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Abstract. The algebraic K-theory of Lawvere theories is a conceptual device
to elucidate the stable homology of the symmetry groups of algebraic structures

such as the permutation groups and the automorphism groups of free groups.

In this paper, we fully address the question of how Morita equivalence classes
of Lawvere theories interact with algebraic K-theory. On the one hand, we

show that the higher algebraic K-theory is invariant under passage to matrix

theories. On the other hand, we show that the higher algebraic K-theory is not
fully Morita invariant because of the behavior of idempotents in non-additive

contexts: We compute the K-theory of all Lawvere theories Morita equivalent
to the theory of Boolean algebras.

Introduction

Quillen’s seminal work [27] used algebraic K-theory to organize our thinking
about the stable homology of general linear groups. This initiated generalizations
to contexts far broader than that of rings. In this paper, we restrict our atten-
tion to Lawvere’s algebraic theories. These structures provide a happy medium
between rings and symmetric monoidal categories: no higher-categorical language
is required, and they are much more flexible than rings. For instance, the sta-
ble homology of the symmetric groups and of the automorphism groups of free
groups [11] fit into this context as well. Our results are motivated by such sta-
ble homology computations, the starting point being the following fact (see Theo-
rem 2.6): For every Lawvere theory T , there is an isomorphism

colimr H∗(Aut(Tr)) ∼= H∗(Ω
∞
0 K(T ))

between the stable homology of the automorphism groups of finitely generated
free objects of the theory T and the homology of the zero component Ω∞

0 K(T ) of
the algebraic K-theory space Ω∞K(T ). The surprising power of this observation
comes from two sources. First, the K-theory space or spectrum is often easier to
describe than its homology. This happens, for instance, for the symmetric groups.
Second, algebraic K-theory can sometimes be computed without explicitly using the
groups Aut(Tr) (see [38], for example). Here, we present a new stable homology
computation, for the theory of Boolean algebras, phrased once again in terms of
algebraic K-theory.
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Theorem A. For the algebraic K-theory of the Lawvere theory Boole of Boolean
algebras, we have K∗(Boole) ∼= π∗(S)/2–power torsion.

In this result, the groups π∗(S) are the stable homotopy groups of spheres. These
groups are the K-groups of the initial Lawvere theory of sets, but the resulting
homomorphism to K∗(Boole) is not surjective (see Proposition 5.3). Theorem A is
a consequence of the following spectrum-level result, proved as Theorem 5.1, which
is also a generalization from Boolean algebras to many-valued logics as modeled by
the Lawvere theories Postv of Post algebras of valence v. The superscript in R×

refers to the units of a ring (spectrum) R.

Theorem B. For every integer v ⩾ 2, there is a homotopy pullback square

K(Postv) →→

↓↓

S[1/v]×

↓↓
HZ

v
→→ HZ[1/v]×

of spectra.

These results can be conceptualized in terms of Morita invariance. Two rings
are called Morita equivalent if they have equivalent categories of modules. Morita
equivalent rings must have isomorphic higher algebraic K-groups (see [43, IV Ex. 1.21,
IV 6.3.5]). More generally, two Lawvere theories are called Morita equivalent if their
categories of models are equivalent. This is the case if and only one of them is an
idempotent modification of a matrix theory of the other; see the brief review in
Section 4. We first prove a positive result (see Theorem 4.1), which we expect to
be a useful tool in stable homology computations.

Theorem C. The higher algebraic K-theory of Lawvere theories is invariant under
passage to matrix theories.

Because we define the algebraic K-theory of Lawvere theories in terms of free
models, there is no hope of extending this result to K0: there are even Morita
equivalent rings that have non-isomorphic K0’s when these K-groups are defined
using free modules only. This is due, of course, to the presence of projectives
that are not free. Arguably, the ability to detect those non-free projectives is one
desirable feature of lower K-theory. For rings, we could have built that feature
into our theory by completing idempotents. In an additive category, all retracts
have complements, and this completion does not change the higher algebraic K-
theory, only K0. However, for general Lawvere theories, this fix for K0 is not
possible without changing the higher algebraic K-theory: we show that completing
at idempotents can change the higher algebraic K-groups. In fact, since the Lawvere
theories Postv are all Morita equivalent, our computations in Theorem B show the
following:

Theorem D. The higher algebraic K-theory of Lawvere theories is not Morita
invariant.

We can rephrase this result in terms of the “syntax” of a Lawvere theory, which
is defined by the free models, and its “semantics,” which comprises all models:
the higher algebraic K-theory of an algebraic theory depends essentially on the
syntax of the theory, rather than merely its semantics. We refer to Lawvere’s
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writings [13, 14, 15] for the distinction between syntax and semantics in this context.
From the perspective of mathematical logic and topos theory [7], different notions of
equivalence of theories, both semantic and syntactical, have recently been discussed
and compared in [4, 40].

While stable homology computations are one of our motivations for considering
the algebraic K-theory of Lawvere theories, the related issue of homological stability
is not the focus of the present work. We refer to the paper [29] by Randal-Williams
and Wahl, which discusses the homological stability problem in a more general
framework than ours. Nonetheless, the specific setting of Lawvere theories balances
rigidity and flexibility in a way that suggests it to be particularly amenable to
homological stability questions as well. Additional motivation for the algebraic K-
theory of Lawvere theories, in the form of multiplicative matters and applications
to assembly maps, is discussed in [5].
Outline. Section 1 recalls Lawvere’s categorical approach to universal algebra and
sets up the notation that we use. In Section 2, we define the K-theory of algebraic
theories and show that it encodes the stable homology of the automorphism groups
of the free models. A plethora of examples that do not come from rings and modules
are presented in Section 3 before we start our discussion of Morita invariance with
our theorem for matrix theories in Section 4. The final Section 5 contains the
computation for the theory of Boolean algebras and all theories equivalent to them.

1. Lawvere theories

We need to review the basic notions and set up our notation for Lawvere theo-
ries [13]. Some textbook references are [23, 32, 6, 1].

Choose a skeleton E of the category of finite sets and (all) maps between them.
For each integer r ⩾ 0 such a category has a unique object with precisely r ele-
ments, and there are no other objects. For the sake of explicitness, let us choose
the model r = {a ∈ Z | 1 ⩽ a ⩽ r} for such a set. A set with r + s elements is
the (categorical) sum, or co-product, of a set with r elements and a set with s
elements.

Definition 1.1. A Lawvere theory T = (FT ,FT ) is a pair consisting of a small cate-
gory FT together with a functor FT : E→ FT that is bijective on sets of objects and
that preserves sums. This means that the canonical map FT (r) + FT (s)→ FT (r + s)
induced by the canonical injections is an isomorphism for all sets r and s in E.

The image of the set r with r elements under the functor FT : E → FT will be
written Tr, so that the object Tr is the sum in the category FT of r copies of the
object T1.

We recall two of the most important classes of examples of Lawvere theories.

Example 1.2. Let A be a ring. Let FA be the full subcategory of the cate-
gory ModA of A–modules spanned by the modules A⊕r for r ⩾ 0. This category
is a skeleton of the category of finitely generated, free A–modules. The func-
tor FA : E→ FA that sends the set with r elements to the free module A⊕r with r
generators is a Lawvere theory, called the theory of A–modules. Note that A⊕0 = 0
is the 0 module. In particular, for the initial ring A = Z, we have the Lawvere
theory of abelian groups.

Rings can be very complicated, and this is even more true for Lawvere theories,
which are significantly more general.
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Example 1.3. Let G be a group. Let FG be (a skeleton of) the full subcategory
of the category of G–sets on the free G–sets with finitely many orbits: those of
the form

∐︁
r G. The functor FG : E→ FG sending r to

∐︁
r G is a Lawvere theory,

called the theory of G–sets. In particular, for the trivial group G = {e}, we have
the Lawvere theory E of sets.

Remark 1.4. Some authors prefer to work with the opposite category Fop
T , so that

the object Tr is the product (rather than the co-product) of r copies of the object T1.
For example, this was Lawvere’s convention when he introduced this notion in [13].
Our convention reflects the point of view that the object Tr should be thought of as
the free T–model (or T–algebra) on r generators, covariantly in r (or rather in E).
To make this precise, recall the definition of a model (or algebra) for a theory T .

Definition 1.5. Given a Lawvere theory T , a T–model (or T–algebra) is a presheafX (of
sets) on the category FT that sends (categorical) sums in FT to (categorical,
i.e. Cartesian) products of sets. (This means that the canonical mapX(Tr + Ts)→ X(Tr)×X(Ts)
induced by the injections is a bijection for all sets r and s in E.) We write MT

for the category of T–models, and we write MT (X,Y ) to denote the set of mor-
phisms X → Y between T–algebras. Such a morphism is defined to be a map of
presheaves, i.e., a natural transformation, so that MT is a full subcategory of the
category of presheaves on FT .

The values of a T–model are determined up to isomorphism by the value at T1,
and we often use the same notation for a model and its value at T1.

Example 1.6. The categories of models for the Lawvere theories of Examples 1.2
and 1.3 are the categories of A–modules and G–sets, respectively. For example, the
action of G on itself from the right gives for each g ∈ G a G–map g :

∐︁
1 G→

∐︁
1 G

in the category FG of Example 1.3. Given a model X : Fop
G → Sets, the set

maps X(g) : X(
∐︁

1 G)→ X(
∐︁

1 G) combine to produce the action of the group G
on the set X(

∐︁
1 G).

Example 1.7. The co-variant Yoneda embedding FT → Pre(FT ) sends the object Tr

of FT to the presheaf Ts ↦→ FT (Ts, Tr) represented by it. Such a presheaf is read-
ily checked to be a T–model. We refer to a T–model of this form as free. The
definitions unravel to give natural bijections MT (Tr, X) ∼= Xr for T–models X, so
that Tr is indeed a free T–model on r generators.

We can summarize the situation as follows. The Yoneda embedding of FT

into presheaves on FT factors FT →MT → Pre(FT ) through the category MT

of T–models. Both functors are fully faithful, and the free T–models are those in
the (essential) image of the first functor.

Definition 1.8. Amorphism S → T between Lawvere theories is a functor L : FS → FT

that (strictly) preserves sums. This is equivalent to the condition that FT
∼= L◦FS ,

i.e., that L is a map under E.

It is common to describe a morphism S → T between two Lawvere theories by
giving a functor R : MT →MS that is compatible with the forgetful functors to the
category ME of sets. In this case, R has a left-adjoint by Freyd’s adjoint functor
theorem and L is induced by the restriction of the left adjoint to R to free models.

For any Lawvere theory T , the categoryMT of T–models is complete and cocom-
plete. Limits are constructed pointwise, and the existence of colimits follows from
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the adjoint functor theorem. The category MT becomes symmetric monoidal with
respect to the (categorical) sum, and the unit object T0 for this structure is also an
initial object in the category MT .

2. Algebraic K-theory and stable homology

In this section, we define the algebraic K-theory spectrum K(T ) of a Lawvere
theory T , show how it encodes the stable homology of the automorphism groups of
free T–models, and prove our positive results on Morita invariance.

We first specify the constructions of K-theory we use in this paper. Our primary
approach is to view Lawvere theories as a special case of symmetric monoidal cat-
egories and apply the classic constructions of K-theory for the latter. There are
several ways of approaching these constructions; we begin with a brief overview.

Let S denote a symmetric monoidal groupoid. For the following to make sense, S
needs to satisfy an additional assumption, but we show in Proposition 2.4 that this
is always the case for the categories we are interested in. We can then pass to
Quillen’s categorification S−1S of the Grothendieck construction. The canonical
morphism BS→ BS−1S between the classifying spaces is a group completion, and
the target is an infinite loop space. We refer to [12] and Thomason’s particularly
brief and enlightening discussion [39] for detail. To build a K-theory spectrum K(S)
with underlying infinite loop space Ω∞K(S) ≃ BS−1S, we can use Segal’s definition
of the algebraic K-theory of a symmetric monoidal category in terms of Γ–spaces.
The equivalence comes from [33, §4], where he shows that Ω∞K(S) is also a group
completion of BS.

Definition 2.1. Let T be a Lawvere theory. The algebraic K-theory of T is the
spectrum

(2.1) K(T ) = K(F×
T ),

that is, the spectrum corresponding to the symmetric monoidal groupoid F×
T of

isomorphisms in the symmetric monoidal category FT of finitely generated free T–
models, where the monoidal structure is given by the categorical sum.

Since the category FT can be identified with the symmetric monoidal category
of finitely generated free T–models, Definition 2.1 concerns the algebraic K-theory
of finitely generated free T–models. In particular, the group K0(T ) = π0K(T ) is
the Grothendieck group of isomorphism classes of finitely generated free T–models.
This group is always cyclic, generated by the isomorphism class [T1 ] of the free T–
model on one generator. However, the group K0(T ) does not have to be infinite
cyclic, as the Examples 3.7 and 4.2 below show.

Remark 2.2. A morphism S → T of Lawvere theories (as in Definition 1.8)
induces, via the left-adjoint functor FS → FT , a morphism K(S) → K(T ) of
algebraic K-theory spectra. The left adjoint FS → FT sends the free S–model S1

on one generator to the free T–model T1 on one generator. It follows that the
induced homomorphism K0(S)→ K0(T ) between cyclic groups is surjective, being
the identity on representatives.

One reason for interest in the algebraic K-theory of Lawvere theories is the
relation to the stable homology of the sequence of automorphism groups attached
to a Lawvere theory. We now make this relation made precise.
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Let T be a Lawvere theory. The automorphism groups of the free algebras Tr

often turn out to be very interesting (see the examples in Section 3 below). We use
the notation Aut(Tr) for these groups.

Given integers r, s ⩾ 0, there is a stabilization homomorphism

(2.2) Aut(Tr) −→ Aut(Tr+s)

that ‘adds’ the identity of the object Ts in the sense of the categorical sum +, and
we use additive notation for this operation. More precisely, stabilization sends an
automorphism u of Tr to the automorphism of Tr+s that makes the diagram

Tr+s
→→ Tr+s

Tr + Ts

∼=

↑↑

u+Ts

∼=
→→ Tr + Ts

∼=

↑↑

commute. By abuse of notation, this automorphism of the object Tr+s will some-
times also be denoted by u+ Ts.

Remark 2.3. The alert reader will have noticed that we have not specified our
choice of isomorphism Tr+Ts

∼= Tr+s in the preceding diagram. While the require-
ment that Tr+s be the sum of Tr and Ts provides a canonical identification here,
we could in fact use any choice of isomorphism. All such choices obviously differ
by conjugation by an automorphism of Tr+s, so that they induce the same map in
homology, which is all that matters for the purposes of this section.

Proposition 2.4. For every Lawvere theory T , the stabilization maps Aut(Tr)→ Aut(Tr+1)
are injective.

Proof. It is enough to show that the kernels are trivial. This is clear for r = 0,
since T0 is initial, so that Aut(T0) is the trivial group. For positive r we can choose
a retraction ρ of the canonical embedding σ : Tr → Tr+1. If u is in the kernel of the
stabilization map, then we have the following commutative diagram.

Tr

σ

↓↓

u →→ Tr

σ

↓↓
Tr+1

id
→→ Tr+1 ρ

→→ Tr

It implies u = id. □

Stabilization leads to a diagram

(2.3) Aut(T0) −→ Aut(T1) −→ Aut(T2) −→ Aut(T3) −→ · · ·

of groups for every Lawvere theory T . We write colimr Aut(Tr) for the colimit
of the diagram (2.3) with respect to the stabilization maps. This is the stable
automorphism group for the Lawvere theory T .

Let us record the following group theoretical property of the stable automorphism
groups. This is presumably well-known already in more or less generality. We
nevertheless include an argument here for completeness’ sake.

Proposition 2.5. For every Lawvere theory T , the commutator subgroup of the
stable automorphism group colimr Aut(Tr) is perfect.
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Proof. Given a commutator in the group colimr Aut(Tr), we can represent it as [u, v]
for a pair u, v of automorphisms in the group Aut(Tr) for some r. Allowing us thrice
the space, in the group Aut(T3r) we have the identity

[u, v] + id(T2r) = [u+ u−1 + id(Tr), v + id(Tr) + v−1].

It therefore suffices to prove that each element of the form w+w−1 is a commutator.
This is a version of Whitehead’s lemma that holds in every symmetric monoidal
category: whenever there are automorphisms w1, . . . , wn of an object such that
their composition w1 · · ·wn is the identity, then w1 + · · · + wn is a commutator.
We apply this to the category FT with respect to the monoidal product given by
categorical sum +. □

After these preliminaries, we now move on to give another model for the alge-
braic K-theory space of a Lawvere theory T , one that uses the Quillen plus con-
struction. This construction led to Quillen’s historically first definition of the alge-
braic K-theory of a ring [26] (see also [42] and [17]).

The plus construction can be applied to connected spaces X for which the fun-
damental groups have perfect commutator subgroups. It produces a map X → X+

into another connected space X+ with the same integral homology, and such that
the induced maps on fundamental groups are the abelianization. In fact, these
two properties characterize the plus construction. By Proposition 2.5, the com-
mutator subgroup of colimr Aut(Tr) is perfect. Therefore, the plus construction
can be applied the classifying space Bcolimr Aut(Tr) in order to produce another
space Bcolimr Aut(Tr)

+.

Theorem 2.6. For every Lawvere theory T , there is an equivalence

(2.4) Ω∞K(T ) ≃ K0(T )× Bcolimr Aut(Tr)
+

of spaces.

Proof. Quillen, in the his proof that the plus construction of K-theory agrees with
the one obtained from the Q-construction, takes an intermediate step (see [12,
p. 224]): he shows that the plus construction, together with K0, gives a space that
is equivalent to the classifying space of his categorification S−1S of the Grothendieck
construction of a suitable symmetric monoidal category S. This part of his argu-
ment applies here to show that there is an equivalence

K0(T )× Bcolimr Aut(Tr)
+ ≃ B((F×

T )
−1F×

T )

of spaces for every Lawvere theory T . The claim follows because we already know
that the right hand side has the homotopy type of Ω∞K(T ). □

In general, there seems to be no reason to believe that an artificial product such
as the one in (2.4) would form a meaningful whole (see [31, Warning 2.2.9]). The
present case is special because K0(T ) is generated by the isomorphism class of the
free T–algebra T1 of rank 1. Other constructions of the same homotopy type do
not separate the group K0(T ) of components from the rest of the space. One way
or another, note that all components of the algebraic K-theory space K(T ) are
equivalent; the group K0(T ) of components acts transitively on the infinite loop
space Ω∞K(T ) up to homotopy.

Since the plus construction does not change homology, the definition of the
algebraic K-theory space immediately gives the following result.
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Theorem 2.7. For every Lawvere theory T , there is an isomorphism

colimr H∗(Aut(Tr)) ∼= H∗(Ω
∞
0 K(T ))

between the stable homology of the automorphism groups of finitely generated free
objects of the theory T and the homology of the zero component Ω∞

0 K(T ) of the
algebraic K-theory space Ω∞K(T ).

Ideally, the algebraic K-theory spectrum K(T ) is more accessible and easier to
understand and describe than the stable automorphism group colimr Aut(Tr). This
is not at all plausible from the definition; only the now-classical methods of alge-
braic K-theory, which have been developed over half a century, allow us to take
this stance. From this perspective, Theorem 2.7 should be thought of as a compu-
tation of the group homology, once the spectrum K(T ) is identified. The examples
in Sections 3 and 5 give a taste of the flavor of some non-trivial (and non-linear)
cases.

3. Some non-linear examples

The goal of this section is to demonstrate the interest in the algebraic K-
theory K(T ) of Lawvere theories T beyond what are arguably the most fundamental
examples, the theories of modules over rings:

Example 3.1. Consider the theory of modules over a ring A, as in Example 1.2.
The automorphism group of the free A–module Ar of rank r is the general lin-
ear group Aut(Ar) = GLr(A). The algebraic K-theory spectrum K(A) is Quillen’s
algebraic K-theory (actually, the ‘free’ version). In particular K(Z) is the K-theory
spectrum of the Lawvere theory of abelian groups, in the guise of Z–modules.

We can now move on to discuss non-linear examples: theories that are not given
as modules over a ring.

Example 3.2. Consider the initial theory E of sets. The automorphisms are just
the permutations, and the automorphism group Aut{1, . . . , r} = Σ(r) is the sym-
metric group on r symbols. The algebraic K-theory is the sphere spectrum: K(E) ≃
S. This is one version of the Barratt–Priddy theorem [25, 3]. We go into detail so
that we can use the same notation later as well: Let Q ≃ Ω∞S denote the infinite
loop space of stable self-maps of the spheres. The path components of the space Q
are indexed by the degree of the stable maps, as a reflection of π0(S) = Z, and we will
write Q(r) for the component of maps of degree r. There are maps BΣ(r)→ Q(r)
which are homology isomorphisms in a range that increases with r by Nakaoka
stability [22]. These maps fit together to induce a homology isomorphism

(3.1) BΣ(∞)→ Q(∞)

between the colimits. The stabilization Q(r)→ Q(r + 1) is always an equivalence,
so that all the maps Q(r)→ Q(∞) to the colimit are equivalences as well. Passing
to group completions, the map (3.1) induces an equivalence Ω∞

0 K(E) ≃ Ω∞
0 S of

infinite loop spaces, so that K(E) ≃ S as spectra. We refer to Morava’s notes [21]
for more background and for relations to the algebraic K-theory of the finite fields Fq

when the number q of elements goes to 1.

Example 3.3. More generally, for any discrete group G, we can consider the
Lawvere theory of G–sets. The algebraic K-theory spectrum of the Lawvere the-
ory of G–sets is K(G–Sets) ≃ Σ∞

+ (BG), the suspension spectrum of the classifying



ALGEBRAIC K-THEORY OF LAWVERE THEORIES 9

space BG (with a disjoint base point +). This observation is attributed to Segal.
In particular, for the Lawvere theory Z–sets, this gives

K(Z–Sets) ≃ Σ∞
+ (BZ) ≃ Σ∞

+ (S1) ≃ S ∨ ΣS.
The theory Z–sets is the theory of permutations [36]: a model is a set together with
a permutation of that set.

Example 3.4. Consider the theory Groups of (all) groups. In this case, the auto-
morphism groups Aut(Fr) are the automorphism groups of the free groups Fr on r
generators. The algebraic K-theory space has been shown to be the infinite loop
space underlying the sphere spectrum by Galatius [11]: the unit S ≃ K(Sets) →
K(Groups) is an equivalence.

The theory of abelian groups has been dealt with in Example 3.1.

Example 3.5. There is an interpolation between the theory of all groups and the
theory of all abelian groups by the theories Nilc of nilpotent groups of a certain
class c, with 1 ⩽ c ⩽∞. There is a corresponding diagram

...

↓↓
K(Nil3)

↓↓
K(Nil2)

↓↓
S K(Groups) →→

→→

↗↗

K(Abel) K(Z)

of algebraic K-theory spectra. This tower has been studied from the point of view
of homological stability and stable homology in [35] and [37], respectively.

Example 3.6. In contrast to groups, the algebraic K-theory of the Lawvere the-
ory Monoids of (associative) monoids (with unit) is easy to compute: the free
monoid on a set X is modeled on the set of words with letters from that set, and
it has a unique basis: the subset of words of length one, which can be identi-
fied with X. This implies that the automorphism group of the free monoid on r
generators is isomorphic to the symmetric group Σ(r), so that the map K(E) →
K(Monoids) from the algebraic K-theory of the initial theory E of sets is an equiv-
alence. By Example 3.2, we get an equivalence K(Monoids) ≃ S of spectra. It
follows, again from Galatius’s theorem (see Example 3.4), that the canonical mor-
phism K(Monoids) → K(Groups) is an equivalence. It would be interesting to see
a proof of this fact that does not depend on his result.

Example 3.7. Let a ⩾ 2 be an integer. A Cantor algebra of arity a is a set X
together with a bijection Xa → X. The Cantor algebras of arity a are the models
for a Lawvere theory Cantora, and its algebraic K-theory has been computed in [38]:

(3.2) K(Cantora) ≃ S/(a− 1),

the mod a− 1 Moore spectrum . In particular, the spectrum K(Cantor2) is con-
tractible. Note that the definition makes sense for a = 1 as well. In that case, we
have an isomorphism between Cantor1 and the Lawvere theory Z–Sets of permu-
tations, and the equivalence (3.2) is still true by Example 3.3.
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Example 3.8. Lawvere theories can be presented by generators and relations.
The ‘generators’ of a theory are specified in terms of a graded set P = (Pa | a ⩾ 0 ),
where Pa is a set of operations of arity a. There is a free Lawvere theory func-
tor P ↦→ TP that is left adjoint to the functor that assigns to a theory the graded
set of operations. For instance, let [a] be the graded set that only has one element,
and where the degree of that element is a. Then T[a] is the free theory generated
by one operation of arity a. For instance, the Lawvere theory T[0] is the theory of
pointed sets. The Lawvere theory T[1] is the theory of self-maps (or N–sets): sets
together with a self-map, and T[2] is the theory of magmas: sets equipped with a
multiplication that does not have to satisfy any axioms. The free T[a]–model on
a set X is given by the set of all trees of arity a with leaves colored in X. This
model has a unique basis: the trees of height 1, and we can argue as in Example 3.6
that K(T[a]) ≃ S.

Finally, we mention the two trivial (or inconsistent, in Lawvere’s terminology)
examples of theories where the free model functor is not faithful (see Lawvere’s
thesis [16, II.1, Prop. 3]).

Example 3.9. There is a theory such that all models are either empty or singletons.
It has no operations aside from the projections Xn → X, and the relations require
that all these projections are equal, so that x1 = x2 for all elements xj in a set X
that is a model.

Example 3.10. There is a theory such that all models are singletons. It has a 0–
ary operation (constant) e, and the relation x = e has to be satisfied for all x in a
model X. Another way of describing the same Lawvere theory: this is the theory
of modules over the trivial ring, where 0 = 1. From this perspective, the theory is
not so exotic after all!

For both of these examples, the algebraic K-theory spectra are obviously con-
tractible.

4. Morita equivalences and invariance for matrix theories

Given a Lawvere theory T and an integer n ⩾ 1, the matrix theory Mn(T ) is the
Lawvere theory such that the free Mn(T )–model on a set X is the free T–model
on the set n×X (see [44, Sec. 4]). In other words, the category FMn(T ) is the full
subcategory of the category FT consisting of the objects Tnr for r ⩾ 0.

More diagrammatically, we may view n × − as a strong monoidal endofunctor
of FT , which takes an object Tr to the n–fold sum of Tr with itself. The underlying
category of the Lawvere theory Mn(T ) is the image of n × − and the structure
functor that defines Mn(T ) as a Lawvere theory is the composite

E −−−→ FT
n×−−−−→ FT .

It is easy to describe all Mn(T )–models up to isomorphism: given a T–model X,
we can construct an Mn(T )–model on the n–th cartesian power Xn of X; the r–
ary Mn(T )–operations (X

n)r → Xn are the maps such that all components (Xn)r → X
are nr–ary T–operations on X. In particular, we get a unary operation Xn → Xn

for each self-map of the set n, and so the monoid End(n) acts on the model Xn.
Every model arises this way, up to isomorphism. Every Mn(T )–model of the
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form Xn has an underlying T–model consisting of the operations that are them-
selves n–th powers, which gives a forgetful functor MMn(T ) →MT . Equivalently,
there is a morphism

(4.1) T −→ Mn(T )

of Lawvere theories. From the diagrammatic perspective, this morphism is simply
the above functor n×− : FT → FMn(T ) ⊂ FT , which by construction is a functor
under E and hence a map of Lawvere theories. We readily observe that there
are isomorphisms M1(T ) ∼= T and Mm(Mn(T )) ∼= Mmn(T ). If T is the theory of
modules over a ring A as in Example 1.2, then Mn(T ) is the theory of modules over
the matrix ring Mn(A). The Lawvere theory Mn(E) is the theory of End(n)–sets.

We now show that the higher algebraic K-theory of a Lawvere theory T is invari-
ant under passage to matrix theories Mn(T ).

Theorem 4.1. For every Lawvere theory T , there is an equivalence

Ω∞
0 K(Mn(T )) ≃ Ω∞

0 K(T )

of infinite loop spaces.

Proof. We may use that the existence of isomorphisms Mn(T )r ∼= Tn×r of models
implies that we have isomorphisms

Aut(Mn(T )r) ∼= Aut(Tn×r)

between the automorphism groups. Therefore, when we compare the diagrams (2.3),
the one with the groups Aut(Mn(T )r) for Mn(T ) naturally embeds as a cofinal sub-
diagram of the diagram with the groups Aut(Tr) for T . We only see every n–th
term, but the colimits can be identified, of course, and this proves the statement
on the level of spaces.

To see that we have an equivalence of infinite loop spaces, we show that this map
is induced by a map of spectra. However, the equivalence is not induced by the mor-
phism K(T )→ K(MnT ) of spectra that comes from the canonical morphism (4.1)
of theories. A remedy is to leave the world of Lawvere theories for the rest of the
proof and use the general context of symmetric monoidal theories. Then we see
that the equivalence does come from a morphism K(MnT )→ K(T ) of spectra in the
other direction. This morphism of spectra is obtained from the symmetric monoidal
functor FMn(T ) → FT given by the inclusion of FMn(T ) into FT as the image of the
functor n×−. This functor is defined by Mn(T )r ∼= Tn×r ↦→ Tn×r and so, while it
is essentially the identity on morphisms, it is not necessarily surjective on objects.
In particular, it need not be surjective on the level of components, as is required
for a map of Lawvere theories according to Remark 2.2. On the component of zero,
however, it has the effect described in the first part of the proof, showing that we
have an equivalence of infinite loop spaces. □

In fact, as tempting as it might be to hope for an equivalence K(MnT ) ≃ K(T )
of K-theory spectra, we cannot have that, in general, because of the difference in
the groups K0 of components:

Example 4.2. As explained in [38, Rem. 5.3] and Example 3.7 of the following
section, the Cantor theories Cantora of arity a ⩾ 2 have K0(Cantora) = Z/(a −
1) finite. But by construction, the matrix theory Mn(Cantora) only involves the
elements represented by multiples of n in the group Z/(a−1). Therefore, if n is not
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coprime to a − 1, then K0(MnCantora) will be strictly smaller than K0(Cantora).
In particular, the morphisms between K(Cantora) and K(MnCantora) described in
Remark 2.2 and Example 4.2 are not equivalences in this case.

Theorem 4.1 might suggest that the higher algebraic K-theory of Lawvere the-
ories is Morita invariant, but we show in the rest of the paper that this is not the
case. We start with the definition.

Definition 4.3. Two Lawvere theories S and T are called Morita equivalent if their
categories MS and MT of models are equivalent.

For instance, if S is the Lawvere theory of modules over a ring A, then T is also a
Lawvere theory of modules over a ring B, and this ring B is Morita equivalent to A
in the usual sense; see [2, Ex. 3.1]. Thus, Definition 4.3 is in agreement with the
established terminology for Lawvere theories that are given by rings. In general, it
turns out that the Morita equivalence relation is generated by two processes, one
of which we have already seen.

Proposition 4.4 ([8], [20]). A Lawvere theory is Morita equivalent to a given
Lawvere theory T if and only if it is an idempotent modification of a matrix theory
of T for some pseudo-invertible idempotent of the matrix theory.

Since behavior of algebraic K-theory on passage to matrix theories is already
fully described by our results above, we now turn to idempotent modifications.

Let T be a Lawvere theory with an idempotent endomorphism u : T1 → T1 of
the free T–model T1 on one generator. We write un : Tn → Tn for the n–fold sum,
so that u1 = u. An idempotent u is pseudo-invertible if, for some fixed k, there are
morphisms T1 → Tk and Tk → T1 such that their composition around uk : Tk → Tk

is the identity on T1.

Lemma 4.5. Consider the following properties for a morphism f : Tr → Ts in FT

with respect to a fixed idempotent u.
(1) f = usgur for some g : Tr → Ts

(2) usf = f = fur

(3) usf = fur

Then (1) ⇔ (2) ⇒ (3). We have (2) ⇐ (3) if and only if u = id.

We define Fu
T ⩽ FT to be the subcategory (!) consisting of the morphisms

that satisfy condition (3) in Lemma 4.5 above. Note that (1) and (2) do not
define a subcategory in general, because the identity morphisms satisfy (3), but
not necessarily (1) or (2). However, we can define a new category structure on
the subsets of FT (Tr, Ts) consisting of morphisms satisfying conditions (1) and (2):
these subsets are closed under composition, and the ur’s act as new identities. This
gives another category FuTu and another Lawvere theory, the idempotent modifi-
cation uTu of T with respect to the idempotent u. There is a functor Fu

T → FuTu

defined by f ↦→ uf = ufu = fu, and we can, in principle, compare the new Lawvere
theory uTu to T using the zigzag

FuTu ←− Fu
T −→ FT

of functors defined above, all of which are the identities on objects. These functors
then induce a comparison zigzag of K-theory spectra.

However, this zigzag of K-theory spectra is not generally an equivalence. In
the following section, we provide examples of Lawvere theories that are Morita
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equivalent but have different higher algebraic K-theory. This also shows that [43,
Ex. IV.4.13(a)], which suggests that the inclusion of a symmetric monoidal category
into its idempotent completion should always be cofinal, is lacking an additivity
assumption.

5. Theories equivalent to the theory of Boolean algebras

In this section, we present new computations: we determine the algebraic K-
theory of the Lawvere theory of Boolean algebras. Our methods allow us to deal
more generally with the Lawvere theories of v–valued Post algebras. Boolean alge-
bras form the case v = 2. The Lawvere theories of v–valued Post algebras are
all Morita equivalent to each other. In fact, these form the set of all the Lawvere
theories that are equivalent to the theory of Boolean algebras. As a consequence
of our computations, we show that algebraic K-theory is not Morita invariant in
general.

Boolean algebras and their relationship to set theory and logic are fundamen-
tal for mathematics and well-known. Post algebras were introduced by Rosen-
bloom [30]. They are named after Post’s work [24] on non-classical logics with v
truth values. Later references are Wade [41], Epstein [10], as well as the surveys by
Serfati [34] and Dwinger [9], to which we refer for defining equations and explicit
models of the free algebras. In the following, we will only recall their definition as
a Lawvere theory and what is necessary for our purposes.

We write Map(R,S) for the set of all maps from a set R to a set S. As
before, we build on the specific finite sets r = {a ∈ Z | 1 ⩽ a ⩽ r}. For a fixed
integer v ⩾ 2, we now consider the category whose objects are the finite sets of
the form Map(r, v), where r ranges over all integers r ⩾ 0, and whose morphisms
are all maps between these sets. By construction, this category has finite products,
and every object Map(r, v) is the r–th power of the object Map(1, v) = v. There-
fore, the opposite category has finite co-products, and every object is a multiple
of one object, the one corresponding to the set Map(1, v). This opposite category
defines the Lawvere theory Postv of v–valued Post algebras. For v = 2, Post’s v–
valued logic specializes to the 2–valued Boolean logic, and we have Post2 = Boole,
the Lawvere theory of Boolean algebras. Using our description above, this is a
well-known consequence of Stone duality: the set of subsets of Map(r, 2) is a free
Boolean algebra on r generators, with 22

r

elements in total.
Dukarm [8, Sec. 3] notes that the Lawvere theories Postv are all Morita equivalent

to each other. After all, for any given integer v ⩾ 2, any finite set is a retract of
a set of the form Map(r, v) for r ⩾ 0 large enough. There is no need for us to
choose such a retraction. (The situation is comparable to the abstract existence of
isomorphisms Qp

∼= C of fields between the algebraic closure Qp of the field Qp of p–
adic numbers and the field C of complex numbers, showing that the isomorphism
type of Qp is independent of p.) In any event, it follows from the existence of
such retractions that the idempotent completions of the categories of free v–valued
Post algebras are equivalent to the category of non-empty finite sets, regardless
of v. Since these idempotent completions are independent of the integer v, so is the
Morita equivalence class of Postv, by the results recalled in Section 4. The following
theorem shows that, in contrast, higher algebraic K-theory detects the number v
of truth values, and K-theory is therefore not fully Morita invariant.
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In order to state the result, we need the spectrum R× of units of a commutative
ring spectrum R (see [18]). This spectrum is defined so that its underlying infinite
loop space Ω∞R× is the union of the components of Ω∞R that represent units,
i.e., are invertible, in the ring π0R. The inclusion Ω∞R× → Ω∞R then induces
an isomorphism on higher homotopy groups. The inclusion is not, however, a
morphism of infinite loop spaces. Instead, the delooping R× of Ω∞R× comes from
the E∞ multiplication of R. We need the units for the localization R = S[1/v] of
the sphere spectrum S away from v and its 0–truncation, the Eilenberg–Mac Lane
spectrum R = HZ[1/v]. The truncation induces a morphism S[1/v]× → HZ[1/v]×
of spectra of units. There is also a homomorphism Z→ Z[1/v]× of abelian groups
that sends the generator 1 to the unit v, which induces a map of Eilenberg–Mac
Lane spectra.

Theorem 5.1. For every integer v ⩾ 2, there is a homotopy pullback square

K(Postv) →→

↓↓

S[1/v]×

↓↓
HZ

v
→→ HZ[1/v]×

of spectra. In particular, we have

K∗(Postv) ∼= π∗(S)/v–power torsion,
where the π∗(S) are the stable homotopy groups of spheres.

We single out the case v = 2 for emphasis:

Corollary 5.2. We have

K∗(Boole) ∼= π∗(S)/2–power torsion
for the algebraic K-theory of the Lawvere theory of Boolean algebras.

While Boolean algebras form a comparatively well-known algebraic structure,
the v–valued Post algebras are certainly non-standard, and it might come as a
surprise that we can prove such results without even revealing their defining oper-
ations, let alone the axioms that these operations are required to satisfy. However,
as we hope the following proof makes clear, the ability to do so is precisely one of
the benefits of our categorical methods.

Proof of Theorem 5.1. By definition, the category of free v–valued Post algebras is
equivalent to the opposite of the full subcategory of the category of sets spanned
by those sets of the form Map(r, v). Since these have different cardinalities for
different values of r, the isomorphism type of the free v–valued Post algebra of rank r
determines the rank r. Passing to group completion, we get K0(Postv) ∼= Z ∼= π0(S),
as claimed.

For the higher algebraic K-theory, we turn toward the automorphism groups.
If X is an object in a category C, we have

AutCop(X) ∼= AutC(X)op ∼= AutC(X).

Applied to our situation, this shows that the automorphism group of the free v–
valued Post algebra of rank r is isomorphic to the group of permutations of the
set Map(r, v) of cardinality vr, and therefore to the symmetric group Σ(vr) acting
on a set of vr elements.
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Stabilization leads us to the colimit of the diagram

(5.1) Σ(1) −→ Σ(v) −→ Σ(v2) −→ · · · −→ Σ(vr) −→ · · · ,
where the morphisms are given by multiplication with v: a permutation σ of vr is
sent to the permutation σ×idv of vr×v = vr+1, which looks just like v copies of the
permutation σ acting on v disjoint copies of vr. In other words, the permutation σ×
idv is a block sum of v copies of σ.

The diagram (5.1) has been studied before by McDuff–Segal [19, Ex. (iv)], and
the following identification of its colimit does not come with any claim on originality.

Picking up our notation from Example 3.2, we have maps BΣ(d) → Q(d) that
fit together to form a commutative diagram as follows.

BΣ(1)
×v →→

↓↓

BΣ(v)
×v →→

↓↓

BΣ(v2)
×v →→

↓↓

· · ·

Q(1)
×v

→→ Q(v)
×v

→→ Q(v2)
×v
→→ · · ·

This diagram can be used to compute the group completion of the upper colimit,
which is the infinite loop space Ω∞

0 K(Postv) by Theorem 2.6. This time, in contrast
to Example 3.2, the maps in the lower row are not equivalences, but multiplica-
tion by v in the infinite loop space structure on the Q(vr) ≃ Q(∞) ≃ Q(0). In
other words, there is a homology isomorphism from the colimit BΣ(v∞) to the
localization Q(0)[1/v] away from v. This homology isomorphism gives, after group
completion, an equivalence Ω∞

0 K(Postv) ≃ Ω∞
0 S[1/v]× of infinite loop spaces. Not-

ing that the stable homotopy groups of the sphere spectrum in positive degrees are
finite, and A[1/v] = A/(v–power torsion) for finite abelian groups A, we obtain
the identification of the higher homotopy groups in the statement of the theorem.
In other words, we have a morphism K(Postv)→ S[1/v]× of spectra that induces
an isomorphism on stable homotopy groups in positive degrees. To complete the
identification of the spectrum K(Postv), we need to describe what it does on com-
ponents. However, the description above shows that 1 ∈ Z ∼= π0K(Postv) is sent
to v ∈ Z[1/v]× ∼= π0S[1/v]×, and this observation translates immediately into the
homotopy pullback diagram in the statement of the theorem. □

We end this section with an observation which indicates that the relationship
between the K-theories of the Lawvere theory E of sets and of Boolean algebras,
or more generally v–valued Post algebras, is not as simple as Theorem 5.1 might
suggest.

Proposition 5.3. For each prime p, the homomorphism

πn(S) ∼= Kn(E) −→ Kn(Postp) ∼= πn(S)/p–power torsion,

induced by the universal arrow E → Postv of Lawvere theories, is not surjective.
In particular, it is not the canonical surjection.

Proof. Every Boolean algebra has a natural structure of an F2–vector space. The
addition is given by the symmetric difference x+ y = (x ∨ y) ∧ ¬(x ∧ y) = (x ∧ ¬y) ∨ (¬x ∧ y).
In fact, the category of Boolean algebras is isomorphic to the category of Boolean
rings, which are commutative rings where every element is idempotent. If 2 is
idempotent, we have 4 = 22 = 2, so that 2 = 0, and the underlying abelian group
is 2–torsion. More generally, if p is a prime number, every p–Post algebra admits a
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natural structure of an Fp–algebra in which every element x satisfies xp = x (see [41]
or [34]).

It follows that the canonical morphism S ≃ K(E) → K(Postp) of algebraic K-
theory spectra factors through the algebraic K-theory K(Fp) of the field Fp.

S ≃ K(E) −→ K(Fp) −→ K(Postp)

On the level of automorphism groups, these morphisms correspond to embeddings

Σ(r) −→ GLr(Fp) −→ Σ(pr)

of groups with images given by the subgroups of Fp–linear bijections and the sub-
group of that given by the permutation matrices.

Quillen [27, Thm. 8(i)] has shown that K2j−1(Fq) ∼= Z/(qj − 1) for all j ⩾ 1
and for all prime powers q. It follows that the p–torsion of the higher algebraic K-
groups Kn(Fp) of Fp is trivial. On the other hand, his computations [28] showed that
most of the stable homotopy of the spheres is contained in the kernel of the canonical
morphisms S→ K(Z)→ K(Fp) of spectra: what is detected in the algebraic K-
theory of finite fields is essentially the image of Whitehead’s J-homomorphism. In
particular, the kernel contains much more than just the p–power torsion. □

Remark 5.4. Morava, in his 2008 Vanderbilt talk [21], highlighted “the apparent
fact that the spectrum defined by the symmetric monoidal category of finite pointed
sets under Cartesian product has not been systematically studied.” This spectrum
can be modeled as the algebraic K-theory of a many-sorted Lawvere theory, where
the sorts correspond to the prime numbers. It is not worth the effort to develop
our theory in more generality just to cover that one example. Instead, we have
contented ourselves with demonstrating how the theory we have developed so far
suffices for us to deal with the local factors corresponding to each prime.
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