H'(r)<0,s<z <35, (50)

which implies necessarily S(o) > 5. Calling H'(z) = H(z) + ¢, — ¢5 , we can write the equation for

H'(z) as

H'(z) :/\a/ k H(z—&)e ™ Mdé+e+alh—c)+
0

(51)



Bensoussan et. al.: Optimal Policies for Inventory Systems
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

+e M [—(p+alh—cy)) +ale, —c)e).

Hence, for x > s, we have

r—

H'(z) < /\04/ ) H'(z—&)e N dé+ e+ alh—c) — (p+alh—c))e ™.

0

We introduce the number 5* defined by

v+ pralh—c)
et = 2
c1+a(h—c)

We can show, just as we had showed S(o) > s, that (o) > 5*.

7.2. Formulae for (o, s.,%.,S,)

Calling H,(z), the function constructed in the previous section, we can see by the above results that

C2+% €1 —C2 (p+a(h_02))e_/\”—a(cl—62)

H,(0) = H,(S(0)) = log (53)
pY _ah_ ah
co + 1—a X()(Cl+ﬂ)
ah ah
1 (Xot+a)ati—) (Xota)la+i—)
— -1 — — 1
T e+ |
We find o = o, by the equation
Ho(0) — Hy(5(0)) = Ko,
and therefore,
K-t aza ,, (rali—a)e oo o) (54)
Cot 1, X()(Cl‘i‘m)
ah ah
L raats) (Nra)at )
— -1 — ——1
+1—a[ 8 @—F% 02+% )

Since the function H, (o) — H,(S(0)) is decreasing in o, a unique solution of (54) exists provided

that K, satisfies the conditions

Ho(0) — Ho(S5(0)) > K2 > Hi,(5c) — Hs (S(50))- (55)
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This means that

o+ - p+alh—c)
A cy + 2 log ah
2T 1-a X, —_
O(Cl—l_l—a)
ah ah
1 (Xot+a)a+i—) (Xota)a+—r)
1—« e+ % C2tig
ah ah
o, ot ) ot T
A1 —a) o+ 2 o+ 2 '

Once o, is defined, we can solve (54) to obtain the quantity X, within it and then obtain s., ¥, and

S, explicitly. Specifically the next equation gives s, in terms of X, and o..

h h
S (Xot+a)e+7=)  (Xo+a)er+1—)
c1—C)(sc—0) =Ky ——=%| —1lo — — —1}, 56
(01— ea)(se =) = Ko = 3128 | g —— o — (56)
Then we use the next two equations to obtain .S, and X..
h
. (Xo+a)(er+ 1)
S.—5.= | — 57
*TX1-a) 8 Cr + 2 (57)
S, — s = ——log(Xy+a) (58)
€ SE_)\(I—OC) og 0 Q).
Now the function H (x) = H,_(z) is defined by the formulae
He(ae)7 VZCSO'E,
HE(:E): He(se)_(cl_@)(m_se)v o <x <S8, (59)
(Xo+a) | e1+
11—«
Ho(s) - (ea-t 25)(2 = 5.) — gy (1= e 0000 g > s,
with
aler —c) —A(se—oe)
H,(s) = A= (] _ g Msemoe)y 60
(5) = Gam 1 -0 (60)
and
H (o) =H./s.)+ (c1 —c2)(sc — ). (61)

Therefore, the four parameters (o, s, 2, S.) are defined explicitly. We next show the optimality of

the (o, s¢, 2¢, Se) policy.
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7.3. Optimality of (o.,s., >, S.) Policy
We begin by verifying the following proposition.

PROPOSITION 3. We have the inequality
Ye—o0.<e. (62)

Proof. From (54), we can write H.(o.) < Ky + H.(3.). We use the last equation in (59) to

compute

ah
1% (XO+O[) Cl + j
H. (%)) :H6(36)+(c2+7h)(26_36) - )\(Sa)l > (1 — e M1ma)(Bems0)),

l—«

Using (58), and (38), we obtain

ah
Co + T

(CQ—Cl)—chl+%.

Using (61) we can assert

(01— o) (50 — 0) < Ky — Ky + LC?) <(1 —a)(cKli\thrl) —XO>

C1 — C
KQ—Kl—ﬁlog(Xo—i—a)

Finally, by using the definition of ¢ and (58), we obtain the inequality (62). B

Collecting all the assumptions one obtains the following result.

THEOREM 2. Assume
. ah
o (41), i.e., pralh—c1) > Xo(cr + ﬂ)'
* (55), i.e., Ho(0) = Ho(S(0)) > Kz > Hs.(5) — Hs, (5(50))-
® 5. +e<s.
o F(O)=re X,
Then the function H.(x) defined by (59), with o, and s. defined by (53), (54) and (56), is the solution

of the Bellman Equation (6) with p(1—a)=g(s.).

Proof. See the online companion.
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REMARK 4. It is interesting to mention that since Xy > 1 — «, (41) implies p > ¢;.

REMARK 5. (Structure of the four parameter (o, s.,>.,S.) policy): The proof of Theorem 2
completes all the steps in the road map and thus the following ordering policy is optimal in the case
K, >0:

e If the beginning inventory level is less or equal to o, then order up to S..

e If the beginning inventory level is less or equal to s, but more than o., then order up to X..

e [f the beginning inventory level is more than s., then do not order.
8. Case K; =0

Similar to the previous case, we will develop the methodology described in Section 6.1 for the case
K, =0, with reference to the cost structure in equation (2). We allow general demands. The main
result in this section is to prove the optimality of a three parameter (o, >, S.) policy in Theorem 3.
This is made possible by showing that s. =X, in this case. Figure 3 provides a pictorial illustration

of the policy.

8.1. Problem Setting

K
We denote ¢y = ¢, K = K, + ce, then we have ¢; = —. Refer to Figure 1(b) to visualize ¢5, K and ¢;.
€

K
We assume — > ¢. Then equation (32) becomes
€

g—p—&—(p—l—a(h—c))F(s(a)):a(%—c)F(s(J)—U). (63)
Define the function H,(x) = Hy s (x) as follows:
B [ B+ () (s(0) — o), its <o,
o (Eme) o R+ (5 - st - o), it < < 5(0),

+g(@) — gs(0) +a [y Hy(x =€) f(€)dE,

1
L(K = F e = s(o) + )+ F(o = s(0)) [0 F(€)de)
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We obtain ¢ by solving the equation

o s(o)—c
(K—c)(s(a)—a)—l-(K—c)/o F(dE =K —ce+ inf H,(y). (65)

y>s(o
We shall first study the definition of o and H,(x), and then check whether it satisfies equation (8)

with p(1 —a) =g(s(0)). Equation (8) becomes
H(z) =min { g(o) - g(s(0)) + aEH (- D)),

inf (X~ o)y~ o)+ gy) +aEH((y - D)), (66)

r<y<z+e = €

K—ce+ inf (g(y)+aEH((y— D)ﬂ)}.

y>x+te

8.2. Solution of Equation (63)

K K
If equation (63) has a solution, then necessarily — — p < a(— — ¢), which means
€ €

K —ac

; T o (67)

Note that this is exactly the opposite of inequality (24) assumed in Theorem 1 for the classical (s, .S)

case. Moreover,

0S5 —pt(p+alh— ) F(s(0) S o= ~ )F(s(0)) (68)
This leads us to define s, as follows:
o (p— 5)*
s(o)>5,, F(3.)= —5— (69)

“ prath—ec)

—ac K
Since p < pl in view of p > ¢, = ¢, we have two cases: either p > — or
- €
K p-ac
<—< . 70
P= l-« (70)
. o N : K
In the second case, the second inequality in (68) implies necessarily that p+ a(h —c¢) < a(— —¢),
€
p—c

for otherwise there will be no solution to (63). But then from (67), we have p+ a(h —c¢) < T,

-«
which implies p(1 — «) < ap. This requires o > 1/2. This is too restrictive an assumption as it would
correspond economically to offering too large a discount. So we will not consider the case (70) and

assume instead

p>a=—>c (71)
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Therefore, looking at (69) we have
K
F(5)=—-%— 72
Se .
(5:) p+alh—c) (72)

K
If (71) holds, then p+ a(h —¢) > a(— — ¢) and we define sF by
€

K
p——
s(o) <5 F(59) = #ﬁ (73)
p—a—+ah
€
A solution of (63) necessarily belongs to the interval
S5 < s(o) <5 <5, (74)
K
p——
and the last inequality comes from the definition of § (see equation (16)), since ———— <
p—a—+ah
€
L, as is easily checked. We now define for s € [s,, s¥], the map
p—ac+ah

a(® —c)

€

ST, () =0+ F (f‘p“p”(h‘@”(s)).

We have T, (5.) =0 and T,(s7) = 0 + 5. Therefore, if o =0, we have Ty((5F)) = (8), i.e., (57) is a
fixed point of Ty(s). Similarly, if o = 5., we have T%_(5.) = 5., i.e., 5. is a fixed point of T%_(s). For
0 <o <5, we have T,(5.) < 5. and T,(5F) > sf. Since the function s — T, (s) is continuous, there

exists a fixed point of T, (s). If there are several, we take the smallest one and have the following

result:

K
PROPOSITION 4. We assume (71),i.e., p> — >c. Then for o € [0,5.], there exists a unique smallest
€
fized point of the map s — T,(s). This fized point is denoted as s(o), and the inequality (74), i.e.,
S < s(o) < st <s, holds.
8.3. Additional Properties

We first check that the infimum inf H,(y) is attained. Indeed, from equation (30), as x — +oo,

) , y>s(o)
H (z) — 1 ¢ + o Therefore, H,(z) — 400 as & — +00. But thanks to equation
-« —a

K
(63), H,(x) is continuously differentiable at s(o) with H!(s(c)) = —(— — ¢). So the infimum of
€
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H,(y) for y > s(0) is attained, and we denote the smallest minimum by S(¢). Moreover, noting that

F(x—o0)— F(x—s(0)) <0, we have

J(x)+ a(g CO)(Fr— o) — F(z—5(0))) <0, ¥z < 5

Therefore, necessarily, S(o) > s. This is because ¢'(5) =0 at s, and consequently H,(y) <0 at s. So
the smallest minimum S(¢) satisfies the inequality S(o) > 5. Since we are expecting a threshold at
s(0), it is necessary to have a downward slope for the function o+ s(¢). Indeed, from equation (63),

we can compute the derivative

a(c—c)f(slo)—o
(p+a(h—0)f(s(0) —al —c)f(s(o) — o)

"“N

s'(o0)=—
We know that 5. < s(o) < 5. So to ensure that s'(¢) <0, it is sufficient to make the assumption

f&) _ ol -0

?géfng)>P+%ﬂh—cy )
f(€)

Note that this assumption is trivially satisfied in the exponential demand case, where  inf m =
Se<€<5E n

£—5e<n<E

§+o¢(h—c) a(X —¢)

—ASe > €
p+ah—c) = pt+alh—c)

e = . Based on the above discussion, we can state the following

results.

LEMMA 1. Assume (75). Then the following holds:

*
€

o The function o+ s(o) is decreasing on [0,5.] and s(0) = s*, s(5.) = 5.

e The function o — H,(x) is decreasing Vx.

ProOPOSITION 5. The functions
o o H!(x) increases for s(o) < .

e 0— S(0) and 0 H,(c) — H,(S(0)) are decreasing.

Proof. The proofs for Lemma 1 and Proposition 5 can be found in the online companion.

To demonstrate the main results, it remains to find a solution of equation (65) for o.
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8.4. Obtaining ¢ and Policy Structure

We can rewrite equation (65) as
H,(0)—H,(S(0)) =K — ce. (76)

Since the function on the left hand side is monotone decreasing on [0, 5], there exists a unique

solution of equation (76) for o if and only if,

ok

(st (T =0 [ FQde— Ho(SO) > K —ce>—Hi(S()). ()

€ l—a €

This leads to the following result.

PROPOSITION 6. Assume

K
o (71), i.e., p> —>c

e (75), i.e., inf & aE—-¢

> .
se<e<st f(n)  p+a(h—c)
£—5e<n<g

K K 5* = _
o (77), i.e., (? —c)si+ %(? —c) [, F(&)dé — Ho(S(0)) > K —ce > —H; (5(5.)).
Then there exists one and only one o, solution of equation (65). Moreover, o, € [0,5.]. If we set

se =s(o.) €[S, 5F] and S. = S(o.), then the (0., s, Se) policy is defined. We also have
Se — 0. <€ (78)

The proof follows from the previous results. Indeed, (65) implies

Ho(00) = (5 = )5~ 0) + Ho (50),
(% —¢)(se—0)+ Hy (s0) <K —ce+ H, (se).

and we can therefore conclude inequality (78).

The next section is devoted to the proof of the optimality of the proposed three parameter policy.
9. Optimality of (0,3, S.) Policy

In this section, we prove the optimality of the (o, >, S.) policy stated in Proposition 6. We show in
Theorem 3 that the function H,(z) satisfies the Bellman equation and hence is the value function. A
closed-form solution for the optimal (o, %, S.) policy in the exponential demand case will be given

in Section 9.3.
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9.1. Problem Setting

We want to show that the function H,_(z) defined by (64), (65), and o = o, is the solution of (6)
with p(1—a) = g(s.). To simplify the notation, we suppress € and use H(x) for H,_(z), o for o, and

s for s.. We write (6) as

H(z)= inf{(g =)y — ) yaze+ (K —ce) I, o+ 9(y) — g(s) + aEH((y — D) ")}

y>z

Taking in account the form of equation (64), we have to first verify the following three relations:

H(z) = inf {(

y>x

K
= O =)o+ (K —co)lypure + H(y)}, ifz 2 s, (79)

H(o)~ (7~ Oa—o)=min{ int [T~ )y =) Lycere+ (K = cLyora +9(0) ~ 9(s) +aH (o)

€ s2yzx €
K y—e K
—al o) [ PO~ = ycan + (K = e+ H) f i > 0> 0, (30)

H(o) = min { inf (2 o)y — o) yenre + (K — c)Lynse +g(y) — g(s) + aH (0],

(== DTy + (K = cTpmuc+ 9ly) — () + (o) —aCe—) [ F(e)ag)
(5~ )y~ 0 ycor + (K = )+ H) [ if2> 5(0). (31)

Then we show that the proposed (o, %, S.) policy is optimal. For this, we need an additional

assumption which extends the previous assumption (75).

9.2. Optimal Policy

We are going to assume

. fe) ol =0
0<n<1?<fn+§6 f(n) o ptalh—c) (82)

Note that in the exponential demand case, this condition holds trivially since

FO) _ xem o grse e Talh—c) ol —¢)
() ” ptath—c)  ptalh—o)

=
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We need also to assume that 5. < §—e. In the exponential demand case, this, in view of the definition

of 5. and § in (72) and (16), means

E—CS (e —1)(c(1 —a)+ah). (83)

€

K
This is an assumption about the smallness of the difference — — ¢. We then claim the following
€

result.

THEOREM 3. Assume

. K
o (71), i.e., p> - > c.

(77), i.e., (g —c)5i+ %(g —c) f(f: F(€)d¢é — Hy(S(0)) > K — ce > —H,_(S(5,)).
. . f&) a0
o (82), i.e., 0<n<1£1<f7]+§€ ) > pralhi—c)"

® 5. <S—eE€.
Then the function H(x) = H, (x), obtained by formulae (64) and (65), satisfies the relations (79),

(80), and (81), and therefore is the value function by way of being the solution of equation (6) with

p(1—a)=g(s.).

Proof: See the online companion.

REMARK 6. (Structure of the three parameter (o, %, S.) policy)
e If the beginning inventory level is less or equal to o, then order up to S..
e If the beginning inventory level is less or equal to ¥, but more than o, then order up to X..

e If the beginning inventory level is more than ., then do not order.
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H, ()

Inventory Level x

Figure 2  The graph of the standard (s,.S) policy.

I
I
I
I
i

€ Se EF SF Inventory Level

Figure 3 The graph of Ho(z) when K7 > 0. The four parameter (o, se, X¢, Se) policy is optimal. The solid line

represents the optimal cost function and o. and se are the ordering points.
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H, (z)

3 S, Inventory Level

Figure 4  The graph of H,(z) when K7 =0. The three parameter (oe, X, Se) policy is optimal.

9.3. Explicit Solution of (0,3, S.) Policy for Exponential Demand

Let the demand density be f(¢) = Xe *¢. Assume (71) and (83) and consider equations (16), (72),

(74). Then there is a o, that solves

L[2-c | (1+ §_0)+
— —1lo
l—ale+ 2 8 c+ 2
K
(pta(h—cpe o o T C
K _ . ot 2y c+ 2 K _
+ ————log g =Xe—=—p. (84)
ctiza (1-a)(1+ %) ¢tisa
C+1—a
With the help of equation (63), we then set
1. (ptah—c)e e —a(X—¢)
P — 85
Se= et yoe El-a)+ah (85)
1 54_047’1
SEZ 6_’_ l € 1—04. 86
T N1—a) Btk (86)

This gives a complete analytic solution for the (o.,s. = X.,S.) policy. The details of this explicit

solution are in the online companion Section EC.8.



Bensoussan et. al.: Optimal Policies for Inventory Systems
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

10. Conclusion

In this paper, we study an infinite-horizon stochastic inventory model when the ordering cost is
piecewise-linear concave resulting from quantity discounts or multiple suppliers. The most related
recent work to our paper is Benjaafar et al. (2018) who consider a finite-horizon problem with a
number of suppliers, and show the optimality of a generalized (s, S) policy under some assumptions
relating to demand and cost. Without these limitations, however, their numerical examples show that
the policy fails to be optimal when the problem horizon is not long enough. We take up their problem
with only two suppliers for ease of technical exposition and show a generalized (s, S) policy is optimal
without the assumptions imposed in Benjaafar et al. (2018). Of course, in our case, the generalized
(s,S) policy can be characterized by four parameters with two representing ordering points and the
other two representing order-up-to thresholds. In the special case when one of the suppliers has no
fixed ordering cost, the policy has only three parameters, as the larger ordering point and the smaller
order-up-to level equals in this situation. Moreover, when the demand distribution is exponential, we
are able to obtain the optimal policy in a closed form.

In addition to the proof of optimality, we make some important contributions. Unlike in finite-
horizon cases, an infinite-horizon problem requires a functional Bellman equation for the value func-
tion that is more difficult to solve than a sequence of optimization problems occurring in finite horizon
problems. Our method constructs the value function explicitly by solving the functional Equation,
and thus it does not rely on the notions related to K-convexity used in the literature for solving
inventory problems with our cost structure.

Although we have worked out only the two linear segment case in equation (2), our method is
general. In our future work, we plan first to look into the case of three suppliers and then extend it
to the general case of an arbitrary number of suppliers. Finally, let us mention that while we have
chosen to study the lost sales case in this paper, our methodology applies equally well to the backlog

case.
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Endnotes

1. 1, comes with value 1 if v satisfies the indicated condition otherwise 0.
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Optimal Policies for Inventory Systems with Piecewise-Linear
Concave Ordering Costs: Electronic Companion

EC.1. Proof of Theorem 1 of Section 5.

Without assumption (24) we will prove that H,_(z) is solution of (9), i.e., we will show that

H, (z) = min (9(1‘) —9(s) +aBH, ((x—= D)%), K>+ inf (g(y) = g(sc) +aBH, ((y - D)*))) :
(EC.1)
Assume first z < s.. Then H, (z) =0 and g(z) — g(s.) + aEH, ((x — D)%) = g(z) — g(s.) > 0, since

g(x) decreases for x < 5. Next If v +¢€ < s,

inf (9(y) ~ 9(s.) + aBH,.((y~ D)) =min (_inf _(5(s) (s

y>xz+te r+e<y<se
Inf (9(y) = g(se) + B H, ((y — D)*)))

=min(_inf  (g(y) —g(s), inf Hi))=—Ko,

r+e<y<se

since inf (g(y) —g(s.)) > 0. Hence the right hand side of (EC.1) is 0, which is indeed the value

TH+e<y<se

of H, (x), when z <s.. Hence H,_(x) is solution of (EC.1) when z +¢ <s.. When s, >z > s, —¢,

inf (g(y) —g(sc) + aEH, ((y—D)*))= inf H, (y)=H,(S)= inf H, (y) = —K>.

y>zte y>x+te € Y>Se

Hence H,_(z) is solution of (EC.1) when = < s.. If now = > s, then (EC.1) means

H, () =min(H, (z), Ko+ inf H (y)). (EC.2)

y>x+te

To check (EC.2) we have to prove that
H, (2) <Ky+H (y),Yy>z+e (EC.3)

But, in fact we have

Hy (x) < Ky + H (y), Vy >z, (BEC.4)

which is a classical result. However, for convenience of the reader, a proof of (EC.4) is provided

following the proof of this theorem.
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So we have proven that H,_ (x) is the solution of (EC.1), and thus of (9) with p(1 — a) = g(s.).
Assumption (24) is not needed for that. However, under assumption (24), to prove that H,_(z) is the

solution of (8) it suffices to show

H, (v) <Ky 4+ inf  ((c1 —c2)(y— ) +9(y) — g(sc) +aEH, ((y — D)*)). (EC.5)

r<y<x+te

If +¢e<s., then (EC.5) becomes

0<K;+ inf ((c1—c2)(y—x)+9g(y)—g(s)).

r<y<x+te

This is, of course, true because g(y) — g(s.) >0 for y < s.. So we may assume s, <x +e€. If x> s,

then (EC.5) becomes

Hy (z) <Kot inf  ((er =)y —2)+ H, (y))

r<y<zte

=K+ H, (z).
Next we see why we need condition (24). For this let us first observe that the left inequality in (13)
can be strict when x > 0. By adding (¢; — ¢3) to both sides of the inequality, we get H.(z)+ (¢; —¢2) >
c1(1 —a)+ oo —p for & > 0. Then we see that under condition (24), the function (¢; — c2)y + Hy, (y)
is monotone increasing when y > s.. Therefore, the assertion (EC.5) is true if x < s.—¢€ or x > s..

Finally if s, —e <z < s,, (EC.5) reduces to

0< Ky min (int ((ey = ea)(y— o)+ g6) ~ gls))s | nf _ ((ex = )y =)+ H(0) )

r<y<se se<y<z+e
The last inequality is correct by previously used arguments. The proof has been completed.l

EC.2. Proof of Equation (EC.4).

Equation (EC.4) is true if H.(x) <0 since for z > s,

K>+ inf H(y) > K>+ inf H.(y) = 0> H,(2).
y-x

Y>Se
Let z. be the first point such that H.(x.) =0. Set S, = S(s.). Then z. > S, and H.(z) <0 for z < z..

So we need to prove equation (EC.4) only for z > x.. Define

Bo(x) = H(w) — inf H(y)



e-companion to Bensoussan et. al.: Optimal Policies for Inventory Systems ecd

Thus we need to prove

B.(z) < Ky, YV > .. (EC.6)

But B.(z) < K, Vo < .. Let . be the smallest number satisfying =/ >z, and B.(z.) = K,. Let us
consider now x5 such that

He(xg) = inf He(ﬁ)'

N
The point z§ is well defined since H.(n) — 0o as n — oo. Thus H.(n) has a minimum and we take z§

to be the smallest minimum. Further, z§ # 2/ since

Next, consider z§ such that

H.(z5)= sup H(n).

se<n>a§
We claim that z§{ > 2. Indeed if 2§ < 2. then i;lf H.(n) < inf H.(n) and

0> n>a

Be(zy) = He(a5) — inf He(n) = He(z) — inf He(n) = Be(z() = Ka.

nza§  n>al ‘

recalling that =/ < x5. This contradicts the definition of 2.. Therefore, x{ > x.. Further, z{ # x5 since

HE(mi) - He(xg) > He(x/) - He(xg) = Be(x;) =K;>0.

€

Therefore we have

re <l < <as. (EC.7)
We next check the property that Vo <y < z§, we have
H(2) — Ho(y) < H(a%) — H.(a5). (EC.)

Indeed if 2/ <z <y <uz§ then H.(y) > H.(x5) and H.(z) < H.(x{), which proves (EC.8) in this case.

Now, if x <z then

He(w) = Holy) < H(w) = inf Ho(y) = Bo(a) < Ko < H.(w) — He(a3),
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which completes the proof of (EC.8). Next we write
He(z}) = g(x}) — g(s) + aEH((x] = D)"),

H(x5) = g(x5) — g(s°) + aEH (5 — D)").

He(2}) = He(w5) = g(a5) —g(25) + aEHe (25 — D) ") —aEH (x5 — D)) < g(x7) — g(x5) + a(He(a5) — He(

H.(25) — H.(x5) < g9(xg) — g(a5) <0.

This is because g is increasing on (s,00). This is a contradiction since H.(z5) > H.(x5). Therefore
the proof of equation (EC.4) is complete. B

Note: We recommend to the reader to consult Bensoussan (2011) for a similar proof for the case
e=0.
EC.3. Proof of Monotonicity Property at page 15.

Indeed, we first write (11) as

H,(z) = g(x) = g(s) +a | U H (- 9f(O)de, x> 5,

afgs (z) is, for x > s, the solution of the equation
s
OH,(x) v OH (1 —§)
2D =g ra [ Tl p(©ds x>
_ , OH,(x) .
For s < 5, we have ¢'(s) <0, therefore 9 0, x > s. Next, ugf H,(y) = H(S(s)) and
y>s
d _ 0H,(S(s))
2 1s(8(s) = —5—,

in view of the optimality of S(s). Therefore & H,(S(s)) > 0, when s € (0, 5), which proves the property.
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EC.4. Proof of Theorem 2 of Section 7.3

To simplify notation, we drop the index e and denote H(z),0,s,%,S. We must check that
H(l‘) = ;Eg {K1Hy>m + (Cl - 02)(y - x)]lyfzge + (Cl - CQ)E]nyx>e + g(y) - g(S) + aEH((y - D)+)}

There are 3 intervals (0,0), (o, s), (s, +00). The verification amounts to ascertaining that:

* (a)

H(o)=min{ int [KiLou-t (e = e2)(y = 0)Lyse + (02 — c2)elyaos 4 9(0)] — 9(5) + aH (o),

2<y<o

Yy—o

Ki+ inf [(01—02)(y—$)1y—z§e+(01—02)61y—x>e+9(y)—9(3)+QH(U)—Q(01—02)/ F(§)dg],

o<y<s 0

Ko+ inf(ey — ) (5 — )T, e (01— e2)ell, o + H(y)]}, if0<z <o, (EC.)

* (b)

(o)~ (e a=a) =min{ inl [Tyt (=)= 0Ty e (1= a)elly mcbaly) —g(9)
aH(e)=alc—c) [ PO Kt inf (e - o)y =0T aee + (0 - )l + H)]
ifo<x<s, (EC.10)
* (¢
H(z) = inf {Kl Tyow+ (1 —co)(y—2) L pece + (1 —co)ely_pne+ H(y)}, ifs<uw. (EC.11)

<y

We begin with (EC.11). It reduces to
r<y<xz+e y>x+te

H(z) = min {H(x),Kﬁ— inf (e —e2)(y—2)+ H(y)), Ks+ inf H(y)] (EC.12)

In view of the formula (45) the function H'(z) is increasing on (s. + +o00), and has a unique 0 at

S >s. So H(y) increases on (S, +00) and decreases on (s,.S). Clearly
H(z)<H(y) < Ko+ H(y), Ve > S, y>x

H(z)< H(s)< H(o)=Ky+ H(S)
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<Ky+H(y),Vy>s Vs<z<S.

Therefore

H(z) < Ky+ inf H(y),Vz>s. (EC.13)

y>x+e
Similarly H'(x) + ¢; — ¢ is increasing on (s,+00), and has a unique 0 at 3 > s. Therefore H(y) +
(¢1 — o)y increases for y > ¥ and decreases on (s,%). So H(z) + (¢ — )z < H(y) + (c1 — c2)y <

Ki+H(y)+ (1 —c2)y, Ve > X, y >x and
H(z)+ (e —c)x<H(s)+(c1—ca)s=Ki+ HXE)+ (¢ —c2)%

<K+ H(y)+ (c1—c)y, Vy>s, Vs <z <X.

Therefore,

H(z) <K+ inf ((c1—c2)(y—2x)+ H(y)), V> s. (EC.14)

r<y<z+te
From (EC.13) and (EC.14) we obtain immediately (EC.12).Therefore equation (EC.12) has been
proved.

We next prove (EC.10). We first consider the term

U=K, —|—;I<1£ {(cl — )y —2)0y_p<e+ (c1 — c2)ell, s —|—H(y)}.
Since c<r<s<XYX<o+e<z+e€, we can write

U—min<K1—|— inf [(c; —c2)(y—z)+ H(y)], Ko+ inf H(y))

s<y<z+e y>x+e

But, since ¥ € [s,x + €], we have

Ki+ inf [(q—c)ly—2)+Hy)|=Ki+(a—c)(E—2)+HX)=

s<y<z+te
H(s)+(c1—c)(s—x)=H(o) — (c1 — c2)(x — o).

Now, since z + € > s, we have ini H(y) > H(S). Hence
y>xte

Ky+ inf H(y)>Ky+H(S)=H(o)>H(o)— (¢1—¢c2)(x—0).

y>x+te
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Therefore, collecting the above results, we can write
U=H(o)—(c1 —c2)(z—0). (EC.15)
Consider next

r<y<s

V= inf {K1 0.+ (1 —co)(y — x)]Iy*ISe +(c1— Cz)e]lyfzx +9(y)} —9g(s)

taH(@)—ale—e) [ R}
Since y<s<xz+e

Yy—o

V= int {Killoat (0 - ) —2) +95) — 9(5) + afl(0) — afes — 3

r<y<

Fe)ds .

0

Define for y < s,

B(y) = (c1 — &)y + 9(y) — aler — ) / F(e

We thus have
"(y) = —aler — ) fly— o) + (p+alh—c2)) f(y)

=Xe M[(p+a(h—cy)) —alc, —c)e].

Since o < 5., it follows that

"(y) > Ae M [(p+alh —ca)) = aler — 3)e*™]

_AeM(ptalh =) Xo(er + )

> 0.
Xo(er + %) +afc — ¢2)

So ®'(y) =c; +a(h—c1) +alc, —c)F(y—0o) — (p+a(h—cy))F(y) is increasing for y < s. But
d'(s)=ci +a(h—c)+ale —c)F(s—o) = (p+alh—c))F(s)
=ci+alh—c)+e [—(p+alh—c2)) +alc —c)e].

Therefore from (37), we have ®'(s) = (¢; +a(h—c1))(

0 ) < 0. Hence, ®'(y) <0, for y < s, and
-«

the function ®(y) decreases for y < s. So it follows that

Ve int {e-e)y-o)+ol) -9 +atio)—alc—c) [ FE]
=(c1—c)(s—x)+aH (o) —alc; — / F(¢
(1 — ) (@ — 0) + (1 — ) (1 — ) (s — 0) + aler — ) /O F(€)d¢ + aH (o)

—(c1—e)(x—o)+H(o)=U, (from(6.2))
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and (EC.10) has therefore been proved. We finally turn to (EC.9). We first consider
J=K,+ £r<1?f! {(01 —)y—o)0, e+ (1 —c2)ell, s + H(y)}

If x +e< s, then

J =K, + inf H(y) = H(o)
y>s

If x+¢e>s, then

J:min{K1+ inf ((c1—e2)(y— @)+ H(y)), Ko+ inf H@)}.

y<s<wz+e y>z+e

Now
Ki+(eg—)(E—2)+HE), ifr+e> %,
Kot inf {@-ey-o+H) | -
- Ky+ H(z+e), ife+e<?,
and
Ki+(aa—c)E—2)+H(X)=H(o)+ (c1 —ca)(c —x) > H(o),ifr+e>3%
Ko+ H(z+¢€)>Ky+H(S)=H(o),ifr+e<X.
Therefore,

K, + inf {(01 —02)(y—x)+H(y)} >H(o), ifr+e>s.

y<s<z+e
On the other hand, since z < g, and 5, + € < 5 we have that v + € <o + € < 5. + € < 5. Therefore
T+ €< S, hence

Ky+ inf H(y)=FK,+H(S)=H(0),

y>x+e

Collecting results we have checked that J = H (o). We next consider

X =Kt int {(ei=ly-0)lrect (e -e)elyotaly) ~g(s) +aH (o) —ala—cr) [ Fedc),

If x+¢e> s, then

y—o

X=k+ int {(er-e)y—2)+90) —g(s) +aH0) —ale—c) [ FEc)
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Since ®(y) = (¢1 — c2)y + g(y) — a(cr — ¢2) [~ 7 F(€)dE is decreasing for y < s, we have
X=Ki+(c1—c)(s—x)+aH(c) —alc; — o / F(¢
=Ki+(c1—c)(oc—x)+H(c)> H(o).
If x+e< s, then

y—o

X =min {Kl + inf [(cl —c)y—x)+9(y) —g(s)+aH(o) —alc; —ca)

o<y<z+te

Fe)dg].

Kot inf_oy) = g(s)+ati(0)~alei—cx) [ P }.

r+e<y<s 0

Using the decreasing property of ®(y), we have

o<y<z+e

Ki+ inf {(cl—cg)(y—x)+g(y)—g()+aH() cl—cg/ Fle dg}

Ko+ glete) —gs) +abl(o)—alcr—cn) [ FO)de

Thus, if x 4+ € < s, then

X int_{ol0) = gls) +aH() ~ales—c) [ Fe)a¢]

Te<y<s
> Ky +aH(o) cl—cg/ F(¢
> (c1— ) (5 — 0) + aH(0) — ey — ¢) /0 P(e)de = H o),

where we have used the fact that s — o <e. So, we have proved that X > H(o). Finally, we consider

Y = inf {Kl ]Iy>m + (Cl — CQ)(y - $)]Iy—m§e + (Cl - CQ)GIIy—m>e + g(y)} - g(S) + OéH(O').

e<y<o

If x4+ €> 0, then

v= inf {Kils+ (e - ey = o) +9(0) ~ g(s) +aH (o)}

z<y<

> int (e ea)y—)+9) ~9(s) + a(0) ~aler—e) [ PO)e]

> (e1— ) (s — o)+ aH(0) — alcr — ¢) /0” F(&)de = H(o).

If x + e <o, we have

Y:min{ inf [Kl]IyNJr(cl02)(y:r)+g(y)g(s)+aH(o)],K2+ inf (g(y)g(s))+aH(o)}.

z<y<z+te z+e<y<o
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But

Ky+ inf (g9(y)—g(s))+aH(oc)> Ks+aH (o) > H(o),

zt+e<y<o
and
r<y<x+te

inf {Klllm + (1 —e)(y—2)+9(y) —g(s) + aH(U)}

> int (e ey —a)+ gl) ~ g(s) + ali(0)}

> int {(en—e)y— o) +9(0) - 9(s) +aH(o)~aler—a) [ Fe)de]
> (e1 = e3)(s — 0) + aH(0) — a(er — c3) /O " R(©)de = H o).
Therefore we have obtained
Y'> H(o). (EC.16)

With previous estimates this implies (EC.9) and thus the proof of the theorem is complete. B

EC.5. Proof of Lemma 1 of Section 8.3.

The proof of the first part of the lemma follows from the consideration of the derivative s'(¢) and

assumption (75). For the second part, we first recall that

a s(0)-a
Holslo) = 72— =0 [ Fleie

l—a €
1,0) =g o) [T P+ K ost0) -0,
hence
@ Ho(5(0) = (£10) - )2 (B ) F(s(0) ~0) <0,
L Hy(0) = (5(0) = (5~ -2 F(s(0) o) + 1] <0,

thanks to this lemma’s part (a). Next we take o < ¢’, then we have 0 <o’ < s(¢0’) < s(0). For z < g,

H,(x)=H,(0) and H,/(x)= H,/(0"), therefore H,(c) > H,/(0") and hence
H,(x) > Hy(x). (EC.17)

Take next o <x < o', then
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But H,(s(0)) > Hy(s(0")) and s(0) —z > s(0’) — 2z > s(0’) — o’. So (EC.17) holds again. We next

take 0’ <z < s(¢’), then

Hence

So (EC.17) holds again.
We next take s(¢0’) < x < s(c). Then we have H,/(z) < H,(s(c")) because x — H,:(z) is decreasing
on [0, §]. Then

H,/(z) < H,(s(0))=Hy(x)— (% —c)(z—s(0)) < Hy(x).

Thus (EC.17) is satisfied once more. So (EC.17) holds for x € [0, s(¢)]. We may then assume x >

s(o) > s(0’). We can write from (64)

H(w) = g(a) - 9(s(0")) + aEH((x — D)),

Set H, »(x) = Hy(x) — Hys(x). Then H, ./ (x), for < s(o), and

Ho () = g(s(0”)) = g(s(0)) + @EH, o ((x = D)), x> s(0).

But g(s(0”)) — g(s(o)) > 0, since s(0’) < s(0) < 5. Collecting the above observations together we see

that H, . (z) >0, and the proof has been completed. H
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EC.6. Proof of Proposition 5 of Section 8.3.

The first part is a routine calculation. Indeed when s(o) < x, we have, from (30)

K _ _

2—s(0)
HL(I)Zg’(ﬂf)+a(?—6)(F(93—0)—F(I—S(0)))+a/0 H (z— &) f(&§)dE. (EC.18)

Differentiating with respect to o, we can write

z—s(0)
i@ =a(E—afa-a)ra [ Lo

€

0
which implies 8—]{ ! (z) > 0. This yields the result.
o
Now for the second part, using H’ (S(c)) =0, we obtain by differentiation with respect to o

& HL(5(0)) + H(S(0))S'(0) = 0.

0

From the first part of this lemma we have a—H[,(S(U)) > 0. Since S(o) is a minimum, H/(S(0)) > 0.
o

It follows that S’(0) < 0, which is the desired result. Next

K S(o)
Ha(0) = Ho(S(0)) = (— —c)(s(0) —0) — H(§)dE.

€ s(o)

Therefore,

and the proof has been completed. B

EC.7. Proof of Theorem 3 of Section 9.2

We first obtain two preliminary properties, which are consequences of the assumptions (75),(82). The
first one is

x+— H/(z) is monotone increasing for z > o, (EC.19)

where H,(z) is defined by (64). Indeed, x — H/(z) is C* on (o,+00) and H”(z) =0, on (c,s(c)).

On (s(0),+00), one has from (EC.18)

K z—s(7)
Hz(2) =g"(2) +a(— = o)(=flz = o) + f(z = 5(0)) + aH;(s(0)) + oz/o H(z = &) f(§)dg

z—s(o)
— '@ —ale—ofe—a)+a [ Hl@-gre

€
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Now

7@ —a(E o) fa—0) = (prati-o)f@) - o~ fz o)

€ €

K
f@ oG9
flx—0o) p+alh—-c)

=flz—o)(p+alh—c))

Recalling that > s(c) > 5. and z — 0 >z — 5., and using assumption (75)), we that ¢”(z) — a(%

¢)f(xz — o) >0. This implies H!(x) > 0, for > s(o). This proves (EC.19). Next as,

K
H!(z)=—(——c¢), foroc <z <s(0),
€

the monotonicity property (EC.19) implies immediately that
, K
H (z)+ ——¢>0, foro <. (EC.20)
€

Hence, it follows that

inf (Kot H, () = H, (). (EC.21)

zSy<zte €
We now turn to proving that the function H(x) = H, (x) satisfies (79), (80), (81). For (79), this
amounts to showing

H(z)=min[H(x), K —ce+ inf H(y)].

y>x+te
So we have to prove

H(zx)<K—ce+H(y), Vy>x+e.

But this is a consequence of

H(z)<K—ce+ H(y), Vy >x>s,

which is same as equation (EC.4) which has already been proved. We next prove (80). Since s >z > o

and s — o < ¢, we have s < x + €. Therefore,

. K
11!I>1f€ {(6 =)y — ) Ly<ape + (K —c)Lyspyc + H(y)} -

€ y>ate

min{s<li/2£+€[(Kc)(y:z:)+H(y)}, K —ce+ inf H(y)}
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So from (EC.20) again, it follows that

inf {(K —o)(y—2)Lycpie + (K —ce)Myspye + H(y)} (EC.22)

y>s €

:min{(K —c)(s—x)+ H(s), K—ce+ inf H(y)}

€ y>x+e

But

= H(o)~ (2~ —0)

<H(a):K—ce+ir>1fH(y)
y>s

<K —ce+ inf H(y).

y>x+e

Therefore, we have

it {5 = 0= D)+ (K = )Ly + H) | =H) — (=0 —0).  (EC23)

y>s € €

Next, since s <z +¢€

it {5 = = DM ycare + (K = v+ 9(0) ~5(5) +aH(0) ~al—o) [ Fle)de} =

s2y2x € €

it {5 -0-2)+90) - g(s) +aH0) ~a(= —o) [T F©de}.

s2Y2x €

Now, we use the assumption (82) to check that the function

By) = (= —y+oly) —ale—o) [ F)de

is decreasing on y € (0, s). Indeed,

P(y) =2 ety ly) —al —)F(y—o)=

g—p+(p+a(h—c))F(y)—a(§—C)F(Z/—U)7

and

®"(y)=(p+alh—0c))f(y) — o(— =) fly—0)>0,



e-companion to Bensoussan et. al.: Optimal Policies for Inventory Systems eclb

thanks to the assumption (82). Therefore ®’(y) is increasing , and since ®’(s) = 0, we obtain ®’'(y) <0,

on y € (0,s). Hence ®(y) is decreasing on y € (0, s). Therefore, it follows that

it {5 - —2)+90) g9 +atio)—als—0) [P}

— (S - )(s- o) +aH() —al= o) [ F(ede
— (- (G- -a)tale -0 [ FQds+at(o)
K

=—(——c)(x—0)+ H(o),

€

which, combined with (EC.23) implies the relation (80). We turn finally to (81). We note that

0<5.<5—¢e If <o, then x+¢ < 5. Let us first check that

inf {(K —)(y— ) Tycpre+ (K —ce)Myspye + H(y)} =H(o). (EC.24)

y>s €

Indeed, suppose first that s <x + ¢ < s. Then

y>s | e

it {5~ O = M ycare + (K = 00+ Hy)

_min{sqilrgﬂ(([:—c)(y—x)—l—H(y)), K —ce+ inf H(y)}

y>z+e

Thanks to the assumption (75) and to the fact that =+ < s, this is
) K
inf ¢ (= =)y = ) Lycare + (K = co)youre + H(y)

:min{ inf ((E—C)(y—x)—l—H(y)),K—ce—i— inf H(y)}

s<y<z+te € y>x+e€

€

_mm{(K —¢)(s—x) +H(s),H(o)},

and (5 —c)(s—x)+ H(s) > (5 —c¢)(s—o0)+ H(s) = H(o), therefore (EC.24) is satisfied. In the

€ €

case x + € < s, we have simply

int {5 = 0= D)o+ (6 = e+ H) b = K = ce+ nf H(y) = H(0),

€ y>s
and (EC.24) is again satisfied. Consider next

y—o

X = int {05 0= ycor (K = cOLporn +9(0) ~g(s) +aH(0) - (- ~0)

Fe)ds .

0
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Suppose again that the situation x 4+ € > s. Then

X= int {(T-0-o)+90)-g)+at0)-al;—o) [ Fle)d}.

s2y>0 € €

But, as already seen above, thanks to assumption (82) we have

X= (% —c)(s—z)+aH(o) —a(g —c) /OS_UF(f)df
B @)+ Ho) > Ho).

€

If, on the other hand x + € < s, we can write

X—min{ int (5 - —2)+9() - 9(5) +aH(o) —aly —0) [ Fe)de],

K-cet inf loly)—g(s)+at(o)—al;—0) [ Fle)de)}
=K — ce+min {g(x +e€)—g(s)+aH(o)— oz(5 —c) /OHCJ F(&)dg,

€

€

ati(o)=a(c—o) [ F(ec}

>Kce+ozH(U)a([:c)/osaF(§)d§

> (S -0)+alo)—al—o) [ P
=B (s~ o)1 —a) +aH (o) +a(* —0) /0_ F(€)de = H(o).

So X > H(o). It remains to consider

Y = inf {(K—c)(y—m)]lygﬁe—f—(K—ce)ﬂy>x+s+g(y)—g(5)+aH(J)}.

oZ>yzx €

If 2 +¢> 0o, then

v= it {(E=—2)+90) - g5) +at(0)}

o>y>x €

K
Since o < §., the function y — (— — ¢)y + g(y) decreases for y < o, hence
€

Y:(g—c)(a—x)Jrg(a)—g(s)+aH(o)>X>H(o)
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If x + € < o, we have

v—min{ | inf (5= e)y—)+g0) —g(s) +aH (o),

Tezy>r €

o>y>xte

K—ce+ _inf (g9(y) —g(s)+aH(J))}
=K — ce+min {g(aH—e) —g(s)+aH(o), g(o)—g(s) +aH(U)}

=K —ce+g(o)—g(s)+aH (o)

> (%= 0)(s—0) + gl0) — g(s) + (o)
> (% — (s — o) +aH(o) aé _¢) /O_ F(&)de = H(o).

Thus Y > H (o). Therefore the proof of Theorem 3 is complete. B
EC.8. Explicit Solution for (o, s.,S.) Policy for Exponential Demand.
EC.8.1. Preliminary Assumptions

We let f(z) = Ae **. and obtain the promised closed form solution. We begin by summarizing the

assumptions of Theorem 3. We have

K
Next s, is defined by ( (72), hence

_ 1 p+alh—rc)
=g hranTY EC.26
° )\Og§+0z(h—c) ( )

and §¢ is defined by (73)

1 p—af +ah
st=-1 £

Slog L TA EC.27
TN E_GEtan ( )

Now recall that 5 is given by (16), we get

_ 1. pt+ah—c
=—log——=. EC.2
= Ogc+a(h—c) (EC.28)

Therefore, assumption (83) becomes

Ko cletalh—a)e—1). (EC.29)

€



ecl8 e-companion to Bensoussan et. al.: Optimal Policies for Inventory Systems

Next, assumption (82) becomes

5o

p+alh—c)’

—ASe

which is automatically verified thanks to (EC.26). Next (82) reads

E_aftah a(® —c)

€ €

> .
p—aX+ah = ptalh—c)

(EC.30)

K
which is, like (EC.29), a smallness condition on — — c.
€

EC.8.2. Solution in the Exponential Case

To apply Theorem 3, we have to verify (77). Let us first define the function s(¢). From Proposition 4,

after some easy calculations, we obtain that

(p+a(h—c))e™ —a(X —¢)

= -1 £ EC.31
5(o) U+)\ ©8 El-a)+ah ( )
s(0) is defined for o < 5.. Moreover s(o) < s(0) = s*. Next (EC.18) becomes
H (v)=c+alh—c)—(p+alh—c)e - (EC.32)
K —Az(  As(o) Ao ele) ! —A¢
—a(— —c)e (e —e )+a/\/ H!(x—¢&)e " dE, x> s(0).
€ 0
Combining with (EC.31) this reduces to
E+ah—o) K
H (z)=c+alh—c)— e_’\xm(p +alh—c)— a(? —c)e*)+ (EC.33)
—h\aef’\m/ H!(0)eMdo, x> s(0).
s(o)
This integral equation has an analytic solution, given by
ah K  ah
H’ — Rt St N A1 —a)(z—s(0)) ) EC.34
! (x) cti o (6+1_a)e , x> s(0) (EC.34)
Since S(o) satisfies H. (S(o)) =0, we get
K 4 ah
e)\(lfoc)(S(U)fs(o)) _ € l1-a (EC?)E))

ah °
c+1—.
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By integration
h
H, (1) = Hy(5(0)) + (e + 1) (x = 5(07)) (EC.36)
K ah 1= e Mi—a)(z—s(0))
(= > )
(e+1foz A1 —a) oz s(0)
We also can write
o K
q, = — —c)(1—e @y, EC.37
Asl0)) = 5y U — 9L ) (BC.37)
Then using (EC.31)
a K (p+a(h—c)e* +a(c—h)— £
H, = S = EC.38
GO = X e ) G rati— ) —alX o) (EC.38)
K
Ho(0) = H,(s(0)) + (— = c)(s(0) —0), (EC.39)
H,(5(0)) = Hoy(s(0)) + (c+ ol )(5(0) —s(0)) o oc (EC.40)
+(S(o s (s(o et o)—s(o Ni—a) .
Finally
H, (o)~ Ho(S(0)) = (> — o) (s(0) — o) + o c (c+ ah )(5(0) —s(0)) (EC.41)
— =(—-— — —(c+—— o) —s(o .
. (0 +(S(o - —os(o)—a NI—a) o
Using (EC.31) and (EC.35) we obtain the expression
Ho(o) — Hy(S(o)) = T35 [ 1 [fc log(1+ =~ ]+ (EC.42)
o7 WA= l—alet 22 o8 c+ 2 '
T P N e
T-c et e+ 2
; ah log K _ )
‘*isa (L—a)(1+ o)
cti—g
which is clearly a decreasing function of o. We can then interpret condition (77) as
1 K _ K
— = —log(1 < EC.43
l—alet 2 o8 +c+%)+ ( )
K K K
- - p+ah—a= = —c
g l € > )\ g
Tor B EI—a o e
and
Ae—= > < —log(1 < . EC.44
o T Tmaler o T o) e
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Then there exists a single value o, which is the solution of the equation

L el T et
T —1lo
maler s ey
K
(pta(h=cpe > e "€
K _ o+ 2 CJrlaih K _¢
z log —% = \e—= .
ah K_¢ _ah_
ctia (1-a)1+ ==r) ¢t iza
CTiza

Let us now set
N 1l (p+alh—c))e e —a(X —¢)
Se =0 T — 10 )
Pt El-a)+ah
L K
Mi—a) Fer e

Se=5.+

We then have the following proposition:

(EC.45)

(EC.46)

(EC.47)

ProprosiTiON EC.1. We assume (EC.25), (EC.29), (EC.30), (EC.43), and (EC.44). Then the triple

(0c,8e = 2, Se) given by (EC.45), (EC.46), (EC.4T) defines a (o.,%.,S.) policy for the Bellman

equation (6).
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