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ABSTRACT. Many causal and structural effects depend on regressions. Examples include
policy effects, average derivatives, regression decompositions, average treatment effects,
causal mediation, and parameters of economic structural models. The regressions may
be high dimensional, making machine learning useful. Plugging machine learners into iden-
tifying equations can lead to poor inference due to bias from regularization and/or model
selection. This paper gives automatic debiasing for linear and nonlinear functions of regres-
sions. The debiasing is automatic in using Lasso and the function of interest without the
full form of the bias correction. The debiasing can be applied to any regression learner,
including neural nets, random forests, Lasso, boosting, and other high dimensional meth-
ods. In addition to providing the bias correction we give standard errors that are robust
to misspecification, convergence rates for the bias correction, and primitive conditions for
asymptotic inference for estimators of a variety of estimators of structural and causal effects.
The automatic debiased machine learning is used to estimate the average treatment effect on
the treated for the NSW job training data and to estimate demand elasticities from Nielsen
scanner data while allowing preferences to be correlated with prices and income.
Keywords: Debiased machine learning, causal parameters, structural parameters, regres-

sion effects, Lasso, Riesz representation.

1. INTRODUCTION

Many causal and structural parameters of economic interest depend on regressions, i.e.
on conditional expectations or least squares projections. Examples include policy effects,
average derivatives, regression decompositions, average treatment effects, causal mediation,
and parameters of economic structural models. Often, regressions may be high dimensional,
depending on many variables. There may be many covariates for policy effects, average
derivatives, and treatment effects, or many prices and covariates in the economic demand
for some commodity. This paper is about estimating economic and causal parameters that
depend on high dimensional regressions.
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Machine learning is a collection of modern, adaptive statistical learning methods for esti-
mating regression functions and other statistical objects. These methods exploit structured
parsimony restrictions (such as approximate sparsity) on regressions, together with various
forms of regularization and model selection, to enable high quality prediction in high di-
mensional settings. Key methods include neural nets (deep learning), random forests, and
Lasso. The goal of this paper is to deploy these methods to infer causal and structural
parameters that depend on regression functions, including policy, derivative, decomposition,
and treatment effects as well as economic structural parameters.

Machine learning is different than other methods in ways that are useful in high dimen-
sional settings. For example, Lasso has good properties with very many potential regressors
(possibly many more than sample size) when relatively few important regressors give a good
approximation but the identity of those few is not known (i.e. the regression is approximately
sparse). In contrast, series regression is based on relatively few regressors, often many fewer
than the sample size. Lasso and series regression are similar in that they both depend on
a few regressors giving a good approximation. They differ in that series regression requires
that the identity of the important regressors is known, while with Lasso their identity need
not be known. For Lasso, the important regressors just need to be included somewhere
among the many potential regressors. This difference is useful in high dimensional settings,
where there are potentially very many regressors needed to approximate a function of many
variables. Typically, economics and statistics provide little guidance about which regressors
are important. With Lasso, such information is not needed, since very many terms can be
included among the potential regressors. Other machine learning methods, such as random
forests and neural nets, are also well suited to high dimensional regression.

Machine learners provide remarkably good predictions in a variety of settings but are in-
herently biased. The bias arises from using regularization and/or model selection to control
the variance of the prediction. To obtain small mean squared prediction errors, machine
learners regularize and/or select among models so that variance and squared bias are ap-
proximately equal. Although such equality is good for prediction, it is not good for inference.
Confidence intervals based on estimators with approximately equal variance and squared bias
will tend to have poor coverage. This inference problem can be even worse when machine
learners are plugged into a formula for a causal or structural effect. These formulae often
involve averaging over regressor values which reduces variance without affecting as much the
bias. Variance could also potentially also be a problem but machine learners control that for
prediction purposes.

For causal and structural estimators that plug-in regularized machine learners, the squared
bias can shrink slower than the variance, leading to extremely poor confidence interval cov-
erage and estimators that are not root-n consistent. Chernozhukov et al. (2017, 2018) give
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Lasso and random forest examples respectively and Chernozhukov et al. (2020) shows that
Lasso plug-in estimators are not root-n consistent. Model selection inherent in machine
learners also creates inference problems. Model selection creates bias from incorrect model
choice under local alternatives, making the usual asymptotic confidence intervals invalid over
local alternatives, as shown by Leeb and Potscher (2008a,b). Estimators of parameters of
interest obtained by plugging in machine learners can inherit this problem, as pointed out by
Belloni, Chernozhukov, and Kato (2015) and Chernozhukov, Hansen, and Spindler (2015)
and shown in Chernozhukov et al. (2020).

To reduce regularization and model selection bias we use a Neyman orthogonal moment
function where there is no first-order effect of the regression on the expected moment func-
tion. The orthogonal moment function is constructed by adding to an identifying moment
the nonparametric influence function of the regression on the identifying moment function.
This construction is model free, nonparametric, and based on the probability limit of the
regression learner for any distribution, as in Chernozhukov et al. (2016, 2020). As a result
the orthogonality property is model free, meaning that regression learners have no first order
effect on the moments for unrestricted, possibly misspecified, nonparametric distributions.
Consequently the standard errors are robust to misspecification because they are constructed
from the orthogonal moments while ignoring the presence of the regression learners.

The orthogonal moment function depends on another unknown function & in addition to
the regression. We develop a Lasso minimum distance learner of & that is automatic and
nonparametric, in the sense that it depends only on the identifying moment function and not
on the form of a. The structure of the identifying moment function is used to approximate
& as a linear combination of a dictionary (i.e. basis) of known functions. We use the Lasso
learner of @ and a regression learner in the orthogonal moment functions to construct an
automatic debiased machine learner (Auto-DML) of parameters of interest. We introduce
debiased machine learning estimators for a wide variety of effects, including policy effects,
average derivatives, bounds on average equivalent variation, and any other linear function of
a regression where debiased machine learners were not previously available. We also allow
for the identifying moment functions to be nonlinear in regressions. In addition we give novel
estimators of average treatment effects, causal mediation, and regression decomposition.

We allow any regression learner, including neural nets, random forests, Lasso, and other
high dimensional learners to be used in the orthogonal moment function. The primary
requirement of the regression learner is that the product of mean-square convergence rates

1/2 Under this condition and

for the learner of & and the regression learner is faster than n~
a few other regularity conditions we show root-n consistency and asymptotic normality of
the estimator of the parameter of interest. We give convergence rates for the Lasso learner

of & and combine them with existing convergence rates for regressions to verify conditions
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for particular estimators. A learner of & and large sample theory is given for parameters
that depend nonlinearly on regressions as well as parameters that are linear in a regression.

The large sample theory in this paper takes the probability limit of the regression learner
and & to be fixed. It would be straightforward to extend the results to allow the regression
limit and @ to change with sample size. Such a change would allow us to accommodate
sparse specifications where number of nonzero coefficients in the true regression grows with
the sample size but would complicate notation and detail. We choose to work with a fixed
regression for simplicity while accommodating high dimensional regressions via approximate
sparsity.

We give an application to estimating the treatment effect on the treated of job training
from the National Supported Work Demonstration (NSW). For many large sets of covariates,
we find similar estimates based on neural net, random forest, and Lasso regressions with
the automatic bias correction for each. We also give an application to estimating price
elasticities from scanner panel data while allowing endogeneity of prices. We estimate the
elasticities from Auto-DML of an average derivative that includes many covariates that
account for correlated random effects. We find price elasticities that are much smaller than
cross-section elasticities, consistent with though larger t than fixed effects elasticities found in
Chernozhukov, Hausman, and Newey (2021). We also find that plug in estimates are similar
to the cross-section elasticity estimates, so that debiasing is important in this application.

The estimators of parameters of interest use cross-fitting, as in Chernozhukov et al. (2018),
where orthogonal moment functions are averaged over groups of observations, the regression
and & learners use all observations not in the group, and each observation is included in the
average over one group. Cross-fitting removes a source of bias and eliminates any need for
Donsker conditions for the regression learner. Early work by Bickel (1982), Schick (1986),
and Klaassen (1987) used similar sample splitting ideas.

Auto-DML for a general linear functional of a regression, convergence rates, and asymp-
totic normality results for a Dantzig selector of & and the regression were given in Cher-
nozhukov, Newey, and Robins (2018). Chernozhukov, Newey, and Singh (2018) gave Auto-
DML for any regression learner, for nonlinear functions of a regression, and convergence rates
for a Lasso learner of a. The current paper is a revised version of Chernozhukov, Newey,
and Singh (2018) with a different title. Chernozhukov, Newey, and Singh (2019) is a revised
version of Chernozhukov, Newey, and Robins (2018) and is distinguished from the current
paper and previous work in giving and analyzing Auto-DML for local (nonparametric) effects
as well as focusing on the Dantzig selector for & and the regression for global effects. All
of these papers make use of model free orthogonal moment functions for regression learn-
ers given in Chernozuhkov et al. (2016) and the automatic debiasing in Chernozhukov et
al. (2020) builds on this paper. The combined use of cross-fitting and orthogonal moment
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functions for debiased machine learning is like Chernozhukov et al. (2018). The Auto-DML
in Chernozhukov, Newey, and Robins (2018), Chernozhukov, Newey, and Singh (2018), and
here innovates by not requiring an explicit formula for the bias correction that is required in
Chernozhukov et al. (2018) and earlier papers.

This work builds upon ideas in classical semi- and nonparametric learning theory with low-
dimensional regressions using traditional smoothing methods (Van Der Vaart, 1991; Bickel
et al., 1993; Newey 1994; Robins and Rotnitzky, 1995; Van der Vaart, 1998), that do not ap-
ply to the current high-dimensional setting. The orthogonal moment functions developed in
Chernozhukov et al. (2016) and used here build on previous work on model free orthogonal
moment functions. Hasminskii and Ibragimov (1979) and Bickel and Ritov (1988) suggest
such estimators for functionals of a density. Newey (1994) develops such scores for densities
and regressions from computation of the semiparametric efficiency bound for regular func-
tionals. Doubly robust estimating equations for treatment effects as in Robins, Rotnitzky,
and Zhao (1995) and Robins and Rotnitzky (1995) constitute model based orthogonal mo-
ment functions and have motivated much subsequent work. Newey, Hsieh, and Robins (1998,
2004) extend model free orthogonal moment functions to any functional of a density or dis-
tribution in a low dimensional setting. Model free, orthogonal moments for any learner are
given and their general properties derived in Chernozhukov et al. (2016, 2020). We use those
model free, orthogonal moment functions for regressions.

This paper also builds upon and contributes to the literature on modern orthogonal /debiased
estimation and inference, including Zhang and Zhang (2014), Belloni et al. (2012, 2014a,b),
Robins et al. (2013), van der Laan and Rose (2011), Javanmard and Montanari (2014a,b,
2015), Van de Geer et al. (2014), Farrell (2015), Ning and Liu (2017), Chernozhukov et al.
(2015), Neykov et al. (2018), Ren et al. (2015), Jankova and Van De Geer (2015, 2016a,
2016b), Bradic and Kolar (2017), Zhu and Bradic (2017a,b). This prior work is about re-
gression coefficients, treatment effects, and semiparametric likelihood models. The objects of
interest we consider are different than those analyzed in Cai and Guo (2017). The continuity
properties of functionals we consider provide additional structure that we exploit, namely
the &, an object that is not considered in Cai and Guo (2017).

Targeted maximum likelihood was developed by Scharfstein, Rotnitzky, Robins (1999)
and Van Der Laan and Rubin (2006). The use of machine learning for these estimators was
proposed by Van der Laan and Rose (2011) and large sample theory given by Luedtke and
Van Der Laan (2016), Toth and van der Laan (2016), and Zheng et al. (2016). In this
paper we give a targeted version of Auto-DML with automatic debiasing that we refer to as
Auto-TML. This estimator differs from previous ones in the objects we consider and the use
of automatic debiasing in Auto-TML.
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Various papers have considered direct estimation of & for treatment effects, where & is a
Riesz representer that depends on inverse propensity scores. Our work is the first to present
a framework for direct estimation of the Riesz representer of a broad class of linear and
nonlinear functionals, in a high-dimensional setting, without requiring strong Donsker class
assumptions. The earliest reference of which we know is Robins et al. (2007), which gives
a linear estimator for a for only the average treatment effect. Vermeulen and Vansteelandt
(2015) base parametric propensity score and regression estimators on double robustness
conditions for the average treatment effect. We differ in using a linear approximation to
@, which is restrictive in a parametric setting but is general in high dimensional and/or
nonparametric settings. Newey and Robins (2018) present and analyze estimators based on
regression splines, while we present and analyze sparse methods for the high-dimensional
setting. The Lasso minimum distance learner of & given in Chernozhukov, Newey, and
Singh (2018) and here is a direct estimator of the Riesz representer for a broad class of linear
and nonlinear functionals that can be interpreted as being based on orthogonality of the
moment functions. Chernozhukov et al. (2020) extends this learner of & to functions of high
dimensional regression quantiles and other objects.

In independent work on treatment effects Avagyan and Vansteelandt (2017) give a model
assisted estimator based on regularized first order conditions and Tan (2020) developed
a model assisted, multistep method of doubly robust estimation with Lasso type regres-
sion learners having standard errors that are robust to misspecification of the regression or
propensity score. Smucler, Rotnitzky, and Robins (2019) extended that approach to the
linear functionals of a regression considered in Chernozhukov, Newey, and Singh (2018). For
treatment effects the estimator we give is single step, allows for any regression learner (e.g.
neural nets), is model free, and has correct standard errors if either or both the regression
and the propensity score are misspecified. Farrell, Liang, and Misra. (2021) gave a neural
nets and model based estimator of the average treatment effect and Wooldridge and Zhu
(2020) give a Lasso based debiased machine learner for panel data with correlated random
effects that depend on high dimensional regressions. Our results also allow for a neural net
regression learner but are model free with specification robust standard error.

Chernozhukov, Newey, and Robins (2018) gave Auto-DML for linear functionals using the
Dantzig selector. More recently Hirshberg and Wager (2018) gave estimators for linear func-
tionals based on minimax estimation of sample weights that are consistent for realizations
of & in sample mean square error, rather than a linear approximation to the & function,
in the low dimensional case, using the same orthogonal moment functions considered here.
The objects considered by Chernozhukov, Newey, and Robins (2018) include average deriva-
tives. More recently Hirshberg and Wager (2020) gave an average derivative estimator based
on debiasing a Lasso regression learner of a single index high dimensional regression and
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Rothenhausler and Yu (2019) gave an average derivative estimator using debiased Lasso re-
gression. Singh and Sun (2019) extend the present work to the instrumental variable setting
and present estimators of the local average treatment effect, average complier characteris-
tics, and complier counter factual distributions. Previous to the current version of this paper
Farbmacher et al. (2020) gave DML (debiased machine learning) for causal mediation. We
propose an Auto-DML for causal mediation analysis as an example in Section 5.

In summary, contributions of the paper include the construction of DML for a wide range of
interesting policy effects and structural parameters where DML was not previously available.
This construction is based on a Lasso minimum distance learner of & we propose. The
debiasing and inference is model free and robust to misspecification and carried out in a
single step, unlike previous estimators of average treatment effects. For average treatment
and other effects we construct DML for a variety of regression learners, such as neural nets,
random forests, or high dimensional methods.

In Section 2 we describe the objects of interest we consider and associated orthogonal
moment functions. In Section 3 we give the Lasso learner of @&, the Auto-DML and Auto-
TML estimators, and a consistent estimator of their asymptotic variance. Section 4 derives
mean square convergence rates for the Lasso learner of & and conditions for root-n consistency
and asymptotic normality of Auto-DML and Auto-TML including primitive conditions in
examples. Section 5 gives Auto-DML for nonlinear functionals of multiple regressions and
as an example develops Auto-DML for causal mediation analysis. Section 6 gives Auto-
DML for regression decomposition and estimates the average treatment on the treated for
the NSW experiment. Section 7 gives Auto-DML estimates of price elasticities that allow
for correlated random effects in scanner panel data. Section 8 offers some conclusions and

possible extensions.

2. AVERAGE LINEAR EFFECTS AND ORTHOGONAL MOMENT FUNCTIONS

For expositional purposes, in this Section we first consider parameters that depend lin-
early on a single conditional expectation. To describe such an object, let W denote a data
observation, and consider a subvector (Y, X’)" where Y is a scalar outcome with finite second
moment and X is a covariate vector. Denote the conditional expectation of Y given X € X

Yo(x) = E[Y|X = z].

Let m(w, ) denote a function of the function v (i.e. a functional of v), where v denotes a
possible conditional expectation function v : X — R, that depends on a data observation

w and is linear in v. We will consider effects of the form

0o = E[m(W,v)].
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The parameter of interest 6y is an expectation of some known formula m(W,~) of a data
observation W and a regression 7.

We also give results in later Sections for important parameters having more general forms.
In Section 5 we allow m(W,~) to be nonlinear in multiple regressions and propose an es-
timator of causal effects with mediation. In Section 6 we give estimators of regression
decompositions and their properties. These important examples extend the framework of
this Section to parameters that are nonlinear in multiple regressions

Several important examples of linear effects are:

ExAMPLE 1: (Average Policy Effect). An average effect of a counter factual shift in the
distribution of regressors from a known F{y to another known Fi, when 7y does not vary with
the distribution of X, is

by = / qo(@)dp(); u(z) = Fi(z) — Folz).

Here m(w,v) = [ ~(x ) which does not depend on w. This policy effect builds on but is
different than Stock (1989) in comparing averages over two known distributions rather than
the empirical distribution.

EXAMPLE 2: (Weighted Average Derivative) Here X = (D, Z) for a continuously dis-
tributed random variable D, yo(x) = vo(d, z), w(d) is a pdf, and

fo = B [/w(u)a%g“; 2)y } US Wo(u, Z)w(w)du| = B[SU)0(U, Z)],

where S(u) = —w(u) '0w(u)/du is the negative score for the pdf w(u), the second equality
follows by integration by parts, and U is a random variable that is independent of Z with
pdf w(w). This U could be thought of as one simulation draw from the pdf w(u). Here
m(w,vy) = S(u)y(u,z) where W includes U.

This 0y can be interpreted as an average treatment effect on Y of a continuous treatment
D in a model where Y = Y(D) for a potential outcome stochastic process Y (d) that is
independent of D conditional on covariates Z. By conditional independence

Elo(u, Z)] = / EY(D)|D = u, Z = 2] Fy(dz) = / BIY (u)|Z = 2] F4(dz) = BIY (u)],

for w(u) > 0 assuming that the joint pdf of (D, Z) is positive where w(D) > 0, as in
Chamberlain (1984), Wooldridge (2002), and Blundell and Powell (2004). The E[Y (u)] is
the average outcome at D = v and is sometimes referred to as the average structural function.

Assuming that we can interchange the order of differentiation and integration,

= [ty [P, [ [V,
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similarly to Imbens and Newey (2009) and Rothenhé&usler and Yu (2019), which build on but
are different than Powell, Stock, and Stoker (1989). Regarding E[0Y (u)/Ju] as the average
treatment effect at u we see that 6, is a weighted average treatment effect. Alternatively, 6,
can be regarded as an average derivative of the average structural function. The averaging
over a known pdf w(u) helps fulfill regularity conditions for the Auto-DML developed here
that can be used to estimate #, for high dimensional covariates Z.

ExXAMPLE 3: (Average Treatment Effect). In this example X = (D,Z) and v(z) =
Yo(d, z), where D € {0,1} is the treatment indicator and Z are covariates. The object of

interest is

b0 = E[0(1, Z) — (0, Z)].
If potential outcomes are mean independent of treatment D conditional on covariates Z,
then 6, is the average treatment effect (Rosenbaum and Rubin, 1983). Here m(w,vy) =

7(17 Z) - 7(07 Z)‘

EXAMPLE 4: (Average Equivalent Variation Bound). An economic example is a bound on
average equivalent variation for heterogenous demand. Here Y is the share of income spent
on a commodity and X = (P, Z), where P is the price of the commodity and Z includes
income Z;, prices of other goods, and other observable variables affecting utility. Let p; < p;
be lower and upper prices over which the price of the commodity can change, x a bound on
the income effect, w(z) some weight function, and U a random variable that is uniformly
distributed over (p;,p1) and independent of (Y, X). U can be thought of as one simulation

draw from a uniform distribution on (py, p;). The object of interest is
z
0y = E[AU, 2)%(U, Z)], Mu,2) = w(2)1(p1 < u < p1)(Br — pgi exp(—k[u — pi)).

If individual heterogeneity in consumer preferences is independent of X and x is a lower
(upper) bound on the derivative of consumption with respect to income for all individuals,
then 6y is an upper (lower) bound on the weighted average over consumers of equivalent
variation for a change in the price of the first good from p; to pi; see Hausman and Newey
(2016). Here m(w,~y) = A(u, 2)y(u, z), where W includes U.

We focus on m(w,~) where there exists a function ay(X) with E[ag(X)?] < oo and
(2.1) E[m(W,~)] = Elao(X)v(X)] for all v such that E[y(X)?] < co.

By the Riesz representation theorem, existence of such a agp(X) is equivalent to E[m(W, )]
being a mean-square continuous functional of 7, i.e. E[m(W,v)] < C'||v|| for all v, where
17l = VE[(X)?] and C > 0. We will refer to this ag(X) as the Riesz representer (Rr).
Existence of the Rr is equivalent to the semiparametric variance bound for 6, being finite,
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Effect m(W,~) Riesz Representer
Policy Effect T @) — fodr | FO)A(X) — (X))
Weighted Average Derivative SO, Z) f(D|Z)"'w(D)S(D)
Average Treatment Effect v(1,Z) —~(0,2) m0(Z)'D — (1 —7m(Z))"*(1 — D)
Equivalent Variation Bound AU, Z)(U, Z) (pr —p1) (P Z2) A (P, Z)

TABLE 1. m and Rr for Examples 1-4

as stated in Newey (1994) and shown in Hirshberg and Wager (2018) for conditional ex-
pectations and in Chernozhukov, Newey, and Singh (2019) more generally for least squares
projections. Thus, in assuming existence of o(X) we are just assuming that 6y has a finite
semiparametric variance bound.

Each of Examples 1-4 has such a Rr. Let f(x) denote the pdf of X in Example 1, f(d|z)
the pdf of D conditional on Z in Example 2, my(z) = Pr(D = 1|Z = z) the propensity score
in Example 3, and f(p;|2) the pdf of P; conditional on Z in Example 4. Table 1 summarizes
the functional m(w,y) and the Rr in each of the examples:

Equation (2.1) follows in Example 1 by multiplying and dividing by f(x) inside the integral,
in Example 2 by integration and multiplying and dividing by f(d|z), in Example 3 in a
standard way for average treatment effects, and in Example 4 by multiplying and dividing
by f(p1]z). For E[ag(X)?] < oo to hold the denominator must not be too small relative to
the numerator in each ag(X), on average. For instance Example 3 must have E[{my(Z)(1 —
ml(Z)} 1] < oc.

Equation (2.1) implies that the effect of interest can be represented in three different ways,

0y = E[m(W, )] = E[ao(X)70(X)] = Elag(X)Y],

where the last equality follows by iterated expectations. Any of these three expressions
could be used to estimate 6,. We could estimate 6y from the first expression using a learner
(estimator) of 79. We could also estimate 6, from the last expression using a learner of
ap(X). In addition we could use learners of both 7y and g to estimate 6, from the middle
expression. We focus here on using a learner of 7y, though «y will be important for the bias
correction to follow.

We rely on a regression learner (estimator) 4 of vy to estimate 6. The 4 can be any of
a variety of machine learners including neural nets, random forests, Lasso, and other high
dimensional methods. All we require is that 4 converge in mean square at a sufficiently fast
rate, as specified in Section 4.

Whatever the choice of 4, estimating 6, by plugging 4 into m(W,~) and averaging over
observations on W can lead to large biases when 4 involves regularization and/or model
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selection, as discussed in the Introduction. For that reason we use an orthogonal moment
function for 6y, where the regression learner 4 has no first-order effect on the moments.
We follow Chernozhukov et al. (2016, 2020) in basing the orthogonal moment function on
the probability limit (plim) (F') of 4 when one observation W has CDF F, where F' is
unrestricted except for regularity conditions. Here v(F') can be thought of as the plim of ¥
under general misspecification, where v(F) need not be the conditional expectation Ep[Y|X].

The plim v(F') of 4 depends on the learner. For example Lasso, the Dantzig selector,
boosting, and other high dimensional methods are based on a sequence of potential regressors
X = (X4, Xy, ...). These learners have the form

() = ZBjxj’ Bj/ # 0 for a finite number of j',
j=1

where x = (x1, 29, ...) denotes a possible realization of X. Because each 4(X) is a linear
combination of X = (Xj, Xy, ...) the plim ~v(F) of 4 will also be a linear combination of X,
or at least will be approximated by such a linear combination. Define I' to be the mean
square closure of the set of finite linear combinations of X, i.e. I' is the set of v(X) such
that E[v(X)?] < oo and for every ¢ > 0 there exists (55)52; such that 85 # 0 for a finite
number of j' and E[{(X) — >°2, 8;X;}?] < e. It will be the case that v(F) € I'. Because
Lasso and other high dimensional methods are being used for least squares prediction of Y
it will also be the case that

(2:2) Y(F) = argmin Bxl{Y —1(X)}),

This v(F') minimizes population least squares criteria over the (mean square closure of)
linear combinations of X, i.e. it is the best linear predictor of Y by linear combinations of
X. Here v(F) is the infinite dimensional linear regression that is nonparametrically estimated
by Lasso and other high dimensional methods.

Neural nets and random forests may have a different v(F'). A neural net or random forest
is often a nonparametric regression estimator for a finite (but high) dimensional X. In that
case

V(F) = Ep[Y|X],

which satisfies equation (2.2) when I' is the set of all (measurable) functions of X with
finite second moment. The plim of Lasso and other high dimensional methods will also be
this v(F') if X = (X1, Xs,...) can approximate any function of a fixed set of regressors, but
otherwise will not. A third type of learner 7 is one that imposes additivity restrictions on 4,
such as ¥(X) = 91(X1) +92(X2), allowing for nonparametric learners 4, (X;) and 45(Xs). In
that case y(F") will be satisfy equation (2.2) where I is the mean square closure of functions
that are additive in X; and X,.



12 VICTOR CHERNOZHUKOV, WHITNEY K. NEWEY, AND RAHUL SINGH

We use the orthogonal moment function from Chernozhukov et al. (2016, 2020) for a
regression learner 4 having plim v(F’) satisfying equation (2.2) for any linear, closed I". The
orthogonal moment function is constructed by adding to the identifying moment function
m(w,y) — 6 the nonparametric influence function of of E[m(W,~(F))]. As shown in Newey
(1994) the nonparametric influence function of E[m(W,~(F))] is

a(X)[Y —5(X)],

where (X)) is the solution to equation (2.2) for F' = F, and & € T satisfies E[m(W,~)] =
Ela(X)y(X)] for all ¥ € I'. As in Chernozhukov, Newey, and Singh (2019),

(2:3) o = argmin B[{ag(X) — a(X)}?].

This @ can be thought of as the Riesz representer for the linear functional E[m(W,~)] with
domain I'. Evaluating the nonparametric influence function at possible values v and « of ¥
and @ and adding it to the the identifying moment function gives the orthogonal moment

function

(2'4) ¢(w7977a0‘> = m(w>7) _6‘—’_0‘(1))[3/_7(37)}'

The moment function 1 (w, @, 7, «) depends on a possible value « of the unknown function
a as well as a possible value 7 of the plim 4 of the regression learner. A learner & of
@ is needed to use this orthogonal moment function to estimate 6. In Section 3 we will
describe how to construct &. In Chernozhukov et al. (2016, 2020) ¢ (w, 6,7, ) is shown to
be orthogonal without being specific about the form of &. For exposition we repeat that
demonstration here. Consider any v, «a € I', representing possible realizations of learners 4
and & that are in T'. The well known necessary and sufficient conditions for equation (2.2)

with F' = Fj are that E[a(X){Y —7(X)}] = 0 for all @ € T". Therefore

(2.5) E[p(W,0,7,a) =¢(W,0,7,a)] = E[m(W, )] = E[m(W, )] + E[a(X){Y —~(X)}]

a(X){7(X) = 3(X)}] + Ele(X){7(X) =~2(X)}]
—E{a(X) = a(X)H{y(X) =7(X)}],

where the second equality follows by equation (2.1) and the third equality by the necessary
and sufficient condition for equation (2.3) that E[{ag(X) — a(X)}y(X)] =0 for all v € T.
Here we see that ¢ (w, 0,7, @) ”partials out” « in the sense that

Elm(W,7) + a(X){Y —~v(X)}] = E[m(W,7)]

does not depend on 7. Also equation (2.5) gives an explicit formula showing that the effect
of v and o on E[¢)(W, 6,7, )] is second order and hence (W, 0, v, a) is orthogonal.
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The orthogonality property of ¢(W, 6,7, «) only depends on v, o € T" and 7 satisfying
equation (2.2). In particular orthogonality does not depend on either 4 being E[Y|X] or
on @ = ap. In this sense orthogonality of ¢(W,0,v,a) is model free, i.e. nonparametric.
Consequently the estimator of # will be asymptotically normal and standard errors consistent
even if either 4 # vy or @ # ag or both, which is possible when neither vo(X) = E[Y|X]
nor ap(X) satisfying equation (2.1) is an element of I'. This robustness of the standard
errors results from the orthogonality of the moments only depending on the # limit of the
regression estimator, so that the sample average of the estimated orthogonal moment function
will be asymptotically equivalent to the sample average at the truth, without any model
assumptions.

The orthogonal moment function could also be viewed as the efficient influence function
of E[m(W,¥)] which clarifies that the Auto-DML is an efficient semiparametric estimator of
E[m(W,7)]. Viewing ¥ (w, 8,~, «) in this way is not useful for debiasing because the results
of Chernozhukov et. al. (2016, 2020) already imply model free orthogonality.

The moment function 1 (w, 6,, ) is doubly robust for estimation of the true parameter

0y. Evaluating at 64,7, @ and taking the expectation gives

(2.6)  E[(W, 00,7, @)] = Elm(W,7)] — b + E[a(X){Y —3(X)}]
Blag(X ){7( ) =2 (X)} + E[a(X){7(X) = 7(X)}]
= —E[{a(X) — ao(X)H7(X) = (X)},

which is zero for ¥ = 79 or @ = ag. Thus E[¢)(W,0y,7,a)] = 0, so that the orthogonal
moment condition identifies 6y, when either 7(X) = E[Y|X] or ap(X) € I'. These conditions
both hold when the regression learner is nonparametric so that I is the set of all functions of
X with finite second moment. For high dimensional regressions where I is the closed linear
span of X = (X, Xy, ...) the plim of the learner 4 may not be E[Y|X] but the orthogonal
moment function still identifies 6y when ao(X) € I'. That is, 6y is identified when ag(X)
can be approximated arbitrarily well in mean square by a linear combination of X. This
robustness condition can be interpreted in each of Examples 1-4:

ExXAMPLE 1: For high dimensional 74, where I' is the mean square closure of linear com-
binations of X, E[¢)(W,0y,7,&)] = 0 even when 7(X) # E[Y|X] if ap(X) = [fi(X) —
X))/ f(X) el

EXAMPLE 2: For high dimensional 4, where I is the mean square closure of linear combina-
tions of X, E[¢)(W, 6,7, @)] = 0 even when ¥(X) # E[Y|X]if ao(X) = f(D|Z)'w(D)S(D) €
.
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EXAMPLE 3: For the average treatment effect where I' is nonparametric, so that 7(X) =
ElY|X] and a(X) = ag(X), the orthogonal moment function in equation (2.4) corresponds to
the seminal doubly robust moment function of Robins, Rotnitzky, and Zhao (1995). When

4 is high dimensional, with say X = (DZ, (1 — D)Z) for sequences Z = (Zy,Zs,...) and
7 = (Zl, Zs, ...), with each Zj a function of Z, the orthogonal moment function is

bW, 0,7, @) = 3(1, Z2) = 7(1,0) = 0 + a(X)[Y —5(X)].

This orthogonal moment function is different than those previously considered in @(X) being
the projection of (X)) on I' rather than ag(X). Here E[t)(W, 0,7, @)] = 0 if linear combi-

-1

nations of Z and Z can approximate abitrarily well mo(Z )"t and [1 — m(Z)] 7! respectively,

even when ¥(X) # E[Y]X].

For brevity we omit further discussion of Example 4 from the paper and refer the interested
reader to Chernozhukov, Hausman, and Newey (2021).

3. ESTIMATION

To estimate (learn) §y we use cross-fitting where the orthogonal moment function ¢ (w, v, a, 6)
is averaged over observations different than used to estimate ¥ and @. We assume that the
data W;, (i = 1,...,n) are ii.d.. Let I,, (¢{ = 1,...,L), be a partition of the observation
index set {1,...,n} into L distinct subsets of about equal size. In practice L =5 (5-fold) or
L =10 (10-fold) cross-fitting is often used. Let 4, and &, be estimators constructed from the
observations that are not in I,. We construct the estimator 4 by setting the sample average
of Y(W;, 0,9, &) to zero and solving for #. This 6 and an associated asymptotic variance
estimator V have explicit forms

(31) 0= %Zz{m%%) + (XY — (X)),
(=1 icl,
V= %Z Z@Z)EZ’ bie = m(Wi, 4e) — 0+ ae(X) [V — 4(X3)),

=1 i€ly

Any regression learner 4, can be used here as long as its mean-square convergence rate
is a power of 1/n, as assumed in Section 4. Such a convergence rate is available for neural
nets (Chen and White, 1999, Schmidt-Heiber, 2020, Farrell, Liang, and Misra, 2021), ran-
dom forests (Syrgkanis and Zampetakis, 2020), Lasso (Bickel, Ritov, and Tsybakov, 2009),
boosting (Luo and Spindler, 2016), and other high dimensional methods. As a result any of
these regression learners can be used to construct an Auto-DML 6 from equation (3.1), in

conjunction with a learner &, of a.
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The correctness of V relies on consistency of the regression learner 4,. It would be inter-
esting to investigate whether the finite sample approximation could be improved by using a
variance estimator that allowed 4, to not be consistent because the dimension of the regres-
sion grows as fast as the sample size, e.g. as in Cattaneo, Jansson, and Newey (2018).

An alternative estimator of 6, can be constructed that extends the targeted maximum
likelihood approach of Scharfstein, Rotnitzky, and J.M. Robins (1999) and van der Laan and
Rubin (2006) to the objects we consider. This Auto-TML estimator is a plug-in estimator
based on a regression learner that has been debiased in a direction specific to the object of
interest. This estimator is given by

4 Zie[e df(Xi)[Yi - %(Xi)]

~ d[(ﬂ?)
=1 icl, Zielg G (X;)?

As with other targeted estimators the plug-in form of Auto-TML allows imposition of con-
straints through m(W,~). In Section 4 we show that this estimator is asymptotically equiv-
alent to 6.

To describe & let b(x) = (b1(x), ..., by(z)) be a p x 1 dictionary of functions of x, where p
can be large, with each b;(x) standardized to have mean 0 and standard deviation 1, to be
further discussed in this Section. For convenience we ignore dependence of b(z) on the data

in the notation. The learner &, given here is

J
1 . )
3.3) dylz) = W, 1)+ b(2) po, pr = argmin{—20p + o/ Cyp + 2 s
(3.3) du(x) n_n%z]m( )+ 0(x) pe, pe = argmin{—2Mpp + o/ Gp r;w}
i¢l, =
. 1 ) |
M: Wiab7 G = szbXZ /7
¢ n_ﬂg;m( ), G n_ﬂg; (Xi)b(X;)
11y vl

where ny is the number of observations in I, and r > 0 is a positive scalar. This &, is used
in equation (3.1) to construct 6 and V.

To explain and motivate &, it is notationally convenient to drop the ¢ subscript, with
the understanding that &, is computed using only observations not in I, for each ¢, as in
equation (3.3). It is also notationally convenient to drop the 0 mean normalization of b(x)

and consider & having the form
(3.4) (x) = b(x)'p,

where p is a vector of estimated coefficients.

The & depends on the choice of dictionary b(z) and penalty degree r. For the dictionary
we require that each b;(z) belongs to the set I' of possible plims of 4(z) discussed in Section
2 and that linear combinations of the dictionary "span” I'.
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ASSUMPTION 1: b(z) = (by(z),...,b,(x))" where i) b; € I for all j and ii) for any a € T
and & > 0 there is p and p € R? such that E[{a(X) — b(X)'p}?] < e.

One key feature of this condition is that each b; € I". This feature allows us to use m(w, )
to construct & and will guarantee that & € I', as required for the orthogonality shown in
equation (2.5). Another key feature is that linear combinations of b(z) can approximate
anything that belongs to I'. This feature will lead to & estimating a. The link imposed by
Assumption 1, between the regression learner 4 and the dictionary b(z) used to construct &,
is important for the orthogonality property of ¥ (w,~y, a, #) and hence for 0 to be asymptot-
ically normal and V to be a consistent estimator of the asymptotic variance under general
misspecification.

Assumption 1 requires that linear combinations of b(z) must be able to approximate any
7 in the set of possible plims of 4 and that each b; must be a possible plim of 4. For Lasso
and other high dimensional regression learners where X = (X3, X5, ...) Assumption 1 will be
satisfied for

(3.5) b(z) = (1,..., xp) "

Evidently each element b;(X) = X is an element of I' and the spanning condition is satisfied
because any linear combination of X with a finite number of nonzero coefficients will also
be a linear combination of b(x) for p large.

We emphasize that b(X) is required to approximate only the projection @(X) and not
ap(X). For instance, in the average treatment effect example a(X) is the projection of the
difference of inverse propensity scores on the space spanned by X = (X, X5, ...) which is
naturally approximated by linear combinations of X = (X7, ..., X,). Assumption 1 does not
require that this b(X) approximate the inverse propensity score.

For neural nets, random forests, and other learners that nonparametrically estimate E[Y'| X]
Assumption 1 will require that a linear combination of b(X) can approximate any function
of X for large enough p. Such a b(x) can be formed from low order multivariate powers of
components of x, with a full set of approximating functions included as p grows. In appli-
cations one may use a variety of nonlinear functions including powers of transformations of
X.

The learner & also depends on the choice of penalty degree r. An important, useful feature
of Lasso is that r = A\/W for a constant A gives the fastest possible mean square
convergence rate for Lasso, that optimally trades off bias and variance. In Appendix A,
we describe cross-validation and theoretical methods for choosing the choosing r based on
data that have proven stable across several different applications. We also provide R code,
available upon request, for the construction of &(x) and 9.
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We can motivate p in &(z) = b(z)’p as being based on the Riesz representation in equation
(2.1) and & satisfying equation (2.3), which imply that for m(w,b) = (m(w, by), ..., m(w, b,))’,

(3.6) M := E[m(W,b)] = Elag(X)b(X)] = E[a(X)b(X)],

where the last equality is satisfied by b; € I', which implies E[b;(X){ao(X) — a(X)}] =0
for each j. We see that the cross moments M between the true, unknown &(z) and the
dictionary b(x) are equal to the expectation of the known vector of functions m(w,b). Also,
the second moment matrix G = E[b(X)b(X)'] of the dictionary is an expectation of a known
function of the data. Estimating M and G enables learning coefficients p of the least squares
regression of &(X) on b(X), satisfying M = Gp. We learn p using a Lasso minimum distance
objective function to allow for large p. Let

. 1 .1
M:—g W. :—E Xb(X;)
n < m( »b), G b(X)b( Z)a

n <

be unbiased estimators of M and G. The coefficient estimator is given by
p

(3.7) p=argmin{=231'p + #Gp+2r ol }. lloll, = losl
j=1

The estimator p can be interpreted as a minimum distance version of Lasso. Here M
is analogous to > . Y;b(X;)/n in Lasso. The objective function in equation (3.7) can
be thought of as the Lasso objective with S, Y;b(X;)/n replaced by M and 1, Y?/n
dropped. In this way the objective function is a penalized approximation to the least squares
regression of ag(z) on b(z), where 2r||p||, is the penalty. We refer to this as minimum dis-
tance Lasso because M does not have the product form of Lasso regression.

The learner &(z) of a(z) is automatic in being based on M and G, neither of which requires
knowledge of the form of a. In particular, &(z) = b(z)'p does not depend on plugging in
nonparametric estimates of components of a(x). Instead, b(x)’p is linear in the dictionary
b(z) and uses the known functional m(w,~) in the construction of M to obtain the learner
p. This automatic nature of &(z) is especially useful for Lasso and other high dimensional
regression learners where b(z) can be taken to be the first p elements of x = (21,29, ...),
and where a(x) is a least squares projection of ag(X) on I', as in Section 2. The projection
a(x) will generally not have a simple form that can be learned by plugging in nonparametric
learners to an explicit formula. For instance, in the average treatment effect example the
projection of the inverse propensity score on the high dimensional regressors (X, X, ...)
does not have a closed form but is naturally approximated by a linear combination of the
first p regressors where b(X) = (X1, ..., X))

The learner &(x) = b(x)'p also avoids inverting a learner of a conditional probability
or pdf. The finite sample properties of methods that rely on inverses of learners can be
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poor; see Singh and Sun (2019) for recent examples. Instead, & approximates and learns
@ by a linear combination of functions. In this way the & that we propose here avoids
potential instability from inverting a high dimensional estimator. The inverse of a conditional
probability or density is present in ag(x) in all of the examples in this paper. We anticipate
that this feature is present quite generally for causal and structural models involving shifts
in regressors, because the Rr equation (2.1) involves an expectation with respect to the data
distribution rather than the shifted distribution. Thus absence of an inverse of a machine
learner in & may prove to be widely useful. In some economic structural models the linearity
of & in b(x) may not be quite as appealing, because inverse densities can have a parametric
form and so mitigate the problem of inverting a high dimensional learner. An example is
the dynamic discrete choice learner of Chernozhukov et al. (2016, 2020). Also there is more
work to be done to see whether this approach has better properties than previously proposed
ones in practical settings.

This learner &(z) can be thought of as being based on orthogonality of the moment function
with respect to 7. Let 7 denote a scalar and b;(z) an element of b(x). Then by equation
(3.6)

%E[w(W, 0,7 + 7b;,a)] = E[m(W,b;) — a(X)b;(X)] =0, (j =1, ..., p).

Replacing the expectation by a sample average and @(X) by b(X)'p gives
1< ~ oA
=S Wi by) = DX by (X0)} = (M = Gp),
i=1

where e; is the jth columin of a p dimensional identity matrix. This sample average is a
scaled version of the derivative of objective function in equation (3.7) without the penalty
term. The first-order conditions for equation (3.7) will set p so that this object is close to
zero, subject to the penalty, i.e. will solve penalized versions of a moment equation. Thus,
the Lasso minimum distance learner can be thought of as a method that uses orthogonality
of Y(W,0,~,«) with respect to 7 to learn & while penalizing to facilitate high dimensional
estimation. In Section 6 we use an extension of this approach to construct an Auto-DML
when m(W, ) is nonlinear in .
To illustrate & we consider the choice of dictionary and the form of & for Examples 1-3.

EXAMPLE 1: If the regression learner 4 is nonparametric the dictionary b(X) should also
be nonparametric while if 4 is a high dimensional regression the dictionary should be chosen
as in equation (3.5). Here m(w,b) = [b(z)[fi(z) — fo(x)]dz does not depend on the data
observation w and the first order conditions for p imply that for each j,
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1
n—mny

/ by(@)[fi(2) — folo)de — —— 3" by(Xi)a(X)| <.
it I,

Here é,(X;) acts to approximately re-weight so that the integral of the basis function b;(z)
over the policy shift is approximately equal to the sample average of the re-weighted basis
function bj(XZ)OAég(XZ)

ExAMPLE 2: The dictionary b(X) should be chosen as in Example 1. Also by m(w, b) =
S(u)y(u, z) the first order conditions for p imply that for each j,

Here a,(X;) acts approximately as a re-weighting scheme, making the sample average of the
score S(U;) times the basis function b;(U;, Z;) be approximately equal to the sample average
of the re-weighted basis function b;(X;)d(X;).

ExAMPLE 3: The dictionary should be chosen similarly to Example 1. For instance
suppose that X = (DZ, (1—-D)Z), where Z = (Zy, Zs, ...) is a sequence or possible covariates.
Then the dictionary

(3.8) b(x) = (dg(2)', (1 —d)q(2)"), q(z) = (21, ..., 2p2),
would satisfy Assumption 1. The estimator &, has an interesting form for this dictionary.
Note that m(w,b) = b1, 2) — b(0, =) = (¢(=)',0') — (0", (=)'}’ = (a(2)', —q(=)). Then

’ e _ 1
M - y - ZZ .
¢ < —a ) qe n—neZQ( )
i1y
Let p; be the estimated coefficients of dq(z) and pY be the estimated coefficients of (1—d)q(z).
Then the learner of a(X;) is

Go(X;) = Dicog; — (1 = D)oy, @y = q(Zi)' by, @i = —a(Zi)'py,

where @}, and &Y, might be thought of as “weights.” These weights sum to one if ¢(z) includes
a constant but may be negative. The first order conditions for & are that for each j,

1
n—mny

1

(3.9) > a(Z)[1 = D)) <, — > 4(Z)1+ (1= Dywp]| < 7.

i%[[ ¢ i¢12

Here py sets the weights @}, and @), to approximately “balance” the overall sample average
with the treated and untreated averages for each element of the dictionary ¢(z). The con-

straints of equation (3.9) are like the balancing conditions of Zubizarreta (2015) and Athey,
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Imbens, and Wager (2018). The source of these constraints is regularized least squares ap-
proximation of a(z) = proj(my(z)~td—[1 —m(2)] (1 —d)|Z) by a linear combination of the
dictionary b(z). The approach of this paper shows that this type of balancing is sufficient
to debias any regression learner under regularity conditions in Section 4.

4. LARGE SAMPLE INFERENCE

In this Section, we give mean square convergence rates for the Lasso minimum distance
learner of & and root-n consistency and asymptotic normality results for the learner 6 of
the object of interest and its asymptotic variance estimator V. Let &, denote a sequence
that converges to zero no faster than y/In(p)/n and for a random variable a(W) let ||a|| =

Ela(W)?]

ASSUMPTION 2: There exists C > 1, £ > 0 such that for each positive integer s <

Cen Y yhere is p with s nonzero elements such that

la —v'pl < C(s)~*.

Here ||a — V/p|| is the mean square approximation error from using the linear combination
b'p to approximate a. This approximate sparsity condition specifies that there is a sparse p,
having only s nonzero elements, so that the approximation error is bounded by C(s)~¢. Note
that it is not required that & be equal to linear combination of s terms, i.e. it is not required
that & be strictly sparse. Assumption 2 does allow unknown identity of the elements of b(x)
that give the approximation rate s=¢. In this way this condition allows for high dimensional
x where statistics and economics do not provide much guidance on which elements of b(x)
are important.

The ¢, in this condition represents a convergence rate for M and G that will be no faster
than /In(p)/n under the conditions given in the rest of this Section. When s is chosen to
be approximately 05;2/ (2£+1), which is the largest s allowed by Assumption 2, s will grow
no faster than (y/n/In(p))¥*+) < p!/&+)  which grows slower than n. Because p > s is
implicitly required by this condition, Assumption 2 puts a quite a weak restriction on p. An
important feature of Assumption 2 is that the sparse approximation is based on functions
included in the p x 1 dictionary b(x). Thus larger values of p give more flexibility and will
help Assumption 2 to be satisfied.

Our results will require a convergence rate for & that is faster than some power of n.
Assumption 2 is a natural condition that leads to such a rate. Sufficient conditions for
Assumption 2 are well known from the approximation literature when a(z) belongs to a
Besov or Holder class of function and linear combinations of b(x) can approximate any
function of x.
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We will also make use of a sparse eigenvalue condition as considered in much of the Lasso
literature. Let p denote a px 1 vector, p; a J x 1 subvector of p, and p e the vector consisting
of components of p that are not in p;. Also for a matrix A let [|Af, = >_, ; |ai|.

ASsSUMPTION 3: G = E[b(X)b(X)'] has largest eigenvalue bounded uniformly in n and
there is C,c > 0 such that for all s ~ Ce,? with probability approaching one
: 'Gp
min min ; >c
I<s |lpselly <3llpslly PrPT

This is a sparse eigenvalue condition that is familiar from the Lasso literature, including
Bickel, Ritov, Tsybakov (2009), Belloni and Chernozhukov (2013), and Rudelson and Zhou
(2013).

We will work with a dictionary b(X) with elements that are uniformly bounded.

ASSUMPTION 4: There is C' > 0 such that with probability one sup, |b;(X)| < C.

This condition implies a convergence rate of /In(p)/n for H@ -G H , where [|A] =
max; ; |a;;| for a matrix A = [a;;]. -

Lasso mean square convergence rates are often stated in terms of finite sample bounds. Be-
cause the focus of this paper is root-n consistency for 6 and for that we only need convergence
at certain powers of n we can simplify the statement of convergence rates without affecting
the conditions for 4 by allowing the Lasso regularization value r to shrink slightly slower
than ¢,. This does lead to approximate sparseness conditions that are strict inequalities on
the size of £ but Bradic et al. (2019) have shown that strict inequalities are necessary for
root-n consistent estimation, meaning that there is no loss of generality in these conditions.
We also limit the growth of p to be slower than some power of n.

ASSUMPTION 5: ¢, = o(r), 7 = o(n,) for all ¢ > 0, and there exists C' > 0 such that
p < Cn®.

We also hypothesize a convergence rate for M.

ASSUMPTION 6: HM — MH = Oy(e,) for e, — 0.

We use this condition to accommodate M that can depend on the regression learner 4 as

needed for Section 5.

THEOREM 1: If Assumptions 1 - 6 are satisfied then for all ¢ > 0,

= il = o (nee2é/+),
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This theorem is based on extending Lemmas of Bradic et al. (2019) to allow &, to shrink
slower than +/In(p)/n. The extension will be used in Section 5 to obtain convergence rates
when M depends on a nonparametric estimator.

The sparse eigenvalue condition of Assumption 3 seems strong in some settings. It is
possible to drop Assumption 3 and Assumption 2 if the following condition is satisfied:

ASSUMPTION 7: a(X) = >, pjobij(X), 272, [pjol < 0o, and for C >0 and 5 = Cy/n

the b;(z) corresponding to the largest s values of |pjo| are included in b(x).

This condition allows us to drop Assumption 2 because absolute summability of the coef-
ficients po; implies a sparse approximation rate of £ = 1/2. It also allows G to converge at a

rate slower g, in order to accommodate nonparametric estimation in G.

THEOREM 2: If Assumptions 1 and 5-7 are satisfied and HG - GH = Oyp(e,) then for
all ¢ >0, >

|6 = all = op(nv/en).

This result extends Chatterjee and Javarov (2015) to allow &, to shrink slower than

vIn(p)/n. When €, = /In(p)/n in Assumption 6 this result gives a mean square con-
vergence rate for & that is faster than n='/4*¢ for all ¢ > 0, without a sparse eigenvalue

condition.

We now use these results to obtain root-n consistency and asymptotic normality for the
Auto-DML 6 and consistency of its asymptotic variance estimator V. We impose some ad-
ditional regularity conditions.

ASSUMPTION 8: There is C' > 0 such that with probability one max;<, |m(W,b,))| < C.

Under this condition Assumption 6 will be satisfied with ¢, = 4/In(p)/n. This condi-
tion will be satisfied under by Assumption 4 in each of Examples 1-3 under conditions of
Corollaries 4-6 to follow.

AssumpPTION 9: E[{Y — 4(X)}?|X] and a(X) are bounded.

We impose this condition for simplicity; it could be weakened. We also impose the following

condition.

AssUMPTION 10: E[m(W,70)?] < oo and [[m(w, %) — m(w,¥)]? Fw (dw) — 0.
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This condition will be implied by existence of C' > 0 with [E[m(W,~)?]| < C ||y||* for
all v, which will be satisfied in the examples we consider under regularity conditions to be
specified.

ASSUMPTION 11: With probability approaching one 4, € I' and there is d, > 0 such that
19 — 7]l = Op(n=%) and either Assumptions 2 and 3 are satisfied with

¢ 1
41 S 4>
(4.1) 611 Ty

or Assumption 7 is satisfied and d., > 1/4.

This assumption allows 4 to be any learner that converges in mean square at a rate that
is some power of n. By Theorem 1, the mean square convergence rate for & is as close as
desired to n~¢/(%+Y Thus Assumption 11 requires that the product of convergence rates for
& and 4 must go to zero faster than 1/4/n. This is a rate double robustness condition that
appears in earlier low dimensional and high dimensional literatures cited in the introduction.
Under Assumptions 2 and 3 a full trade-off in rates between & and 4 is permitted, since
Assumption 11 is satisfied for any ¢ if d, is large enough and for any d, if ¢ is large enough.
Under Assumption 7 this trade-off is not present, since d, > 1/4 is required by Assumption
11. Assumption 11 can be dropped if ag(X) is known and is used in place of @(X) in the
construction of 6 in equation (3.1). In that case only mean square consistency of 4 will be
required for root-n consistency and asymptotic normality of g,

The following gives the large sample inference results for f and V. Define

0 = E[m(W,7)], ¥(w) =m(w,7) — 0+ a(z)ly - 7(z)], V =E[p(W)].

Here @ will be the object estimated by 0 when neither of the double robustness conditions
7(X) = E[Y|X] nor a(X) € I is satisfied.

THEOREM 3: If Assumptions 1-5, and 8-11 are satisfied then \/ﬁ(é —0) SN N0, V). If
in addition Assumption 7 is satisfied then V-V

It is possible to construct a consistent estimator of V' without Assumption 7 by using
a trimmed version of d,(x) but we omit that demonstration to avoid further complicating
V. The conclusion of Theorem 3 implies that asymptotic test statistics and confidence
intervals can be formed in the usual manner from 6 and V. Theorem 3 is proven by using
the convergence rate results of Theorem 1 and Theorem 2 to show that the hypotheses of
Lemma 15 of Chernozhukuv et al. (2020) are satisfied.

The asymptotic variance V' is fixed rather than varying with n because we have chosen
to work with i.i.d. data and an approximately sparse regression for simplicity. It would be
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straightforward to extend the results to allow the regression to change with sample size in
order to accomodate sparse regressions and corresponding variances that change with n.
Under similar conditions as Theorem 3 Auto-TML is also consistent and asymptotically

normal.

COROLLARY 4: If Assumptions 1-5, and 8-11 are satisfied, E[m(W, )] < C |||* for all
v eT, and &(X) # 0 then /n(6 —0) N N(0,V).

Most of the conditions of Theorem 3 are quite general, with only Assumptions 8 and 10
pertaining to a particular m(w,y). It is straightforward to specify conditions under which
Assumptions 8 and 10 are satisfied for Examples 1-3.

COROLLARY 5 (EXAMPLE 1): If Assumptions 1-5, 9, and 11 are satisfied and there is
C > 0 such that |[fi(z) — folx)]/f(x)] < C then /n(6 — 0) LN N(0,V). If in addition
Assumption 7 is satisfied then V5.

The specific regularity condition for the policy effect in Corollary 5 is that the Rr ao(X) =
[f1(X) = fo(X)]/f(z) be bounded.

COROLLARY 6 (EXAMPLE 2): If Assumptions 1-5, 9, and 11 are satisfied and there is
C > 0 such that |S(u)| < C, f(D]|Z)"'w(D) < C then /n(6—0) N N(0,V). If in addition
Assumption 7 is satisfied then Vv

The regularity conditions for the weighted average derivative in Corollary 6 are that the
score S(u) is bounded and the Rr ag(X) = f(D|Z) 'w(D)S(D) is also bounded.

COROLLARY 7 (EXAMPLE 3): If Assumptions 1, 4-5, 9, and 11 are satisfied and there is
C > 0 with mo(Z) € [C,1 = C] then /n(0 —0) N N(0,V). If in addition Assumption 7 is
satisfied then V 25 V.

The additional condition in Corollary 7 is that the propensity score is bounded away
from 0 and 1, an overlap condition that is common in asymptotic theory for estimators
of the average treatment effect. Together Corollaries 5-7 demonstrate how simple primitive
conditions involving m(w,v) can be specified so that the Auto-DML 6 of an object of interest
will be asymptotically normal and the asymptotic variance estimator V consistent.
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5. NONLINEAR EFFECTS OF MULTIPLE REGRESSIONS

Some important effects of interest are expectations of nonlinear functions of multiple
regressions. Causal mediation analysis is an important example that we consider in this
Section. The regression decomposition in Section 6 is another important example. In this
Section we give Auto-DML for such effects. Such effects have the form 6y = E[m(W, )]
where m(w, ) is nonlinear in a possible value 7 of multiple regressions (v1(X1), ..., Y (Xk))’
with regressors X}, specific to each regression v, (X}). The corresponding orthogonal moment
functions are like those discussed in Section 3 except that the bias correction is a sum of K
terms with the k% term being the bias correction for the learner of 4, as in Newey (1994, p.
1357). The estimated bias corrections are like those of Section 4 with the k™ term being the
product of a Lasso learner dy(X}) and the residual Yy, — Jx¢(X%). Each dye(Xy) differs from
Section 3 in the corresponding M being a derivative evaluated at a preliminary estimator
of 4. Because the construction of 6 is so closely related to that in Section 3 we proceed
immediately with its description here and fill in details concerning the orthogonal moment
function below.

The Auto-DML of a nonlinear effect is similar to equation (3.1). Specifically it is

L K
N 1 R R )
(5.1) 0 = - Z Z{m(VVi, Ye) + Z ke (X ) [Yri — e (Xi) ]}
(=1 i€l k=1
1L K
ﬁ Z Z wzéu 1/% - ( 5 W Z sz Ykz ﬁ/kZ(sz)]?
(=1 i€l =1
where each Gye(Xy;) is obtained as follows: For each k let by(xy) = (bg1(xk), ..., bip(zx))" be

a p x 1 dictionary vector specific to the k' regression 7 (z)) and let 4, be the vector of
regressions computed from all observations not in either I, or I,,. Also let 7 denote a scalar,
and e, the k' column of the K dimensional identity matrix. Then

(5.2)

p
Are(Xki) = bi(Xii) Pre, pre = arg mpin{—QMéeP + 0/ Grp+ 2r ol 3, ol = Il

~ ~ ~ A 1
Mké = (Mkéh "'7Mk€p)/7 Gkﬁ - < ) Zbk(sz)bk<sz>/a

Myj = ar (n — W) SN mWi Aee + Terbrg)| . (G =1,...,p).

O£ i€l
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where by; denotes the j™ element of the dictionary by(z) as a function of . Thus the
Gre(X;) in equation (5.1) is a Lasso minimum distance estimator like that of Section 3 that
is specific to 4, and uses the My, from equation (5.2) rather than the one in equation (3.3).

The ngj given here generalizes equation (3.3) to allow for nonlinearity of m(w,~) in .
The derivative with respect to the scalar 7 in M, kej is generally simple to compute analytically
using the chain rule of calculus, as we will illustrate for causal mediation analysis. When
m(w,y) is linear in a single v this derivative just evaluates m(W;,v) at v = b;, giving the
My; of equation (3.3). As with linear m(w,~) the My and the rest of the § depends just
on m(w,~) and the first step. Thus the 6 in equation (5.1) is automatic, in the same way as
the estimator of equation (3.1), in only requiring m(w,y) and the regression residuals Yfor
its construction.

The ngj given here does depend on a cross-fit regression learner 4y in order to allow for
the nonlinearity of m(w,~) in . The cross-fitting will make the sample average used in the
construction of ngj independent of the regression learner 4y used in its construction. This
independence helps ngj to be uniformly consistent over 7 = 1,...,p for large p with only
mean square convergence convergence rates for 4, . This feature of the theory helps 6 to be
root-n consistent and asymptotically normal for a wide variety of regression learners 4, .
This ngj was given in Chernozhukov, Newey, and Singh (2018, p. 17). Multiple cross-fitting
has also been used in Newey and Robins (2018) and Kennedy (2020).

The dictionary bg(zg) used in the construction of dge(xy) should be chosen analogously
to the b(z) in Section 3. Each by; should be an element of the set I'; of possible plim’s of
k. Also linear combinations of by(xx) should be able to approximate any element of I'y
arbitrarily well in mean square. That is, Assumption 1 should be satisfied with T'y, and by (z)
replacing I and b(x) respectively. In particular if 4y is a high dimensional regression then
b(z) = (Tg1, ..., Trp) will do. If 4 is a nonparametric estimator then by (x)) should be chosen
so that linear combinations can approximate any function of xy.

An important difference between the Lasso minimum distance learner in Section 3 and
each dye(xg) here is that the penalty size 7, must be chosen to be larger than +/In(p)/n
when m(w, 7v) depends nonlinearly on 7. The reason for larger 7y, is that My depends on the
machine learner 4, and so will converge at a slower rate, leading to a requirement that r,
converge to zero slightly slower than the mean square convergence rate of 4, . A choice of

—1/4

r, proportional to n will generally suffice for this purpose, since 4 will be required to

converge faster than n=1/4,
This estimator will not be doubly robust due to the nonlinearity of m(w,~) in v; see
Chernozhukov et al. (2016). Nevertheless it will have zero first order bias and so be root-n

consistent and asymptotically normal under sufficient regularity conditions. It has zero first



AUTO DML FOR CAUSAL EFFECTS 27

order bias because Gy (1) will consistently estimate @y (z) such that S0 | @ () [yr —Jx (21)]
is the influence function for E[m(W,y(F))] at v(F) = 4 where v(F) =plim(¥).

EXAMPLE 5: (Causal Mediation Analysis) Causal mediation analysis provides an interest-
ing example of a nonlinear function of multiple regressions. This effect allows for intermediate
variables, called mediators, that lie between treatment and outcome. In this example there
is an outcome variable Y, a treatment indicator D € {0,1}, and covariates Z similar to the
average treatment effect in Example 3. In addition there is a mediation variable that we will
denote by @), where we assume that @ € {1,..., K — 1) for an integer K > 3. Let

’}/KO(D7Q7Z) = E[Y|D7Q7Z]7 ’}/k:O(Dv Z) = PI(Q = k|D’Z) = E[I(Q = k)|D> Z]v (k = 17 >K_1)

The causal mediation effect of Imai, Keele, and Tingley (2010, Theorem 1) is

K-1

Oo(d,d') = Z’YKO (d, k, Z)yro(d', Z)].

k=1
This effect, or parameter, has the form 0y(d,d’) = Elm(W,~)] for W = (Y, D, Q, Z) and

K-1

m(W,v) = Z Y (d, k, Z)y(d', Z).

k=1
In this example we have X}, = (D, Z), (k=1,..., K—1) and X, = (D, Q, Z). To construct
the Auto-DML 6 we need to choose the dictionaries bp(X}y) for each k. We choose

b (Xk) = (bxk1(D,Q, Z), ..., bxp(D,Q, Z))

to be a nonparametric dictionary if 4k is a nonparametric estimator such as a neural net or
random forest or choose by (D, @, Z) to be the leading p regressors used in a high dimension
regression learner Y. For k < K — 1 we choose the same dictionary b,(X) = by(D, Z) with

bi(D,Z) = (bu1(D,Z),....b1,(D, Z)),

for each k < K — 1. We specify b1(D, Z) to be a nonparametric dictionary if each 4y is a
nonparametric estimator such as a neural net or random forest or choose by (D, Z) to be the
leading p regressors used in a high dimension regression learner for each 4.

It is straightforward to compute each ngj. Note that for £ < K — 1,

d
= E’YK(CZ, k, Z){’}/k(d/, Z) + Tblj(d/, Z)}

d K-1

= E{Z{W((da k, Z) + bij(d, k, Z)}y(d', Z)]

—m(W, Y -+ Tekbkj>

= d,k,Z2)by;(d, Z
dr 7K(77)1](7)7

7=0

=0

%m(VV, Y + TeKbKj>

=0

7=0
K-

:Z id ke, Z)y(d', Z).
k=
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Then we have

. 1 A
Mkéj = Z Z ")/Kgyg/(d, ]i’, Zi>b1j<d/, ZZ), (k = 1, ey K — 1),
e e,
] K1
Mg = — Z Z Z brci(d, Ky Zi)wew (d' Zs), (5 =1,....p).

O£ i€l k=1

We can then compute éy () as in equation (5.2) and 0 for Y, = 1(Q; = k), (k=1,..., K —1)
and Yx; = Y; as in equation (5.1).
The orthogonal moment function corresponding to this estimator is

K-1
@D(VV,’Y,O(,H) = Z,YK(d?kvz)fYk(d/7Z) _9+aK(DaQ>Z)[Y_’YK(DanZ)]
K-1 =
+3 " an(D, Z2)[1(Q = k) — (D, Z)], vk, ax € Tk, Yo €T, (k< K —1).
k=1

where 'k is the set of possible plims of 4, and I'y is the set of plims of 4y for £ < K —1. This
moment function differs from the multiply robust moment function of Tchetgen Tchetgen
and Shipster (2012) in imposing the constraint that each 74 and «y are contained in the set 'y
of possible plim’s of 4. For example, when 4 is a high dimensional regression estimator v
and ax must be elements of the mean square span of (X, X5, ...) similarly to Section 2. It has

the multiple robustness feature that for = E[m(W, )] and any o = (ay, ..., ax) € IE T,

shown in Chernozhukov et al. (2020) to be a general feature of orthogonal moment functions
constructed from the influence function of E[m(W,v(F"))]. It also has other multiple robust-
ness features. For ayg, (K = 1,..., K) given in the proof of Corollary 10 in the Appendix,
when oy € T'1, (k< K — 1) and akg € Tk,

E[d)(W7 Y10, "'77K71,077K7 Qq, 90)] = 07 E[w(m Y15 -+ YK-1, VKO, X0, 00)] = 07

for any v € ' and 4, € I'y, (K < K —1).

We now return to the general learner 6 and give regularity conditions for asymptotic
normality and consistent estimation of the asymptotic variance of §. For 5 = (1, VK) €
[IE T, and y; € Ty, let

(9m(W, ’~)/ + ekT’Yk)
or

Dk<W7 ks 5/) =
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be the Gateaux derivative of m(W,~) with respect to -, when it exists. Comparing this
definition with equation (5.2) we see that each Mkjg is an average of values of this Gateaux
derivative. We impose the following condition on these derivatives.

ASSUMPTION 12: There are C, € > 0, agj(w), and Ai(w,v) such that for all v with
v =7l < e, De(W, byj,7) exists and for k=1,..., K
De(W, bij, 7) = arg (W) A(W, ), max |Elay; (W){Ax(W, ) — AW HI < Clly =31l

max |az; (W)] < C, E[Ax(W,7)*] < C.
JI=p

This condition and the use of the cross-fit 4, in ng lead to a convergence rate for ng.
Let Mkj = E[Dk<W, bk];’?)] and Mk = (Mkh ceey Mkp), (j = 1, -y Dy k= 17 ceey K)

LEMMA 8: If there is 0 < d,, < 1/2 such that ||xee — Ve | = Op(n=), (k=1,..., K;(,0 =
1,...L), and Assumption 12 is satisfied then

Ve — MkHOO = 0,(n~).

This result can be utilized to obtain mean square convergence rates for &y from Theorems
1 and 2. As for linear functionals the limit &, of the estimators ¢&; are important for
the properties of 0. Here the @ are associated with the Gateaux derivatives De(W, vk, 7),
(k =1,..., K). The following condition specifies each & and specifies the size of the remainder

in a linearization using the Gateaux derivatives.

AssuMPTION 13: i) For (k = 1,...,K) there is ay € Ty such that for all v, € T,
E[Dy(W, v, ¥)] = Elaw(Xi) v (X3)]; ) ap(Xx) and E[{Y;, — 3%(X5) Y2| X are bounded; iii)
there are €, C > 0 such that for all v € TIE_ Ty with ||y — 7| <,

K

[E[m(W, ) = m(W,7) =Y De(W.m = 79| < Clly =41

k=1

Here each @y, is specified as the Riesz representer for the linear functional E[Dg (W, v, )]
on v € I'y as in Newey (1994, equation 4.4). Here the linearization E[Dy(W,vx, )] has the
role that was fulfilled by the linear functional E[m(W, )| earlier. Indeed when m(W,~) is
linear then m(W,~) will be its Gateaux derivative.

From Lemma 8 we see that the convergence rate for each M, is the convergence rate n~%
of 4 rather than \/W Consquently conditions for root-n consistency are different in
the nonlinear m (W, ) case than in the linear one. The following condition imposes the rate

conditions for a nonlinear functional.
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ASSUMPTION 14: There is 1/4 < d, < 1/2 such that ||fx — % = Op(n™%), (k =
1,...,K) and for & = &y and b(z) = bp(xy), either i) Assumptions 2 and 3 are satisfied and
dy(1+4€) /(1 +26) > 1/2 or i) Assumption 7 is satisfied and d, > 1/3.

The requirement d, > 1/4 given here is familiar for estimators that depend nonlinearly
on unknown functions, e.g. Newey (1994).. Condition i) allows d, to be any rate greater
than 1/4 if £ is large enough. Condition ii), which drops the sparse eigenvalue assumption
but requires absolute summability of the coefficients of each ay, requires d, > 1/3.

The following gives the large sample inference results for § and V. Define

K

6 = E[m(W,9)], ¢(w) =m(w,3) =0+ Y ap(zy)lye — ()], V = E[p(WV)?].

Here 6 will be the object estimated by 8 for 5 =plim(¥).

THEOREM 9: If for I' = T, b(z) = bp(xy), r = 1 for (k = 1,....K) and ¢, = n=%
Assumptions 1, 4, 5, 10, and 12-14 are satisfied then /n(0 — 0) N N(0,V). If in addition
Assumption 7 is satisfied for & = ay. and b = by, for each (k=1,...,K) then Vv

EXAMPLE 6: It is straightforward to specify regularity conditions for causal mediation

that are sufficient for the conditions of Theorem 9 to hold.

ASSUMPTION 15: 4 (X}) is bounded (k = 1,...,K), there is C > 0 such that Pr(D =
d,Q=q|Z) > C forall d € {0,1}, g € {1,..., K =1}, and E{Y —x(D,Q, 2)}*|D,Q, Z] <
C.

This condition is used to guarantee that ay(X}) is bounded for each k. For brevity the
form of ay(X}) and ¥ (w) is given in the Appendix

COROLLARY 10: If for T =Ty, b(x) = by(zg), r =1 for (k=1,...,K) and &, = n="
Assumptions 1, 4, 5, 14, and 15 are satisfied and there is C' > 0 such that |y (xx)| < C for
all x, then /n(6 —0) LN N(0,V). If in addition Assumption 7 is satisfied for a = ay and
b=by for each (k=1,...K) then V25 V.

The conditions of this result are simple relative to the general regularity conditions in
Assumptions 12 and 13. This simplicity is facilitated by m(W,~) being quadratic in ~. The
condition that |yx(zx)| < C is not strong for k = 1,..., K — 1 because Y}; € {0,1}. For
k = K this restriction could be imposed by truncating 44 (z) for some C' larger than a known
bound on g (X}) without affecting Assumption 14. In this way Corollary 10 provides a
quite simple set of conditions for Auto-DML of causal mediation effects.
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6. REGRESSION DECOMPOSITION AND THE AVERAGE TREATMENT EFFECT ON THE
TREATED

In this Section we consider regression decompositions and the average treatment effect on
the treated (ATET). We also give an empirical application of the ATET using Auto-DML.

ExXAMPLE 6: (Regression Decomposition and ATET): The effect of some dummy variable
D € {0,1} on an outcome variable Y is often of interest. Regression analysis can be used
to decompose the unconditional effect into an effect conditional on covariates and an effect
from a shift in the covariate distribution when D shifts. One such decomposition takes the
form

E[Y|D = 1] - E[Y|D = O] = Aresponse + Acomposition;
E[D(0, 2)]

E[D(0, Z)] _ _
PI‘(D _ 1) ) Acomposztwn - PI’(D _ 1) E[Y|D - 0]7

where vo(D, Z) = E[Y|D, Z]. We will focus here on the response effect
E[D(1, 2)] — E[Dy0(0, Z2)] _ E[D{0(1, Z) — (0, 2)}]

A7“651007156 = E[Y|D = 1] -

pr— A - -
90 response PI‘(D — 1) PI‘(D = 1)

This 6, is the average effect of changing D on the outcome Y conditional on Z, averaged

over the subpopulation with D = 1. One could also consider a corresponding effect on the
subpopulation with D = 0. That could also be estimated using Auto-DML similarly to 6y
but for brevity we omit this discussion.

This 0y is also the ATET when D is a treatment indicator and potential outcomes are
mean independent of treatment conditional on covariates Z. Thus the estimator § and the
asymptotic variance estimator V we give could be applied for inference for the ATET. We
do so in the application given later in this Section.

The key regression functional of interest for 6 is

(6.) B[D2(0. Z)] = Efro(Z) (0. 2)] = Elmo(2) 7= 757000, 2)]
= Elag(X)n0(X)], ao(X) = %

Here ap(X) is the Rr of a linear effect as in Section 2 with m(w,~y) = dvy(0, z). The condition
Elag(X)?] < oo for a finite semiparametric variance bound is E[1/{1 — m(Z)}] < oo.

The effect 0y = Ayesponse = ATET is a special case of the nonlinear effect in Section 5
where v = (y1,7), Y1=Y, X; = (D, %), Yo =D, Xy =1, and

m(w,y) = %[?Jl - (0, 2)].
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The orthogonal moment function for this object is

(w0, 7,75, @, 8) = %{d[y — (0, 2) — 8] — (@) ly — ()]},

where for notational convenience we let y; = y, y» = d, and 7y, = «. Similarly to Section 2
this moment function is doubly robust in that

E[Y(W, 7, Y20, @, 6p)] = 0

if either 7(X) = E[Y|X] or o(X) € I
An Auto-DML is given by

62) 0= (0 S ID— (0. 20] — a(X i — (X}
(=1 i€l
V= 2SS e = MDY = (0. 20) = 6] = Ga(X)IY: = 3o(X)),

where np is the number of treated observations and é,(z) is the Lasso learner of the Rr
for m(w,~) = dv(0, z). Similarly to the ATE in Example 3 we specify the dictionary to be
b(z) = [dq(2), (1 — d)q(2)"], where q(2) = (21,...,2p/2)" when 4, is high dimensional and
q(z) is a vector of approximating functions when 4, is nonparametric. Then m(w,b;) =
d-b;(0,2) = d-1(j > p/2)q;j—p/2(2), so that

~ 1 0 i 1
M, = n—ngzm(Wi’b) = ( i ) Qo= n_WZDiQ(Zz')-

i¢l,

Then by block diagonality of Gy and the first block of M, being zero

dy(x) = (1 = d)q(2) pea, per = arg mpin{—QCYZPQ + b Grops + 2 | p2ll1}

The &y learner sets the “weights” @y; to approximately “balance” the treated and untreated

averages for each element of ¢(z).

COROLLARY 11: If i) there is C > 0 with mo(Z) < 1 — C and ii) Assumptions 1, 4, 5,
and 9, 11 are satisfied then for 6 = E[D{Y — ~(0,2)}]/Pr(D = 1) and (W) = Pr(D =
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1)"YDIY —5(0,2) — 0] — a(X)[Y —5(X)]},
Vi(d —6y) ~5 N(0,V), V = E[p(W)?).

If Assumption 7 is also satisfied then V -2 V.

As an empirical application, we use the Auto-DML of the ATET to estimate the effect of
job training in the National Supported Work Demonstration (NSW), a job training program
for disadvantaged workers that operated in the mid-1970s. We follow the empirical strategy
of LaLonde (1986) and Dehijia and Wahba (1999), who compare the difference-in-means
estimator applied to an experimental data set with various econometric estimators applied
to “quasi-experimental” data sets. The experimental data set consists of the treatment
and control groups from a field experiment. A quasi-experimental data set consists of the
treatment group from a field experiment and a comparison group from an unrelated national
survey.

We use sample selection and variable construction as in Dehijia and Wahba (1999) and
Farrell (2015). The outcome Y is earnings in 1978. The treatment D is an indicator of
participation in job training. We consider three specifications of covariates Z. We impose
common support of the propensity score for the treated and untreated groups based on
covariates Z as in Farrell (2015). Specifically, we calculate the range of propensity scores
for the treated group, and drop observations in the untreated group whose propensity scores
lie outside this range. We implement this procedure for each of the three specifications
(inducing three different propensity scores), and ultimately keep the untreated observations
that pass all three tests. In estimation, we consider the fully-interacted dictionary b(D, Z) =
(1,D, Z,DZ) for all three specifications of Z.

The covariate specifications are as follows.

(1) Demographics and earnings, with quadratic terms of continuous variables. In partic-
ular, the covariates are: age, education, black indicator, Hispanic indicator, married
indicator, 1974 earnings, 1975 earnings, age squared, education squared, 1974 earn-
ings squared, and 1975 earnings squared. This specification is moderately flexible. It
is one that an analyst may reasonably implement without knowing the experimental
benchmark ex ante. Here dim(Z) = 11 and p = dim(b(D, Z)) = 24.

(2) Demographics and earnings, with quadratic terms of continuous variables and con-
structed indicators. In particular, the covariates are: those in specification 1; un-
employed in 1974 indicator, unemployed in 1975 indicator, and no degree indicator.
This specification includes some domain knowledge about which signals employers
may respond to while making hiring decisions. Note that it does not include con-
veniently hand-crafted basis functions to get closer to the experimental benchmark.
Here dim(Z) = 14 and p = dim(b(D, Z)) = 30.
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spec. | treated | untreated | Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 172 3022.84 1278.54 3106.55 | 1327.02 | 2585.19 | 1183.85
2 185 172 2959.72 1253.13 3077.26 | 1318.67 | 2606.43 | 1020.56
3 185 172 2289.65 836.19 2785.13 | 819.17 | 2504.83 | 770.24

TABLE 2. ATET using NSW treatment and NSW control, by Auto-DML

spec. | treated | untreated | Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 727 900.58 873.62 1521.92 | 977.08 197.53 946.30
2 185 727 1466.35 882.67 1336.66 | 956.22 | 1447.65 | 980.73
3 185 727 1763.20 1026.09 2010.53 | 987.73 | 2698.55 | 1036.24

TABLE 3. ATET using NSW treatment and PSID comparison, by Auto-DML

spec. | treated | untreated | Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 5904 703.21 583.23 1639.95 | 616.08 | 1686.77 | 611.81
2 185 5904 971.46 583.48 1584.12 | 616.33 | 1094.86 | 590.31
3 185 5904 1358.46 614.56 1906.62 | 651.77 | 2235.09 | 742.86

TABLE 4. ATET using NSW treatment and CPS comparison, by Auto-DML

(3) A high dimensional specification where the covariates are: those in specification 2;

all possible first order interactions, and all polynomials up to order five of the con-

tinuous variables (age, education, 1974 earnings, 1975 earnings). This specification
was introduced by Farrell (2015). Here dim(Z) = 171 and p = dim(b(D, X)) = 344.

We estimate the Rr with Lasso minimum distance, and the regression with Lasso minimum

distance, random forests (RF), or neural networks (NN). For Lasso minimum distance, we
use the tuning procedure described in Appendix A. We use the same settings of random
forest as Chernozhukov et al. (2018). We implement a neural network with two hidden
layers of eight units each and linear activation. We use L = 5 folds in cross-fitting.

Tables 2, 3, and 4 summarize results for the NSW, PSID, and CPS data sets, respectively.
For comparison, LaLonde (1986) reports 1794 (633) by difference-in-means applied to the
NSW data, which is the experimental benchmark. Farrell (2015) reports 1737 (869) by
group Lasso applied to the PSID data using specification 3. Our corresponding estimate is
1763 (1026), and our other results are broadly consistent. To validate the robustness of our
results with respect to the choice of tuning procedure, we report analogous tables using cross
validated regularization in Appendix C.
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7. PANEL AVERAGE DERIVATIVE AND DEMAND ELASTICITIES

In this Section, we apply Auto-DML to estimating demand elasticities while allowing for
individual preferences that are correlated with prices and total expenditure. Specifically, we
estimate own-price elasticity in a panel data model with correlated random slopes. We apply
this approach to Nielsen scanner data.

A panel data model requires double indexing. Let Yy, (t = 1,...,T;,7 = 1, ...,n), denote the
share of total expenditure on some good for household ¢ in time period t. Let X;; be a vector
of log prices, log expenditure, and covariates. Let X; = (Xi1, .., Xi7.)" collect observations
over all time periods for individual ¢ into one vector. We allow for an unbalanced panel
where different households may have different numbers of observations 7; as in Wooldridge
(2019).

Consider the demand model of Chernozhukov, Hausman, and Newey (2021) given by

(7.1) E[Yy|X;, Bit] = b1(Xi) B

The K-dimensional dictionary by (Xj;) is a vector of functions of X;; that includes a constant
and, for example, powers of log price and log expenditure. B;; represents household specific
preferences that may vary over time and that may be correlated with regressors from each
time period. We assume the conditional mean of B;; is time stationary with

(72) E[th|XZ] == []K (24 f{i]lﬂ'o, T = (71-10’ "'77T/K,0)/7

where [ is a K-dimensional identity matrix. H; is a vector of functions of X, with length
that does not depend on 7;. This panel model is like that of Chamberlain (1982, 1992),
Chernozhukov et al. (2013b), Graham and Powell (2012), and Wooldridge (2019), as further
discussed in Chernozhukov, Hausman, and Newey (2021).

We will consider identifying and estimating transformations of 5y = E[By]. o is inter-
pretable as the average marginal effect of changing b;(X;;). The transformations we consider
will be interpretable as average income, own-price, and cross-price elasticities. By law of

iterated expectations, our model implies

(7.3) Bo = E[By] = [[x ® E[H,]]'mo.
Combining (7.1), (7.2), and (7.3), we summarize the correlated random effects model as
follows.
’Yo(j(i) - E[Yit‘Xi]
= 01(Xa)'{Bo + E[Ba| Xi] — fo}
= by(Xa)'{Bo + Ik ® Hi)'mo — [Ix ® E[H;])'mo}
(7.4) = b1(Xi0)'Bo + [b1(Xe) @ (H; — E[H])]'mo.
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In summary, the choice of K-dimensional dictionary bi(X;;) in the demand model (7.1)
induces a p-dimensional dictionary by = b(X;) = (by(Xy)', [01(Xy) ® (H; — E[H;))]')’ in the
correlated random effects model (7.4). In practice, we replace E[H;] with D H; and set
H= £ 0 bi(Xa).

ExAMPLE 10: Demand elasticities. Denote X;; = (Dy, Z;) where D;, is log own price.
By the derivation in Chernozhukov et al. (2019) for budget share regressions, an average

= 1 g—E [—8%(}(")] .

own-price elasticity is

ad

Own-price elasticity 6 is a smooth transformation of a linear effect y, which in this case is
average derivative. Auto-DML of own-price elasticity is then given by

~

A 6

- 1 n T; - B

where 6 is the Auto-DML of average derivative from Example 4. Income elasticity and

cross-price elasticity have a similar structure; see Appendix B.1 for details.
For completeness, we present M, for average derivative using the panel data dictionary
bit.

ad

N 1 T Obj; 1 Zzﬂ: ( 0b1(Xit) )
M, = =3 = = —5 :
Zi:l Ti - Zie[e T igl, t=1 ad Zi:1 T; - Zie[l T; idl, =1 0

Recall Theorem 4 provides consistency and asymptotic normality guarantees for Auto-DML

6. A more sophisticated estimator V' of the asymptotic variance of 6 is required that accounts
for clustering of observations by household. See the Appendix B.1 for details. Importantly,
the cluster structure is also preserved in cross-fitting. Clustering methods for DML were
previously used by Chiang et al. (2019) and Chernozhukov, Hausman, and Newey (2021).
The consistency of the own-price elasticity 6* follows from the continuous mapping theorem,
and the asymptotic normality of 6* follows from delta method.

As an empirical application, we apply Auto-DML to estimate own-price elasticity of milk
and soda with Nielsen scanner data. The empirical work here is the researchers’ own analyses
calculated (or derived) based in part on data from Nielsen Consumer LLC and marketing
databases provided through the Nielsenl() Datasets at the Kilts Center for Marketing Data
Center at The University of Chicago Booth School of Business. The conclusions drawn from
the NielsenlQ data are those of the researchers and do not reflect the views of NielsenlQ.
NielsenlQ is not responsible for, had no role in, and was not involved in analyzing and
preparing the results reported herein.
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The data we use are a subset of the Nielsen Homescan Panel as in Burda, Harding, and
Hausman (2008, 2012). The data include 1483 households from the Houston-area zip codes
for the years 2004-2006. The number of monthly observations for each household ranges
from 12 to 36, with some households being added and taken away throughout the three years
covered. 609 households are included the entire time. Expenditures include all purchases
of the household in each month. The original data had time stamps for purchases. If a
household purchased a good more than once in a month, the “monthly price” is the average
price that the household paid (i.e. total amount spent on good/total quantity purchased).
We include observations with zero expenditure share as justified in Chernozhukov, Hausman,
and Newey (2021). For those observations, Y;; = 0 and own price is imputed in the ways
described in Chernozhukov, Hausman, and Newey (2021).

We consider 15 groups of goods: bread, butter, cereal, chips, coffee, cookies, eggs, ice
cream, milk, orange juice, salad, soda, soup, water, and yogurt. As in Burda, Harding,
and Hausman (2008, 2012), we choose these groups because they make up a relatively large
proportion of total food expenditure. We consider budget share regressions for two of these
goods: milk and soda. Yj; is share of expenditure spent on milk (soda) by household i
in month t. We take as by (X;;) the concatenation of the following variables: fourth order
polynomial of log expenditure; fourth order polynomial of log price for milk (soda); up to
fourth order interactions thereof; and log price of other goods. For H;, we use the time
averages of by (Xj;). Note that K = dim(by (X)) = 42 and p = 1521.

We estimate own-price elasticity according to the procedure outlined previously in this
Section. We estimate both the Rr and the regression with Lasso minimum distance. For
Lasso minimum distance, we use the tuning procedure described in Appendix A. We use
L = 5 folds in cross-fitting. We calculate clustered standard errors by delta method, as
described in Appendix B.1.

Table 5 summarizes results for the milk and soda own-price elasticities using Auto-DML.
For comparison, the cross sectional estimates for milk and soda elasticities are —1.27 (0.0163)
and —0.859 (0.00485), respectively (Table 1 of Chernozhukov, Hausman, and Newey 2021)
and the corresponding fixed effects estimates are —.739 (.0197) and —.853 (.00517). Our re-
sults show that allowing for correlated random coefficients lowers these elasticity estimates,
especially the milk elasticity. These results confirm the finding in Table 5 of Chernozhukov,
Hausman, and Newey (2019), that panel elasticity estimates allowing for correlation of pref-
erences with prices and total expenditure are much smaller than cross-section estimates for
milk. Our own-price elasticity estimates are not as small as their slope fixed effect estimates,
which for milk are between —0.626 (0.00849) and —0.496 (0.0479) and for soda are between
—0.805 (0.00830) and —0.780 (0.0235) depending on choice of regularization parameter.
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good | elasticity | SE
milk | -.645 | .00649
soda -.826 .00379

TABLE 5. Average own-price elasticity, by Auto-DML

good | elasticity | SE
milk | -.863 | .00255
soda | -.863 | .00305

TABLE 6. Average own-price elasticity, by plug-in

For further comparison, we report results from the plug-in approach in Table 6. The plug-
in elasticity estimates are much closer to the cross-section estimates than the Auto-DML
estimates. The results of this table confirm the importance of debiasing in this application,
with debiased estimates differing from plug-in estimates by much more than the associated
standard errors.

8. CONCLUSIONS

In this paper we have given an automatic method of debiasing a machine learner of a
parameter of interest that depends on a high dimensional and/or nonparametric regression.
The method only requires the form of the object of interest. The regression learners are
allowed to be anything that converges in mean square at a fast enough rate. We have shown
root-n consistency and asymptotic normality and given a consistent asymptotic variance es-
timator for a wide variety of causal and structural estimators, including nonlinear functionals
of regression. We have applied these methods to estimate the average treatment effect on the
treated in a job training experiment and have found similar results for Lasso, neural nets,
and random forests regressions. We also have also estimated a correlated random slopes
specification for consumer demand from scanner data and found estimates that are similar

to fixed slope effect elasticities.
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APPENDIX A. COMPUTING AUuTO-DML

A.1. Tuning.

A.1.1. Theoretical Procedure. The estimating equation (3.7) takes as given the value of reg-
ularization parameter r;. For practical use, we provide an iterative tuning procedure to
empirically determine r;. Due to its iterative nature, the tuning procedure is most clearly
stated as a replacement for equation (3.7).

Recall that the inputs to equation (3.7) are observations in [7, i.e. excluding fold ¢. The
analyst must also specify the p-dimensional dictionary b. For notational convenience, we as-
sume b includes the intercept in its first component: b;(x) = 1. In this tuning procedure, the
analyst must further specify a low-dimensional sub-dictionary b'°" of b. As in equation (3.7),
the output of the tuning procedure is py, an estimator of the Rr coefficient trained only on
observations in Ij.

The tuning procedure is as follows. For observations in I

(1) Initialize p, using b'°¥

A 1
Gzow — § : blow (Xi)blow (Xz),
n—mny il
N 1
Mlow — m blow
J4 n—ny ;g[z: m( ) )

~ -1 .
low low
A (Gg ) !

Pe =
0
(2) Calculate moments
A 1
= e M)
~ 1
M, = m Wi, b
¢ n—mny igzlg ( )

3) While p, has not converged
(3) p g
(a) Update normalization

ﬁe = [dz’ag (n _1 Ny Z[b(Xi)b<Xi)//3€ - m(Wi7 b)]2>]

igly
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(b) Update (7, pe)

rp=— b gt (1- 2
L Vno— 1y 2p
P
pe = arg mpin p'Gp— 20" My +2rpc3| Doy - pr| + 2rp Z Dy - pjl
=2

where p; is the j-th coordinate of p and D&j is the j-th diagonal entry of Dy.

In step 1, b'v is sufficiently low-dimensional that @f“’ is invertible. In practice, we take

dim(b'?) = dim(b)/40.

In step 3, (c1, ¢, c3) are hyper-parameters taken as (1,0.1,0.1) in practice. We imple-
ment the optimization via generalized coordinate descent with soft-thresholding. See below
for a detailed derivation of this soft-thresholding routine. We use the same techniques as
Chernozhukov, Newey, and Singh (2018) to improve numerical stability in high dimensional
settings. We use Dg + 0.21 instead of ﬁg, and we cap the maximum number of iterations
at 10. We also use warm start: in a given iteration, the optimization to determine p, is
initialized as the value of p, in the previous iteration.

A.1.2. Cross-Validation Procedure. In the theoretical tuning procedure, the hyperparameters
(¢1,¢9,c3) are chosen by the analyst. The hyperparameter ¢; is of particular importance
because it scales . We now present a procedure to determine ¢; € {5/4,1,3/4,1/2} by
cross validation.

In the theoretical tuning procedure, denote by 7,(c;) the value of the regularization param-
eter and denote by py(cp) the estimated Rr coefficient that are obtained using hyperparameter
value ¢; and observations in I§. We define the cross-validated loss for the hyperparameter
c1 by

CV(er) =D ) [=2m(W;,b) pe(cr) + {b(X:) peler) Y]

(=1 icl,

To determine ¢; by cross-validation, we solve the optimization problem

*

min CV(cy).
c1€{5/4,1,3/4,1/2}
A.1.3. Justification. The iterative tuning procedure is analogous to Algorithm A.1 and there-
fore justified by an argument analogous to Theorem 1 of Belloni et al. (2012).

The analogy is as follows. The normalization Dy is the square root of the empirical second
moment of the dictionary times the regression residual, just as I, in Belloni et al. (2012).
The formula for the regularization parameter is the same, after accounting for the fact that
the objective in the present work uses r; whereas the objective in eq. 2.4 of Belloni et al.
(2012) uses 2.
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A.2. Optimization.

A.2.1. Procedure. The tuning procedure, an elaboration of estimating equation (3.7), in-
volves the minimization of a generalized Lasso objective. We generalize the coordinate de-
scent approach for Lasso (Fu 1998, Daubechies et al. 2004, Friedman et al. 2007, Friedman
et al. 2010) to the minimum distance Lasso objective used in the present work. Specifically,
we use the following coordinate-wise soft-thresholding update.

To lighten notation, we abstract from sample splitting, estimation of the moments and
normalization, and special treatment of the intercept. We also scale the objective by 1/2:

. 1
p=argmin op'Gp — p'M + 11| Dpl
p

We denote the j-th element of a generic vector V by V;. We denote the (j, k)-entry of the
matrix G by Gjp.
Forj=1:p
(1) Calculate loadings that do not depend on p;

2= Gjj
T =M; = _ ;G
=y
(2) Update coordinate p;
i+ D;r
pj = M’ if mj < —Djrp,
Zj
= O, if 7Tj - [—Djer,DjT.L]
- ua lf 7Tj > DjTL
Z.

J

A.2.2. Justification. In this Section, we derive the coordinate-wise soft-thresholding update
and argue that the procedure converges to the minimizer.
Observe that

0 [1
and the loadings (z;,7;) do not depend on p;.

The subgradient of the penalty term is

0 :
a—perHDle =—-Djrp, if p; <0

= [—DjTL, DjT’L] lf ,0]‘ = 0
= Dj’I“L if pj > 0
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In summary, the subgradient of the objective is

o |1 i
35, |27/ Cp— P M +7ullDplh | = =+ piz = Dy if p; <0
J
= [—7m; — Djrp, —m; + Drr] if p; =0

= —T; + Pz + DjT'L if P >0

Rearranging yields the component-wise update.
In our minimum distance Lasso procedure, the objective is of the form of eq. 21 of
Friedman et al. (2007).

Q(0) = g(0) + > hF(0")
k

9(0) = %B’GQ — M0
h* (%) = |6%]

where ¢ is differentiable and convex and {h*} are convex. Therefore coordinate descent
converges to the minimizer of the objective (Tseng, 2001).

A.3. Minimum Distance Lasso Using Simulated Data. We first validate the minimum
distance Lasso estimator for p on a design in which the truth is known. We compare our
implementation to the Lasso implementation LassoShooting.fit in the hdm package at each
point of departure: minimum distance Lasso formulation, theoretical ry, normalization D,
iteration, and stabilization. Altogether, this exercise confirms the validity of each technique
introduced in the tuning procedure.

In this design, the ground truth is po = (1,1,1,0,0,...) where dim(py) = 101. The data

generating process is

Y =X'py+e

where X = (1, X7, ..., X100)', Xj i N(0,1), and € ~ N(0,1). Recall that the regression

coefficient py can be recovered by using the functional m(w,vy) = yy(x) in the minimum
distance Lasso formulation.

In Table 7, we report MSE defined as |p — po|3 of various implementations. Table 7 is
cumulative in the sense that each row implements one additional technique relative to the
preceding row. Before using theoretical rp, we use r;, = 0.5. We use the estimator reported
in the final row in the empirical examples of Sections 6 and 7; it is precisely the estimator

defined in the tuning procedure.
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algorithm MSE | R?
Lasso 0.0060 | 0.17
generalized Lasso | 0.0060 | 0.17
theoretical rp, 0.0014 | 0.48
normalization D 0.0016 | 0.56
iteration: cold start | 0.0014 | 0.50
iteration: warm start | 0.0014 | 0.50
max iteration 0.0014 | 0.50
D+0.2I 0.0014 | 0.46

TABLE 7. 100 simulations

APPENDIX B. PROOFS OF RESULTS

In this Appendix, we give the proofs of the results of the paper, partly based on useful
Lemmas that are stated and proved in this Appendix. We first give a series of Lemmas like
those in Bradic et al. (2021) except that &, is allowed to be larger than /In(p)/n in order
to allow m(w,~) to be nonlinear in . These Lemmas are used to prove Theorem 1. Let ¢,
be as given in Assumptions 2 and 6 and sq > Ce, 2/(26+1), By Assumption 2 we can define Jy
as indices of a sparse approximation with |Jy| = sy and coeflicients p; for j € Jy such that
for a(z) = ZjeJo pibi(X),

E[{a(X) — a(X)}*] < Osy™.

Define p to be the coefficients of a linear projection of (X)) on b(X) so that &(X) = b(X)'p
satisfies

Also define p, as

(B.1) p« € argmin (p — v)IG(p — v) + 2¢, Z v

jeTS

LEMMA Al: ||G(ps — p)|loo < €n.
Proof: Let e; € RP denote the j-th column of [,. The first-order condition for p* imply
that for j € Jy, we have e;/G(p. — p) = 0; for j € J§, we have that e;/G(p. — p) +€,2; = 0,
where z; = sign(p. ;) if p.; # 0 and z; € [-1,1] if p,; = 0. Therefore, for any j, we have

that |e;/G(p. — p)| < en. Hence, ||G(ps — p)|loo < &n. O

LEMMA A2: (p— p.)G(p—p.) < Cend/ P and ||la — b/p*|| = O(e2/ 1Y),
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Proof: Define p = (p1,...,pp)! as
- pi ijedy
Pj =

0 otherwise.

By the definition of p,, we have that

(B:2) (p—p)G(p—p)+2en Y |pujl < (0= pIG(p—p)+220 Y |p5] = (p— p)IG(p— ).

JEIS JeJ§

Note that a(z) = b(x)'p, so by the defintion of &(z) = b(x) p we have

(b — BNG(p— p) = E{B(X) (p— )] = & — a3 = lla — & — (a - &I} < 2(|a — &l + a - al

<4lla—al* < 4Csy™ < et/

where the last inequality follows by by sq > Cey,, 2/ The result then follows eq. (B.2)
by and &, Zje}g px;] > 0. 0.

Define J to be the vector of indices of nonzero elements of p, and |A| be be the number
non zero elements of any finite set A.

LeEmMA A3: |J| < Cen 2/,

Proof: Forall j € J\J, the first order conditions to equation (B.1) imply [e;G(p.—p)| = &n.
Therefore, It follows that

> (G = )" =2\,

j€J\Jo
In addition,
p p
ST (G =) <D (G (o — )" = (p. — p)'G (Z €j6§> G(p. = p)
jeN\Jo =1 =

= (0« = P)/G*(px = p) < Anax(G){(p — pu)IG(p — pu)} < Cep/ 4D,

where the last inequality follows by Lemma A2 and Ay (G) < C. Combining the above two
displays, we obtain

E2|J\Jo| < Cele/2H),
Dividing through by €2 gives |J\Jy| < Cen /) Thys by s < 05;2/(2&1),

| J| = |Jo| + [\ Jo| = s0 + [J\Jo| < 80+ Ce,, > FH < O, 2/ O,

LEMMA Ad: ||Gp, — Gp.lloe = Op(y/In(p)/n).

2
2

)
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Proof: By (p — p.)'G(p — p.) — 0 and p'Gp < E[a(X)?] it follows that E[{b(X)'p,}’] =
p.Gp, < C. The conclusion then follows by Assumption 4 and Lemma B2 of Bradic et al.
(2021). O,

LEMMA A5: For A = p—p* and any J such that (p*)jo = 0, with probability one then
with probability approaching one,

NGA < 3r||Ally, 1Az < 3)|1A ]

Proof: By the definition of the estimator p, we have

pIGp—2M'p+2r||plly < pLGp. — 2M'p. + 27| pu1.-
Plugging p = p,. + A into the above equation and rearranging the terms gives
(B.3) AIGA + 27|y + Ally < 27| pu|ls + 2(M — Gp,)IA.
By the definition of p and M = E[b(X)a(X)] we have Gp — M = 0. Then by Assumption 6,
Lemma Al, Lemma A4, and the triangle inequality

1Gp. = Moo < [|Gp. = Gpulloo + M = Moo + |Gps = Moo
< Oplen) +1Gp = Mloc + [[G(px = p)lloc = Oplen).
Therefore, by the Holder inequality we have |(M — Gp, IA| < [|M=Gp.|lsollAllr = O,(e0)|A]1,
so that by &, = o(r),
AN'GA + 2] p. + Al < 20l plls + Op(e) AL < 2¢lpallr + 7l Al

with probability approaching one. Then the triangle inequality ||p.||1 = ||p« + A — Alj; <
o« + All1 + [|Allx and subtracting 2r||p. + Al|; from both sides gives the first conclusion.
Next, since A/GA > 0 it also follows from equation (B.3) that 2rp, + Al < 2r|[ps | +
r||All1, so dividing through by r gives
2[lps + Ally < 2flpells + 1A]-
It follows by (p.) je = 0 that [|p, + Ally = [[(p) ; + Ajlls + [[Asellr and [[pufls = [[(p4) sll1-
Substituting in the previous display then gives
20(p) s+ Al + 20A el < 20(pa) sl + 1Al = 20 (o) sl + 1A + A e
< 2([[(pa) s + Al + 1A 1) + 1Al + 1A
= 2[[(px) j + Al + 314l + 1A jella-

1

1

Subtracting 2|(ps) ; + Ajll1 + |A e

1 from both sides gives the second conclusion. .

LEMMA A6: ||A|l, = Op((r/gn)giﬁ/(%ﬂ))‘
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Proof: For J = J it follows from Assumption 3 and Lemma A5 that with probability

approaching one,
1A* < ea'GA < Cr Al = Cr(l|lAgll, + 1A5]) < Cr Al
< Cry/ [ Ay < Cre VP A, = O((r/en)er D A, -
Dividing through by ||A||, then gives with probability approaching one,
1Ay < Cr/en)er/ D

Let N denote the indices corresponding to the largest |J| entries in Aje, so that N C J¢,
IN| = |J| and |A;| > |Ag| for any j € J°N N and k € J\N. By Lemma A5 for J = JUN
it follows exactly as in second previous display that

121, < C(r/en)erd 0.
By Lemma 6.9 of van de Geer and Buhlmann (2011) and Lemma A5,
1A ellz < (1D 7214l < (1D 7231801 < 317DV AS 2 < O(r/en)erd 0.

Therefore, by the triangle inequality with probability approaching one,
1ALl < 1A ]2 + | A lls < Cr/en)e/ D) O,

PrOOF OF THEOREM 1: By Lemma A6,
ANGA < Ao (G) Al = Op((r/e0) e/ *HD).
Then by Lemma A2, the triangle inequality, and Assumption 5, for any ¢ > 0,
la—al* < 201G — ¥p'I* +2[¥(5 — P = O/ 4 A'GA
— Op((r/f:“n)zfiﬁ/(%ﬂ)) —o (n2654€/(2£+1))

Taking square roots of both sides gives the conclusion. [.
Next we give a series of Lemmas that are used to prove Theorem 2.

LEMMA AT: If Assumption 7 is satisfied then Assumption 2 is satisfied with & = 1/2.

Proof: Let J, denote the indices of the s largest coefficients in absolute value and j, € J
<'|poj| for all j € Js. Then

(B.4) s |poj.| < Z pjol < Z |pjol =

JEJs

be such that |py;,




AUTO DML FOR CAUSAL EFFECTS 47

By Assumption 7 J; C {1, ..., p}. Define

p

(X)) =Y pobi(X), as(X) =Y posbi(X).

j=1 jeds
Let p? = (po1, .-, pop) and p® be the vector with pi = py; if j € Jyand p} = 0 otherwise.
Then by |po;| < |poj,| for all j ¢ Jg,

lay — aall® = (0P = p*) G(pP = p°) < Cllp” = p*II> = C > piy < Clooal D ooy

J¢Js J¢Js

< Clpoz| Y lpojl < Clpos,| < C/s.

J=1

It then follows by Assumption 7 and the triangle and Cauch-Scwartz inequalities that

la — a|* < 2@ — o |* + 2 [lay — a||* < C/s. 8.

Define p, € argmin,, {||a — Vpl|* + 2, pl,}-

LEMMA AS8: If Assumption 7 is satisfied then
lo =V p.|® < Cen, [pely < C.

2/(2¢+1)

Proof: Note that by £ = 1/2 as in Lemma A7 we have s = ¢, = ¢, 1. By Lemma

A7 and the definition of p,,
_ 2 _ 2
loe = Vpull™ + 2en [puly < lla = Vpsl|” + 220 sy < Cep.

The conclusion follows from the terms on the left-hand side both being positive. [.
LEMMA A9: If HG - GH = 0,(en) and &, = o(r) then |||, = Oy(1).

Proof: For A = p — p, equation (B.3) can be written as
(B.5) NGA + 20]plly < 2ellpulls + 200 — Gp.YA.

By Lemma A8 ||a — U/p,||> — 0 so that E[(b(X)'p*)?] < C. Then by Assumption 7, Lemma
A8, and the Holder inequality it follows that

|@=cr|_<|é=c|_loall = 0e)0,1) = Oy(cn).
Note that the first order conditions for the minimization of
la = 'pl|* + 2e, |pl, = C + p'Gp — 2B[a(X)b(X)])'p + 2en |pl,
=C+pGp—2M'p+2e,|p|,
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imply that ||Gp. — M| = O(e,), similarly to Lemma Al. Then by the triangle inequality,

HM—@p*

==+ fe-on

- + M = Gpi| o, = Oplen).

Then by the AI/GA > 0, the Holder and triangle inequalities, and dividing equation (B.5)
by 2r we have

18l < llp-ll + |37 = G

Al /r= €+ Oplen/r)pll + lp4ll) = € + 0p(1)]]5]1-

Then noting that o,(1)|/p]l1 < (1/2)||p|lx with probability approaching one we have

ol < €. 0.

(G=G)p
0,(£,)0,(1) = Op(ey). Also, the first order conditions for Lasso imply

Also HM - M‘ = Op(e,) and ||=Gp. + M|, < &, by the first order conditions for p,.
Then by the trigilgle inequality

PRrROOF OF THEOREM 2: It follows by Lemma A9 that ‘

_=e-¢|_tal, =
‘ —Gp+ MH <.

1GG =Pl < || = G|+ |-Go+at|_+|ar— 1| +11-Go* + M, = 0,0,
Then by Lemma A8

(6= p)G(p=ps) <P = pull 1G(6 = p)lloe < (101l + llpsll ) Op(r) = Op(r).

Then we have
6 — al> < 21la — Vo P21 (5 — p)I = Oplen) +2(5—p.Y Glo—p.) = Op(r) = op(n¥e,),

for any ¢ > 0. Taking square roots of both sides of the inequality gives the conclusion. [.

LEMMA A10: If Assumption 4 is satisfied then HG - GHOO = 0,(v/In(p)/n).

Proof: Define e = {/In(p)/n and
1 n
Tijw = bj(Xa)be(Xs) — E[b; (Xi)bx (Xi)], Uje = — > T
i=1
For any constant C

p
Pr(|G — Glo > Cel) < > Pr(|Us| > Cep) < p? n];%xpquM > Ce)

Jk=1

Note that E[T};x] = 0 and
[ Tijil < 16;(X0)] - [be(X)| + Elb;(X3)] - 1br(X3)]] < 2G5
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Define K = 2037 /vVIn2 > ||Tjjil,, . By Hoeffding’s inequality (Vershynin, 2018) there is a
constant ¢ such that

P m%XPr(\Ujk| > Cek) < 2pPexp (—
]7

c(nCer)?
nk?

o)

= 2]02 exp <— 2

< 2exp (m( )2 — Ki;]) 50

for any C' > K+/2/c. Thus for large enough C, Pr(\é — G| > Cy/In(p)/n) — 0, implying

the conclusion. .

PROOF OF THEOREM 3: The proof proceeds verifying Assumptions 1-3 of Chernozhukov
et al. (2020, LR). Assumption 1 i) of LR is implied by Assumption 10. Let ¢(w,vy,«a) =
a(z)ly — v(x)]. Note that by Assumption 9,

[16(w.60.7) = ow,a P Fw) = [{auto) - a@)ly = @) Fd)
< Cllac—al” 20,

J19(w.a.30 - otw,a )Y Fw) = [ alePfit) - () F(ds)
<Cl5e—3I° 20,

giving Assumptions 1 ii) and 1 iii) of LR.
To verify Assumption 2 of LR, note that by Assumption 8 it follows similarly to Lemma
A10 that Assumption 6 is satisfied for

en = V/In(p)/n.

Consider first the first case of Assumption 11 where Assumptions 2 and 3 are satisfied. By
Theorem 1, for any ¢ > 0 we have

lée — | = o0, (n°[n(n) /n]*/ V),
Choose ¢ = [d, + &/(2§ +1) — 1/2]/2 > 0. Then by Assumption 11,
Villae —all 15 — 7] = op(n[In(n)]¥/ Int 2/ EHD=0) = o (n=¢[In(n)]/ ) = 0, (1).

Consider now the second case of Assumption 11 where Assumption 7 is satisfied. Then for
c=(1/4+d, —1/2)/2, the conclusion of Theorem 2 gives

Villae = all 15e = 7]l = op(nIn(m)] /0~ MH=ETZ) = o, (7 [In(n)] /1) = 0,(1).
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Then by the Cauchy-Schwartz and conditional Markov inequalities we have

= Do) — (X HA(X) ~ 30}

i€ly

< i |3 {0eX) G |9 (XD — (X))

: n £ n
i€y i€l

< Vnllag = all |5 = Il = 0,(1),

so that Assumption 2 iii) of LR is satisfied.
To verify Assumption 3 of LR, note that by Assumption 1 é,(z) = b(x) p, € T, so that

/ P(w, 7, &) Fo(dw) = / du(2)[y — 3(2)]F(dw) = 0

and E[m(W,v) — 0 + a(X){Y — v(X)}] is affine in v, giving Assumption 3 of LR. It then
follow by Lemma 15 of LR that

Vn(h —0) = % SN (Wi, A, b, 0) = % Zzﬁ(Wﬂ,dﬁ) +0,(1).

(=1 i€ly

The first conclusion then follows by the central limit theorem.
To show the second conclusion, let ¢; = ¢o(W;). Then for i € Iy,

(i — 3)? < C <Z Ri; + R) , Ri = [m(W;, %) — m(Wi, 7)), Ria = du(X;)* {3(X;) — (X0) 1},

Ris = {0u(X;) — a(Xi) }H{Y; —5(X,)}?, R = (é —0)%.

The first conclusion implies R — 0. Let W_, denote the observations not in I,. By As-

sumption 10,
B{RaW-i) = | bm(w.30) = m{w, )P Firldw) = o,(1)

By Assumption 4 and Lemma A9, uniformly in x
p
e(@)] < Y 1bi(@)] |pes] < C llpelly = Op(1).
j=1

Then by Assumption 11,

E[Ria|W-¢] < C||pel} /{%(1’) = 7(@) Y2 Fw (dw) = C ||pell} 13 = FI* < Op(1)0,(1) = 0,(1).
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Also by Assumption 9 and iterated expectations
[RalW-d < [{au(e) - ala) PELY ~3())*1X = 5] x(d2)

<c / [éu(e) - a()}2Fx (do) = C e - all” = op(1).

Then by the triangle inequality,

Z Z RijIW-d] < E[Ra|W_i] + E[Ris|W_¢] + E[Ris|W_¢] = 0,(1).

zelg 7j=1

It then follows by the conditional Markov inequality that >, Z?Zl Rij/n = 0,(1). The
triangle inequality and adding up over ¢ then gives (1 — ;)2

SIS = = 0,(1),

(=1 icl,

Note also that by Assumptions 9 and 10,
E[7] < C(1+ E[m(W,7)*] + Ela(X){Y - 5(X)}*]) < co.

L L
ZZ(lﬁif_wz 2+2 ZZ 1/125 1/12 1/)1 Z%;

(=1 i€l (=1 iely

3|»—
S|

N 1<
V:ﬁz _ZZ ¢ZZ ¢z+wz
(=1 icl,

Furthermore by the Cauchy-Schwartz and Markov inequalities we have

ENEYS TR sz—w
=1

Then V -2 V follows by the triangle inequality and the law of large numbers. [

3

n

% > (i — i)

=1

PROOF OF COROLLARY 4: Define ¢ =[S, m(Wi, &)/ Y ey, Ge(X;)?. Tt follows by
m(W,~) linear in ~ that

_ a 1 (X)) Vi — Ae(X;
B 5= S g - g S a0}

(=1 i€ly

~

_ % STS T ImWi A + @l X[V — (XG0}

(=1 i€l

= 0+Z{Cg—1} Z{Ozg )Y = e(X3)]}-

lGI(
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It follows from Assumption 11 similarly to the proof of Theorem 3 that there are v.,, — 0
and vy, — 0 such that |5 — vl = Op(vyn), ||de — &l = Op(Van), and /nvy,ven — 0.
We also have

LS (W d) — (X% = Tk Ty, Ti= S (m(Wi,d0) — a(X)a(X),

icl, icly
T, = S a(x){a(X:) — au(Xo)}
" ien,
By & € T we have E[m(W;, &) — a(X;)a(X;)[W-¢] = 0. Also by @(X) bounded and
E[m(W,~)’] < C ||,
E{m(W;, dr) — a(Xi)ae(X) PIW-d] < 2E[m(W;, 60)* W] + 2E[a(X;) %6 (X:)*W-(]
< Clléd® = 0,(1).

Then by the triangle and conditional Markov inequalities Ty = O,(1/y/n) = Op(Van). Also by
the Cauchy-Schwartz and conditional Markov inequalities, ||Gs||> = O,(1), and ||, — @l =
O,(Van) we have

T < {~ Z DY ~ > la(x X} = Op(van).
ZEI@ ZEIZ
Note also that E[a(X)?] > 0 by a(X) # 0 and by similar arguments to those previous it
follows that Y., @(X;)*/m 25 E[@(X)?] > 0. Then
[ Xier dm(Wis &) — 6e(X*}| _ |T1| + |Ty|
% Zz‘e[e df(Xi)Q B % Zie[e dZ(Xi)Q

(B.7) ‘@ . 1‘ - = O, (Van)-

We also have

1 . .
~ 2 wX)Yi = (X)) = T+ D, = Z G (X3)[Yi = 70(X3)],
i€y 16[@

T, = Y X)) — (X))

Similar to previous arguments we have |17 = (1 //n ) Op(vyy) and [Ty = Op(v4,), so by
the triangle inequality |% > ier (X)) [Y: — Ae(X } = O,(Vyn). It now follows by equation

(B.7) that

iGI[

{G—13- Z{ae )Y = 3(Xi)[} = Op(van) Op(¥3n) = Op(VanVin),

ZEI@

so that by equation (B.6) and the triangle inequality,
Vil = 8) = V(0 — 8) + V8 — ) = \/iiB — ) + Oy (vanton) = V(0 — ) + 0y(1).

The conclusion then follows by Theorem 3 and the Slutzky Theorem. Q.E.D.
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PrROOF OF COROLLARY 5: Note that by Assumption 4,
Wb|</w ) + fo(a)]dz < C

so that Assumption 8 is satisfied. Also, |ag(X)| = |[fi(z) — fo(z)]/f(x)] < C by hypothesis,
so by the Cauchy-Schwartz inequality,
E[m(W.~)’] = [E[y(X)a(X)]|” < C[E[(X)))]* < CE[(X)?],

implying Assumption 10. The conclusion then follows by Theorem 3. @, E.D.

PrOOF OF COROLLARY 6: Integration by parts and Assumption 4 give
[m(W,b;)| = |S(U)b(U, 2)dD| < C |b(U, 2)| < C,
so Assumption 8 is satisfied. Also
Elm(W.7)*] = E{S(U)y(U, 2)}*] < CE[y(U, 2)*] = E[f(D|Z) " w(D)¥(X)*] < CE[(X)?],

so Assumption 10 is satisfied. The conclusion then follows by Theorem 3. Q, E.D.

PROOF OF COROLLARY 7: By Assumption 4 and m(w,~y) = v(1,2) — (0, 2) so by the
triangle inequality
Im(W, b;)| = |b;(1, Z) = b;(0,2)| < C,
and Assumption 8 is satisfied. Also

- D

E[m(W,7)*] < CE[y(1, 2)*] + CE[y(0, Z)°] = CE] 1—m0(2)

(1, 2)*] + CE (0, 2)7]

mo(Z)

- onl{ 2+ s b0 < CeLx ),

so Assumption 10 is satisfied. The conclusion then follows by Theorem 3. @, E.D.

Proor or LEMMA 8: Define
Mi(y) = (Mys (), s Mip(7))', Mg (v /Dk (W, bej, v)F(dW).

For notational convenience we henceforth suppress the k superscript. Let —,» be the event
that ||9.,¢ — || < e and note that Pr(—;») — 1 for each ¢ and ¢'. When —; 4 occurs,

/A(W, Ao )2 F(dW) < C,
by Assumption 11. Define

Tij(y) = D(W;,bj, ) — M (), (i € Ip), Upj(y

7’Lg/ Z ,TZJ

ZGIZ/
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Note that for any constant C’ and the event A = {max; |Up;(jee)| > C'el} where €} =
In(p)/n

Pr(A) = Pr(A[lye) Pr(Cpe) + Pr(A|LG ,)[1 — Pr(Lyp)]
(B.8) < Pr(mjax Ui (Feer)| > C'el Vo) + 1 = Pr(Top).
By Lemma B2 of Bradic et al. (2021) there is C”’ large enough that for any ¢ > 0 with
probability approaching one,
Pr(m]aX|Ue/j(’%,e/)| > C'er|Tow) < 0/2.
Also 1 —Pr(I'yp) — 0, so that Pr(A) < ¢ for all n large enough. Therefore
[0 Gl = s U ()| = Ol
Next, for each ¢ it follows that n — n, = Ze,# neg and

Topr R
Z “—Up(%e)

y n—mny
. 0#L

Also by Assumption 12 and Pr(I'y») — 1 for each ¢ and ¢/,

- Ne =
MZ—ZH_WM(“W') =

T ~ *
<Y U (re)ll, = Oler).
V2 n Ty

e,

o)

Nt — A Topr ~ _
ST M) - M| <CY ——|fe—0l = Op(n~h).

n — ny n — ny
= ~ O#

The conclusion then follows by the triangle inequality. [J.

o0

PrROOF OF THEOREM 9: The proof proceeds verifying Assumptions 1-3 of Chernozhukov
et al. (2020, LR) similarly to the proof of Theorem 3. By Assumption 14, if Assumptions 2
and 3 are satisfied it follows by Lemma 8 that Assumption 6 is satisfied with ¢, = n=%, so
by Theorem 1,

I — all = op(nn=H2/ZE4D),
Then for ¢ = [d,(2§/(2¢ + 1) +d, — 1/2]/2 = [d,(4€ + 1)/(2¢ + 1) — 1/2]/2 > 0 we have
|G, — (34k||2 = 0p(1) and

Vil an = a1k = il = oy (nn= @2/ EHN 0, (n7) = oy(n°n ) = 0,(1),

for each k. Similarly, by Assumption 14 if Assumption 7 is satisfied (rather than Assumptions
2 and 3) then by Theorem 2 for any ¢ > 0,

e, — axl| = op(nn="/2).
Then for ¢ = [d,/2+d, —1/2]/2 > 0 = [3d,/2 — 1/2]/2 we have ||&), — &|| = 0,(1) and
Villag, — a1k = Fxll = Vnop(n®n=02)0,(n ) = o0, (nn*) = 0y(1),

for each k.
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Next, Assumption 1 1) of LR is implied by Assumption 10. Let ¢x(w, vk, ax) = o (k) [yr —

e (zx)] and

¢(wa e Oz) = Z ¢k(w7 ks ak’)

k=1
Note that by E[{Yz — ¥(X)}?| Xk and ax(X}) bounded,

[ 0ntw, 00,3 = n(w.an, 30YF(dw) = [{ua(on) = aslon) Plon ~ wlzn)Pldw)
< Cléwe — ] 0,

[J1ontw.a1300) = ontw. a0, 30YF(dw) = [ anw)ulen) - 0P F(dn)
< C3ke = Wl* == 0,

so that Assumptions 1 ii) and 1 iii) of LR are satisfied by the triangle inequality.
By the Cauchy-Schwartz and conditional Markov inequalities we have

% > {e(Xns) — e (Xa) HAre (Xii) — Vk(X’”’)}‘

Z‘EIE

< \/EJ 3 {ane(Xi) — an(X;)}? J 3 { Ve (Xri) — 0 (Xii) 12

’ n ‘ n
i€y i€ly

= Op(v/n [|6e — al| [19e = Fkll) = 0p(1).

Then by the triangle inequality Assumption 2 of LR is satisfied.
To verify Assumption 3 of LR, note that by Assumption 1 é,(z) = b(x)'p, € T, so that

/(ﬁk(w,f‘yk,dklg)F@(dw) = /dke(l’k)[yk — k()] F(dw) = 0.
Also note that for each k,
E[or(W, vk, ax)] = Ela (Xi){Ys — % (Xk) H = Elaw (Xi) {7 (Xx) — 1 (Xk) }
= E[Dr(W, %, 7)] — E[De(W, v, ¥)] = —E[Dr(W, v — &, 7)]-

Then by Assumption 13 for all v with ||y — 7| < ¢,

K

|EW(W7 v, a, é)] | = E[m(W7 7) - m(W7 7) + Z Qbk(W? Vi O_ék)]
k=1

= |E[m(W,~) — m(W,7) — ZDk(W =N < Clly =71,

k=1

giving Assumption 3 of LR.
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It then follows by Lemma 15 of LR that

Vil =0) = 2= 30 Y vV dnd) = = > 7.3.0) + (1)

(=1 icl,
The first conclusion then follows by the central limit theorem.
The second conclusion follows by the triangle inequality as in the proof of Theorem 3
with Ry replaced by due(Xpi)* {Fke(Xni) — 1(Xpi) }* and Rig by {dee(Xi) — @ (Xpi) }{ Ve —
Ye( X)) }? for each k. O

PrROOF OF COROLLARY 10: The proof proceeds by showing that the conditions of Theo-
rem 9 are satisfied. By 7, bounded for each k and the triangle inequality, E[m (W, ¥)?] < cc.
Also, by the triangle inequality,

K-1

[m(W7 r?) - m(W7 7)}2 S C Z H/K(d: k? Z)/S/k(d/a Z) - ﬁK(dv k? Z>7k<d,7 Z)|2

o
—_

K—1
<C A (d, ky Z) — i (d, ke, Z)P30(d', 2)? = [k (d, ke, 2) P Jn(d', Z) = F(d, Z)F
k=1
K—1 ,
<C ( ;)/K(da k? Z) - ’_)/K(dv k? Z>’2 + ﬁ/k(dI?Z) - ka(d/vZ)‘ )
k=1

Therefore we have
K-1

[t ) -mw DPF@w) < 3 [ Pl b )=k DPEd)+ [ Bl o)l 2P Faldz).
k=1

By n(d,k|Z) = Pr(D =d,Q = k|Z) > C for each d and k we have for any vx(d, k, Z)

/ (. b, 2) — e (d b, 2) PFa(dz) = Ell(ds k. Z) — 3ic(d, k, Z)P)

- [1<D7erfi;€‘QZ): Y i (d, k, Z) = Ak (d. k., Z)?]
_ E[1<D77Td,d;c\QZ): K (D, Q. 2) — (D, Q. Z)P

< CE[lvx(D,Q,Z) — 3x(D,Q, 2)]*) = C |k — x|’ -
Applying this calculation to yx = Yx gives
/ (. b, 2) — T (ds by 2)PFa(dz) < C |3k — 7|2

Also it follows by 7 (d, k|Z) > C for each k that w(d|Z) = Pr(D = d|Z) > C. Then similarly
to the previous inequality we have)

ve(d, Z) —3(d, 2)| < C |lve — 3ll?, k=1,..., K —1.
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Then collecting terms we have
K
/[m(wﬁ) —m(w, 7)PF(dw) < CY 1A = l* < C 15 = 41%,
k=1

for [|v]| = Zle |7l - Thus Assumption 10 is satisfied.
Next, by the Gateaux derivative formula in the body of the paper for (k =1,..., K — 1)

we have
Dk(VVa bkja 7) = ak](W)Ak(VVa ’7)7 akj(W) = blj(d/7 Z)7 Ak(m 7) = VK(da k? Z)
It follows similarly to the verification of Assumption 10 and by Assumption 4 that

max|a; (W)] < C, and BIA(W,7)] < Cl1[1?, (k =1,..., K —1).

J<p

Also, we have
K-1
Di(W,bij,y) = Y bicj(d k, Z)ya(d', 2),
k=1

which also has the form like that Assumption 12 where the conclusion of Lemma 8 will
also be satisfied. The second part of Assumption 12 follows by a similar argument, so that
Assumption 12 is satisfied.

Turning now to Assumption 13, note that for (k=1,..., K — 1),

Sre(d, b, Z)1(D = ')
7(d|Z) ’

E[Dy(W, vk, 7)] = ElVk (d, k, Z)v(d', Z)] = Elar(Xp) v (Xe)], an(Xi) =

-1

E[Dx(W,vk,7)] = E[Z x(d k, Z)(d', Z)] = Elag (Xk)yr(XK)],

=

k=1
) 21D =d,Q = k)y(d, 2)
A (Xic) = — w(d, k| 2)

Each of ay(Xy) is bounded by 7(d, k|Z) > C for d € {0,1} and (k =1, ..., K —1) and 75 (X)
bounded for each k. Similarly these conditions imply that E[Y;; — (
To verify Assumption 13 iii) note that by algebra we have

K-1

m(W,7)=m(W,7)=>_ De(W,ve=3.7) = Y _{1x(d, k. Z2) =7k (d. k, Z)H{w(d', Z2) = (d', Z)}.

k=1
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Therefore by the Cauchy Scwhartz, triangle, arithmetic mean-geometric mean inequalities,

E[m(W,~y) — m(W,5) — Z Die(W, v = Y, 7)]

k=1

E[2{7K<d’ kv Z) - :)/K(dv ka Z)}{Vk(d/> Z) - :}/k<d/> Z)}]'

g;i{mhﬂ¢mZ%wa¢gmﬂ+EMM&ZI—%WV@ﬁ}SCWV_ﬂﬁ

where the last inequality follows similarly to previous results. The conclusion now follows
by Theorem 9. [.

PROOF OF COROLLARY 11: Note first that for any v(X) it follows as in the proof of
Corollary 7 that by Pr(D =1]|2) <1 - C,

EW%&@ﬂSM%Q@%=M?S§%%Q@%=Mf§%%%a2ﬂSOM%D%
Also note that
BID(0. 2)] = Blra(2)7(0. 2)] = B | ml 2) 1 ——5710.2) | = Elaa(X)3 (X))

The remainder of the proof follows analogously to the proof of Corollary 6. [J.

B.1. Panel Average Derivative and Demand Elasticities. Since own-price elasticity
6} is a deterministic mapping of 0o := (0o, E[Y;])', we obtain the asymptotic variance V* of

6 from the asymptotic variance V of 6, using delta method. Specifically,

V*= HVH'
where
065 ) g
=5 = [E[_m [JE_[Y;HQ]
and

E[tho(Wir)?  E[tho(Wir)Yit]

V= E[Va]? — {E[Y,]}?

We estimate the asymptotic variance V* using the empirical analogue V*, where ¥o(Wy)
is replaced by

awa(j(i) — 0+ a5 (Xi)[Yie — (X)), i€ I

Yir =
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The covariance estimator recognizes that household i’s observations form a cluster T;. For
example, the estimator for the first component of V' is
1 n
ST Z Z Z Yirthis.
= i=1 teT; seT;
More generally, we may consider estimating not only own price elasticity but also income
elasticity and cross price elasticity. The same arguments go through with light modification.
Concatenate the derivatives as

. 0 (Xy)
(90 ) income E [ ]

log income
— own — O’YO(Xz‘)
60 - (00) = |E log own price
(Ho)cross E 870()21-)

log cross price

where the first and second components are scalars and the third component is a vector.
The elasticities are a smooth transform thereof. By arguments in Chernozhukov, Hausman,
and Newey (2019)

*\incom (@ )income
(Ggyeome]  [CS 1
0= | (6™ | = ﬁo&t] —1
(gs)cross (?E?[)Yn]

Likewise the delta method argument goes through. Elasticites 0, are a deterministic
mapping of 6y = ((6%),E[Yy]). We obtain the asymptotic variance V* of 6 from the
asymptotic variance V of 6, using delta method. Specifically,

V* = HVH'
where
00 1 o
H=5 = [E[m 1 Ewae

and V is as before, where the influence function vy is vector-valued, corresponding to the
vector 6.

As an aside, when using OLS, the empirical influence function used in estimating off-
diagonal terms is

Po(Wit) = (E[bitbg;lbiteit

n -1
Tﬂz’t = (ﬁ Z Z Z bitb;t> bi€ir

=1 teT; seT;

where ¢; is the OLS residual for observation W;,. As before, we use a variance estimator
that recognizes clustering.
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spec. | treated | untreated | Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 172 4071.88 3390.11 4170.99 | 3277.92| 1807.48 | 2656.05
2 185 172 1618.74 500.49 2047.18 | 504.70 1754.79 531.10
3 185 172 3379.15 1466.45 3589.10 | 1385.49 | 1175.21 | 1735.56

TABLE 8. ATET using NSW treatment and NSW control, by cross validation

spec. | treated | untreated | Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 727 2194.07 1060.97 1986.25 | 1031.62 834.13 1004.58
2 185 727 1686.64 1092.13 1422.68 | 1125.96 | 1909.87 | 1404.22
3 185 727 2974.55 1108.72 2579.75 | 1042.94 | 3057.04 | 1454.26

TABLE 9. ATET using NSW treatment and PSID comparison, by cross validation

spec. | treated | untreated || Lasso ATET | Lasso SE | RF ATET | RF SE | NN ATET | NN SE
1 185 5904 1413.98 636.68 1813.82 | 662.06 | 2043.87 | 657.46
2 185 5904 1405.09 644.10 1756.57 | 669.68 | 2025.50 | 653.32
3 185 5904 1756.87 654.73 2013.84 | 676.72 | 1823.67 | 651.66

TABLE 10. ATET using NSW treatment and CPS comparison, by cross validation

APPENDIX C. ADDITIONAL EMPIRICAL RESULTS

C.1. Regression Decomposition and ATET. We present ATET estimates from Auto-

DML using cross validation rather than theoretical iteration to tune the regularization. Our

results are broadly similar, with larger standard errors.

C.2. Panel Average Derivative and Demand Elasticities. We present elasticity esti-

mates from OLS with a simpler specification than the specification used in the main text. We

take as by(X;;) the concatenation of the following variables: log expenditure, and log price
of each good. For H;, we use the time averages of b; (Xit). Note that K = dim(b; (X)) = 16
and p = dim(b;) = 288. We calculate clustered standard errors derived by delta method as

explained in Appendix B.1. Tables 11 and 12 summarize results.
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variable | elasticity | SE

income 0.42 0.05
own-price -0.68 0.05
bread -0.03 0.02
butter 0.00 0.02
cereal 0.00 0.02
chips 0.02 0.03
coffee 0.00 0.02
cookies 0.00 0.02
eggs -0.03 0.03

ice cream -0.03 0.03
orange juice -0.01 0.05

salad 0.02 0.02
soda -0.02 0.02
soup -0.03 0.02
water -0.01 0.02
yogurt 0.01 0.04

TABLE 11. Milk elasticities, by OLS
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