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The influence function of semiparametric estimators
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There are many economic parameters that depend on nonparametric first steps.
Examples include games, dynamic discrete choice, average exact consumer sur-
plus, and treatment effects. Often estimators of these parameters are asymptot-
ically equivalent to a sample average of an object referred to as the influence
function. The influence function is useful in local policy analysis, in evaluating lo-
cal sensitivity of estimators, and constructing debiased machine learning estima-
tors. We show that the influence function is a Gateaux derivative with respect to a
smooth deviation evaluated at a point mass. This result generalizes the classic Von
Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth
nonparametric first steps. We give explicit influence functions for first steps that
satisfy exogenous or endogenous orthogonality conditions. We use these results
to generalize the omitted variable bias formula for regression to policy analysis for
and sensitivity to structural changes. We apply this analysis and find no sensitiv-
ity to endogeneity of average equivalent variation estimates in a gasoline demand
application.

Keyworbs. Influence function, semiparametric estimation, NPIV.
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1. INTRODUCTION

There are many estimators of economic parameters that depend on nonparametric first
steps. Examples include games, dynamic discrete choice, average consumer surplus,
and treatment effects. Often these estimators are asymptotically equivalent to a sample
average. The object being averaged is referred to as the influence function.

The influence function has several important uses. It can be used for quantifying
local policy effects. For example, Firpo, Fortin, and Lemieux (2009) used influence func-
tions to quantify local policy effects of changes in explanatory variables on quantiles or
other characteristics of a distribution. We give local policy effects of structural changes.

Hidehiko Ichimura: ichimura@arizona.edu

Whitney K. Newey: wnewey@mit . edu

The JSPS 15H05692 and 20H00072 and NSF Grants SES 1132399 and 1757140 provided financial support.
We are grateful for comments by the three referees, X. Chen, V. Chernozhukov, D. Hughes, K. Kato, U. Miiller,
Y. Mukhin, J. Porter, D. Pouzo, A. Santos, and participants at seminars at UC Berkeley, NYU, University of
Kansas, and Yale. L. Hoderlein provided capable research assistance.

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE826


http://qeconomics.org/
mailto:ichimura@arizona.edu
mailto:wnewey@mit.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE826

30 Ichimura and Newey Quantitative Economics 13 (2022)

The influence function can also be used to measure sensitivity of estimators to misspec-
ification. Its use for qualitative sensitivity measures is where the influence function gets
its name in the robust estimation literature; see Hampel (1974). The expected GMM in-
fluence function under a misspecified distribution is the GMM sensitivity measure given
in Andrews, Gentzkow, and Shapiro (2017). We quantify sensitivity for objects that de-
pend on solutions to orthogonality conditions. We use this quantification to generalize
the classic omitted variables bias formula for regression coefficients to many other ob-
jects. We apply these results to estimate sensitivity of equivalent variation bounds to
endogeneity of gasoline demand.

Another important use of the influence function is construction of orthogonal mo-
ment functions where first step estimation has no first-order effect on moments. Or-
thogonal moment functions reduce bias in GMM from model selection and regulariza-
tion of the first step and enable machine learning for high-dimensional first steps, as in
Chernozhukov et al. (2018) and Chernozhukov et al. (2020). The influence function for-
mulae given here are used in Chernozhukov et al. (2020) to derive orthogonal moment
functions. The influence function can also be used to compare asymptotic efficiency of
estimators and find efficient ones. Efficient estimation is important in many economet-
ric settings where weak assumptions are made to make models empirically plausible.
Knowing the form of the influence function also facilitates asymptotic theory by show-
ing in advance the conclusion of an asymptotic expansion.

Newey (1994) showed that the influence function of an estimator could be obtained
from the probability limit (plim) of the estimator. A functional equation was given that
can be solved for the influence function without an asymptotic, large sample expansion.
Hahn (1998) and Hirano, Imbens, and Ridder (2003) applied this approach to derive the
influence function of important treatment effect estimators. A primary purpose of this
paper is to give a simpler way of calculating the influence function and to illustrate its
usefulness for applied researchers. We show that the influence function can be calcu-
lated from a derivative of the plim with respect to a scalar mixture of the true distribution
with another distribution. This calculation extends the classic Von Mises (1947), Ham-
pel (1974), and Huber (1981) Gateaux derivative calculation to objects that exist only for
continuous distributions. We also illustrate how this Gateaux derivative can be used to
facilitate empirical research on local policy analysis, quantify sensitivity of estimators,
and construct orthogonal moment functions.

The functional equation in Newey (1994) has been solved to obtain influence func-
tions in many important settings. Newey (1994) did so for estimators that depend on a
first step least squares projection or a probability density function (pdf). Bajari, Hong,
Krainer, and Nekipelov (2010) and Bajari, Chernozhukov, Hong, and Nekipelov (2009)
did so for game models and Hahn and Ridder (2013, 2016) did so for nonparametric gen-
erated regressors. We use the Gateaux derivative calculation to derive influence func-
tions for first steps that solve orthogonality conditions, both exogenous and endoge-
nous. These calculations provide explicit influence function formulae for a variety of es-
timators in addition to those already in the literature. The calculations also illustrate the
simplicity and usefulness of the formulae here in making the influence function more
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widely available for empirical research involving local policy analysis, estimator sensi-
tivity, or orthogonal moment functions.

We estimate sensitivity to endogeneity of bounds on average equivalent variation
for gasoline demand. This application is motivated by the difficulty of simultaneously al-
lowing for price endogeneity and general preferences in demand analysis. Hausman and
Newey (2016) gave nonparametric estimators of bounds on average equivalent varia-
tion with general preferences that are independent of prices and income. For scalar het-
erogeneity and endogenous prices, Blundell, Horowitz, and Parey (2017) estimated the
gasoline demand function via nonparametric quantile instrumental variables, which is
computationally difficult and only allows scalar heterogeneity. The bound sensitivity we
give is much simpler and allows general heterogeneity. We find that for gasoline demand
the average equivalent variation bounds are not very sensitive to endogeneity and that
the sensitivity is not statistically significant.

A distinctive feature of our approach is that the influence function is obtained di-
rectly from the moment conditions defining the estimator without solving an integral
equation or going through a probabilistic calculations in the form of asymptotic ar-
guments. In this sense, our result allows us to study semiparametric estimators anal-
ogously to the estimators obtained based on the parametric maximum likelihood or
the generalized method of moment conditions. Using asymptotic arguments, Robinson
(1988), Powell, Stock, and Stoker (1989), Goldstein and Messer (1992), Ichimura (1993),
Klein and Spady (1993), Sherman (1993), and Chaudhuri, Doksum, and Samarov (1997)
gave influence function formulae for important semiparametric estimators. Newey
(1994) gave general explicit influence function formulae where a first step is an infi-
nite dimensional regressions or pdf. Ai and Chen (2007, 2012), Ichimura and Lee (2010),
Ackerberg et al. (2014), Chen and Liao (2015), and Chen and Pouzo (2015) gave inter-
esting and useful characterizations of influence functions for estimators with first steps
that solve conditional moment restrictions or that are maximizers of an objective func-
tion. The results of this paper are complementary to this previous work in providing
explicit formulae for influence functions for estimators that solve orthogonality condi-
tions. Such explicit formula are useful for policy and sensitivity analysis and for con-
struction of orthogonal moment functions.

A primary objective of this paper is to provide a method to compute the influence
functions for semiparametric estimators. The influence function of an estimator may
be different than the efficient influence function for the parameter of a semiparamet-
ric model considered, for example, by Bickel et al. (1993). These do coincide in models
where a parameter is exactly identified; see Chen and Santos (2015). One can think of the
object derived here as the efficient influence function for the parameter that is defined
as the plim of an estimator for a general, unrestricted distribution. This parameter is ex-
actly identified in the model with the unrestricted distribution so the efficient influence
function coincides with the influence function of the estimator. This is the approach
taken by Newey (1994) to finding the influence function of an estimator. We simplify
this approach in a way that makes it more applicable to empirical research.

Validity of the influence function calculation given here depends on distributional
variation that is a smooth approximation to a distribution that puts all probability on
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a point, that is, is a point mass. After the first version of this paper appeared on arXiv,
Luedtke, Carone, and van der Laan (2015) and Carone, Luedtke, and van der Laan (2016)
used such deviations in estimation. This construction is useful in that setting, but we
emphasize that we have a different goal here; to calculate the influence function of any
semiparametric estimator.

Mukhin (2019) used the influence function to derive local effects of changing one
object of interest on another object of interest. Also, the local effects are integrated to
obtain global effects. This work also shows the usefulness of the influence functional
calculation given here.

Summarizing, the contributions of this paper are to (i) give a simpler way of calculat-
ing the influence function; (ii) derive explicit influence function formulae for functions
satisfying exogenous and endogenous orthogonality conditions; (iii) give local policy ef-
fects and sensitivity to structural changes and illustrate their use in empirical research;
and (iv) show absence of local sensitivity to endogeneity of equivalent variation in a
gasoline demand application.

In Section 2, we give the Gateaux derivative formula for the influence function and
describe several important uses of this formula. Section 3 gives the influence function
for exogenous orthogonality conditions and uses that to derive local policy effects and
sensitivity for structural change. It is shown that these formula generalize the classic
omitted variables bias formula. Section 4 gives the influence function for endogenous
orthogonality conditions. Section 5 discusses extensions and conclusions. Appendices
in the Online Supplementary Material (Ichimura and Newey (2022)) give regularity con-
ditions for validity of the influence function calculation, characterize the influence func-
tion for minimum distance estimators, and extend the explicit influence function for-
mulae to misspecified orthogonality conditions.

2. THE INFLUENCE FUNCTION AND ITS USES

The estimators and objects in this paper are allowed to depend on a first-step nonpara-
metric estimator. We refer to these estimators as semiparametric. We denote such an
estimator by 6, which is a function of the data W4, ..., W, where n is the number of ob-
servations. Throughout the paper, we will assume that the data observations W; are i.i.d.
with some cumulative distribution function (CDF) Fy. We let 6y denote the probability
limit of § when Fj is the distribution of W,.

In this paper, we focus on asymptotically linear estimators that satisfy

R 1 &
(0= 0) = — Y (W) + 0, (1),
ﬁ; 3 @.1)

E[yn)]=0,  E[yM)Ty0V)] < co.

The asymptotic variance of 6 is then E [y (W) (W)T]. The function ¢ (w) is referred to
as the influence function, following terminology of Hampel (1974). It gives the influence
of a single observation in the leading term of the expansion in equation (2.1). It also
quantifies the effect of a small change in the distribution of W on the probability limit of
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6 as we further explain below. Very many root-n consistent semiparametric estimators
are asymptotically linear under sufficient regularity conditions, including M-estimators,
Z-estimators, estimators based on U-statistics, and many others; see Bickel et al. (1993)
and Van der Vaart (1998).

The influence function of an estimator can be obtained without deriving the
stochastic expansion in equation (2.1) as in Newey (1994). Let F be any distribution that
is unrestricted except for regularity conditions and 6(F) denote the probability limit of 6
when F is the CDF of . Here, 6(F) can be thought of as the probability limit of  under
general misspecification where F is only required to satisfy some regularity conditions
(like some random variables being continuously distributed and/or existence of certain
moments) but is otherwise unrestricted. Also, let {Fg} be any parametric family of dis-
tributions passing through Fy with Fg = Fy when g = 0 and satisfying certain regularity
conditions with score (derivative of log-likelihood) Sg(w) at 8 = 0. Then by Van der Vaart
(1991), it follows that the influence function satisfies

‘99;;’3 ) E[pom)ssom)], 2.2)

when the estimator 6 is locally regular in the sense discussed in Van der Vaart (1991).
This is a functional equation from which (w) may be obtained by varying {Fg} and
the associated score Sg(w). In several important settings, the influence function has
been obtained by solving this functional equation without the stochastic expansion in
equation (2.1). Newey (1994) did this for first-step regression and density estimation.
Hahn (1998) obtained the influence function for the regression estimator of the aver-
age treatment effect and Hirano, Imbens, and Ridder (2003) for inverse propensity score
weighted estimators. Hahn and Ridder (2013, 2016) did so for first step generated regres-
sors and control functions and Bajari et al. (2009, 2010) for estimating game models.

A main purpose of this paper is to give a simpler, more direct way of calculating
the influence than solving equation (2.2). Let H denote a CDF such that 6(F;) exists for
F; = (1 - 71)Fy + 7H where 7 is a scalar with 0 < 7 < C for 0 < C < 1. Equation (2.1) and
regularity conditions discussed in Appendix A imply that

decng) = / Y(w)H (dw), E[y(W)]=0, E[y(W)?] < oo, (2.3)
where throughout the paper d/dr denotes a derivative from the right at = 0. This equa-
tion suggests a direct way to calculate the influence function:

Step I: Calculate d6(F;)/d for any H such that the derivative exists;

Step II: Evaluate the derivative formula at H = A,,, where A, is the CDF with Pr(W =
w) = 1, to obtain ¢ (w) = [ (W)A,(dw) as a function of w.

Equation (2.3) does not justify Step II because the derivative need not exist when
H = Ay,. In particular §(F;) may not be well-defined when 6(F) depends on a pdf or
conditional expectation because of the discrete component A, of F. = (1 — 7)Fy + 7A,,.
The nonexistence of a pdf of F; of (1—7)Fy+ 1A, atany 7 > 0 can make 0(F,) undefined.
Nevertheless, Step Il is justified as a limit as H approaches A, similar to Lebesgue (1904)
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differentiation in analysis; for example, see Wheeden and Zygmund (1977). A precise
justification for Step Il is given in Appendix A.

The calculation in Steps I and II generalizes the classic Hampel (1974) formula,
Y(w) =do((1 — 7)Fy + 7Ay)/dT, to cases where existence of 6(F) requires some com-
ponents of W be continuously distributed. Such cases are very important for semipara-
metric estimators where 6(F) can depend on limits of nonparametric estimators of den-
sities, conditional expectations, or other objects whose existence requires W have con-
tinuously distributed components. Steps I and II provide a simpler and more direct way
of obtaining ¢/ (w) than solving the integral equation (2.2).

The influence function does not exist when 6(F) does not satisfy the Stein (1956)
necessary conditions for existence of a root-n consistence estimator. In that case Steps
I and II will fail. To illustrate, suppose W is continuously distributed with pdf fy(w) and
0(F) = f(w) is the pdf of W at some fixed w. In that case,

do(F;)
dr

Because /(w) is the pdf of H (w) at the point w it cannot be represented as the expecta-
tion over H of a function with finite second moment. In general, Steps I and II will fail
whenever equation (2.3) is not satisfied. As in equation (2.4), this failure will often be
evident in the calculation of d0(F;)/dr.

Equation (2.3) motivates the use of the influence function in empirical work. The
Gateaux derivative d6(F;)/dr is the local effect of changing the distribution F on the
object 6(F). If we broaden the interpretation of 8(F) to include economic objects of in-
terest, such as a feature of the distribution of outcome variables, then d0(F;)/dT can be
thought of as a local policy effect of changing the distribution of the data. Equation (2.3)
then can be used to obtain the local policy effect from the influence function, as did
Firpo, Fortin, and Lemieux (2009) for the policy effect of changing the distribution of re-
gressors. When 6(F) is the probability limit of an estimator 6, we can think of d0(F,)/d+
as the local sensitivity of that estimator to changes in F, which gives local effects of mis-
specification. The GMM sensitivity analysis of Andrews, Gentzkow, and Shapiro (2017)
has precisely the form of equation (2.3), as will be discussed in Section 2.2. In addition,
when 0(F) is the true expectation of an identifying moment function evaluated at the
limit of a first step estimator, the influence function can be used to create orthogonal
moments that have zero Gateaux derivative with respect to the first step. As discussed
in Chernozhukov et al. (2018), this use of the influence function is helpful for debiased
machine learning of objects of interest.

In the remainder of this section, we describe more fully these important uses of the
influence function that are of direct interest to empirical researchers. Here, we show
how this paper can be applied to obtain novel policy effects of structural change, local
sensitivity measures and Hausman tests, and orthogonal moment functions.

= h(i0) — fo(iD). 2.4)

2.1 Local policy analysis of structural changes

In many settings, (F) may be an economic quantity of interest. Changes in F can some-
times be thought of as changes in a policy. From equation (2.3), we see that [ ¢(w)H (dw)
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is the derivative of 6(F) as F; changes away from Fy in the direction H — Fy. If H is
thought of as resulting from a change in policy, then [ ¢ (w)H (dw) will be the derivative
of the economic quantity of interest with respect to that policy change, that is, a local
policy effect.

Firpo, Fortin, and Lemieux (2009) derived such effects where 6(F) is specified as
some feature of the marginal distribution of an outcome variable Y and the change in
policy is a change in the distribution of explanatory variables X. Because 6(F) depends
only on the marginal distribution of Y, the influence function of 6(F) will be s (y) that
depends only on y. For example, if 0(F) is the pth quantile of F, satisfying Fy (6(F)) = p,
then ¢ (y) = [1(y < 60) — pl/fro(6o), where fyo(y) is the true marginal pdf of Y. Because
the distribution of X is different in H but nothing else is different than in Fy, the con-
ditional distribution of Y given X will be the same for H as it is for Fy. Then by iterated
expectations, the local policy effect is

do(F;)
dr

/d/(y)H(dw) =Eu[¢(Y)] = Ex[E[¢(Y)|X]].

Firpo, Fortin, and Lemieux (2009) analyzed such policy effects for quantiles of Y, other
objects 0(F) of interest, and for a variety of alternative policy shifts in the distribution of
X asrepresented by H.

One can also specify the policy effect of a structural change where the conditional
distribution of Y given X changes and the marginal distribution of X remains un-
changed. The local policy effect of a structural change is

do(F;)
dr

=En[¢(Y)] = E[Eu[v(Y)|X]].

Here, we see that the local effect of a structural change in the direction H — Fj is cap-
tured by the conditional expectation Ey[¢(Y)|X] of the influence function ¢ (Y') for the
distribution H.

Other local policy effects can be considered by specifying 6(F) to be something other
than a feature of the distribution of a random variable Y. One example of such a 8(F) is
abound on average equivalent variation from Hausman and Newey (2016). The Gateaux
derivative formula in equation (2.3) can be used to derive local policy effects of structural
changes on this and many other objects. In Section 3, we do so for 6(F) that depends on
conditional location.

Specification and estimation of global policy effects using quantile regressions was
developed by Machada and Mata (2005), Albrecht, Bjorklund, and Vroman (2003), and
Melly (2005). Estimators of global effects based distribution regression were developed
by Chernozhukov, Fernandez-Val, and Melly (2013). Local policy effects are useful for
evaluating small policies. Also, Mukhin (2019) showed that global policy effects can be
obtained from integrating local effects, making local effects of interest even for evalua-
tion of global effects.
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2.2 Local sensitivity and local Hausman tests

Quantifying local sensitivity of an estimator to misspecification, or more generally to a
change in distribution of the data, is another important use of the influence function.
Equation (2.3) gives the Gateaux derivative of the probability limit #(F) in the direction
H — Fy. If the distribution H allows for misspecification, then [ (w)H (dw) measures
sensitivity of 0(F) to local misspecification. More generally, if H is a different distri-
bution than that of the data, then [ ¢(w)H (dw) measures the sensitivity of 6(F) to a
distribution shift. Qualitative and quantitative sensitivity measures can be constructed
based on (w). A qualitative sensitivity characteristic is boundedness of )(w), which
guarantees that d0(F;)/dt is bounded over all possible H. This is the classic robustness
characteristic of Hampel (1974) and Huber (1981) that is defined by boundedness of the
influence function.

Quantitative measures of estimator sensitivity can also be based on /(w). Conley,
Hansen, and Rossi (2012) and Andrews, Gentzkow, and Shapiro (2017) gave measures
of sensitivity of IV and GMM estimators, respectively, to moment misspecification. The
sensitivity measure for GMM is exactly [ (w)H (dw) for the GMM influence function.
To explain, suppose that there is a vector function g(w, 8) of a data observation w and
parameter vector 6 satisfying a moment condition E[g(W, 6p)] = 0. A GMM estimator is
obtained as 6 = argming g(e)’\ifg((a) where (6) =Y, g(W;, 0)/n are sample moments
and ¥ is a positive semidefinite weighting matrix. It is well known that the influence
function for GMM under correct specification (i.e., E[g(W, 6p)] = 0) is

_ J .o
y(w) =—(G'¥G) ' G'Wg(w, bp), G=SE[sW,0)]|,, ¥ =plim(¥).

Therefore, for GMM the local sensitivity will be

dof” :/ilf(w)H(dw)=—(G/‘I'G)71G/‘I’/g(w» 60)H (dw).
.

This is the local sensitivity formula given in Andrews, Gentzkow, and Shapiro (2017).
When the dimension of g(w, 0) is bigger than that of 6, this formula imposes correct
specification of the moments, that is, E[g(W, 6p)] = 0. Imbens (1997) gave the influence
function for GMM allowing for misspecification and Mukhin (2019) described its use for
sensitivity analysis.

Equation (2.3) gives the local sensitivity of any estimator to a change of F in the
direction H — Fy. In Section 3, we derive local sensitivity of a functional of conditional
location and illustrate its use in estimating sensitivity of average equivalent variation
bounds to endogeneity of gasoline prices.

Local sensitivity can be used to construct local Hausman specification tests for any
object of interest with an influence function. A first-order expansion gives

do(F;)
dr

0(H) — 6(Fo) = 6(F1) — 0(Fo) ~ < (- 0)) = / ¢ (w)H (dw). (2.5)
=1

Thus we see that [ ¢(w)H (dw) is a first-order approximation to the effect of chang-
ing the distribution F on the probability limit 6(F) of the estimator § corresponding
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to Hausman’s (1978) idea of checking sensitivity of an estimator of an object of interest
to model assumptions. A estimator of d0(F;)/d can be formed from an estimator of the
influence function (w) and an alternative H by substituting the estimated influence
function in equation (2.3) and integrating over H. Standard errors can be constructed
using asymptotic theory or the bootstrap and an asymptotic t-statistic formed in the
usual way. From equation (2.5), we see that such a t-statistic is a local Hausman test
of the effect of misspecification in the direction H. This approach can give local Haus-
man specification tests for any estimator with an influence function in any direction H.
In Section 3, we illustrate such tests by testing for a significant effect of endogeneity of
price on average equivalent variation for gasoline demand. It is beyond the scope of this
paper to develop the general asymptotic theory of such tests. We discuss these tests here
to illustrate the usefulness of the influence function in empirical work.

The covariance between the influence functions of two different estimators was sug-
gested by Gentzkow and Shapiro (2015) and Andrews, Gentzkow, and Shapiro (2017) as
a measure of sensitivity of one estimator with respect to another. Mukhin (2019) gave a
geometric interpretation of this covariance as a directional derivative of one functional
with respect another. As Mukhin (2019) shows, the covariance between two influence
functions is the Gateaux derivative of 6(F) with respect to a departure from Fj in a di-
rection G that corresponds to a change in the other functional. In this way, the influence
functions for two different estimators are useful for constructing measures of sensitivity.
For brevity, we omit further specifics but note that this is an active and important re-
search topic that is potentially useful for empirical work, where influence functions are
key ingredients.

2.3 Orthogonal moment functions

Another important use of influence functions is in the construction of orthogonal mo-
ment functions for GMM with a nonparametric first step. Orthogonal moment functions
are those where the expected moment functions have zero derivative with respect to the
first step. GMM with orthogonal moment functions does not suffer from the large model
selection and regularization biases of some estimators based on nonorthogonal mo-
ment functions. Avoiding such biases can be particularly important for machine learn-
ing first steps, as discussed in Chernozhukov et al. (2018) and shown in Chernozhukov
etal. (2020).

To describe orthogonal moment functions, consider a vector of functions g(w, vy, 6)
where vy is a (possibly) nonparametric first step with true value vy, 6 is the parame-
ter vector of interest, and the moment condition E[g(W, yo, 6p)] = 0 is satisfied. This
moment condition can be thought of as an identifying moment for 6, with vy ob-
tained from a first step. In general, the first-order effect of y on E[g(W, vy, 6p)] may
be nonzero, leading to bias in a GMM estimator based on sample moments g(0) =
Y, g(W;, ¥, 0)/n, where ¥ is a first step estimator of yg that is plugged in. As shown in
Chernozhukov et al. (2020), orthogonal moment functions can be constructed by adding
to the identifying moments the influence function ¢ (w, o, ag, 6) of E[g(W, v(F), 0)],
where « are additional unknown functions on which ¢ may depend and y(F) is the
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probability limit of the first step estimator ¥ when F is the true distribution of W.
This ¢(w, v, a, #) can be calculated by Steps I and II applied to equation (2.3) for
E[g(W, y(F), 0)], that is,

dE[g(W, y(F:), 6
dr

) = / ¢ (w, yo0, ao, 0)H (dw), E[¢(W, y0,a0,0)]=0.  (2.6)
Orthogonal moment functions can then be constructed as

Yyw,y,a, 0)=gw, vy 0)+¢(w, v a0).

The influence function ¢ (w, yo, o, ) of E[g(W, y(F), 6)] is an “adjustment term,”
or first- step influence function (FSIF) analyzed in Newey (1994), that accounts for the
presence of the first step y in the moment functions. Adding this FSIF to the original,
identifying moment functions g(w, vy, #) makes orthogonal moments. Calculating the
FSIF from Steps I and II is simpler than obtaining ¢ from the functional equation in
Newey (1994). This simplicity facilitates the construction of orthogonal moment func-
tions. We illustrate by calculating the FSIF ¢ for solutions to exogenous orthogonality
conditions in Section 3 and endogenous orthogonality conditions in Section 4. In Cher-
nozhukov et al. (2020), the FSIF for quantile orthogonality conditions is used to obtain
debiased machine learning estimators for functionals of solutions to quantile condi-
tions.

Local policy analysis, sensitivity measures, and constructing orthogonal moment
functions are three uses of the influence function that are of direct interest for empirical
research. The results of this paper are useful in providing a simpler method of calculat-
ing the influence function that can then be used to construct local policy effects of struc-
tural changes, local sensitivity analysis, and local Hausman tests for any estimator with
an influence function, and orthogonal moment functions that can be used in debiased
machine learning. In the next section, we illustrate by deriving the influence function
for conditional location effects, constructing sensitivity measures for estimators of such
effects, and applying them to average equivalent variation bounds.

Another important use of the influence function is in asymptotic efficiency com-
parisons, where it is convenient to bypass the stochastic expansion in equation (2.1).
Knowing the influence function is also useful for showing that the asymptotic expansion
in equation (2.1) is satisfied, because the influence function implies the precise form of
the remainder. For brevity, we omit further discussions of these uses of the influence
function.

3. EXOGENOUS ORTHOGONALITY CONDITIONS

Many interesting economic and causal effects depend on a function that solves an or-
thogonality condition and depends only on exogenous instrumental variables. Such
functions include high dimensional or additive specifications of orthogonality condi-
tions for quantiles or expectiles. Effects of interest include bounds on average equiva-
lent variation and average derivatives. In this section, we derive the influence function
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for such effects using Step I and Step II. We quantify local policy effects and local sen-
sitivity for these effects. In addition, we give an application to sensitivity of bounds on
average equivalent variation to endogeneity in gasoline demand.

3.1 Functions satisfying exogenous orthogonality conditions

The unknown functions we consider depend on a vector of regressors X that may be
infinite dimensional. We will denote a possible unknown function by y with y(x) being
its realization at X = x. We will impose the restriction that vy is in a set of functions I" that
islinear and closed in mean square, meaning that every y in I' has finite second moment
and that if y; € I for each positive integer k and E[{y;(X) — y(X)}?] — 0 then y € T.
We give examples of I in the second paragraph to follow.

We specify yp = y(Fp) to be the probability limit (plim) of a nonparametric estimator
9 when the distribution is Fy. We suppose that vy, satisfies an orthogonality condition
where a residual p(W, y) with finite second moment is orthogonal in the population to
all b € I'. That is, we specify that vy satisfies

E[b(X)p(W,y0)]=0 forallbel. 3.1

This is like an instrumental variables orthogonality condition where the function vy de-
pends only on the same variables X that the instrumental variables 5(X) depend on.
This dependence of the functions y and instrumental variables » on the same X is the
“exogenous” referred to in the title of this section. In the next section, we consider or-
thogonality conditions where y may depend on different variables than X, correspond-
ing to instrumental variables settings where there is endogeneity.

If I is specified to be all functions of I with finite second moment, then equation
(3.1) will be a conditional moment restriction E[p(W, y0)|X] = 0. We also allow I" to be
a smaller set. For example, a set of functions of interest for high-dimensional estimation
are those that are linear combinations of a sequence of functions (b1(X), b2(X),...)
each having finite second moment. A corresponding I" would be limits in mean square
of linear combinations Z;‘il Bjbj(X) where B; # 0 for only a finite number of integers ;.
Another example is a set of functions that are additive in distinct components of X. For
X = (X1, X2), this I' is the mean square closure of all functions y(X) = y1 (X1) + y2(X>2)
that are additive in in X; and X, with finite second moment. The high dimensional,
additive, and unrestricted specifications of I" are each of interest.

A leading example of the residual function is p(W, y) = Y — y(X) for an outcome
variable Y having finite second moment. In this example, the orthogonality condition
of equation (3.1) specifies that vy is the least squares projection of Y on the set of func-
tions I', that is, yo = argmin,cr E[{Y — y(X )}?]. In this example, vy is the conditional
expectation if I'is all functions of X with finite second moment, or is the least squares
projection of Y on the closure of linear combinations of (b;(X), b2(X),...), or is the
least squares projection on the closure of additive functions. Newey (1994) gave the in-
fluence function for functionals of such yj.

There are other important examples of the residual function.
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QuaNTILE. In this case, there is an outcome variable Y and the residual function is
p(W,y)=p—1(Y <y(X)),

where 0 < p < 1. This p(W, vy) is the derivative with respect to u of the “check function”
qp(u) = lul{pl(u > 0) 4+ (1 — p)1(u < 0)} evaluated at u =Y — y(X); see Koenker and
Bassett (1978). By convexity of g, (Y — y(X)) in v,

yo = argmin E[q, (Y — y(X))].
yel’

Here, yo(X) will the pth conditional quantile of Y when I' is unrestricted. For other spec-
ifications of I, the yy will be the minimizer of the expected check function over I'.

ExpecTILE. In this case, the residual function is

pW,y)=[p+ A -=2p)I(Y <y(X))]|(Y — y(X)).

This p(W, v) is the derivative with respect to u of the asymmetric squared residual func-
tion gp(u) = (u2/2){p1(u >0)+(1— p)1l(u <0)} evaluated at u = Y — y(X), as in Newey
and Powell (1987). By convexity of g, (Y — y(X)) in vy,

Yo = argmin E[3,(Y — y(X))].
yel’

Here, yo(X) will the pth conditional expectile of Y given X when I' is unrestricted. For
other specifications of I', the y( will be the minimizer of the asymmetric squared residual
function over I'.

BINARY CHOICE. In this case, there is a binary outcome variable Y € {0, 1}, a known CDF
A(a) with derivative (pdf) A,(a), and the residual is

Aa(y(X))
y(X))[1 - A(v(X))]

This p(W, y) is IQ(W, a)/da at a = y(X) for the negative of the binary pseudo-likelihood

p(W, 7)=A( (Y —A(v(X))}.

O(W,a)=-YInA(a) — (1 -Y)In[1 — A(a)].

When In(A,4(a)) is concave, this Q(W, a) will be convex in a; see Pratt (1981). For exam-
ple, the logit CDF A(a) = e?/[1 + e%] has this property with A,(a)/{A(a)[1 — A(a)]} = 1.
The yp will satisfy

yo =argmin E[Q(W, y(X))].
yel

Here, yo(X) will be A~}(Pr(Y = 1|X)) when I' is unrestricted. For other specifica-
tions of I', the yp will minimize the expected value of the negative log-likelihood
E[-YIn(A(y(X)))— (1 —=Y)In{l — A(y(X))}] overT.
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These cases of the residual function have the common feature that p(W, y) =
dQ(W, a)/dal,—x) where Q(W, a) is a convex function. In all such cases, equation (3.1)
will be the necessary and sufficient first-order condition for

yo = argmin E[Q(W, )],
yel'

when the argmin exists and some regularity conditions are satisfied. We focus on the
orthogonality condition because it is potentially more general.

3.2 The influence function

We derive the influence function of objects of the form
0(F)=Ep[m(W,y(F))],  Er[b(X)p(W,y(F))]=0 forallbeT. (3.2)

Here, the object of interest is the expectation of the function m (W, y) at yp. One example
of this 8(F) is a bound on average equivalent variation discussed in Section 3.4 to follow.
Other examples will be discussed later in this section.

The influence function of 6(F) will be the sum of two terms. To explain, let F, =
(1-7)Fy+7H =Fy+7(H — Fy), 0 < 7 < 1, denote a convex combination of the true CDF
Fo with another CDF H as discussed in Section 2 and let y, = y(F;) and E.[-] = EF,[-].
By the chain rule of calculus,

J J J
S0 = —Ex[m(W, yo)| + ——E[m(W, v:)]
J
= /m(w, Y0){H — Fo}(dw) + ;E[m(W, )]
a
= /[m(w, Y0) = Oo]H (dw) + ——E[m(W, y)]-

We see in this equation that influence function of 6(F) will be the sum of m(w, y) — 0
and a term ¢ (w, vy, a) satisfying

J
EE[m(W) 77)] = / d)(w) Y0, aO)H(dw)) (33)
with
d
EG(FT) = / Y (w, yo, ao, 80)H (dw), Y (w, v, a, ) =m(W, y) — 0+ d(w, vy, a)

The first term m(w, y) — 6 accounts for the unknown distribution F that averages over W
in m(W, yo) — 6p. The second term ¢ (w, y, @) accounts for estimation of the unknown
vo satisfying the orthogonality condition of equation (3.1). This ¢(w, vy, «) is the FSIF
from Newey (1994) that accounts for a nonparametric estimator of y, satisfying equa-
tion (3.1). We focus here on the derivation of ¢ (w, v, ).
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To derive ¢ (w, y, @), we assume that y, = y(F;) satisfies the orthogonality condition
in equation (3.2) for each 7 so thatforallb e T,

E-[b(X)p(W, y:)] =0, (3.4)

identically in 7. We are implicitly assuming here that I' does not depend on 7, which will
hold for the F; of Appendix A. Differentiating this identity with respect to = and applying
the chain rule of calculus, so that the derivative is the sum of derivatives with respect to
7in E;[b(X)p(W, o)l and E[b(X)p(W, v:)], gives

J d
0= a—TET[b(X)p(W, y0)] + EE[b(X)p(W, )]
=/b(x)p(w, vo)H (dw) + ;—TE[b(X)p(W, y-)], forallbeT. (3.5)
Solving gives
—aiE[b(X)p(W, )] :/b(x)p(w, y0)H (dw), forallbeT.
-

The object being integrated on the right provides a candidate for FSIF ¢(w, v, «). This
equation will give us equation (3.3) if there is «¢ € I' with

Jd Jd
&_TE[m(W’ %)] =—EE[010(X)P(W, 77)]- (3.6)
Such an «(X) will exist under the following two conditions.

AssuMPTION 1. There exists v, (X) such that JE[m(W, y:)1/d7 = dE[vn(X)y-(X)]/dT
and E[v,,(X)?] < oo.

Generally, it will follow from the chain rule, iterated expectations, and E[m(W, y +
a)|X] differentiable in a scalar a that

U (X) = %E[m(W, Yo + @) X]| _p-
Assumption 1 is like equation (4.4) of Newey (1994) in requiring that JE[m (W, v;)]/dT
can be represented as the derivative of an expected product of a function v, (X) with
v.(X) where v,,(X) has finite second moment. One example is m(W, y) = vy, (X)y(X)
where m(W, y) is simply the product of some function v,,(X) with y(X) and the v,,(X)
of Assumption 1 is the same as v,,(X) here. Assumption 1 is also satisfied for other im-
portant effects as further discussed below. In general, this condition with E[v,,(X)?] <
oo can be shown to be a necessary condition for 6(F) to have a finite semiparametric
variance bound.

AssuMPTION 2. There is v,(X) < 0 that is bounded and bounded away from zero such
that JE[b(X)p(W, y:)1/d17 = JE[b(X)v,(X)y,(X)]/dT foreveryb eT.
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Generally, it will follow from the chain rule, iterated expectations, and E[p(W, vy +
a)|X] differentiable in a scalar a that

Jd
vp(X) = %E[p(W, Y0 +a)|X]|a:0

In this way, Assumption 2 allows for p(W,vy) to not be continuous as long as
E[p(W, a)|X] is differentiable in a. Here, v,(X) < 0 is a sign normalization while v, (X)
being bounded and bounded away from zero is important for the results. For example,
vp(X)=—1forp(W,y) =Y — y(X).

Under Assumptions 1 and 2, equation (3.6) becomes

J P
EE[vm(X)vT(X)] = _EE[QO(X)Up(X)'}/T(X)]-

This equality will be satisfied if E[v;,(X)y;(X)] = E[ao(X)v,(X)y-(X)] for all 7. Since
v, € I, this condition will be satisfied if for all y € I,

E[vn(X)y(X)] = —E[ao(X)v,(X)y(X)].
Adding E[ao(X)v,(X)y(X)] to both sides gives

0= E[vm(X)y(X)] + E[a0(X)v,(X)y(X)]

—um (X
E[{—UP(X)}{ v':(;()) —ao(X)}y(X)i| forall yeT,

where the second equality follows by multiplying and dividing by —v,(X) in
E[v,(X)y(X)]. This is the orthogonality condition that is necessary and sufficient for
ao(X) to be the weighted least squares projection of —v,,(X)/v,(X) on I' for weight
—v,(X).

ProrosiTiON 1. IfAssumptions 1 and 2 are satisfied, then

¢(wr Y, a) = a(x)P(w» 7):
ap(x) = argmin E[{—v,(X) H{—vm (X) /0, (X) - «(X))7].

Proposition 1 generalizes Proposition 4 of Newey (1994) where ¢(w, y, @) was
given for least squares projections where p(W, y) =Y — y(X). Here, we give the FSIF
é(w, v, @) for any plim y(F) of a first step y satisfying the the exogenous orthogonality
condition of equation (3.2) where Assumptions 1 and 2 are also satisfied. We have ob-
tained Proposition 1 by differentiation the orthogonality condition (3.4) with respect to
7 and choosing the instrumental variable (X)) in that condition so that equation (3.6)
is satisfied. This derivation of Proposition 1 illustrates how the FSIF can be obtained di-
rectly from the moment conditions defining the first step estimator without solving an
integral equation or using asymptotic arguments.

First steps that solve orthogonality conditions for quantiles, expectiles, and binary
choice provide useful examples.
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ExampPLE 1 (Quantile functional). For p(W, y)=p — 1(Y < y(X))
IPr(Y < yo(X) +a|X)]
da
where fy|x (y|X) is the pdf of Y conditional on X. The FSIF is

—Vp(X) =

= fy|x (vo(X)|X)

d(w,y, ) =a(X)[p-1(y <y(x))],

where «¢ is given in Proposition 1. The formula for «y depends on the functional
m(W, y) through the derivative term v,, (W) and is given by

a(x) = argmin E[ fy(x (yo(X)1X) {om () /frix (0 (X)|X) = a(X)}°]

For instance, consider a weighted average derivative functional where m(W,y) =
w(x)dy(x)/dx1. Integration by parts gives

J J
E[m(W, 7)]=/w(X) Z(xx)fo(x)dx=—/%Mv(ﬂdx:E[vm(X)y(X)],
1 o{w(X) fo(X))
m(X) = — .
om(X) fo(X) axy

When I' is unrestricted Proposition 1 gives ao(X) = v (X)/fy|x (vo(X) |X) and the FSIF
coincides with that of Chaudhuri, Doksum, and Samarov (1997). Ackerberg et al. (2014)
also gave an expression for the FSIF for quantile functionals other than the weighted av-
erage derivative with v, (X) replaced by a functional derivative of E[m(W, y)]. When I
is restricted, then ao(X) is the weighted projection of v, (X)/fy|x (yo(X)|X) on I' with
weight fy|x (yo(X)|X). Proposition 1 generalizes the previous results to allow restric-
tions on .

ExampPLE 2 (Expectile functional). For a conditional expectile p(W,y) = [p1(Y >
Y(X)+ (1= p)I(Y < y(X)I[Y — y(X)], so that

—0p(X) = pPr(Y > yo(X)|X) + (1 = p) Pr(Y < yo(X)|X),
which is bounded and bounded away from zero. The FSIF is
dw, v, @) = —a(X)[pL(Y > y(X)) + (1 - p)L(Y < y(X))][Y — ¥(X)],

where ag(X) is given in Proposition 1. The formula for «y depends on the functional
m(W,v) through the derivative term v,,(W). When I is unrestricted and m(W, y) =
w(x)dy(x)/dx1, then vy, (X) will be as in Example 1 and ag(X) = —v;(X)/v,(X). We
are not aware of previous results on the FSIF for functions that minimize the expectile
objective function.

Examples 1 and 2 illustrate how the term v,,(X) is determined by the functional
of interest while v,(X) is determined by the residual p(W, y). Proposition 1 shows
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how these aspects are combined to determine the a¢(X) € B that multiplies the resid-
ual p(W,v) to form the FSIE From equation (3.6), we see that this ag(X) is pre-
cisely the function that makes the effect of y, on E[m(W, y.)] equal to the effect
of y, on —E[ag(X)p(W, vy;)]. Proposition 1 shows that this ag(X) is a projection of
—vm(X)/v,(X) on T weighted by —v,(X)

The explicit formula in Proposition 1 is useful for quantifying local policy effects and
local sensitivity of semiparametric estimators, as we will illustrate in the remainder of
this section. Proposition 1 also illustrates how the influence function can be obtained
with calculus, under natural differentiability conditions like Assumptions 1 and 2. The
key steps in deriving Proposition 1 are to use the first-order condition for y(F') to derive
candidates for the influence function and to show that equation (3.3) is satisfied for one
of those candidates.

3.3 Generalizing the omitted variable bias formula

The influence function for exogenous orthogonality conditions can be used to quantify
local sensitivity to distributional changes of any object with an influence function. We
consider structural changes where the distribution of X remains the same but the distri-
bution of the outcome variable Y given X is different. A leading example, as we will see,
is the omitted variable problem. We focus on the case where m(w, y) depends only on
x, which covers many examples of interest and leads to simple, intuitive formulas. We
consider H where the marginal distribution of X is the same as for Fy but p(W, y9) may
not be orthogonal to I'. Because Eg[m(W, vo)] = E[m(X, vo)] = 69, the local sensitivity
to such H is given by the following result.

ProrosITION 2. IfAssumptions 1 and 2 are satisfied, m(W, yo) depends only on X, and

H has the same marginal distribution of X as Fy then

do(F;)
dr

Enlao(X)p(W, y0)]. (3.7)

Here, we see that the local sensitivity is the expected product of a¢(X) with the con-
ditional mean of the residual p(W, yo) under the alternative distribution H. This local
sensitivity formula generalizes the classic omitted variable bias formula to the local bias
of any object that depends on the solution to an exogenous orthogonality condition, as
we now demonstrate.

ExamPLE 3 (Omitted variable bias formula). Here, we show that the classic omitted
variable bias formula is a special case of Proposition 2. Consider the conditional mean
v0(X) = E[Y|X] where X has finite support and let D be the indicator function of one
of the possible discrete outcomes of X. Then there is Z, 6y, and vy such that

E[Y|D, Z] =yo(X) =D0o + Z'yo.

Take the object of interest to be 6. Let D = D — E[D|Z] be the residual from the popula-
tion least squares regression of D on Z. Then the coefficient 6y is a functional of yy(X)
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given by
D
0o = E[ao(X)y0(X)], aO(X)ZE[DZ]'
Lete:=Y — yo(X) = p(W, y0). The sensitivity is then
do(F;) _ E[DEp(e|X]]
i E[ao(X)E[Y — yo(X)|X]] = W

If there is an omitted variable Z under H so that the distribution & is the same as Y —
vo(X) — Z, then

do(F; )
dr

E[DEy[Z|X]]
E[D?]

E[ag(X)Egle|X]] =

This formula is the classic omitted variables bias formula.

Example 3 shows that Proposition 2 generalizes the omitted variables bias formula
for one coefficient of a linear regression to any object that depends on a solution to an
exogenous orthogonality condition. We will illustrate another use of the generalization
by estimating the local sensitivity of a bound on average equivalent variation to endo-
geneity of the price in a gasoline demand application.

An estimator of the local sensitivity can be obtained from an estimator a(x) of the
term ag(x) in the influence function and from a specification H of the joint distribution
of X and p(W, yo) under misspecification as

dO(F )
dr

f[a(x)p(w 9)]H (dw).

Construction of a local Hausman test based on this object would require an estimator of
the asymptotic variance of the sensitivity d G(F )/dt.Itis beyond the scope of this paper
to derive the asymptotic variance of the sensitivity and construct a consistent estimator
of that asymptotic variance, although a bootstrap variance estimator could be used and
should prove valid. We will illustrate in the gasoline demand example how this could be
done. -

An important part of d6(F;)/dr is an estimator a(x) of ag(x) that appears in the
FSIF of Proposition 1. Such an &(x) can be constructed as in Chernozhukov et al. (2020).
Consider a dictionary of functions b(x) = (b1(x), ..., b,(x)) with b; € I for each j. As
discussed following Assumption 1, differentiablity of E[m(W, yo + a)|X] in the constant
a will lead to

Jd
—E[m(W, y+71bj)] = E[EE[m(W, Yo + Tbj)lX]]

= E[va(W)bj(X)]

Um(X)
=F|—v (X){ }b-(X)}
[ P —v,(X) |
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= E[{—v,(X)}ao(X)b;(X)]
=—E[ E[p(W, yo+ 7bj )IX]ao(X):|

=—E[py(W, y0)ao(X)bj(X)] (j=1,...,p), (3.8)

where the third equality is obtained by multiplying and dividing by —v,(X), the fourth
by a¢(X) being as given in Proposition 1, the fifth by the discussion following Assump-
tion 2, and the last equality by differentiability of p(W,y + a) in a constant a with
py(W, vo) being the derivative. These are moment conditions that can be used to es-
timate ag(X) as a linear combination of the dictionary functions. The idea is to replace
expectations with sample averages, yo with an estimator ¥, ao(X) with a linear combi-
nation 7'b(X), and then solve for an estimator of 7. Let

1%

M=M,...,.M,), M=
( 1 p) j= 57‘

Zm(I/VH 7+ Th; ))

L1 )
G=— ;py(Wi, PIbXNb(X)
1=
Then a version of equation (3.8) that replaces expectations with sample moments, yg by
v, and has 7/b(X) in place of ag(X) is M = —G . Solving for 7 gives

&(x) = 7'b(x), F=-G'M. 3.9)

For quantile orthogonality conditions where p(W, ) is not continuous, one can use ker-
nel weighting to construct G asin Example 2 of Chernozhukov et al. (2020).

For regression where p(W, y) = Y — y(X), this a(x) is the same as in equation (6.2)
from Newey (1994). For other choices of p(W, y), this @(x) could be derived from series
expansions given in Ai and Chen (2007), Ackerberg, Chen, and Hahn (2012), and Acker-
berg et al. (2014) for conditional moment restrictions and Chen and Liao (2015) more
generally. Such interesting estimators of the FSIF would be particularly useful when its
form is not known. Here, we rely on the explicit moment condition for o (X') in equation
(3.8) that is a special case of the Chernozhukov et al. (2020).

3.4 Sensitivity of average equivalent variation for gasoline demand

One object that depends on a conditional expectation is the Hausman and Newey (2016)
bound on average equivalent variation (AEV) for heterogenous demand. This bound al-
lows for completely general heterogeneity where the demand function for each person
can be unique to that person. The bound does depend on preferences being indepen-
dent of observed price and income, a strong exogeneity restriction. Here, we test the
effect of dropping that exogeneity restriction on AEV using the local sensitivity results
we have obtained.

An important motivation for this test is the difficulty of allowing for endogeneity
with general heterogeneity. Endogeneity can be allowed for using control functions, as
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in Hausman and Newey (2016), but existence of control functions imposes strong re-
strictions as in Blundell and Matzkin (2014). Blundell, Horowitz, and Parey (2017) al-
lowed for endogeneity where there is an instrument for price but restrict heterogeneity
to be scalar where bounds on AEV are not known. Here, we take a different approach to
allowing for endogeneity, where we test for sensitivity to bounds on AEV to endogeneity.

To describe and carry out this test, we first describe the AEV bound and apply Propo-
sition 1 to derive its influence function.

ExAMPLE 4 (Average equivalent variation bound). Here, Y is the share of income spent
on a commodity and X = (P;, Z), where P; is the price of the commodity and Z includes
income Z;, prices of other goods, and other observable variables affecting utility. Let
P1 < p1 belower and upper prices over which the price of the commodity can change, «
a bound on the income effect, and w(z) some weight function. The object of interest is

P1 7 5
00=E[w(Z) ] (7>yo(u, Z)exp(—x[u—pl])dui|, (3.10)
p1

where u is a variable of integration. If individual heterogeneity in consumer preferences
is independent of X and « is a lower (upper) bound on the derivative of consumption
with respect to income across all individuals, then 6y is an upper (lower) bound on the
weighted average over consumers and over the distribution of Z of equivalent variation
for a change in the price of the first good from p; to p;.

This object is a special case of that considered in Proposition 1 where v(u) = u?/2,
v0(X) = E[Y|X], and m(w, y) depends only on x and is given by
p1 5
m(x,y) = w(2) | (z1/w)y(u, z) exp(—«lu — p1]) du
pP1
From the form of E[m(X, y)] and multiplying and dividing by the conditional pdf
f(p1|z), we find

ao(x) = f(p1]2) 0 (2)1(P1 < p1 < p1)(z1/p1) exp(—k[p1 — p1l).

where f(p1|z) is the conditional pdf of P; given Z.

We apply Example 4 to test sensitivity of a bound on AEV to endogeneity of price us-
ing gasoline demand data in Hausman and Newey (2016, 2017) and Blundell, Horowitz,
and Parey (2017). We use the estimator a(x) given in equation (3.9) for several choices of
basis functions. For an estimate of ¢ = Y —y(X) that allows for endogeneity, we use a lin-
ear instrumental variable estimator where the share equation has a constant, In(price),
and In(income) with the Blundell, Horowitz, and Parey (2017) price instrument that is
the distance from the Gulf of Mexico. We take g;, (i=1, ..., n) to be the residuals from
the linear instrumental variables estimation and the sensitivity estimator to be

dO(F ) 1

= —Za(X )&;.



Quantitative Economics 13 (2022)  The influence function of semiparametric estimators 49

This sensitivity estimate will depart from zero when &(X;), which depends on the price
variable, is correlated with the instrumental variables residuals &;. In this application,
we use the delta method and standard calculations to obtain a standard error for the
sensitivity estimator.

We use gasoline demand data from the 2001 U.S. National Household Transporta-
tion Survey (NHTS). This survey is conducted every 5-8 years by the Federal Highway
Administration. The survey is designed to be a nationally representative cross-section,
which captures 24-hour travel behavior of randomly-selected households. Data col-
lected includes detailed trip data and household characteristics such as income, age,
and number of drivers. We restrict our estimation sample to households with either one
or two gasoline-powered cars, vans, SUVs, and pickup trucks. We exclude Alaska and
Hawaii. We use daily gasoline consumption, monthly state gasoline prices, and annual
household income. The data we use consists of 8,908 observations. Note that the mean
price of gasoline was $1.33 per gallon with the mean number of drivers in a household
equal to 2.04.

We specify the weight function in the measure of AEV to be w(Z) =1 and consider
a price change from the mean of price in the data to a price that is 10% higher. We set
k = 0 so that the sensitivity will be for a lower bound on AEV when gasoline is a normal
good (the income effect is positive) for all consumers. For the basis function b(x) used
to estimate &a(x), we consider bivariate linear, quadratic, and cubic function in In(price)
and In(income). Because their presence had little effect on AEV estimates in Hausman
and Newey (2016, 2017), we do not use covariates here. We do use simulation to esti-
mate the integral that appears in m(x, ) in the bound. For u; uniformly distributed on
[p1, p1], the a(x) is given by

-1
n 5 n Z ;
a(x)=#'b(x), F= [Z b(Xi)b(Xz-)’} (p1— P1) Z(ﬁ)b(ub Z,
i=1 !

i=1

where x = (p1, z)’ and z; is income.

Table 1 reports the sensitivity estimates and their standard errors for linear,
quadratic, and cubic specifications of b(x).

We find statistically significant evidence of sensitivity to endogeneity for the linear
specification of demand but not for the quadratic or cubic. We also find that the sensi-
tivity estimates are quite small for all three specifications. This absence of sensitivity of

TaBLE 1. AEV sensitivity to endogeneity.

Sensitivity AEV Bound
Linear 1.44 25.08
(0.554) (1.37)
Quadratic 0.487 33.93
(0.640) (1.05)
Cubic —1.20 32.27

(0.946) (0.805)




50 Ichimura and Newey Quantitative Economics 13 (2022)

the AEV bound to endogeneity suggests there is little need in this application to allow
for price endogeneity in the estimation of a lower bound on AEV.

4. ENDOGENOUS ORTHOGONALITY CONDITIONS

There are many interesting economic and causal effects that depend on functions sat-
isfying endogenous orthogonality conditions where the function of interest depends
on variables that are not instruments. Such solutions to orthogonality conditions come
from first-order conditions to economic choice problems or define causal functions of
interest. Objects of interest that depend on such functions include policy and sensitivity
effects like those of Sections 2 and 3.

In this section, we derive the influence function for effects that depend on the prob-
ability limit of a nonparametric instrumental variables (NPIV) estimator like those in
Newey and Powell (2003), Newey (1991), and Ai and Chen (2003). We consider an esti-
mator y with a probability limit vy = y(Fp) that is the unique solution to orthogonality
conditions

E[b(X)p(W,y)]=0, beB,yel. 4.1

Here, B is a linear set of possible instrumental variables b(X) and v is restricted to a
linear set I' similar to Section 3.1. We depart from Section 3.1 in allowing the unknown
function v to depend on variables Z that are different than the instruments X. This set
up generalizes the conditional moment restrictions environment of Newey and Powell
(1989, 2003), Newey (1991), and Ai and Chen (2003) to orthogonality conditions with
linear restrictions on vy.

Restrictions on the structural functions and on the instrumental variables are of in-
terest to empirical researchers for at least two reasons. First, imposing correct restric-
tions on the structural function can improve efficiency of the estimator and mitigate the
well-known ill-posed inverse problem for NPIV that can lead to imprecise estimators.
For example, imposing partially linear or additive structure on y can make estimators
more precise. Second imposing restrictions on the instrumental variables can help re-
duce the well-known Nagar (1959) instrumental variable bias. Such biases are known to
be important in empirical applications such as Angrist and Krueger (1991). By allowing
such restrictions, we provide the researcher with more flexibility to choose a model that
can lead to good inference properties for policy or sensitivity analysis with endogene-
ity. We leave to future work the application of the results of this section to policy and
sensitivity analysis. We focus here on showing how Steps I and II can be used to derive
influence functions in complicated and important settings which is a primary purpose
of this paper.

4.1 The estimator

We will derive influence functions for y that is a first step NPIV estimator based on the
orthogonality conditions in equation (4.1). Let b (x) = (b1(x), ..., bg(x)) be the first K
elements of a sequence of instrumental variables. We assume that bX (X) spans B as K



Quantitative Economics 13 (2022)  The influence function of semiparametric estimators 51

grows meaning that any element of 5 can be approximated arbitrarily well by a linear
combination of bX (X) for K large enough. The NPIV estimator we consider is

9 =argmin O(y),
vels
1 n n ~n (4-2)
Oy == p, v)bK(Xz-)T<Z bK(Xi)bK<Xi)T> > b (XDpW, y),

i.=1 i=1 i=1

where I',, is a subset of I' and A~ denotes a generalized inverse of a matrix 4. For ex-
ample, I';, could be the set of linear combinations of L functions p;(z), ..., pr(z) where
pe() €I for each €. We assume that a minimum exists with probability approaching
one, as could be guaranteed in some settings using Chen and Pouzo (2015). This ¥ has
the form of NPIV given in Newey and Powell (1989, 2003), Newey (1991), Ai and Chen
(2003), and Darolles, Fan, Florens, and Renault (2011). We differ from this prior work in
allowing the instrumental variables to be restricted to the set 5.

The influence function for the object of interest will depend on the plim vy, of ¥ when
the distribution of W is F; = (1 — 7)Fp + 7H. Since y minimizes the sample objective
function Q(y), the usual extremum estimator theory (e.g., Amemiya (1985)), will imply
that vy, is the minimum of the plim Q. (y) of Q(y) when the distribution of W is F,. To
describe Q; (), assume that 3 does not depend on 7, which can be shown to hold under
regularity conditions on H. Let 7. (a(W)|X) denote the linear projection of a(W) on B
when W has CDF F,, satisfying

7 (a(W)|X) € B, E-[{a(W) — 7, (a(W)|X)}b(X)] =0 forallb(X)eB (4.3)
Then it follows exactly as in Newey (1991) that for K — oc and K/n — 0,
plim(Q(y)) = Q- (v) 1= E-[{m- (oW, 1| X) }*]. (4.4)

Intuitively, from standard regression results we see that Q(y) is the sample average of
squares of predicted values from the least squares regression of p(W;, y) on b¥(X;), (i =
1,...,n). Then by the law of large numbers, consistency of a sample regression for a
population regression, and the growth of K it will follow that plim of O(y) will be the
expected value of the square of the predicted value from the population regression of
p(W, y) on B, giving equation (4.4). It then follows by extremum estimator theory and
from I';, assumed to approximate I" that

plim(y) = v, := argmin Q. (y).
yel’

We will assume that v, is unique, which could be shown to hold under more primitive
conditions in Chen and Pouzo (2015).

As in Section 3.2 the focus of this section is deriving the FSIF ¢ (w, v, ) that satisfies
JEImW, v:)1/d7 = [ $(w, yo, 20)H (dw). The first-order condition for y, has a key role
in deriving the FSIE To describe the first-order condition, let A € I' denote a possible
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deviation of y away from vy;. Assume that there is v, (W) such that
amr(p(W, v- + LA)|X)
74

The calculus of variations, first-order condition for the minimization of Q(y, + {A)/2 at
{=0is

=7 (v (W)A(Z)|X).

d
0= d—gET[{'n'T(p(Wy Y+ é’A)|X)}2]/2|§=O

¢77T7(P(W, Yr+ gA)lX)iI
24

= ET|:7TT<p(W, ¥:)|X)
=E:[m:(p(W, v:)|X) 77 (v,-(W)A(Z)|X)] forallAeT, (4.5)

identically in 7. This first-order condition has a form analogous to two-stage least
squares, being orthogonality of the residual p(W, y,) with instruments obtained by pro-
jecting the derivative of the residual on the set of instrumental variables. We use this
first-order condition and the orthogonality condition in equation (4.4) to characterize
the FSIE

4.2 The first step influence function

Similar to Section 3, the influence function of 6(F) = Er[m(W, y(F))] will be the sum of
m(W, y9) — 6y and the FSIE We focus on derivation of the FSIF here. To characterize the
FSIE we proceed analogously to Section 3.2 by differentiating the first-order condition
with respect to 7 and applying the chain rule. For notational simplicity, let w(A(W)|X)
denote the projection of 4(W) on B for r = 0. We carry out these calculations for the
case where 7 (p(W, y0)|X) = 0, where either the orthogonality conditions are correctly
specified or vy is exactly identified so that the plim of ¥ solves the orthogonality condi-
tions (see Chen and Santos (2015) for exact identification). In Appendix C, we derive the
FSIF under misspecification where 7 (p(W, v9)|X) # 0.

Differentiating the identity of equation (4.5) with respect to 7, using the third equal-
ityand 7 (p(W, v0)|X) =0, gives

0= L E[m (¥, ) X)m(0,(MAZIX)] forall e, (46
T

where v, (W) = v,0(W). Define the set A to be the mean square closure of the set of
m(v,(W)A(Z)|X) for A €T, that s,

A={a(X):forall & > 0 there is A(Z) € I' with
E[{a(X) — m(v,(MAZ)|X) V] < &}, 4.7)

Then the first-order condition in equation (4.5) becomes

0= aiE[m(p(W, y:)|X)a(X)] forallac A.
T
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Next, we use the orthogonality condition (4.3) for the projection. Because .4 is a sub-
set of B it follows that

ET[p(W, yT)a(X)] = ET[WT(p(W, yT)|X)a(X)] foralla e A
identically in 7. Differentiating both sides with respect to r and applying the chain rule
gives

J J J
—E[pW, yr)a(X)] = ——Er[m(p(W, y0)| X)a(X) |+ ——E[m: (p(W, y1)|X)a(X)] =0,

by w(p(W, v0)|X) = 0 and equation (4.6). Applying the chain rule to the left-hand side
and solving then gives

—%E[p(W, yf)a(X)]z/oz(x)p(w, vo)H (dw) forall a € A. (4.8)

Similar to Section 3.1, the object being integrated on the right provides a candidate for
FSIF ¢(w, v, «). To find «¢(X) such that equation (3.6) is satisfied, we impose the fol-
lowing conditions.

AsSsUMPTION 3. There exists v,,,(Z) such that
J J
—E[mW, y1)] = - E[om(2)y:(2)], E[vm(X)?] < cc.

This condition is analogous to Assumption 1 in specifying an expected product form
for dE[m(W, v,;)]/d7, and similarly will be required for existence of the FSIE

AssuMPTION 4. There exists v,(W) such that for all b € B,

L E[p(W, y2)b(X)] = - E[u, (W)y,(Z)b(X)]
or or

This condition is similar to Assumption 2 in specifying a derivative condition involv-
ing the residual p(W, v) as a function of .

Unlike Section 3, the differentiability conditions in Assumptions 3 and 4 are not suf-
ficient to show that the FSIF has the form a(x)p(w, y) for some «g(x). The presence of
endogeneity, where y depends on variables different than the instrumental variables X,
creates the need for a link between v,,(Z), functions of X, and v,(W). The following
condition establishes the needed link. Let I1(d(W)|Z) = argmin,cr E[{d(W) — v(Z)}?]
denote the least squares projection of a function d(W) onI'.

AssuMPTION 5. Thereis b,,(X) € B such that
(v (2)|Z) = —=11(v,(W)bp(X)| Z).

This condition requires that the projection of v,,(Z) on I' must be equal to the pro-
jection of —v,(W)b,,(X) on I' for some instrumental variable b,,(X). This condition is
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restrictive in a way that is related to the Severini and Tripathi (2012) necessary condi-
tions for root-n consistent estimation as discussed in Example 6 to follow.

Assumptions 3-5 imply that the FSIF will have the form a(X)p(W, y) where ap(X) is
the least squares projection of b,,(X) on A. To see this, note that by vy, € I' and Assump-
tion 5,

E[vm(Z)%(Z)] ZE[H(Um(ZHZ)%(Z)]
E[I(vp (W)bm(X)|Z)y:(Z)]
E[v,(W)bm(X)y:(2)]
E[bm(X)7(vp(W)y:(Z2)|X)]
E[ao(X)m(v,(W)y-(2)|X)]
= —E[ao(X)v,(W)v:(2)],

for all = where the fifth equality follows by = (v,(W)vy,(Z)|X) € A. Then by Assump-
tions 3 and 4 and differentiating, we have

d d
EE[m(W, y:)] = EE[Um(Z)'YT(Z)]
d
=~ E[ao(X)v,(W)y:(2)]
d
= —EE[ao(X)P(W: %)]
=/ao(X)P(w, YO)H(dw)

where the last equality follows from equation (4.8). This equation shows the following
result.

ProrosITION 3. If Assumptions 3-5 are satisfied and mw(po(W, v0)|X) = 0, then the FSIF
is

o(w, vy, a) =a(x)p(w, y),

where oy (X) is the least squares projection of b, (X) on A satisfying

ap(X) = argmiﬁE[{bm(X) —a(X)}].
aec

The derivation of Proposition 3 is more complicated than Proposition 1 because of
endogeneity and the link condition in Assumption 5. The function ao(X) quantifies how
the instrumental variables affect the FSIE It is constrained to be an element of A because
NPIV projects functions of Z on the set of instrumental variables 5, just as parametric
two-stage least square does. When multiple sets of orthogonality conditions are avail-
able, for example, as could be the case if E[p(W, y0)|X] =0, ap(X) can vary with B. This
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effect of the choice of 5 on the influence function is analogous to parametric instrumen-
tal variables estimation, where the influence function can vary with the choice of linear
combination of instrumental variables.

ExaMPLE 5 (Additive structural functions and instruments). We consider NPIV where
v(Z) = y1(Z1) + v(Z>) is restricted to be additive in distinct components Z; and Z; of
Z = (Z1, Z»). Such arestriction can reduce the severity of the ill-posed inverse problem.
The instrumental variables b(X) = b1 (X1) + b2(X>2) are also restricted to be additive
in distinct components of X; and X3 of X. Such a restriction can identify the additive
components y;(Z1) and y2(Z) while limiting the number of instrumental variables to
reduce the Nagar (1959) bias of instrumental variables estimators. Here, I' and B are
mean square closures of sets of additive functions. It will be convenient here to just refer
to additive functions rather the mean square closures of sets of functions, though not
every function in the closure need be additive.

One thing of note about the FSIF here is that a¢(X) is in B and so it is an additive
function of X; and X». The form of ag(X) will be determined by the form of v,,(Z)
and v, (W) and the link condition of Assumption 5. Here, I1(A(W)|Z) is the projection
on (the mean square closure of) additive functions. Also the elements of 53 are (in the
closure of) additive functions. Suppose that the residual is linear with

p(W,y) =Y —v1(Z1) — y2(Z2).
Then v, (W) = —1 so that Assumption 5 is existence of b,, € B with
(v (2)|Z2) =11(bm(X)|Z).

This requires that the projection of v,,(Z) on additive functions of Z; and Z, must be
equal to the projection of an additive function of X; and X» on additive functions of Z;
and Z,. For example, if Z; is a scalar and m(w, y) = w(z1)dy1(z1)/dz1 then as in Exam-
ple1,

1 HwZDfo(2))  dw(Z)

dfo(Z)/dz1
fo(2Z) dz1 dz1 Y R@)
Here, it would suffice for Assumption 5 that there b! (X1) and b (X) = bl (X1) + bl (X>)
such that

vm(Z) =

_dw(Zy) _E
4

dfo(Z)/n1
fo(Z)

For quantile orthogonality conditions where p(W, y) = p — 1(Y < y(Z)), it follows
similar to Section 3 that

(b7 (x1)|Z1], H(u)(Zl) ’Z) =T X)|Z) @9

v,(W) = f(n(2)|Z, X),

where f(Y|Z, X) is the pdf of Y conditional on Z and X. Assumption 5 is then existence
of b,, € Bwith

(v (2)|Z) =T1(f (v0(2)| Z, X)bm (X)|Z).
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This requires that the projection of v,,(Z) on additive functions of Z; and Z, must be
equal to the projection of a weighted additive function of X; and X» on additive func-
tions of Z; and Z;. This condition also restricts v,,(Z) to be such that its projection on
I' is equal to projection of a function of Z and X on I' as further discussed in Example 6
to follow.

To help relate Proposition 3 to prior work, we consider a simple example of an object
of interest for conditional moment restrictions.

ExamPpLE 6 (Linear function of a linear structural equation). A relatively simple example
has m(W, y) = vu(Z)y(Z) for a v, (Z) with E[v,(Z)?] < oo, p(w, y) =y — y(z), and T
and B are unrestricted, so that the orthogonality condition of equation (4.1) is

Y =v(2) + ¢, Ele|X]=0.

This is a linear NPIV equation. Assumptions 3 and 4 are satisfied with v,,(Z) as given in
this example and v, (W) = —1. Then Assumption 5 is existence of b,,(X) such that

Um(Z) = E[bm(X)|Z]. (4.10)

Also A is the mean square closure of E[A(Z)|X] over all A(Z) with finite second moment
and ag(X) is the projection of b,,(X) on A. The FSIF is then

dW, 0, 20) = ao(X){Y — v (2)}. (4.11)

It is interesting to note that existence of a solution b,,(X) to equation (4.10) is the
necessary condition of Severini and Tripathi (2012) for existence of a root-n consistent
estimator of 6y = E[v,,(Z)y0(Z)]. This condition is restrictive in imposing that coeffi-
cients in a singular value expansion of b,,(X) must decline at certain rates. This example
shows the precise relationship of that necessary condition to the a¢(X) in the FSIE The
ap(X) is the projection of b,,(X) on A.

The formula for the FSIF given here is related to a prior influence function formula
given in Ai and Chen (2007, p. 40) for conditional moment restrictions. In the notation
here, the Ai and Chen (2007) formula is

¢V, 0, a0) = E[v*(2)|X]{Y — %(2)}, 4.12)

where v*(Z) is a Riesz representer in an extended Hilbert space described in Ai and Chen
(2003, 2007). Equations (4.11) and (4.12) coincide for a¢(X) = E[v*(Z)|X]. Equation
(4.11) is more explicit in giving the precise relationship between «o(X) and the b,,(X) of
the Severini and Tripathi (2012) necessary condition. Also Proposition 3 allows orthog-
onality conditions that are more general than conditional moment restrictions. Inter-
esting and useful Hilbert space characterizations of the FSIF in Proposition 3 could be
obtained as in Chen and Liao (2015) and/or Chen and Pouzo (2015) by extending their
results for conditional moment restrictions to orthogonality conditions. The more ex-
plicit formula in Proposition 3 may prove useful for policy and sensitivity analysis and
the construction of orthogonal moment functions.
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The NPIV objective function in equation (4.2) can be modified to allow a weighted
second moment matrix in the middle as in Ai and Chen (2003) where
bR (XHPE(X)T is replaced by Y7 (X)X (X)X (X)T for w(X;) > 0. Such a
modification with w(X;) = Var(p(W;, y)|X;) would lead to improved asymptotic effi-
ciency of 8 if y were a finite dimensional parameter vector and m (W, y) did not depend
on W. Proposition 3 can be modified in a straightforward way to allow for the presence
of such a w(X;) by replacing p(W, y) with o(X)~!p(W, v) and E,[-] with the weighted
expectation E;[w(X)(-)], including in the projection 7. Further details are beyond the
scope of this paper.

5. EXTENSIONS AND CONCLUSIONS

It is straightforward to extend the results we have given to objects that depend on mul-
tiple nonparametric estimators. As discussed in Newey (1994), such objects will have a
separate FSIF for each nonparametric estimator and the overall FSIF will be the sum of
the separate FSIF’s. Also, each separate FSIF can be computed from varying one non-
parametric estimator while holding the others fixed at their limit. It is also straightfor-
ward to extend the results to objects of interest that maximize objective functions other
than that for GMM. This extension is described in Appendix C.

This paper gives explicit influence function formulae for first steps that satisfy exoge-
nous or endogenous orthogonality conditions. It is shown how such formulae are use-
ful for characterizing local policy effects of structural changes, quantifying sensitivity of
semiparametric estimators, and constructing orthogonal moment functions. Those re-
sults are used to generalize the omitted variable bias formula for regression to obtain
the local effect of misspecification on policies and estimators that depend on solutions
to exogenous orthogonality conditions. This analysis is applied to a gasoline demand
data set where we find no evidence that average equivalent variation bounds are sensi-
tive to endogeneity.
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