Soft Matter

ARTICLE TYPE

Cite this: DOI: 00.0000/3000000000x Deformation-dependent polydimethylsiloxane permeabil-

ity measured using osmotic microactuators’

Alexandra R. Spitzer® and Shelby B. Hutchens®?:*

Received Date
Accepted Date

In soft solids, large deformations significantly alter molecular structure and device geometry, which
DOI:00.0000/000000000x can impact other properties. In the case of mass transport, an interplay between flux and mechan-
ical deformation results. Here we demonstrate a platform for the simultaneous characterization of
mechano-permselectivity using the (slow) transport of water through polydimethylsiloxane (PDMS)
as a challenging test case. The platform uses micron-sized, cylindrical, NaCl solution-filled PDMS
chambers encapsulated by selectively-permeable PDMS thin film membranes. When placed in a
high chemical potential environment (high water potential) the osmotic pressure difference between
the chamber and environment induces water to flow through the PDMS membrane into the cham-
ber, resulting in membrane bulging. A model combining membrane flux and nonlinear elasticity
captures the time-dependent response well, but only when a deformation-dependent permeability is
used. Notably, the permeability of water through PDMS decreases by nearly an order of magnitude,
from 2 x 10712 to 5 x 10713 m?/s, due to primarily to its thickness decreasing by nearly an order of
magnitude as the average biaxial stretch increases from 1 to 2.75.

1 Introduction

Membrane permeability determines fluid transport in industrial
separations, 1™* biological function,>!! and bio-inspired tech-
nologies. 12719 Frequently, permeability is quantified under rigid,
static conditions. However, in soft biological materials and bio-
inspired devices, large changes in geometry and/or stretch occur,
leading to an interplay between fluid transport and mechanical
response that can be central to function. Observations and models
of materials’29-22 and tissues’23-2° poroelastic response abound
in hydrated and porous materials, for which transport is gov-
erned by Darcy’s law. Yet few methods to measure the mechano-
transport properties in materials exhibiting a solution-diffusion
mechanism have been reported.26-29 Here, we demonstrate a
small-scale, bulge-based test platform for quantifying membrane
mechano-permselectivity. Using this approach, we evaluate the
deformation-dependent permeability of water within commercial
polydimethylsiloxane (PDMS), an elastomer known for its bio-
compatibility and high stretchability as well as its separations
properties (e.g., pervaporation3?). This small-scale approach re-
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solves small flux volumes, which are particularly challenging to
measure in membranes with extremely low permeability, includ-
ing water through PDMS.

Previous investigations of water permeability within PDMS
find that it is low and dependent on network structure, but its
deformation or geometry-dependence has not been described.
However, for gas and vapor permeants (CO,, H,, and H,O),
PDMS reportedly becomes thickness dependent below tens of
microns.31:32 The behavior is attributed to non-equilibrium
sorption-desorption processes at the interface, which take over
as the dominant flux-limiting mechanism for sufficiently thin
films. 33

A membrane’s microstructure can also regulate its permeabil-
ity34 via structural contributions to both the sorption of a solu-
tion into the membrane and subsequent diffusivity within it. 336
Under load, polymeric membranes experience deformation that
modifies that microstructure. Consistent with other polymeric
membrane systems, 27-37-38 PDMS’s permeability to water vapor
has been found to decrease as the chain mobility decreases;?2?
mobility was controlled by changing crosslink density and ver-
ified with its proportionality to the glass transition temperature.
Notably, Song, et al. 3? reported stretch dependent permeability of
ethanol through PDMS. However, the mechanism used to capture
the response derives from changes in hydraulic resistance to flow
within channels in the network. Such channels are possible for
ethanol, since ethanol slightly swells PDMS by 4%.4° However,
PDMS is known to be highly hydrophobic, exhibiting swelling of
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Fig. 1 Overlayed, time-lapse optical images of a bulging membrane in
cross-section at 4, 14, and 24 h. Dark blue curves are deformation profile
fits of a nonlinear bulge model employing the Gent 3-parameter strain
energy density function.

~ 0.1%,4! which could at most yield submicron channels that
would deviate from typical hydraulic behavior. The results we
present here suggest a potentially minor effect of material stretch
on permeability for this PDMS system and a description of stretch-
dependent permeability in non-swelling network solids is outside
the scope of the current work.

Our experimental design employs an osmolyte-filled chamber
and a deformable, selectively permeable membrane that bulges
as fluid enters (Fig. 1). Modeling chamber dynamics necessi-
tates combining 1) membrane-mediated, osmosis-driven flow, 2)
variable membrane surface area and thickness (in contrast to de-
vices that separate actuation and permeability functions) and 3)
nonlinear mechanical constitutive behavior.#>~4® Qur approach
to these requirements combines the following previous work.
In describing the capabilities of osmotic actuators, Sinibaldi et.
al. 1314 modeled the volumetric actuation, characteristic actua-
tion time, maximum applied force, and peak power of a bulging
membrane under the assumption of linear elasticity attached to a
large, rigid, osmotically-active chamber (fixed permeable surface
area and thickness). The device is theoretically reversible.4” We
modify their framework to achieve the second point above by pre-
dicting chamber geometry changes via nonlinear membrane me-
chanics (third point). Experimental characterization of the defor-
mation of pressurized hyperelastic membranes has been success-
fully captured by both analytical4®->0 and finite-element mod-
els.>1:>2 Interestingly, while bulge deformation profiles are re-
ported, model validation typically compares pressure to a single
parameter, applied fluid volume*8
placement. 4?5152 Here we show agreement between the hyper-
elastic membrane model®® and the entire bulge profile, strength-
ening the flux model fidelity and therefore the argument for a
varying permeability during actuation.

The article is organized as follows. First, we describe the mate-
rials and methods. Next, we discuss the principles driving cham-

or maximum membrane dis-

2| Journal Name, [year], [vol.], 1-13

ber operation. Membrane mechanics comprise a key input of the
modeling framework, and we provide solutions for both linear
elastic and hyperelastic materials. Finally, the model is compared
with the experimental time-dependent response. As a proof-of-
concept, we report on the effects of incorporating hydrophilic
components within the PDMS membrane to increase its sorption
coefficient and therefore permeability.

2 Materials and Methods

Using a soft lithography approach, we form NaCl-filled chambers
encapsulated by thin PDMS films.

2.1 Materials

We use two commercially available PDMS formulations (Sylgard
184, Solaris) and one PDMS-based composite (PEO-Solaris).
Sylgard 184, cylindrical chamber base. Sylgard 184 (Dow
Corning) in a 10:1 (wt:wt) ratio, prepolymer base to curing agent
is mixed for 45 s at 2500 RPM in a SpeedMixer (Flactek, Inc.)
PDMS (Solaris), membranes. Solaris (Smooth-On, Inc.) parts A
and B are mixed in a 1:1 (wt:wt) ratio for 45 s at 2500 RPM in
the SpeedMixer.

PEO-PDMS (Solaris), membranes. PDMS composite mem-
branes are composed of allyloxy polyethylene oxide (PEO)
(GELEST, INC.) and Solaris. Following previous work,>* a 10:1
(wt:wt) dichloromethane (DCM) (Fisher) to polyethylene oxide
(PEO) (GELEST, INC.) solution is hand mixed for 1 min. DCM-
PEO is added to uncured Solaris at a ratio of 1.25 g of DCM-PEO
per 25 g Solaris (5000 ppm (by mass) PEO), mixed for 45 s, at
2500 RPM (SpeedMixer), then degassed in a vacuum chamber.

2.2 Device Fabrication

Cylindrical well-structures in Sylgard 184 are immersed in NaCl
solution. Elastomeric membranes consisting of a cured/uncured
bilayer are adhered to the immersed structures, thereby encapsu-
lating solution within the chambers.

PDMS Chamber Fabrication. Sylgard 184 chambers are molded
(30 min degas; 70°C cure; 1.5 h) from a photolithographically
patterned >> micropillar mold. The mold is comprised KMPR 1010
negative photoresist (Microchem) micropillars of radii ranging
from 100-200 um and a height of 110 um.

Selectively Permeable Membrane Fabrication. Solaris and
PEO-Solaris membranes are spun coat (Laurell Technologies) on
glass slides. First, polyacrylic acid (PAA) (Sigma Aldrich) and
reverse osmosis (RO) water solutions (Table 1) are deposited at
1000 RPM for 40 s, to serve as a sacrificial layer. Films are placed
on a hotplate at 100°C for 1 min to cure and eliminate excess wa-
ter. Then PDMS is deposited twice; the first layer is cured (70°C
for 1 h) and the second left uncured to serve as an adherent. Each
layer is spun for 5 min according to the information in Table 1.
Structure Assembly. We test 5 or more devices for each of
the following experimental configurations: reference chamber
(a= 200 pum, lp = 20 um, h= 110 um, and Cy = 3 M),
small radius chamber (¢ = 100 ym), thick membrane chamber
(lp = 26 um), reduced osmotic loading chamber (Chy= 1 M ),
and PEO-PDMS membrane chamber (¢ = 200 um, Iy = 20 um,



Table 1 Selectively-permeable Membrane Spin Coating Process Conditions

Membrane PAA Solution (wt.%) Cured Layer Speed (RPM) Adherent Layer Speed (RPM) Membrane Thickness (um)
Solaris 5 3000 2500 20
Solaris 5 2000 2000 26
PEO-Solaris 15 3000 2500 20
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Fig. 2 Normalized actuation response of microchambers over time.

A/AO

(a) The normalized volume V /Vy of the reference chamber (a = 200 um,

lp= 20 um, Cp = 3 M) exhibits a nonlinear time-dependent response (7 samples). (b) Reversible reference chamber actuation across 4, 48 h cycles
indicate negligible salt leakage over this time scale. (c) Four actuation chamber conditions are investigated in this work: the reference conditions (navy
blue, same as (a)), a small radius chamber: a= 100 um (orange), a thick membrane chamber: [y = 26 um (gold), and a reduced osmotic loading
chamber: Cy= 1 M (gray). (Unlisted parameters match the reference.) (d) Actuation response expressed as membrane surface area ratio £ over

A

time is equivalent to V/Vy. For the four actuation chamber conditions in (c), direct experimental measurement (crosses) and conversion from V/V,
(as plotted in (c)) using the mechanical bulge model (circles) provide similar results.

h= 110 um, and Cy = 3 M) where unspecified conditions match
the reference chamber. Before assembly, the NaCl solution (3
or 1 M solutions in RO water) is degassed for 30 min to pull
water into the wells. Membrane assemblies are fixed to a test
stand mounted (TA.XT Plus 100, StableMicrosystems) cylindrical
compression probe and brought into contact with the submerged
chambers at a rate of 1 mm/min to a pressure of 50 kPa. The
structure is held in compression for 12 h, curing the adherent
layer and dissolving the PAA layer.

2.3 Imaging and Analysis

Optical micrographs of the device cross-section (Fig. 1) are taken
every 10-15 min over a span of 24 h (AxioObserver, Zeiss). Cus-
tom MATLAB code fits an elliptical curve to each membrane de-
formation profile from which volume change is determined via
integration.

2.4 Mechanical Characterization

We characterize mechanical response by simultaneously fitting
the bulge geometry in the previous section and a standard uni-
axial test geometry.

Uniaxial Tension. We fabricate tensile specimens with ’dogbone’
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geometries (ASTM D412-16, die type D) and load them at a strain
rate of 0.03 s~ !, using optical strain quantification (fiducial mark-
ers) until rupture (5 kg load cell).

3 Results and Discussion

The following results demonstrate the necessity of a deformation-
dependent PDMS water permeability, arising from the inability
of a time-dependent flux model with constant permeability to ac-
curately capture experimentally-observed chamber volume evo-
lution. This shortcoming occurs despite accurate accounting of
finite deformation mechanics in the microactuator’s response.

3.1 Bulging of Osmotically-Active Chambers

Driven by an osmotic pressure difference, pure water in the envi-
ronment permeates the thin membrane into the salt-water-filled
chambers, deflecting the membrane to accomodate the increased
chamber volume (Fig. 1). Mechanical equilibrium requires that
the hydrostatic pressure within the chamber increase to support
the bulging membrane. The increase in hydrostatic pressure P,
and the decreased magnitude of the osmotic potential IT (IT < 0
for finite salt concentration) combine to increase the chamber wa-
ter potential ¥. ¥ quantifies the driving force for water move-
ment, where water flows from regions of high to low potential.
For pure water at atmospheric pressure, ¥ = 0 (ESI'). We calcu-
late the total volume of water in the chamber V from the bulged
profile assuming cylindrical symmetry. Fig. 2a illustrates the nor-
malized time-dependent evolution of the chamber volume V /V;
for a set of chambers in what we refer to as the reference con-
figuration (chamber radius a = 200 pm, initial membrane thick-
ness lp = 20 um, chamber height 2 = 110 um, and initial salt
concentration Cyp = 3 M). This data was gathered to the point
at which observation was hindered by: membrane delamination,
membrane fracture, or interference between bulges. Despite slow
permeability in silicone membranes, volume increases by a factor
of 8 over 24 h due to the actuator’s small size.

Two key benefits accompany the day-length timescale of actu-
ation. First, within the microscale chamber, both solute and sol-
vent diffuse across the entire chamber within approximately 3 s
(ESI). This separation of local mixing and macroscopic deforma-
tion time scales means the chamber can be considered well-mixed
and concentration polarization does not occur. Additionally, the
process is quasi-static, thus we ignore viscoelastic effects. These
features provide the basis for many of the assumptions used in
the model to follow.

The membrane bulges due to water flow through the mem-
brane, so it is possible the osmolyte could permeate, resulting
in salt leakage. To quantify salt-leakage, we actuate these mem-
branes through four cycles. Forward actuation (bulging) is in-
duced by submerging devices in pure RO water, causing water
to flow through the membrane in a response to the lower water
potential inside the chamber. After 24 h of forward actuation,
the feed solution is replaced with a solution isotonic to the initial
chamber solution and reverse actuation commences for 24 h due
to a reversal of water potential. As Fig. 2b shows, observations
across four cycles reveal no significant difference in maximum ac-
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tuation, unactuated state, or time-scale of actuation. With these
results as motivation, we make the assumption that on the time-
scale of these studies, no significant salt leakage occurs.

Qualitatively, variations in actuator parameters yield antici-
pated trends. As shown in Fig. 2c, a smaller chamber radius «
increases the rate at which actuation occurs (increased V /Vj vs.
t slope, orange) and a thicker membrane [y and lower initial salt
concentration Cy decrease the rate at which it occurs (gold and
gray data, respectively). (All chambers have the same 110 um
depth.) We validate the model developed in the following section
by quantitatively capturing all of these responses using a single
permeability function.

The membrane area and thickness increase and decrease, re-
spectively, as the actuator volume increases. We track and model
chamber volume in this work, however, one might equivalently
measure membrane area evolution as a function of time. In
Fig. 2d (plus signs) we illustrate the time evolution of the normal-
ized membrane surface area A/A(, where A and A are the instan-
taneous and initial membrane area, respectively. These data arise
from a surface integral (assuming cylindrical symmetry) of the
experimental bulge profile. Using the hyperelastic bulge model
developed in Sec. 3.4 reproduces the area response (Fig. 2d, cir-
cles) for a series of experimentally determined V /V, values from
the same conditions Fig. 2c, thereby illustrating the invariance of
the results with respect to the chosen observable.

Interestingly, at sufficiently large deformation, the region sur-
rounding the peak of the bulge begins to exhibit color variations,
possibly due to interactions with visible light (ESIT, Fig. S11).
Predictions of film thickness at an experimentally determined
A/Ag ~ 12 —13.5 suggest the center of the film is on the order
of 800-900 nm, just above the wavelength of visible light. We
leave this observation for future exploration.

3.2 Modeling Volumetric Flow Rate and Permeability

In this section, we develop the first order differential equation de-
scribing chamber volume time evolution for arbitrary membrane
mechanics. Assumptions include: water potential defined rela-
tive to pure water at atmospheric pressure, negligible salt leakage
from an ideal solution enclosed in the chamber, and first order
Fickian diffusion through the membrane.

3.2.1 Flux Through a Membrane.

Water passes through a silicone membrane via solution-
diffusion,5® meaning that molecules must first dissolve from a
reservoir into the membrane and then release from the other side
after passing through. Within the membrane, the water obeys
Fick’s first law, resulting in a linear dependence of volumetric
flux Jy on the driving force across the membrane due to water
potential ¥. W is the sum of the osmotic potential IT and tur-
gor pressure P, with IT = —iCRT (Van’t hoff’s law) and P, =0 at
atmospheric pressure. (The solute electronic dissociation factor,
solute concentration, universal gas constant, and temperature are
represented by i, C, R, and T, respectively.) Thus, volumetric flux



[units: m3/(m?s)] is given by

Jg o VW = fL(H;lP’) )

where the potential gradient is applied over a film of thickness
[ and the pure reservoir reference state (¥ = 0) is implicitly ac-
counted for. L is the constant of proportionality that mediates the
potential gradient and in this case is the mobility, which is given

by (see ESIT)
 PCu VoM,

L= RT pw ’ (2)

and defined in terms of the membrane’s permeability to water
P,,; the solution water concentration C,,; and the molar volume,
molecular weight, and mass density of water V,,, M,,,, and p,,. Per-
meability includes both solution into and out of the membrane
and the diffusive behavior through the membrane and thus is fur-
ther decomposed into

Py =Dy 'Kw:membrane 3)

where K. membrane defines the sorption or partition coefficient be-
tween the reservoir and the membrane [unitless] and D,, is the
diffusivity of the water within the membrane [units: m2/s].

3.2.2 Chamber Volume Evolution

We assume that deflection of the thin membrane encloses a vol-
ume AV equal to the volume of the water that enters due to fluid
incompressibility and negligible deflection of the stiffer, thicker
chamber walls. It is convenient to track membrane deformation
independent of initial-chamber-geometry using a dimensionless,
deflected membrane volume V

\4
AV V-V, vl
V"1 = LU 4)
Apa Apa f#
0

as chamber turgor pressure, membrane thickness, and membrane
area vary naturally with V according to the membrane’s consti-
tutive behavior only (rather than V). The instantaneous rate of
change in chamber volume ‘Zi—‘t/ due to volumetric water flux Jj is

therefore v
Ez//JQ(V) ds )
A(V)

where A(V) denotes the area of the surface S over which V-
dependent flux is integrated. Eqn. (1) illustrates that Jy’s depen-
dence on V arises via I, P, and . The first two terms, IT and P
are uniform within the chamber due to its being well-mixed and
under hydrostatic pressure, respectively. The potential for flow
due to osmotic pressure decreases as a function of the increasing
chamber volume, IT = I %, where Iy = —iCyRT and Cj is the
initial osmolyte concentration. F’s dependence on V will be ad-
dressed in Sections 3.3 and 3.4. The film thickness / varies across
the deformed surface and in general cannot be treated as an av-
erage value (ESI"). The time-dependent chamber volume change
therefore becomes

ety o) [ @

We recognize the integral term as being A(1//) (where (-) denotes
the expectation value). Substituting this relation and nondimen-
sionalizing Eqn. (6) for all variables except time, yields

dyp  LAgA(V) / Io \ (1 R(V)
o v To<m> T, 2

which motivates the definition of three dimensionless expressions

characterizing membrane deflection mechanics: f4(V) = A/S?,

V)= <I(I—“l/)>, and f,(V) = # (We use Young’s modulus E to
nondimensionalize turgor pressure P.) Re-writing Eqn. (7) with
these functions gives the final result for the time-dependent, in-

stantaneous dimensionless volume change of the actuating cham-
ber

dy, Iy, o (1  Ef,(V)
o v faV)fi(V) VYO‘FTO ) €)

where V and V /V, are related according to Eqn. (4). This form
suggests that an appropriate time constant for the system is:
Vo

T T ImA,” ©)

For a given mechanical response (f4, f;, and f,) and water mo-
bility L within the membrane, Eqn. (8) predicts the dimensionless
time-dependent response of an actuating chamber as

dyp oo (1 Ef(V)
= BA) <%+ el 10)

3.3 Linear Elastic Membrane Bulge Theory

Assuming linear elasticity as a simple starting point provides some
insight into the dimensionless functions’ f4, f;, and f, depen-
dence on V. As we will show, this small strain assumption is poor
for most of the observed deformation and in the next section, we
provide the more complex, hyperelastic description.

An expression for chamber turgor pressure arises from the
combination of Timoshenko’s linear elastic cylindrical membrane
bulge theory®>” and the Nix approximation®® connecting the de-
flection distance to the deflected volume using. Using a spheri-
cal cap approximation provides a reasonable estimate of the de-
flected membrane’s surface area for a given deflection distance. 13
Combined with an assumption that under small deformation, the
membrane exhibits negligible changes in thickness, these rela-
tions yield the following expressions (See ESI' for details):

P(r) 1287 Iy 1280 V?

V) — _ 3
HhV)=—F"=— Ag(V(t) Vo)’ = —-— (11)
_ 2
fA(V)zAT(;) = 1+74(V(24 LORESE (12)
ol D
fiv) = ) " h (13)

Shown gold lines in Fig. 3 a, b, and c, the linear approximation
predicts an overly stiff membrane response with volume change,
only agreeing with the hyperelastic response at the lowest values
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Fig. 3 Mechanical model of bulging membrane. (a) Water enters the chamber through the selectively permeable membrane, driven by the initial
osmotic pressure ITy. The membrane deflects along the -Z-axis to a maximum of —& while developing turgor pressure P. Equilibrium membrane
geometry is parameterized by p, the initial radial position in the undeformed configuration which stretches to a dimensionless arc length &(p) for

deformed coordinates #(p) and Z(p).

For reference chamber conditions, three dimensionless functions characterize the bulged membrane area (b),

inverse thickness (c), and turgor pressure (d) as a function of dimensionless bulge volume V. Three constitutive responses are shown: linear elastic
with an equivalent modulus (gold; light gold beyond the small stretch regime), hyperelastic PDMS (navy), and hyperelastic PEO-PDMS (light blue).
(Hyperelasticity details in Sec. 3.4.) (e) The bulge deformation profile of a hyperelastic PDMS membrane in the reference geometry illustrates the

shape evolution across V = (0,4). All curves set Apre = 1.

of deflection, V < 0.05 (saturated gold region). This level of de-
flection corresponds approximately to an average biaxial stretch
within the membrane of A = /A/Ag ~ 1.2.
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3.4 Hyperelastic Membrane Mechanics

To capture large membrane deformation, we use a hyperelastic
bulge model®>°° to define f4(V), fi(V), and f,(V). We treat
the membrane as an incompressible Gent 3-parameter material ®°



with strain energy density function,

(14

J
W = —CyJpln (1 - 71) +C21n<

m

J2+3>

expressed in terms of the first and second strain invariants J; and
J», defined as

1 2
S =22+ A>+ —— —3, (15)
PRI PR B (16)
h=A2+10" 2+ -3.

This model captures the mechanical response of the membrane
materials using parameters fit from both mechanical characteri-
zation geometries. Uniaxial tensile data are available in the ESI'.
The resulting fit parameters, combined with the following equa-
tions, capture the experimentally observed deformation (Fig. 1,
dark-blue lines).

3.4.1 Deformed Membrane Profile.

We determine the membrane deformation profile guided by the
work of Long, et al. >3 who combine governing equations de-
scribing the deformation of a hyperelastic cylindrical cap®® with
clamped boundary conditions at the cylinder edge. Throughout,
we use their definitions for parameters, but nondimensionalized
with respect to length using the initial membrane radius a (e.g.,
F=r/a, Z=1z/a). These variables are illustrated in Fig. 3a. The
membrane is parameterized using p, 0 < p < 1, with the unde-
formed radial membrane profile lying along the 7-axis at Z =0
fromp=0at7=0to p =1 at 7= 1. The deformed membrane
coordinates are expressed as functions the parameter p as (7(p),
Z(p)). Each position on the deformed profile is associated with an
arc-length &(p), where the initial point &(p) = 0 occurs at p = 0.
The angle formed by the tangent line to each deformed point is
o(p). In the deformed state, the membrane experiences princi-
pal stretch ratios A¢(p), 4¢(p), and A,(p) at each position p. The
longitudinal and latitudinal stretches are defined, respectively, as

;

Ao(p) =—, an

and the assumption of membrane incompressibility requires
Ar(p), the stretch ratio related to the dimensionless change in
membrane thickness, to be:

P, p———C) (18)

S (Phe(p) b

In an ideal system, changes in P, deform only the membrane.
However, experimentally we observe expansion of the compliant
PDMS chamber with increasing P; (corresponding to increasing
V). We account for this effect using as an experimentally mea-
sured radial membrane pre-stretch, lpre(f/) (ESIT Fig. S6).

Boundary conditions capture 1) the fixed 7 of the membrane
edge, 2) the stretch ratio at the fixed edge (equal to Apre), 3)
a constant encapsulated bulge volume, and 4) an assumption of

radial symmetry. These are expressed as

2e(p=0)=24(p=0) a(p=0)=0

respectively, where the latter reflect the equibiaxial extension and

horizontal tangent line at the membrane’s center. These boundary
conditions limit solutions to physically-relevant deformation pro-
files for a given turgor pressure. We found that fixed bulge volume
was critical to modeling strain stiffening materials, as opposed to
fixed deflection at z = 0, because the latter does not provide a
unique solution as the bulge begins to flatten at large deforma-
tions.

Labai and Simmonds>® derived the static equilibrium and geo-
metric relationships to describe membrane deformation under the
application of uniform pressure P,. For the Gent 3-parameter con-
stitutive model, the natural nondimensionalization of the turgor
pressure is B = Cl?lr(ll(] . Using this dimensionless parameterization,
Labai and Simmonds equations, and a differential form for deter-
mining the volume V from the membrane profile (a function of p,

Ay, and 7), we define 5 governing equations,

- - oT
dn ATy —Té)cosa—lq)%(lé cos & — Ag)

_ (19)

d oT:

p Po 57
dj _ prlqjlé 7{5 T¢ sin o (20
dp pAgTe
dA, A o—A
J _ gCOS ) (21)
dp P
dz .
% = lé sina (22)
av _ ) dZ
i Aop e (23)

where the dimensionless line tensions in the £ and ¢ directions
are given as derivatives of the strain energy density function W,
and nondimensionalized by the Gent-parameter, C;:

- 1 dw - 1 dw

§T Gy 9k 0T Cukg kg (24)

We solve this set of ordinary differential equations (ODEs) by
integrating over 0 < p < 1 and enforcing the described bound-
ary conditions, using the MATLAB boundary value solver BVP5C.
For a given deformed volume V, we solve for the dimensionless
pressure P required to deform the membrane and the parame-
ters defining the membrane geometry As(p), a(p), A¢(p), Z(p),
and V(p) for 0 < p < 1. The initial guess is a spherical cap ap-
proximating the pressure with that of neoHookean membrane of
similar volume. >3 The solution maps to the deformation profile
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(7(p), Z(p)) via the functions Z(p) and Ay (p) with the relation to
7 given by Eqn. (17). A series of profiles are shown in Fig. 3e.

3.5 From Profile to Membrane Geometry

Each membrane profile corresponds to a unique turgor pressure
P,. Thus, the deformed geometry, as parameterized by the dimen-
sionless volume enclosed by the deflecting membrane V, can be
linked to P, I, and A to define the hyperelastic membrane me-
chanics functions f4(V), f;(V), and f,(V) required to fully define
Eqn. (8). For each ‘turgor pressure’ - ‘deformed profile’ pair, we
verify the volume enclosed by the membrane profile and calcu-
late the membrane surface area and the average inverse thickness
via integration. (See ESI' for details.) For f;, average inverse
thickness is nearly equivalent to the inverse of the average mem-
brane thickness for the constitutive response and loading condi-
tions here (ESI Fig. S1).

Figure 3 provides V dependence for membranes well be-
yond a hemispherical cap, V = 2/3. We include predictions for
experimentally-determined constitutive responses from the two
material systems considered here: Solaris (navy lines) and PEO-
Solaris (light blue lines). For devices such as those we report here,
in which the bulging surface serves as both actuator and mem-
brane, nearly order-of-magnitude increases in membrane area
and inverse thickness (decreased thickness) critically mediate the
volumetric flux (Eqn. (8)) for a given driving force (IT+ F)/Iy.
Pressure, on the other hand increases slowly (or plateaus in the
case of PEO-PDMS) meaning that for thin, highly deformable
films the evolution of the driving force for flow is primarily me-
diated by changes in osmotic pressure I1/I1y, which decreases as

~Vo)V = — i —.
o/ V"VLO“H

The complex nonlinearity of this system therefore arises from
both the nonlinear material response and the inherent nonlinear-
ity of the ODE. This presents a challenge to easily understanding
how the time-dependent response evolves with changes in cham-
ber/membrane geometry or initial osmotic pressure. As an ex-
ample, we model the volume evolution using dimensionless time
(Eqn. (9)) assuming constant P, =2 x 10~ 2 m?/s (Fig. 4a) for the
experimental conditions in Fig. 2c. The time-dependent response
of a reference chamber (a =200 um, /[y =20 um, Cy =3 M; navy
line) is compared to a smaller radius chamber (¢ = 100 um; or-
ange line), a membrane with larger initial thickness (/y =26 um;
gold line), and a chamber containing a lower initial salt concen-
tration or osmotic potential (Cy = 1 M; gray line). Note that in
dimensionless time, the reference, thick membrane, and reduced
osmotic pressure curves collapse since 1) these variables are ac-
counted for in the definition of 7 or 2) in the case of the thick
membrane, the thickness change is small enough to produce lit-
tle variation in fy, f;, and f,. Fig. 4b shows that in the case of
the small chamber the faster relative response time arises from
increased geometric changes, f4 X f; = CAU X <17°>, that favor
flux and far outpace the rapid loss of driving force HHLOP' that ac-
companies this chamber size.
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Fig. 4 Predicted time-evolution of chamber volume incorporating large

deformation and flux governed by membrane geometry evolution. (a) In

dimensionless time 7 the evolution of chamber volume VL collapses for

all experimental configurations except the small radius chamber: refer-
ence chamber (navy blue), thick membrane chamber (gold), reduced os-
motic loading chamber (gray), and small radius chamber (orange). (As-
sumptions: Solaris PDMS constitutive response membrane and constant
permeability P,.) (b) The small radius chamber exhibits faster relative
actuation due to membrane geometry evolution fa f; =A/A¢(lp/1) (solid)
whose nearly 10% increase facilitating flow outpaces the faster, but order
1 loss in flow driving force (IT+ F;)/IIy inducing flow.

3.6 The permeability of water through PDMS

Using known experimental conditions and independent, fit-
mediated membrane mechanics, the only remaining unknown is
the permeability P,,. (Mobility L and P, are related via molecular
constants by Eqn. (2).) In this section, we determine P, in the
linear regime for short times, then illustrate improvement upon
incorporating nonlinear mechanical behavior for longer times.
However, we find that a constant value for the permeability P,
cannot describe the actuators’ time-dependent responses.

In all cases, we fit the solution to Eqn. (10) to experimental
data normalized by the time-constant = (Eqn. (9)) using nonlinear
least squares fitting. All following results arise from simultaneous
fitting of all geometries and osmotic loading. Differing conditions
were also fit separately with no significant variation in P,.
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Fig. 5 Fit of experimental data to model. (a) Short- and (b) long-time responses for reference chamber conditions (a =200 um, lp =20 um, Co =3 M)
fit to three membrane mechanics/permeability behaviors: linear elastic membrane with constant P, (gold), hyperelastic membrane with constant P,

(orange), hyperelastic membrane exhibiting stretch-dependent permeability P,,(A) (teal). The linear elastic response captures the short-time response
(dark gold), but overestimates at longer times (light gold extrapolated region). The hyperelastic membrane with constant P, better captures a
moderate stretch response, but underestimates and overestimates at low (a) and high (b) stretches, respectively. A hyperelastic membrane exhibiting

stretch-dependent permeability P, (A) captures the response (teal) in both regimes (a-b).
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Fig. 6 Deformation-mediated permeability P,, of PDMS. (a) Instantaneous permeability, averaged from all four PDMS chamber conditions, as a function
of average biaxial membrane stretch A (lower x-axis) and fit to Eqn. (27), teal. Each point (black) represents the average of five instantaneous values,
vertical error bars are the standard deviation of the instantaneous permeability values and horizontal error bars are the standard deviation of the average
biaxial stretch of each region, where instantaneous permeability values are extracted from segments of 19 experimental V/Vy(¢) vs. ¢ curves. This
permeability-fit is compared to thickness-dependent (I, upper x-axis) permeability theory expressed by Eqn. (26). Curves for a range of L. (10-200 um
with increasing orange saturation) capture a significant portion of the deformation-dependent P,. Each L. of 10, 20, 40, 80, and 200 um corresponds
to a prediction for Pyenry x 10'2 = 3, 4, 6, 10, and 22 mm?/s. (b) Using deformation-dependent permeability, the model (solid lines) captures the
time-dependent actuation of all chambers conditions (circles) at both long and short (inset) times.

Table 2 Permeability values from fit 3.6.1 Linear response permeability

Constitutive Theory & Fit Employed Permeability, P,, [m*/s]

Linear Elastic PDMS 2.02-10 12 Despite the differences in the experimental responses (Fig. 2),
Hyperelastic PDMS, constant P, 8.35- 10’:2 _ at short times (small deformations) the data collapse in dimen-
Hyperelastic PDMS, P, (4) 1.99-107 (4 =1) sionless time as anticipated (ESI'). Using a slightly extended

H lastic PEO-PDMS, P, (A 1.99-1072 A =1 . e .
yperelastic PEO . Au(R) 99107 7 ( ) limit (V < 0.165; V/Vy < 1.3 for the reference geometry), which

corresponds to an approximate biaxial stretch of 1.4 we obtain
the gold line in Fig. 5. (The less saturated color extrapolates
the linear prediction.) The permeability value for this regime,
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2.02 x 10712 m? /s, falls at the upper end of values reported in the
literature 6 x 10713 —2 x 10712 1‘112/561‘63 (Table 2).

3.6.2 Hyperelastic response - constant permeability

Incorporating the hyperelastic mechanical model captures the
middle time (moderate deformation) response, but fails to align
with the data at short times and overestimates the highly-
stretched response region (20-24 h). Figure 5b (dark orange line)
illustrates this result, generally capturing the time-dependent
data between 10 and 20 h. However at short times (Fig. 5a, dark
orange line), the fit falls well below the experimental observa-
tions. As a result, the predicted P, is 58% lower than measured
in the linear regime, although it still lies within the lower range
of previously measured values.

3.7 A case for deformation-dependent permeability

Given the accuracy of the membrane mechanical response
and known osmotic potential for an experimentally-observed
bulge, we conclude that capturing the full, time-dependent re-
sponse requires a stretch-dependent permeability. We motivate
the functional form for the deformation-dependence by piece-
wise instantaneous permeabilities obtained from multiple actua-
tors/geometries. Instantaneous permeability arises by modifying
Eqn. (8) with a deformation-dependent mobility term L(V), then
re-arranging it to obtain

dy 1Y 1 1

LV == Aoy a5 () (L N M)

(25)

B
which is a function of the instantaneous chamber volume V and
the rate of change of deformation d(V /Vy)/dt (ESI' Fig. $9). L(V)
is converted to permeability using Eqn. (2). Since membrane
deformation, rather than bulge volume, is the likely reason for
changes in P, we re-express V as the average biaxial stretch
A = /A/Ay (ESI') and the average membrane thickness (drop-
ping the thicker /[y = 26 um geometry). Fig. 6 illustrates the nearly
order-of-magnitude decrease in the membrane permeability dur-
ing the test.

As membranes become thinner, the flux can become dominated
by sorption-desorption surface reaction kinetics.31:33 Firpo, et
al.3! expressed the onset of this thickness-dependent behavior
using the concept of a critical thickness value L. in describing
gaseous species permeation through PDMS, where L. = 2D,, /k, 33
and k; is the desorption rate constant. Unfortunately, values of k,
for liquid water from PDMS appear to be lacking in the literature
and reported D,, values may or may not be ‘apparent’ values de-
pending on the membrane thickness used. Thus, we cannot say
definitively where our 20 pum films fall with respect to L. in this
system. However, for context, we can employ the functional form
for thickness dependent permeability 3!

P /L

PHenry - ] +l/LC’ (26)

where Pyenry Tepresents the permeability of the film in the case
that Henry’s law applies to the surface reactions, e.g., they are
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nearly in equilibrium. We compare this functional form to our
thickness-dependent permeability results to assess the likelihood
that our observations arise from a similar mechanism (Fig. 6a).

Although permeability monotonically decreases with decreas-
ing thickness, quantitatively and qualitatively Eqn. (26) provides
only moderate agreement with our experimentally observed trend
(Fig. 6a). Predictive curves are provided for increasing L.. We
constrain Eqn. (26) to pass through the unstretched state (1 = 1,
P, =1.99 x 10~!2 m2/s). This choice is supported by the robust-
ness of the collapse of the linear response regime (ESIT Fig. $7)
and general agreement with previously reported P, (2 x 1012
m2/s, 55 pm thickness®:63). This added constraint leads to a
predicted Pyenry for each L.. For large L, the curve converges
to its maximum thickness sensitivity (close to L, =200 um) but
predicts an order of magnitude higher Pyenry than experimentally
measured. (Though it has been simulated for mm-thick films,
assuming Kiy-membrane = 0-1.%4) The lower bound for L. was mo-
tivated by CO, and He permeants through PDMS; these are on the
order of several 10’s of um’s. But such small L. deviate further
from experimental observation. We can speculate on the reasons
for the discrepancies between Eqn. (26) and our data.

Two potential reasons for a lack of agreement the deformation-
dependent-permeability measurements and thickness-dependent
permeability predictions are: 1) treating the membrane thick-
ness as an average value and 2) stretch dependent changes in
P,. Though the thickness of a deformed membrane is not uni-
form, the majority of the film is within 1 um of the average value
(ESI* Fig. S2). Such small variations in film thickness produce rel-
atively minor variations in the thickness-dependent P,, predicted
by Eqn. (26). Using /+ 1 um to create bounds around the small-
est and largest L. predictions, we determine that qualitatively, our
above interpretation does not change (ESI' Fig. $10). Therefore,
the curves shown in Fig. 6a provide a reasonable representation
of thickness-dependent permeability effects, which is likely the
greatest, but not only, contributor to the geometry-dependence
of P,. We conclude that effects of stretch may therefore oc-
cur as well, though to our knowledge, no theoretical expression
for stretch-dependent membrane permeability exists for a solid,
rubbery-network, unswollen material. Typically, rubbery mem-
branes are mounted to a rigid substrate® or used with mod-
erately swelling solvents.3? In the former case, little deforma-
tion occurs and in the latter, stretch dependence is attributed
to changes in conformation of fluid-filled channels. Given the
negligible swelling of PDMS in water, the latter are unlikely to
be present. Several possibilities include: 1) polymer chains in
a stretched configuration may experience a change in mobility
that alters ‘hopping’®0-8 and ‘cluster formation’36:61.9 mecha-
nisms, 2) deviations from the incompressibility assumption which
may mean a slightly higher P,, due to decreased density, but such
thicker membranes could be interpreted as a lower P, than in
reality in the current incompressible approach. Future study is
required to understand these more subtle effects.

To quantitatively capture the data trend and facilitate compar-
ison within this and later work, we fit our data to the following



functional form:
Py(A) =Cp -t 405544 27)

Using this stretch dependence in the time-response ODE captures
the experimental volumetric actuation behavior across all time-
scales for all four experimental geometries as shown in Fig. 6b.
The initial permeability at 2 = 1 for PDMS is 1.99 x 10712 [m?2/s],
within the range of previously published values and recovering
the linear elastic limit. The fit constants are provided in Table 3.

3.7.1 Effects of adding hydrophilic groups

With this means of quantifying mechano-permselectivity accu-
rately, we can evaluate the performance of new material formula-
tions. Previous work suggests that increased permeability is pos-
sible through the incorporation of hydrophilic groups within the
network solid. One group studied the increased sorption of water
into PDMS by adding polyethylene glycol (PEG), finding that PEG
could increase the uptake of water from 0.1 to 1.4 wt%.*! Sim-
ilarly increased hydrophilicity has been reported in PEO-PDMS
composites.>»7? As a proof-of-concept, we test membranes hav-
ing 0.5 wt% polyethylene oxide (PEO).

Determination of P, (1) in the PEO-PDMS follows the same pro-
cess outlined in Sec. 3.7. PEO-PDMS membranes are tested using
the reference geometry (¢ = 200 pum, /o = 20 um, Cp = 3 M);
Gent model parameters are in the ESI'; P, (1) fit (Fig. 7a, dark
blue line) parameters are in Table 3. Figure 7 compares the ma-
terials.

We find a moderate increase in P,, (Fig. 7a) and stretch at break
in the bulge geometry. Interestingly, this improvement was ac-
companied by degraded uniaxial tensile mechanical properties,
namely a 35% decrease in stretch at break (ESI, uniaxial and
bulge geometries, Fig. S4, S5) which was gathered under dry con-
ditions that may provide one explanation for its poor response.
The improved P, means that PEO-PDMS exhibits a faster ac-
tuation rate than PDMS, in spite of its slightly stiffer modulus
(+51%) which would provide increased turgor pressure resisting
flow. The analysis developed here indicates that the permeability
of undeformed PMDS and PEO-PDMS vary by only 0.02%, pro-
ducing similar short time responses. At higher membrane stretch
values (A =3,V /Vo =17.5), PEO-PDMS membranes exhibit a 56%
larger P,. It may be that the hydrophilic additions produce only
a small increase in the equilibrium sorption behavior (evidenced
by similar P, at A = 1), but decrease L. (e.g., via larger k).

4 Conclusions

We provide a bulge-based method of determining the stretch-
dependent permeation behavior of water through elastomeric
membranes. At low deformations, these PDMS membranes ex-
hibit permeability values similar to previously published val-
ues. 6162 However, we find a near order of magnitude decrease at
large deformations corresponding to stretch-induced membrane
thinning and possibly the stretch itself. Capture of the near
order-of-magnitude reduction in both membrane thickness and
permeability by a non-equilibrium surface reaction model,3! im-
plies that geometry-changes provide the primary mechanism for

permeability decreases as the bulge grows. The deformation-
dependent permeability is replicated for a silicon composite mate-
rial incorporating hydrophilic PEO groups to the network to pro-
vide slightly improved mechano-permselectivity properties.

These results rely upon the fidelity of the mechanical model
for the highly bulging membrane and nonlinear, hyperelastic con-
stitutive response. Optical profile matching (Fig. 1) and cross-
validation of membrane volume and area time-dependent re-
sponses (Fig. 2d) provide evidence of the accuracy of both.

More generally, the approach applies to any thin hyperelastic
membrane that can be adhered to a substrate of wells immersed
in salt solution. New mechano-permselective functional mate-
rials may now be quantitatively evaluated. The microstructural
features that optimize these two properties remain an area for
future research.
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1 Chemical Potential Driven Flux through a Mem-
brane

1.1 Chemical Potential
Chemical potential, u, is defined as,

U= lo+RTIn(xW) €Y

where L, is the reference chemical potential, x; is the mole frac-
tion of the solvent, and ¥, is the activity coefficient of the solvent,
R is the universal gas constant, and T is the temperature.

1.2 Diffusive Flux Through a Membrane
Flux of the diffusive species water, J,,, is defined as,
duy,

Jy = _Lwﬁ (2)

where, L,, is the mobility of the diffusive species water, and d;‘x”' is

the driving force of water, described by the change in the chemi-
cal potential of water across the thickness dimesnion of the mem-
brane, x.

—dpw M2~ 3
dx I

The flux of water across a membrane, is therefore proportional to

the chemical potential difference across that membrane. This can

be described by the difference of the chemical potentials of solu-

tion separated by the membrane, y; and u,, which has a thickness

of 1.

This difference in chemical potential on either side of the mem-
brane and resulting non-equilibrium condition, serves as the driv-
ing force for the flux of water across the membrane toward chem-
ical equilibrium between solutions separated by the membrane.

Jw o<
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To understand the difference in chemical potential between the
encapsulated salt solution and pure water reservoir, the chemical
potentials of each of the individual solutions must be defined. For
low solute concentrations, the activity coefficient of water, %y, is
approximately 1. Here y,, yur. describes the mole fraction of pure
water, and Yy sale solution describes the mole fraction of the water
in the salt solution.

Uw,pure = Ho,water + RT In (Xw,pure) @

Hwsalt solution = Ho,water +RTIn (XW,salt solution) (5)

Subtracting equation 5 from 4, will result in the chemical poten-
tial difference between the pure water and salt solution.

Mw;pure — Hwsalt solution = RT In (Xw,pure) —RTIn (XW,salt solution) (6)

The mole fraction of solvent in pure water is ywpure = 1, S0 that
RTIn(1) = 0. The chemical potential of pure watet, Lwpure, can
alternatively be referred to as the reference chemical potential for
water, (,, and therefore we denote i, ¢t solution> aS 4. Combining
these statements with equation 6 results in:

U=Uo +RTIn (Xw,salt solution) )

For a solution with a low solute mole fraction, y,, the mole
fraction of solvent, X salt solution, 1S relatively high. This solvent
mole fraction can alternatively be expressed as 1 — ¥ai;-

M= Uo+RTIn (1 — xea) ®

For small values of y.;, a Taylor series expansion can be used,
yielding

p = po +RT In (—Xgar) ©)
This salt mole fraction can be expressed as the ratio of moles of
salt present, ng,y, to the total moles present in solution, ng,; +

Journal Name, [year], [vol.], 1—11 |1



Nwater -

it =, +RTIn (—A) (10)

Ngalt - Nwater

The osmotic potential of a solution, as defined by Van’t Hoff, de-
scribes the pressure necessary to keep solvent from flowing into a
a concentrated region,

M= ﬂ'%RT? (11

where i is the electronic dissociation factor of the ionic solute.

Combing equations 10 and 11, results in the following expres-
sion relating the chemical potential to the osmotic potential and

and solution properties, where V,, = nw‘:ter and describes the molar
volume of water .
151
U= Mo+ = Uo +11Vy, (12)
Nyater

The reference chemical potential depends on the systems’ pres-
sure, P = Py, + P. Here Py, describes the atmospheric pres-
sure, and P, describes the turgor pressure or hydrostatic pressure
on one or both sides of a membrane. Understanding this depen-
dence, Equation 12, can be written to explicitly indicate pressure
terms,

u:ﬂO(Patm+Pt)+HVm~ (13)

At a constant temperature, Gibb’s free energy is defined as,
du = VdP — SdT. We assume constant temperature and con-
stant atmospheric pressure, allowing for the re-expression of 13
as,
Fum=+F
H= .LLO(Patm) +HVm + /P Vm(P)dP (14)
S P

For an incompressible substance, which is a reasonable approxi-
mation for water over the range of pressures we attain, this inte-
gral reduces to V,,F,, resulting in,

u :H()(Patm)‘i‘nvm"‘vmpt (15)
This can rearranged to form the expression,
1 — o = Vin (P +11) (16)

Combining Equations 2 and 16, results in a pressure dependent
equation for diffusive flux of species i through a membrane, which
is expressed in units of %

_ —LyVin

Io=— (I+F) 17

1.3 Diffusive Flux and Diffusivity Relationship

When discussing permeability and diffusion of a species, such as
water within a membrane, a common term referred to is diffu-
sivity, D,,, which describes the rate at which a species can diffuse
through the area of a membrane [mTZ]. Diffusivity is the term that
relates the diffusive flux, J,,, to the concentration gradient, ‘Zﬁg‘
that serves as the driving force, as opposed the the chemical po-

tential difference as in the previous section.

gy =D, % (18)

Y dx
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Diffusivity, D,,, can be related to the mobility, L,, of water within
the membrane. From the definition of chemical potential, dif-
fusive flux can be redefined in terms of mole fraction of water,
xw = C,V, where C,, is the concentration of water, in volume V.

LT din(CyV) _  LyRT dG,

dx C, dx

dinyy,
» (19

Jw=—L,RT
This results in the following relationship for mobility in terms of
diffusivity,

D,,C,,
RT

L,= (20)

1.4 Permeability and Diffusivity

In the determination of the rate of flux of a species through a
memembrane, two terms are commonly used: diffusivity and per-
meability. However, these terms are not interchangeable. The
diffusivity describes the flux of the water while it is within the
membrane, but the permeability encompasses the full membrane,
including transport of molecules from the surrounding reservoir
into the membrane and transport out of the membrane to the
other reservoir. For this reason, in membrane literature, the diffu-
sive flux of water is often described using permeability coefficient
prefactor, as follows,
dc,,
Jy=—Py—— (21)
dx
In this case, P, the permeability coefficient is equal to,

Py = DywKy:membrane (22)

where D,, is the diffusivity that was described in the previous sec-
tion, and K,,.uemprane 1S known as the sorption or partition coef-
ficient of water and the membrane. Here, the sorption describes
the ratio of concentrations of two separate components in in the
membrane (the membrane matrix, and the diffusive species). In
our case, water must dissolve into the membrane from the feed
solution, diffuse through the membrane’s thickness and then dis-
solve out of the membrane into the chamber solution. This sol-
ubility quantity describes how much water can dissolve into the
membrane and will in turn affect the rate of permeation. As we
are unable to measure the the content of water in our films, so
we can only fit the permeability coefficient. Therefore, we rede-
fine our mobility relationship, using the permeability coefficient,
instead of diffusivity, as the rate of diffusion of water through
our membrane which also depends on the sorption of water into

PDMS.
_ R.Cy

L., =
Y RT

(23)

1.5 Volumetric Flux Through a Membrane

To relate the volume of a species diffusing across a membrane of
a given area, we must relate the diffusive flux, J,,, expressed in
units [%], to a volumetric flux, which we will refer to as Jp,

expressed in units of [mmTl]' This can be done by relating the
diffusive flux, to the molecular weight of the the solution, M,,,



and the density of the solution p.

_ JwMW
P

Jo (24)
Using this new volumetric flux relationship, we define a volumet-
ric diffusivity for water through our membrane, using the rela-
tionships we have described thus far. We combine Equations 17,
20, and24, resulting in,

_PWCW VinMw (H+B) I VinMw (H+PI)

Jo= =—L,

RT p 1 p / (25)

We define a volumetric mobility, which we denote as L, describing
the mobility rate of a volume of water to diffuse through the an
area of the membrane per the pressure applied to the membrane.
This term is directly related to the permeability coefficient. L is
expressed in units [%].

_ PyCy VinMw _ VinMw

L ,
RT p W p

(26)

Our new equation expression describing volumetric flux through
the membrane, is defined as,

L

JQ ] H+Pt) (27)

Thus Jg is expressed in units [mmTl] or [7].

2 lon Diffusion Time Scale for Well-mixed Chamber

We determine that the actuation chambers that we study are well
mixed by calculating the time scale for a single sodium ion to
diffuse from one side of the chamber to the other. The height of all
the chambers is constant with dimensions of #= 110 um. We use
this chamber height as the diffusion length scale, determining the
time for a single osmolyte ion to travel the from the membrane to
chamber floor. This is calculated assuming Fickian diffusion and
the Einstein-Smoluchowski Equation:

12

where D is the diffusivity of the species, in this case a sodium
ion, [ is the diffusion length which in this system in the height
of the chamber (2= 110 um), and ¢ is the time it takes for this
species to diffuse across this length scale. For sodium ions Na™
the diffusivity in water is D = 2.098 x 10~ [units:”’TZ].1 Using
this information, we solve for t = 2.88 s. This short time scale
for diffusion across the initial depth of the chamber, leads to our
assumption that osmolyte ions in our system can diffuse away
from the membrane quickly, meaning that the chamber is well-
mixed.

3  Osmotic Pressure Term

The change in osmotic pressure due to the water flow into the
chamber is described by the difference in osmotic potential be-
tween the chamber and the surrounding feed solution, at a given

time.
. Ty

The explicit time dependence of this expression can be removed
by non-dimensionalizing the volume term by the initial cham-
ber volume Vj, which is the only time dependent term. This
nondimensionalized term is the volume ratio of the chamber de-
scribed by V(¢) = VOVKO' At any given instant, the entire volume
of the chamber (both the volume under the membrane in ad-
dition to the undeformed chamber volume) is described by the
non-dimensionalized volume multiplied by the initial chamber
volume. The osmotic pressure term can therefore be described
by the following expression, removing the time-dependent terms.

ng
ATl = —iRT | 5 — — Cpoe 30
l ((V/VO)VO f d> 30

The initial concentration of salt solution encapsulated into the
chamber, Cy, is defined as the initial molar quantity of salt in the
chamber, n,, divided by the initial volume of the chamber, V;). The
term "’,—(; can be replaced by (), and factored out of both osmotic
pressure terms.

ATl = —iRTC, ( L Cfeed) (31

V/Vo Co

Finally, as previously discussed the osmotic potential defined by
Van't Hoff is IT = —iRTC, meaning —iRTCj can be replaced by the
initial chamber osmotic potential ITy. This initial osmotic pressure
term can be factored out of the entire expression, to leave an
dimensionless osmotic pressure term.

All 1 Creed
oo feed 32
Iy, Vv/W Co (32)

However, in this system, we utilize a pure water feed solution
. C . X

Cfeeq = 0, meaning =gt = 0. This leaves the final form of the

osmotic pressure term as,

AT 1
— = 33
o, V/V, (33)

4 Linear Elastic Membrane Parameters

We develop a set of membrane bulge parameters to describe the
deformation and volume evolution of the system, in terms of lin-
ear elastic membrane deformation.

4.0.1 Linear Elastic Surface Area Parameter

Water flow through the selectively permeable membrane results
in membrane deformation. The volumetric flow of water is de-
pendent on the surface area of the membrane. This surface area
is changing as the membrane is bulging, and therefore we de-
termine the changing surface area with linear elastic behavior,
to understand the volume flow rate of water through the mem-
brane. This stretching is time-dependent, and just like previously
described, we aim to non-dimensionalize in order to remove the
explicit time-dependence. To describe the linear elastic bulging
and resulting membrane stretching we use spherical cap geome-
try relationships. The time-dependent change in this linear elastic
membrane is described by the following expression,

A(t) = ma® + M, (34)

a4
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where a, is the constant radius of the cylindrical chamber, V (¢) is
the time dependent volume of the chamber, and Vj; is the initial
volume of the chamber at t = 0.

The surface area term can be non-dimensionalized by elimi-
nating the time dependence of the volume. This deformation,
while explicitly time-dependent is also a function of the mem-
brane bulge volume. For this reason we introduce a dimension-
less membrane bulge volume parameter V that quantifies the ap-
proximate deflection of the membrane, with respect to the mem-
brane’s initial volume Vjy, initial area Ay, and chamber radius «a, as
described by:

V:V(t)_vozvloilzvloil (35)

Aga Aga
Apa W W

To nondimensionalize with the membrane deflection parame-
ter we must reconfigure the surface area expression to use the
same terms. First, we can nondimensionalize the entire expres-
sion, by the initial membrane surface area, Ay = na?, to determine
the normalized change in surface and introduce the A term into
the expression. In addition to this we can remove the explicit
time-dependence using the same volume ratio term as described
previously, V(t) = VO%. Employing both of these changes results
in the following expression:

A (3 —1)?
e I (36)
Vo?

This expression can now be related to V the dimensionless mem-
brane deflection term, as V2 can be factored out the expression
as follows resulting in a dimensionless membrane surface area
expression as a function of V.

A(V) 44V

AT |
A +t— (37

4.1 Turgor Pressure Parameter

As water flows through the membrane and the membrane de-
flects, turgor pressure P, builds to maintain a static equilibrium.
To analytically understand this term with the use of linear elastic
mechanics, we follow the assumptions of the Timoshenko theory
describing the linear-elastic bulging of a spherical cap? as a func-
tion of volume change while using the Nix approximation3. The
increasing volume due to the membrane bulging V), using this
method is described by,

na*s

3d>+8%) ~ ==

Th
7( 2

Vem = (38)
6
where qa is the radius of the membrane, § is the vertical de-
flection of the membrane center. This Nix approximation holds
true for small deflections where § < a. This volume can also be
described by subtracting initial chamber volume V;, from total
time-dependent volume of the chamber and added volume under
the membrane V(). This can be nondimensionalized to remove
explicit time-dependence using the same nondimensionalization

4] Journal Name, [year], [vol.], 111

scheme we have utilized previously.

\%4 \4
VBM:V(I)7V0=V()*7V0=VQ ——1 39
Vo Vo

In addition to this approximation, we use Timoshenko’s linear
elastic theory to describe the hydrostatic biaxial pressure in the
circular bulging membrane. This can also be referred to as the

linear elastic turgor pressure, F,.

8Y 15>
3a4

P—Pam =hb = (40)
where Y is the biaxial modulus of the membrane and [; is the
membrane thickness. The biaxial modulus is related to Young’s
modulus as Y = E/(1 — V), and it is assumed that the membrane
used is incompressible, meaning v = 0.5, simplifying the relation-
ship to ¥ =2E.

The vertical displacement of the bulging membrane at the cen-
ter §, can be solved for using Eqns. 38, 39, and expressed as a
function of the dimensionless deflection term V.

s -0 2% -

= =2V 1
p %3 a 41

This new expression for 6 is substituted into 40, resulting in
the following relationship for turgor pressure as a function of di-
mensionless stretch term V:

16El2Va’ 128 ElgV?
3a* 3 a

R(V)= : (42)
However, this term still has units of pressure [Pa]. We normalize
the entire term the Young’s modulus E [units:Pa], resulting in
fully a nondimensionlized turgor pressure parameter.

R (V) _ 128 V3
E 3 a’

(43)

5 Hyperelastic Membrane Parameters

We analytically solve for the bulging membrane deformation pro-
file, by parameterizing the undeformed membrane, and solving 5
ODE governing equations that give the solution for the deformed
profile as well as the turgor pressure, P, that causes the defor-
mation. Here we discuss how we utilize the deflection profile
solutions to determine hyperelastic membrane deformation pa-
rameters utilized in the volume flow rate ODE.

5.1 Non-dimensionalization of membrane geometry param-
eters

We nondimensionalize all of our geometric membrane parame-
ters for ease of calculation. However, some of the finalized calcu-
lations for the stretched membrane constitutive responses rely on
quantities with dimensions (surface area, thickness, etc.). Here
we define the dimensionless term and their reliance on quanti-
ties with dimension, so going forward the two can be converted
between with ease.

We non-dimensionalize all initial geometric quantities by the
initial radius of the undeformed membrane a, resulting in the



nondimensionalized terms,

F=

i
Z =1, p=", é=§, 44)
where the dimensional terms are r (the horizontal coordinate
system), z (the vertical coordinate system), p’ (the initial unde-
formed parameterized membrane coordinates), and £ (the mem-
brane arc-length). Therefore, we can further define j—g = %,
which will aide in further verification of this nondimensionaliza-
tion method.

With respect to the nondimensionlizing volume, we maintain
the same nondimensionalization scheme previously defined for
the bulging membrane volume where,

V= Vdeforme;i bulge (45)
a

To nondimensionalize all the governing equations it is impor-
tant to check that all stretch ratios with defined with new dimen-
sionless parameters remain dimensionless. First, we verify the
longitudinal stretch ratio defined by the change in arc-length &
over the change in the initial membrane position p’, can be de-

fined the with the equivalent dimensionless terms (€,p).

df _dg) 4 _dd
A 4 = = 46
&= dp' ~ dp’ (jT’;’) dp (46)

We verify the latitudinal stretch ratio defined as the r-coordinate
over the initial membrane position p’ is equivalent when defined
with 7 and p.

A= =" _

' z 47)
P’ pa p

5.2 Determining the Hyperelastic Bulge Volume

The dimensionless deflection V of the deformed profile is calcu-
lated from the device volume gained as a result of the bulging
membrane volume, which we input as a boundary condition to
solve for the deformed profile. The dimensionless volume is
described by the 5th governing equation (Eqn. 48) developed,
where V can be found via integration along the 7 axis for ‘disks’
of radius 7 = pAy.

dv o dz

dp =2Aop dp (48)

5.3 Determining the Hyperelastic Bulging Membrane Sur-
face Area

We determine the dimensionless surface area of each deformed
profile 4 4; by integrating over a differential element of length
d&(p) of the deformed membrane from 0 < p < 1, given by the
expression,

d&(p) = A¢(p)dp. (49)

This line segment is revolved from 0 < ¢ < 2x at a radius 7 =
Ay p about the Z-axis to obtain an expression for the dimensionless
area, A. This can be normalized by the initial dimensionless area,

Ap = 12 , yielding,

A _A_ @R iy _ 2w [ 0oplpdp
AO AO AO AO .

5.4 Determining the Hyperelastic Bulging Membrane’s Aver-
age Thickness

We calculate the dimensionless inverse average membrane thick-

ness (lp/l) across the entire membrane area by multiplying the

expectation value

2ma? (P)Ag(p)p dp
(1=
) A

by the initial thickness /. Where I(p) = lpA-(p) and invoking

incompressibility 4,4z Ay = 1 gives the final expression

o\ _ 27a® [y (A (p)2¢(p))*p dp
- )= (52)
l A

For completeness, we compare the average membrane thick-

ness values v //> and (/) and find that in our case, these quantities
are nearly interchangeable. First, we define

277.'612 fO lol z,g lq) dp ﬂloa

()= 2 i

A
= IOXO. (53)

Fig. S1 plots the inverse of Eqn. 51 and Eqn. 53 as functions of V
for the Solaris constitutive parameters and the reference chamber
geometry. At greater values of V, which corresponds to greater
membrane stretching, there is a small deviation between these
two approaches to calculating normalized average thicknesses.
The normalized average thickness given by UJW is predicted to

be slightly less than the value predicted by W We use m to
be more precise.

! — 1/{(1o/1)
0sl ——1/(10/ 1)

0.6 1

0.4t

0.2t

Normalized Average Thickness

Fig. S1 Normalized average membrane thickness values predicted using
two methods (U(:T dark blue; m: light blue) for bulging actuators
as a function of the dimensionless membrane bulge volume V. Predicted
values are very similar, with a slightly decreased thickness prediction
for Wl/w at larger values of V that correspond to greater membrane
stretching.
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To provide context for the thickness variation across a stretched
membrane in comparison to the average membrane thickness
(Eqn. (53)), we calculate membrane thickness distribution as
shown in Fig. S2. This distribution is provided for an extreme case
(standard geometery, highly stretched: A= 2.5, V= 3.5) and pre-
sented as the deviation from the average thickness layerage = ().
Under these conditions, there is a variation of ~ 1 um in thickness
across the membrane.

0.04 T T

average biaxial stretch, A = 2.5

o
o
)
W

Al Astretched membrane

-1 -0.5 0 0.5 1 1.5
l-laverage [pm]

Fig. S2 The distribution of membrane thickness variation relative to the
average membrane thickness, | —layerage across the cross sectional area
of the membrane. A = 2.5. V = 3.5. Standard geometry.

5.5 Determining the Hyperelastic Bulging Membrane’s Aver-
age Biaxial Stretch

We determine the average biaxial stretch in the bulging mem-
brane A occurring across the membrane by integrating the biaxial
stretch at each discretized p value, defined by

A(p) = \/2eAs = \ﬁ (54)

where the average biaxial stretch across the entire membrane, is
the expectation value determined by integrating the discretized
biaxial stretch about the surface area of the membrane (subsec-

tion 5.3),
_ 2mdyy) \/lixmp dp
- : ,

A=) (55)

divided by the surface area A.
We compare this expectation value average biaxial stretch to
an average using the evolution of surface area as given by

= A

/'Lpredicted = AT) (56)
These two methods, are both plotted in Fig. S3 to compare the av-
erage biaxial stretch in the membrane 2, determined using these
methods. The expectation stretch quantity (1), predicts only a
slightly increased biaxial stretch at increased membrane bulge
volumes of V > 1.5. Therefore, for simplicity, and since biaxial
stretch is provided only for increasing insight, we use /A/Ag to

6| Journal Name, [year], [vol.], 111

define A.

3 : T T
—— ()\): analytical solution
55 l——X: JAJA, -

<o

Fig. S3 Average biaxial membrane stretch is predicted using two meth-
ods ((A4) (Eqn. 55: dark blue; m (Eqn. 56): light blue) for bulging

actuators as a function of the dimensionless membrane bulge volume V.

While both of these predictions exhibit similar behavior, (1) begins to
show increased predictions at V > 1.5.

5.6 Determining Hyperelastic Bulging Membrane Turgor
Pressure

Numerically integrating the bulging membrane deformation gov-
erning ODEs for a series of given dimensionless volume values V,
yields a set of solutions, one of which is the applied dimensionless
pressure necessary to produce that deformation. The dimension-
less turgor pressure B is defined as P, = %, meaning the turgor
pressure with units of [Pa] is P, = @. We normalize the ap-
plied turgor pressure values by the membrane’s Young’s Modulus,

. . P
resulting in #.

5.7 Determining the membrane pre-stretch

Solving this set of hyperelastic governing equations to determine
the bulge deformation profile and turgor pressure, requires a set
of boundary values, one of which is the initial geometry condi-
tions of the membrane. It was seen throughout the imaging of
the actuating chambers, that for all sets of chambers (geome-
tries and materials), that the chambers were expanding slightly
at the connection point with the membrane. To accurately cap-
ture the deformation profile resulting turgor pressure, we must
set the appropriate pre-stretch ratio, A,.. = R(V)/Ry as the bound-
ary value for the initial membrane radial geometry stretch ratio.
This means we set Ay = A, at the membrane edge p = 1. This
pre-stretch ratio is determined by using ImageJ to measure the
radius of experimentally bulging actuator wells, and fitting a sec-
ond order polynomial function with an intersection at R/Ry = 1 to
determine the prestretch ratio of chamber as a function of the di-
mensionless volume V. The resulting fit functions for all chamber
geometries and materials are shown in Fig.S6.
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Fig. S4 Mechanical constitutive response behavior for PDMS and PEO-PDMS. (a) Engineering stress Tj; versus stretch ratio A for PDMS uniaxial
tension test (blue circles), with Gent 3-parameter best fit response plotted (navy dashed line). (b) Engineering stress Tj; versus stretch ratio A for
uniaxial tension test (gold circles) for PEO-PDMS, with Gent 3-parameter best fit response plotted (orange dashed line).
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Fig. S5 Mechanical constitutive bulging behavior for PDMS and PEO-PDMS. (a) User-defined deformation profile points for 3 separate bulge volumes
(blue x's) and resulting deformation profile best fit (red circles) for PDMS from Gent-3 parameter best fit material parameters. (b) User-defined
deformation profile points for 3 separate bulge volumes (blue x’s) and resulting deformation profile best fit (red circles) for PEO-PDMS from Gent-3

parameter best fit material parameters.

5.8 Hyperelastic Membrane Mechanics Parameters

The necessary membrane mechanics parameters: f4(V), f;(V(,
and f,(V) are solved for by individually plotting £, /£, and &
on a y-axis against V on the x-axis. Using a spline-fit fit object
function in MATLAB to reduce the computational cost of the fit
algorithm, a resulting function for each of these three curves were
determined per chamber and membrane geometry to solve for the
hyperelastic membrane mechanics parameters.

6 Hyperelastic Data Analysis

We use two mechanical test geometries to capture the hypere-
lastic behavior of PDMS and PEO-PDMS, determining that the
Gent 3-parameter model,* captures the response of both mem-

brane materials, with different Gent constants for each. This in-
formation is used to model the mechanical response and turgor
pressure gain of the membranes during deformation. The Gent
3-parameter strain energy density function is as follows,

J 43
W:fClJmln(lfJ—l)+C21n< 23+ >,4

m

(57)

with dependence on the first and second strain invariants J; and
J», that are defined as follows,

1 2

e (58)

11:2,]24—2/224- -3,
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Fig. S6 Radial membrane pre-stretch effect (solid fit line) as a function of deformed bulge volume V, determined by fitting a second order polynomial
to a set of experimental data (circles) for (a) standard PDMS wells, (b) small radius PDMS wells, (c) thick membrane PDMS wells, and (d) standard

geometry PEO-PDMS well.

Table 1 Gent 3-parameter Model Material Constants

Material C; (MPa) C, (MPa) Jin E (Young’s Modulus) (MPa)
PDMS 0.0316 0.0297 26 0.37
PEO-PDMS 0.0714 0.0536 45 0.75
1 2 =3 =A"12
)= /l],g n 12,2 " 3, (59) Mh==A7 such that

MAa
and assumes incompressibility (14343 = 1), where A; is the
stretch ratio in each of the three principal directions. Additionally,
C1, C; and J,, are materials constants that must be determined by
fitting experimentally determined mechanical test data to nomi-
nal stress equations derived from this strain-energy density func-
tion. C; and C, are mechanical constants (each with units of [Pa])
that describe the shear modulus G behavior of the material,

G=2(C1 +C2). (60)

The nominal or engineering stress relation for uniaxial ten-
sion, 711 uniaxial> is dependent on the principal stretch ratio along
the axis of the applied tension, which is described as 1; = 1.
Employing the assumption of incompressibility and the uniax-
ial geometry, the two other principal stretch ratios are given by

8| Journal Name, [year], [vol.], 111

1 (ClIaA? 20072 C
(1 _==2 —2(01——2)). 61)

Tll,uniaxial = I I — 1 Jr+3 3
m

Simultaneously fitting the uniaxial test data (Fig. S4), and user
defined points on three membrane deformation profiles (Fig. S5)
to their respective deformation equations derived from Eqn. 57
using nonlinear least square regression in MATLAB, we solve for
C1, G, and J,, for both PDMS and PEO-PDMS. The resulting fits
are shown in Fig. S4 (the uniaxial response), and Fig. S5 (the
fit to user-defined deformation profiles). The material constants
are summarized in Table 1. Additionally, we can determine the
Young’s Modulus E, of each material with these constants using
G (Eqn. 60) and the incompressibility assumption,

E=3G. (62)



Utilizing the 3 fit parameters as explained above, we find the
Young’s modulus E, of PDMS and PEO-PDMS are 0.37 MPa and
0.75 MPa, respectively.

7 Determining Bulging Membrane Permeability

We discuss the methods of solving for both stretch-independent
and stretch-dependent permeability. Here we provide additional
details on these methods and results.

7.1 Constant Linear Elastic Permeability fit

As discussed in the paper, we simultaneously fit experimental
PDMS actuation data to the model with linear elastic membrane
mechanics parameters, solving for a constant permeability value
as the fit parameter. As linear elasticity is only valid for small
deflections, we fit this model to actuation data where the biaxial
stretch, A < 1.4, which corresponds to volume ratio data V /V <
1.3. The resulting permeability fit parameter is 2.02 x 1012 [’"Tz],
which is shown in Fig. S7b, and fits the initial small deflection
response, but after the linear elastic volume ratio regime, this fit
overestimates the response. This permeability value is used to de-
termine the mobility value (Eqn. 26), and then the resulting time
constant (7 = — Li%r%o) for the given chamber configuration that is
being used. When the experimental time is nondimensionalized
by the chamber’s respective time constant 7, the resulting volume
ratio actuation behavior collapses in this linear elastic regime for
all PDMS chamber configurations, when plotted in dimensionless
time 7, as seen in Fig. S7a.

7.2 Constant Permeability fit

The constant P, hyperelastic fit discussed in the paper, shows the
fit in comparison to the reference chamber conditions (a = 200
um, lp = 20 um, Cp = 3 M). Using a nonlinear least-squares
regression in MATLAB, we solve for a best-fit permeability of
8.35x 1013 [%]. Utilizing this permeability value in our model,
the actuation data compared to the theory curve for all PDMS
membrane chambers (small radius chamber: ¢ = 100 um, thick
membrane chamber: [, = 26 um, and reduced osmotic loading:
Cop = 3 M) are shown in Fig. S8. This fit parameter captures the
middle-time response and high-stretch response behavior of the
reference chamber, small radius chamber, thick membrane cham-
ber, and reduced osmotic loading chamber better than the lin-
ear fit at large membrane stretch values (later stage actuation).
However, it underestimates the initial rate of actuation for these
chambers.

7.3 Solving for Stretch Dependent Permeability

We solve for stretch-dependent permeability by isolating the mo-
bility term (and therefore permeability), using the following
equation:

Vv
PyCyy VisMy _ dVU LoV 1 1

L) =%r = “thoHofA(V)ﬁ(V)( Ef,)

++= o
Yo
(63)

To determine an instantaneous value of mobility L, an instanta-
neous value of the volumetric flow rate d‘;/lvo is necessary. We
determine a series of instantaneous volume flow rates, by create
overlapped time-bins within our data, and using a linear fit func-
tion within MATLARB to fit overlapping piece-wise functions to ac-
tuation rate data. The resulting slope at each piece-wise linear
fit is taken as the instantaneous flow rate dvd/[V“ at the mid-point
time of that binned region. An example of the resulting piece-
wise fits (dark blue line segments) plotted against the actuation
data (dark blue circles) for the reference chamber (¢ = 200 pum,

lp = 20 um, Cy = 3 M), is shown in Fig. S9.

7.4 Thickness-dependent permeability

As described in the main text, previous studies by Firpo et. al®
determined a critical length scale L. at which the surface reac-
tions can become highly nonequilibrium and below which the per-
meability decreases with decreasing membrane thickness. How-
ever, membrane thickness in the deformed state is not uniform,
as shown in Fig. S2. To quantify the sensitivity of the thickness
dependence to these small thickness changes, we plot the high-
est and lowest L. predictions from Fig. 6a, L. = 10 um and
L. = 200 um, but for a differential membrane thickness, [ — 1,
where [ is +£1 um. Between these differential values, we shade in
the regions on Fig. S10 to provide approximate sensitivity analy-
sis of the Firpo thickness-dependence to small thickness changes.
The results support our interpretation within the main text.

8 Thin Film Deformation

At high levels of membrane stretching, A = +/A/Ag > 3.5, the
bulging membranes on the microactuators begin to exhibit color
gradients, with the most concentrated color appearing at the max-
imum deflection in the center of the membrane. Intriguingly,
color tends to fall within the blue/violet color spectrum (shown in
Fig. S11(a-b)) initially, increasing to warmer colors as the mem-
brane continues to stretch. We hypothesize that these colors ap-
pear as the thin film deforms to thicknesses approaching a length-
scale close to the wavelength of visible light. Order of magnitude
estimations of the film thickness in the region of maximum deflec-
tion support this hypothesis (This region has the smallest thick-
ness.) (Fig. S11c).

We obtain film thickness estimates from a combination of ex-
perimental observation, finite element calculation, and a few sim-
ple geometric relationships. The dimensionless membrane vol-
umes in Fig. S11 (a-b) correspond to V = 9 (a) and V = 10 (b).
We measure the experimental surface area A of these membranes
at each of the observed V and estimate the experimental average
thickness of these membranes (lexp:average) using the following re-
lationship, assuming incompressibility of the PDMS membrane,

laverage(V) = Vrnngrane (64)

A(V)
where Viembrane 1S the initial cylindrical membrane volume,
defined by a radius of ¢ = 200 um and initial thickness of
lp = 20 um. The average thickness estimates using this method
range from 1.5-1.66 um, as described in Table 2. In validation,
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Fig. S7 Linear elastic constant permeability fit. (a) The collapse of all experimental data in the linear elastic regime occurs, when plotted in
dimensionless time. (b) The respective best-fit volumetric chamber evolution model employing linear elastic membrane mechanics parameters plotted
in experimental time [h], fits each individual experimental chamber configuration, but only in the linear elastic regime (VL0 <1.3).

Table 2 Thin Film Bulging Thickness

14 experimental: laverage(V) (Um) prediction: layerage(V) (um) estimated thickness at max. deflection (nm)
9 1.66 1.34 880
10 1.50 1.23 800

reference

00O

small radius
thick membrane
reduced I,

0 20 40 60

Fig. S8 Constant permeability fit for a hyperelastic membrane shown
against experimental actuation. A best fit water permeability P, is found
using nonlinear least-squares regression for all actuation data and utilized
in theory to show predictive actuation behavior of a hyperelastic mem-
brane exhibiting constant P,.

we check these measurements against the average thickness pre-
dicted using the constitutive model description of the nonlinear
bulge, specifically the inverse of function f;(V). Both values are
in agreement as shown in Table 2 with estimates on the same or-
der of magnitude, further demonstrating the consistency of the
model in capturing the membrane behavior. Both of these meth-
ods (experimental measurement and predictive model) provide
average film thicknesses, however the color appearing in the film
is concentrated to specific regions, mainly the region at the max-
imum membrane deflection. This is due to the fact that greater
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Fig. S9 Piece-wise fits to each small time-binned region of the vlo curve,

where the slope of each piece-wise linear-function corresponds to the
. . av /Vy .
instantaneous volumetric flow rate == of each region.

film stretching occurs at the maximum deflection as illustrated by
Fig. S11(c). The curves in this figure arise directly from the solu-
tions to the membrane deflection and thickness calculations. Due
to incompressibility, the transverse stretch ratio A, is the inverse
of the product of the longitudinal and latitudinal stretch ratios
(lé, As), and when multiplied by the initial membrane thickness
lp, the stretch dependent membrane thickness along the mem-
brane profile, /(p), is defined as

1(p) =24 (p)lo. (65)

The thickness of the membrane at the membrane’s center where
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Fig. S11 Thin films deforming on PDMS devices fabricated using the
(a-b) reference configuration. At these high levels of deformation [V = 9
(a), and V = 10 (b)] the bulging membranes begin to exhibit color at
the point of maximum deflection. As the membrane experiences greater
stretch the color evolves (a: violet color at maximum, b: orange color
at maximum). (c) The membrane thickness distribution is non-uniform
shown by the solid curves (V = 9: blue, V = 10: orange), with the
thinnest region, occurring at the membrane’s center where maximum
deflection occurs. This is compared to the average membrane thickness
in the entire membrane (dashed line), where the maximum stretch is 34%
less than the average stretch.
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Fig. S10 Deformation-mediated permeability P, of PDMS where in-
stantaneous permeability (black circles), averaged from all four PDMS
chamber conditions, as a function of average biaxial membrane stretch 4

(lower x-axis) and corresponding stretch dependent P, (A) fit teal. This
permeability-fit is compared to thickness-dependent (I, upper x-axis) per-
meability model. Shaded regions (light red) bound curves describing L.
at values of (L,= 10, 200 um) with & 1 pum thickness bounds.

the maximum deflection occurs is at a value of p = 0. The average
membrane thickness is defined by the average thickness 1/(ly/!)
determined from f;(V), multiplied by the initial membrane thick-
ness [ 1

laverage = lom~ (66)
These average thickness values are plotted in Fig. S1lc with
dashed lines. The membrane thickness at the center point pre-
dict the minimum film thickness (as opposed to using the aver-
age film thickness). For both V = 9 and V = 10, the minimum
membrane thickness (which occurs at the maximum deflection)
is approximately 34% less than the average membrane thickness.
Therefore, the membrane thickness at the maximum deflection
(the region where we see concentrated color) for the V = 9 and
V = 10 actuated bulges are approximately 880 nm and 800 nm,
respectively. Both values have an order of magnitude similar to
that of the wavelength of visible light (400-700 nm).
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