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Abstract

The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI func-
tions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis
and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition
that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential dis-
ease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how
each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this
review, we further outline implications for human disease and highlight research innovations that can lead the field forward.
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INTRODUCTION

Gastrointestinal (GI) homeostasis depends on the integra-
tive actions of the enteric nervous system (ENS) in motility,
sensation, secretion, absorption, and communication with
the immune system. The development of the ENS begins dur-
ing early organogenesis and continues to develop once feed-
ing begins, with ongoing plasticity into adulthood. There has
been increasing recognition that the intestinal microbiota
and ENS interact during critical periods, with implications for
normal development and potentially disease pathogenesis. In
this review, we focus on insights from animal model systems
in our evolving understanding of the bidirectional communi-
cation between the ENS and themicrobiome, and further out-
line implications for human disease and research innovations
that can lead the field forward.

ENS DEVELOPMENT IN MODEL SYSTEMS

Model systems provide a powerful means to investigate
new hypotheses and potential mechanisms in host-micro-
biota interactions. Although mice/rodent models are com-
monly used in biomedical research, all findings are not
necessarily translatable to humans, and thus advancements
in both basic science and clinical implications are further
enrichened by exploring a range of model systems. In this
section, the perspectives from mouse and zebrafish develop-
ment will be highlighted.

The development of the ENS in bothmice and zebrafish can
be conceptualized into three stages: migration of progenitor
cells, proliferation, and differentiation (Fig. 1). In the mouse,

the ENS derives from the neural crest (1). The enteric neural
crest-derived cells (ENCCs) that migrate to the GI tract delami-
nate from the neural crest at the vagal, truncal, and sacral axial
levels. The majority of the ENCCs come from the vagal crest
and colonize the entire bowel (2). A smaller set migrates from
the sacral crest and only colonizes the postumbilical intestine
(2–5) and the truncal crest contributes to the colonization of
the esophagus (6). In addition to ENCCs, a population of
Schwann cell precursors has been identified, which enter the
caudal mid-intestine with extrinsic nerves and give rise to
about one fifth of neurons in the colonic ENS, with ongoing
postnatal neurogenesis (7). In zebrafish, the ENS is derived
from a portion of the vagal crest that is located posterior to the
developing ear, with the specific part of the vagal crest that
gives rise to the ENS remaining to be discovered (8–10). Vagal
crest-derived cells migrate ventrally from the postotic hind-
brain toward the developing GI tract. Upon reaching the ante-
rior portion of the developing GI tract, the enteric progenitor
cells (EPCs) then migrate in two bilateral streams to reach the
end of the intestine (8–11). In addition, trunk crest-derived neu-
ral crest stem cells, which are likely Schwann cell precursors,
have also been suggested to contribute to postembryonic neu-
rogenesis in zebrafish (12). The mouse ENCCs that migrate to
the bowel constitute a heterogeneous population that changes
progressively as a function of developmental age, both while
precursor cells are migrating and after they have reached the
GI tract (13–17). Similarly in zebrafish, the EPCs display an
anterior to posterior gradient of different developmental
states during colonization, based on their characteristics
of migration and proliferation, as well as on their profiles
of differentiation (10).
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The colonization of the GI tract takes place over several
days in mice, from E9 to E15 (18) and over multiple hours in
zebrafish, from around 32 to 66 hours postfertilization (hpf)
(10, 19) (Fig. 1). During this period, the GI tract is growing con-
siderably in length with ongoing growth during the transition
to feeding and digestion. To continue colonization in the cau-
dal direction and to keep pace with the expanding length,
mouse ENCCs must continue to proliferate while undergoing
migration. Even with the ability to proliferate after reaching
the GI tract, the starting pool of progenitor cells is still critical
to ensuring complete colonization of the intestine (20–22).
Additional insights can be gained from studies in zebrafish, in
which EPC proliferation rates are heterogeneous depending
on their location, with lower rates of proliferation in the ante-
rior intestine coinciding with the onset of differentiation, and
higher rates of proliferation in the more posterior regions of
the intestine (10, 23). Once EPC migration is near completion,
EPC proliferation rates then become more uniform along the
anterior-posterior length of the intestine (10), consistent with
the proposed model of EPC proliferation being a driving force
of migration (24). Ultimately, similar to the mouse model,
there is evidence of proliferation even in later stages of devel-
opment, with the suggestion of the ongoing presence of EPCs
into adulthood (10, 25).

Among the various signaling molecules and transcription
factors that influence the survival and migration of EPCs are
three regulators that are central to ENS development and
highly conserved in both mice and zebrafish: transcription
factor SOX10, the homeodomain transcription factor paired-
like homeobox 2B (PHOX2B), and RET. In the mouse, all
neural crest-derived progenitors express SOX10 as they
delaminate from the neural tube and begin their migration
into the GI tract. SOX10 is required for the survival of ENCC,
and if missing, the result is aganglionosis in both humans
and mouse models (26–28). The expression of SOX10 is also
required to maintain ENCC in an undifferentiated and pro-
liferative state (29, 30), with continued expression by enteric
glial cells but turned off when ENCCs differentiate into

neurons. In zebrafish, if SOX10 is missing, the mutant larvae
demonstrate a marked absence in both enteric neurons and
Gfap-positive enteric glia (31). In mice, PHOX2B is expressed
by ENCC as they enter the intestinal mesenchyme (32) and
promotes ENCC proliferation and survival (33). Similar to
SOX10, deletion of PHOX2B leads to intestinal aganglionosis.
(28, 33). In zebrafish, phox2bb is expressed is EPCs and later
in enteric neurons (9, 34) with a knockdown of phox2bb,
resulting in a range of decreased enteric neurons to complete
aganglionosis in the distal intestine (9).

The expression of SOX10 is required for the expression of
RET in bothmouse (35) and zebrafishmodels (9). RET is a re-
ceptor tyrosine kinase that is activated by the GDNF family
of ligands, a group of transforming growth factor proteins
that activate RET in a complex with one of its family of corre-
sponding coreceptors, GFRa1-4 (36, 37). These ligands bind
initially to the GFRa1-4 coreceptors, but signal transduction
is mediated by activated RET. In mice, to survive, develop,
or both, vagal and sacral neural crest-derived precursors
must express RET and its ligand-preferring GFR-a corecep-
tor. In zebrafish, ret and the two gene duplicates gfra1a and
gfra1b are expressed in EPCs during migration toward the
intestine (38). In transgenic mice that lack RET (39), GFR-a1
(40, 41), or GDNF (42, 43), there are no enteric neurons below
the esophagus and the proximal stomach. Similarly, in
zebrafish morphants and mutant larvae that lack ret, essen-
tially no enteric neurons can be found in the intestine except
for some neurons in the anterior-most intestine (38, 44). The
RET pathway also plays a prominent role in ENCC and EPC
migration. GDNF, expressed within the intestinal mesen-
chyme in mice and along the whole length of the developing
intestine in zebrafish, is not only a factor for survival but
also for chemoattraction of ENCC and EPCs (38, 45).

The mature ENS is composed of an extensive variety of neu-
ronal cells type and glial cells, which have been increasingly
distinguished based on morphology, immunohistochemical
profiles, and electrophysiological properties in both mice
(46–50) and zebrafish (19, 51, 52). Differentiation of mouse

Figure 1. Schematic timeline of enteric nervous system (ENS) development in mice and zebrafish. Developmental stages in mice and zebrafish can be
described by periods of early development and early feeding, at which point the gastrointestinal (GI) tract has greater opportunities to be colonized by
microbiota. In both mice and zebrafish, the development of the ENS can be conceptualized into three stages: migration of progenitor cells and coloniza-
tion within the gut wall, proliferation, and differentiation. Created with BioRender.com. hpf, hours postfertilization.
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ENCCs begins as early as during migration and is ongoing into
the postnatal period (53) with evidence of ongoing plasticity in
the adolescent (54) and potentially even in the adult periods
(55), albeit the extent to which remains debated (56). In the
zebrafish, neuronal differentiation coincides with ongoing pro-
liferation and EPC migration. Neurons start to differentiate in
the anterior developing intestine, whereas EPCs are still
migrating toward the posterior end of the developing intestine
(10). The proportion of neuronal subtypes and diversity change
as a function of development, from larvae to adult stages
(10, 51, 52). To generate the distinct classes of ENS neurons
and glial cells, bipotential EPCs, capable of giving rise to both
neurons and glial cells, progress during ENCC development to
separate neural and glial progenitor cells, with further subdivi-
sions into specific neuronal and glial types. Recent single-cell
RNA-sequencing (scRNA-seq) analysis proposed a new model
of neuronal diversification in the ENS, where postmitotic neu-
rons continue to differentiate within a branch (57, 58). In zebra-
fish, the process of glial differentiation is less well characterized,
but recent work has identified a population of enteric glial cells
in adult zebrafish, which undergo self-renewing proliferation
and neuronal differentiation during homeostasis (25).

The advancement of neuronal precursors through stages of
progressive lineage restriction has classically been delineated
through culture techniques and transgenic mice. The applica-
tion of single-cell RNA-sequencing to the understanding of en-
teric neuronal diversification is identifying a new framework in
which enteric neurons can be classified according to their
expression patterns of transcription factors, neurochemical
markers, adhesion markers, and other signaling molecules (57,
59, 60). Lineage sorting, furthermore, is mediated, in part, by
the interactions of ENCCs andEPCswithin the entericmicroen-
vironment. The fates of enteric neuronal and glial cell precur-
sors are thus determined by both intrinsic and extrinsic factors.

INFLUENCE OF THE MICROBIOTA ON THE
DEVELOPMENT OF THE ENS

The time of birth, onset of feeding, and early postnatal pe-
riod represent a significant period of microbial colonization

of the GI tract. In humans, multiple factors have been found
to influence the composition of the intestinal microbiota in
early life, including gestational age, maternal diet and expo-
sures, host genetics, mode of delivery, administration of
antibiotics, and type of infant feeding (61–70). Mouse and
zebrafish model systems to study ENS-microbiota interac-
tions have largely focused on either germ-free (GF) models
or the administration of broad-spectrum antibiotics.

The germ-free (GF) mouse, which exists in a sterile envi-
ronment, has proven to be an important tool in elucidating
host-microbiota relationships. GF mice are often compared
with specific pathogen-free (SPF) mice, which comprise a
complex commensal flora that is free of major pathogenic
species and thus can serve as a control. Earlier work in neo-
natal GF mice has demonstrated the potential for intestinal
microbiota to affect the development of the ENS (Fig. 2). The
ENS of GF mice on postnatal day 3 was found to be structur-
ally abnormal compared with that of SPF mice, with a disrup-
tion in the lattice-like arrangement of the myenteric plexus, a
reduction in nerve density and number of neurons per gan-
glia, and an increase in the proportion of nitrergic neurons.
Interestingly, these structural changes were observed in the
jejunum and ileum, but not in the duodenum of the GF com-
pared with SPF animals (71). Colonization of GF dams with
Altered Shaedler Flora (ASF), a simplified flora composed of
only eight bacterial strains, was sufficient to restore the nor-
mal patterning of the ENS in their offspring (71). These struc-
tural observations were complemented by functional data
showing impaired GI motility, with a reduction in the fre-
quency and amplitude of intestinal contractions in the jeju-
num and ileum of GF mice (71). In contrast, GF zebrafish
larvae do not show changes in ENS neuron numbers at 7 days
(72). In GF zebrafish larvae, intestinal transit is not impaired,
but GF larvae exhibit faster intestinal contractions compared
with conventionally raised (CV) larvae along the length
of the intestine (73, 74). Recent work in zebrafish has shown
that specific bacterial strains can alter ENS-regulated intesti-
nal motility via signaling through enteroendocrine cells in the
intestinal epithelium demonstrating that communication
between the microbiota and the ENS impacts ENS-regulated

Figure 2. The myenteric plexus is hypoplastic in early post-
natal GF mice. Myenteric nerves were visualized by immu-
nolabeling with antibodies to PGP9.5 (red). A–C: myenteric
plexus in the SPF duodenum, jejunum, and ileum is organ-
ized in a lattice-like network, with even spacing between
ganglia and uniform thickness of connective nerve fibers. D:
myenteric plexus in the GF duodenum resembles that of
SPF duodenum. E and F: in GF mice, the myenteric plexus
of the jejunum and ileum appears unorganized, with fewer
ganglia and thinner connecting nerve fibers. G–I: In ASF
colonized mice, the structure appears similar to that
observed in SPF-colonized animals. Bar = 120 μm [from
Collins et al. (71) with permission]. SPF: specific pathogen-
free; GF: germ-free; ASF: Altered Shaedler Flora.
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intestinal functions (75). The mechanistic basis of this micro-
biota-host interaction has been shown to work through the
release of tryptophan catabolites by a specific gut bacteria
strain, the pathogen Edwardsiella tarda. These catabolites
activate a specific channel, the transient receptor potential
ankyrin 1 (Trpa1), expressed by a subpopulation of enteroen-
docrine cells. Trpa1-mediated activation of enteroendocrine
cells in turn activates enteric nerves, which results in changes
in intestinal motility. This work is one of the few examples
that have identified the mechanistic basis of microbiota-ENS
interactions. Yet, whether the microbiota changes ENS neuro-
nal numbers at other developmental stages, neuronal subtype
composition or innervation patterns has not been tested in
zebrafish.

Studies in GFmice have also shown a reduction in a popu-
lation of enteric glial cells, which similar to enteric neurons,
are also derived from the neural crest-derived precursors
that colonize the GI tract. In this work, the average number
and density of mucosal enteric glial cells were found to be
significantly reduced in GF mice compared with CV mice at
8 wk of age, whereas the enteric glial networks within the
myenteric and submucosal plexi were unaffected (76). If the
GF mice were conventionalized at 4 wk of age, the network
of mucosal enteric glial cells was found to be restored (76).
The postnatal ability of mucosal enteric glia to invade the in-
testinal mucosa and form a normal network, therefore,
seems to depend on the presence of intestinal microbiota.

These early-life abnormalities in the ENS of GF animals
have been shown to persist to adulthood. Irregularities in the
patterning of the myenteric plexus of the adult GF rat cecum
were already described in the 1960s (77). GFmice in the post-
weaning period at 4 wk of age were found to have a signifi-
cant reduction in neuronal numbers in the myenteric plexus
of the colon (78). These persistent changes to the ENS in
adult GF animals can manifest in functional deficits. The
excitability of intrinsic primary afferent neurons, for exam-
ple, has been found to be significantly reduced in adult GF
mice compared with SPF controls, suggesting that commen-
sal microbiota are necessary for the development of normal
electrophysiological profiles in enteric neurons (79).

Animal models using antibiotics have ranged from single
antibiotics to deplete the intestinal microbiota to broad-spec-
trum cocktails to more fully abolish the bacterial flora. In a
neonatal model, mice were exposed to a single oral antibiotic,
vancomycin, from birth to postnatal day 10, resulting in a sig-
nificantly altered, but still present microbiota. In the vanco-
mycin-exposed compared with control mice, there was
reduced neuronal density in the myenteric plexus, decreased
proportion of myenteric nitrergic neurons, increased propor-
tion of calbindin-positive neurons, and increased colonic mo-
tility (80). When vancomycin was administered later in the
postweaning period (6 wk of age), the pattern of ENS changes
was different, with a decreased proportion of myenteric cho-
linergic neurons, an increased proportion of submucosal cho-
linergic neurons, and slower colonic propagating contractions
(81). In a model system in which broad-spectrum antibiotics
were given to juvenile mice at 3 wk of age, alterations in the
ENS were found to include a decreased proportion of myen-
teric nitrergic neurons, altered cholinergic, tachykininergic,
and nitrergic neurotransmission, and slower GI transit time
(82). Changes in ENS structure and function can also be found

in adult animals, at 8–12 wk of age, in which administration of
broad-spectrum antibiotics led to observations of decreased
neurons in both submucosal and myenteric plexus of the il-
eum and proximal colon, reduction of enteric glia in the
myenteric plexus of the ileum and a reduction in GI transit
time (83).

INFLUENCE OF THE ENS ON MICROBIOTA
COMPOSITION

The ENS regulates all important intestinal functions and
interacts with the immune cells in the GI tract, thus signifi-
cantly impacting intestinal homeostasis and function (Fig. 3)
(84, 85). These functions include nutrient sensing and con-
trolling GI motility and blood flow, thereby regulating diges-
tion, nutrient uptake, and water absorption (Fig. 3) (85, 86).
The ENS contributes to intestinal barrier function, which
prevents bacterial products from crossing into the blood-
stream (87). The ENS is also important for maintaining the
chemical environment of the intestinal lumen by regulating
luminal pH andmucus secretion (84, 85).

Because of the important role of the ENS in controlling in-
testinal functions, it is not surprising that changes in ENS
development and function are connected to intestinalmicro-
biota dysbiosis in various human disorders. For example,
patients with Hirschsprung’s disease, which is a congenital
ENS disorder characterized by the absence of ENS neurons
and glia in varying segments of the intestine, show micro-
biota dysbiosis and can develop Hirschsprung-associated
enterocolitis (HAEC), a life-threatening intestinal inflamma-
tion (88–93). Additional examples of ENS dysfunction con-
nected with altered intestinal microbiota range from
neurodevelopmental disorders such as autism spectrum dis-
order to inflammatory bowel disease, diabetes, and neurode-
generative diseases such as Parkinson’s disease (94–98).
Animal models of ENS disorders have been instrumental in
dissecting the impact of altered ENS function on microbiota
colonization and composition (99, 100). In different mouse
and zebrafish models of Hirschsprung’s disease, a lack of
ENS neurons results in dysbiosis and increased intestinal
inflammation (89, 100–104). One fundamental question is
which ENS-regulated intestinal functions are important for
intestinal microbiota colonization and composition. Several
studies using the zebrafish model system have identified
mechanisms of how ENS functions impact the intestinal
microbiota.

Zebrafish is an excellent model system to study the impact
of ENS development and function onmicrobiota colonization
and composition (19, 72, 99, 105). Because of their external,
rapid development, large numbers of offspring, transparent
larvae, and genetic and embryological tractability, various
phenotypes can be visualized, in vivo, in a large number of
related or unrelated individuals including 1) ENS phenotypes,
e.g., changes in ENS neuron number and ENS function; 2) in-
testinal phenotypes, e.g., motility patterns, intestinal transit
capabilities, luminal pH; 3) inflammatory response; and 4)
microbiota composition. Using minimally disruptive micros-
copy approaches such as light-sheet fluorescence microscopy
enables the identification of intestinal motility patterns and
behavior of bacteria within the intestinal lumen at high
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resolution in a live animal (44, 106–109). Zebrafish embryos
are highly amenable to gnotobiotic techniques and can be
reared GF in large numbers (99, 110, 111). Zebrafish intestinal
development is rapid, as their ENS and digestive tract are
functional already at 5 days postfertilization (dpf). Zebrafish
larvae can then be colonized by specific bacterial species by
adding bacteria to the water column (99). Importantly, the
genetic basis of ENS development is conserved between
zebrafish and humans, allowing for the establishment of
zebrafishmodels of human ENS disorders (19, 105).

Using the experimental advantages of zebrafish has led to
significant insights into themechanisms by which ENS-medi-
ated intestinal functions impact microbiota colonization and
composition. Zebrafish mutants for the Hirschsprung’s dis-
ease-associated genes ret or sox10 show that changes in intes-
tinal motility patterns and altered luminal pH affect
intestinal microbiota colonization and composition, resulting
in increased intestinal inflammation (Fig. 4). Zebrafish sox10
mutant larvae completely lack ENS neurons and glia and con-
sequently have defective intestinal motility patterns and in-
testinal transit (112, 113). Zebrafish sox10 mutant larvae also
show bacterial overgrowth connected with increased inflam-
mation (112). The proinflammatory effect of the microbiota is
transmissible, as transplanting the intestinal microbiota of
sox10mutants into GF wild-type larvae induces inflammation
in the wild-type larvae that have an intact ENS. The inflam-
matory response is connected to the presence of specific bac-
terial strains: high neutrophil accumulation correlates with a
high relative abundance of the Vibrio genus (112). The hyper-
inflammatory response can be rescued by restoring ENS neu-
rons in the intestine indicating that ENS function is
sufficient to prevent the increase in inflammation (102).
Restoration of ENS neurons in different mouse models of
Hirschsprung’s disease also decreased neutrophil numbers
and restored essentially a wild-type microbiota composition

(100). Alternatively, the addition of anti-inflammatory bacte-
rial species such as Escherichia species or a Shewanella strain
to CV zebrafish sox10 mutants reduced intestinal inflamma-
tion (112), suggesting that interactions between proinflamma-
tory and anti-inflammatory bacterial strains can balance the
immune response of the host. In sox10 mutants, intestinal
permeability and intestinal transit are altered independent of
the microbiota and precede the increased inflammation
observed in sox10 mutants. This suggests that microbial dys-
biosis and inflammation depend on changed ENS function
(74). As restoration of the ENS rescued the hyperinflamma-
tory phenotype, the next question was to identify which ENS-
regulated intestinal function results in intestinal dysbiosis
and inflammation.

Recent work has shown that a decreased luminal pH is nec-
essary and sufficient for the increase in inflammation and the
abundance of proinflammatory bacteria in zebrafish sox10
mutants (74). The ENS regulates luminal pH, which is
decreased in both CV and GF sox10 mutants indicating that
the changed pH is not dependent onmicrobiota but due to the
lack of ENS neurons and/or glia in zebrafish sox10 mutants.
Increasing the luminal pH in sox10mutants results in a rescue
of the hyperinflammatory phenotype, which shows that an
acidic pH is necessary for the increased inflammation. The
reverse experiment, lowering the luminal pH in wild-type lar-
vae, led to an increase in inflammation, indicating that lumi-
nal pH changes are sufficient to elicit an inflammatory
response (74). This work provides a direct connection between
ENS-controlled changes in the luminal environment, micro-
biota dysbiosis, and inflammatory response (Fig. 4,A and B).

In addition to changes in luminal pH, intestinal motility
also has been suggested to impact microbiota colonization
and composition (Fig. 4,C andD). As bacterial species colonize
the intestine, they reside in specific spatial configurations
within the intestine depending on their intrinsic behavior and

Figure 3. Summary of components of the intestine and enteric nervous system (ENS) functions. ENS neurons (green) and ENS glial cells (blue) interact
with different intestinal cell types and control important intestinal functions (boxes). ICC: interstitial cells of Cajal. Modified from Ganz et al. (72) with
permission.
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community architecture (108). In addition, the host environ-
ment impacts the colonization behavior of bacterial strains
depending on their behavior and biogeographical distribution.
Colonization and competition studies of specific bacterial
strains in zebrafish have shed light on the impact of intestinal
motility on intestinal microbiota composition. Two bacterial
species native to the zebrafish intestine, Aeromonas veronii
and Vibrio cholerae, have a competitive interaction that is
strongly impacted by the host’s intestinal motility patterns
(106). Each species has characteristic, different behaviors, and
biogeographical preferences when mono-associated: Vibrio
cells are highly motile and are most abundant in the anterior
part of the intestine. In contrast, Aeromonas forms dense
aggregates with only a small population of motile cells and is
primarily found in the midintestine (106). When an estab-
lished culture ofAeromonas is challengedwithVibrio, the pop-
ulation of Aeromonas drops with significant population
collapses (106). In vivo imaging of Aeromonas behavior with
and without a Vibrio challenge within the zebrafish intestine
illustrates that population collapses occur more frequently,
are more drastic, and do not recover as readily in the presence
of Vibrio (106). What are the impacts of the host on this com-
petition? In vivo imaging of each bacterial population within
the zebrafish intestine showed that both species are impacted
differently by intestinal motility. The distribution of Vibrio
was essentially not impacted by peristaltic motions along the
intestine, presumably due to its position in the anterior part
of the intestine and its highly motile characteristics (106). In
contrast, Aeromonas populations were strongly impacted by
intestinal contractions. As Aeromonas preferentially is located
in the midintestine in dense aggregates, intestinal contrac-
tions could push them out, causing population collapses (106).
Zebrafish ret mutants that lack ENS neurons along the

intestine except for a few neurons in the anterior part of the
intestine show changes in intestinal motility patterns particu-
larly reduced intestinal motility amplitudes compared with
wild-type siblings (44). In zebrafish ret mutants, Vibrio is not
able to outcompete Aeromonas, indicating that their competi-
tion is neutralized by changes in ENS-regulated intestinal mo-
tility (Fig. 4D) (106)].

The competitive interaction between Vibrio and Aeromonas
is driven by specific features of each bacterial species. Vibrio
mutants that are motility-deficient or chemotaxis-deficient
lose the ability to outcompete Aeromonas (107). This change is
mediated by an altered spatial distribution in the intestine.
Vibrio motility and chemotaxis mutants form aggregates and
reside mostly more posteriorly in the intestine in contrast to
wild-type Vibrio forms that primarily reside in the anterior
intestine (107). This change in cohesion and biogeography
leads to significant impacts on population structure by intesti-
nal motility movements; as for wild-type Aeromonas, aggre-
gated Vibrio motility and chemotaxis mutants now are
subjected to expulsion by intestinal contractions (107). The
relevance of intestinal motility is confirmed by the rescue of
the abundance and localization of both Vibrio mutant strains
in zebrafish ret mutants. The study then tested if motility is
necessary for colonizing or for persisting in the intestine after
colonization using an elegant inducible CRISPR interference
approach where the motility mutation is only induced in the
Vibrio bacteria after colonization. Vibrio bacteria that acquire
the motility mutation only after colonization still display the
motility mutant phenotype indicating that Vibrio needs their
swimming ability to occupy their wild-type intestinal niche
(107). Performing a gain-of-function where Vibrio mutants
reacquire theirmotility and chemotaxis abilities after coloniza-
tion showed a full rescue of wild-type behavior, indicating that

Figure 4. Examples of enteric nervous
system (ENS)-regulated intestinal func-
tions—luminal pH and intestinal motility—
that impact the colonization and composi-
tion of the intestinal microbiota. A: luminal
pH is lower in zebrafish sox10 mutants
(bottom) compared with wild types (top).
B: in zebrafish wild type (wt), the ENS (top)
regulates the chemical environment of the
intestinal lumen and thereby maintains a
healthy microbiota and neutrophil popula-
tion. In zebrafish sox10 mutants (bottom),
the absence of ENS leads to a reduced
luminal pH thereby increasing the abun-
dance of proinflammatory Vibrio and neu-
trophils which results in an inflammatory
response. C: example of competition
between Vibrio (blue) and Aeromonas
(magenta) in the zebrafish intestine over
time using live imaging on a light-sheet
microscope. D: intestinal contractions in
the wild-type zebrafish host (top) promote
the collapse of Aeromonas population
when challenged by Vibrio. Lack of intesti-
nal contractions in zebrafish ret mutants
(bottom) prevents Aeromonas from being
outcompeted by Vibrio. A: based on Fig. 4
from Hamilton et al. (74), which is licensed
under CC BY 4.0; C: based on Fig. 3A
from Wiles et al. (106), which is licensed
under CC BY 4.0.
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these features are essential for occupying the wild-type lumi-
nal niche. Together, these studies identify different mecha-
nisms of how ENS-regulated intestinal functions can impact
microbiota abundance and bacterial biogeography in the
intestine and provide insights into how these can be affected
in ENS disorders with altered ENS functionality.

FUTURE DIRECTIONS

Taken together, studies in both mouse and zebrafish have
highlighted the strengths of eachmodel system in elucidating
components of microbiota-ENS interactions. A common
theme across studies, however, is the use of more drastic
models of microbiota manipulation such as GF models,
broad-spectrum antibiotics, or use of select bacterial strains,
as well as models of severe ENS abnormalities such as agan-
glionosis, to generate proof of concept data of microbiota-ENS
interactions. Looking forward, it would be important to deter-
mine whether more subtle changes in the intestinal micro-
biome can result in meaningful changes in GI function. For
example, studies in pediatric patients with constipation have
described changes in the composition of fecal microbiota
compared with healthy control children (114), suggesting the
potential for microbiota-ENS interactions under less extreme
conditions to still manifest in altered GI function, the mecha-
nisms of which remain to be understood. Similarly, determin-
ing how more subtle ENS defects impact the intestinal
microbiota and inflammation will be important to show how
ENS disorders with less severe changes in ENS composition
or functionmay influence intestinal homeostasis and health.

Recent studies have highlighted the potential for newer
methodologies in hypothesis generation and also in uncover-
ing the mechanisms of microbiota-ENS interactions. For
example, nuclear RNA-sequencing (nRNA-seq) was used to
compare the nuclear transcriptome between the colons of
GF and SPF mice identified a number of differentially
expressed genes, with subsequent detailed investigations
identifying the role of the aryl hydrocarbon receptor (AHR)
signaling in enteric neurons in integrating cues from the
luminal environment (115). In zebrafish, scRNA-seq studies
of entire zebrafish larvae raised CV or GF (116) or of the intes-
tine of CV versus GF larvae (117) provide great additional
resources to determine microbiota-related transcriptional
changes both within the intestine and beyond. It will be
interesting to further explore the rich data set of differen-
tially expressed genes between GF and SPF mice or zebrafish
to generate further mechanistic hypotheses. This is particu-
larly important as only a few studies have started to identify
the cellular-genetic, mechanistic basis of microbiota-ENS
interactions. Mutations in epigenetic modifier genes show
changes in ENS and intestinal epithelium development con-
nected to an intestinal inflammatory response (103, 104). As
a next step, the combination of high-resolution scRNA-seq
with assays that identify gene regulatory regions, such as
chromatin accessibility assays and detection of specific chro-
matin features, for example, histone modifications, will
open the door to characterizing the gene regulatory basis of
microbiota-induced transcriptional changes that underlie
themechanisms ofmicrobiota-ENS interactions.

Although this review has focused on the ENS, it is just
one puzzle piece in the complex microbiota-gut-brain axis

(118, 119). The gut-brain axis, composed of the ENS and bidir-
ectional communication via the vagus nerve, is critical for
normal GI homeostasis in both mice (120) and zebrafish (75).
Alterations in the gut-brain axis have been shown to form
the basis for the pathophysiology of disorders of gut-brain
interaction (121, 122), which can present as early as infancy
and occur at any point in the life span. Lack of microbiota
alters neuronal development in the brain and subsequently
changes behavior (121, 123–126), drawing attention to the sig-
nificance of themicrobiotamilieu on the developmental pro-
gramming of both the GI tract and the brain. We anticipate
that future studies will not only better recognize the impor-
tance of the maternal and/or early feeding environment on
the multiple levels of interaction in microbiota-gut-brain
axis signaling, but also to further identify underlying mecha-
nisms and potential avenues for therapeutic intervention.
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