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Abstract. Given a simplicial pair (X,A), a simplicial complex Y , and a map f : A → Y , does f
have an extension to X? We show that for a fixed Y , this question is algorithmically decidable for
all X, A, and f if Y has the rational homotopy type of an H-space. As a corollary, many questions
related to bundle structures over a finite complex are likely decidable. Conversely, for all other Y ,
the question is at least as hard as certain special cases of Hilbert’s tenth problem which are known
or suspected to be undecidable.

1. Introduction

When can the set of homotopy classes of maps between spaces X and Y be computed? That
is, when can this (possibly infinite) set be furnished with a finitely describable and computable
structure? It is reasonable to restrict the question to the setting of finite complexes: otherwise
one risks encountering spaces that themselves take an infinite amount of information to describe.
Moreover, the question of whether this set has more than one element is undecidable for X = S1,
as shown by Novikov as early as 19551. Therefore it is also reasonable to require the fundamental
group not to play a role; in the present work, Y is always assumed to be simply connected.2

We answer this question with the following choice of quantifiers: for what Y and n can the set
of homotopy classes [X,Y ] be computed for every n-dimensional X? Significant partial results in
this direction were obtained by E. H. Brown [2] and much more recently by Čadek et al. [3], [5], [4]
and Vokř́ınek [32]. The goal of the present work is to push their program closer to its logical limit.

To state the precise result, we need to sketch the notion of an H-space, which is defined precisely
in §3. Essentially, an H-space is a space equipped with a binary operation which can be more or
less “group-like”; if it has good enough properties, this allows us to equip sets of mapping classes
to the H-space with a group structure.

The cohomological dimension cd(X,A) of a simplicial or CW pair (X,A) is the least integer d
such that for all n > d and every coefficient group π, Hn(X,A;π) = 0.

Theorem A. Let Y be a simply connected simplicial complex of finite type and d ≥ 2, and suppose

(∗)
Y has the rational homotopy type of an H-space through dimension d. That is, there
is a map from Y to an H-space (or, equivalently, to a product of Eilenberg–MacLane
spaces) which induces isomorphisms on πn ⊗Q for n ≤ d.

Then for any simplicial pair (X,A) of cohomological dimension d+1 and simplicial map f : A→ Y ,
the existence of a continuous extension of f to X is decidable.
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1This is the triviality problem for group presentations, translated into topological language. This work was

extended by Adian and others to show that many other properties of nonabelian group presentations are likewise
undecidable.

2The results can plausibly be extended to nilpotent spaces.
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Moreover, there is an algorithm which, given a simply connected simplicial complex Y , a simpli-
cial pair (X,A) of finite complexes of cohomological dimension d and a simplicial map f : A→ Y ,

(1) Determines whether (∗) is satisfied;
(2) If it is, outputs the set of homotopy classes rel A of extensions [X,Y ]f in the format of

a (perhaps empty) set on which a finitely generated abelian group acts virtually freely and
faithfully (that is, with a finite number of orbits each of which has finite stabilizer).

We give a few remarks about the statement. First of all, it is undecidable whether Y is simply
connected; therefore, when given a non-simply connected input, the algorithm cannot detect this
and returns nonsense, like previous algorithms of this type.

Secondly, we provide evidence for the conjectural converse to the first part of Theorem A: that if
(∗) is not true, then the extension problem for pairs of cohomological dimension d+1 is undecidable.
We prove this in a range of special cases, but the general case appears to be connected to deep
unsolved problems in number theory. The best that can be said is that if the converse is false, it
must be due to a strange number-theoretic coincidence.

Finally, the difference between d + 1 in the first part of the theorem and d in the second is
significant: if cd(X,A) = d+ 1, then we can decide whether [X,Y ]f is nonempty, but our method
of describing this set breaks down. For example, a homotopy class of maps S1 × S2 → S2 is
determined by two numbers: the degree d of the map on the S2 factor and the (relative) Hopf
invariant h on the 3-cell. However, h is well-defined only up to multiples of 2d, and so in a natural
sense

[S1 × S2, S2] ∼=
⨆︂
r∈Z

Z/2rZ.

This structure does not fit into the framework we construct in this paper for describing [X,Y ]f .
Other similar examples are described in [13, §3], and it would be interesting to give a general,
perhaps computable, description for [X,Y ]f (or even just [X,S2n]) in this “critical” dimension.

1.1. Examples. The new computability result encompasses several previous results, as well as new
important corollaries. Here are some examples of spaces which satisfy condition (∗) of Theorem A:

(a) Any simply connected space with finite homology groups (or, equivalently, finite homotopy
groups) in every dimension is rationally equivalent to a point, which is an H-space. The
computability of [X,Y ] when Y is of this form was already established by Brown [2].

(b) Any d-connected space is rationally an H-space through dimension n = 2d. Thus we recover
the result of Čadek et al. [5] that [X,Y ]f is computable whenever X is 2d-dimensional and
Y is d-connected. This implies that many “stable” homotopical objects are computable.
One example is the group of oriented cobordism classes of n-manifolds, which is isomorphic
to the set of maps from Sn to the Thom space of the tautological bundle over Grn(R2n+1).

(c) The sphere Sn for n odd is rationally equivalent to the Eilenberg–MacLane space K(Z, n).
Therefore [X,Sn]f is computable for any finite simplicial pair (X,A) and map f : A→ Sn;
this is the main result of Vokř́ınek’s paper [32].

(d) Any Lie group or simplicial group Y is an H-space, so if Y is simply connected then [X,Y ]f

is computable for any X, A, and f .
(e) Classifying spaces of connected Lie groups also have the rational homotopy type of an

H-space [9, Prop. 15.15]. Therefore we have (somewhat aspirationally):

Corollary 1.1. Let G be a connected Lie group, and suppose that the classifying space BG
has a computable representation. Then:
(i) Let X be a finite CW complex. Then the set of isomorphism classes of principal G-

bundles over X is computable.
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(ii) Let (X,A) be a finite CW pair. Then it is decidable whether a given principal G-bundle
over A extends over X.

In particular, given a representation G→ GLn(R), we should be able to understand the set
of vector bundles with a G-structure. This includes real oriented, complex, and symplectic
bundles, as well as spin and metaplectic structures on bundles. However, doing this in
practice requires paying attention to computational models of Lie groups, Grassmannians,
bundles, and so forth.

(f) More generally, some classifying spaces of topological monoids have the rational homotopy
type of an H-space. This includes the classifying space BGn = BAut(Sn) for Sn-fibrations
(see [16, Appendix 1] and [27]); therefore, the set of fibrations Sn → E → X over a finite
complex X up to fiberwise homotopy equivalence is computable.

Conversely, most sufficiently complicated simply connected spaces do not satisfy condition ∗. The
main result of [4] shows that the extension problem is undecidable for even-dimensional spheres,
which are the simplest example. Other examples include complex projective spaces and most
Grassmannians and Stiefel manifolds.

1.2. Proof ideas. Suppose that Y has the rational homotopy type of an H-space through di-
mension d, but not through dimension d + 1. To prove the main theorem, we must provide an
algorithm which computes [X,Y ]f if cd(X,A) ≤ d and decides whether [X,Y ]f is nonempty if
cd(X,A) = d+ 1. This builds on work of Čadek, Krčál, Matoušek, Vokř́ınek, and Wagner [5].

To provide an algorithm, we use the rational H-space structure of the dth Postnikov stage Yd of
Y . In this case, we can build an H-space H of finite type together with rational equivalences

H → Yd → H

as well as an “H-space action” of H on Yd, that is, a map act : H ×Yd → Yd which satisfies various
compatibility properties. These ensure that the set [X/A,H] (where A is mapped to the basepoint)
acts via composition with act on [X,Yd]

f . In turn, [X/A,H] is a product of cohomology groups
and therefore easily computable, and this allows us to also compute [X,Yd]

f . When cd(X,A) ≤ d,
the obvious map [X,Y ]f → [X,Yd]

f is a bijection; when cd(X,A) = d+1, this map is a surjection.
This gives the result.

In the last part of the paper, we study the extension problem in the case that Y is not a rational
H-space through dimension d and connect it to Hilbert’s tenth problem. Recall that Hilbert asked
for an algorithm to determine whether a system of Diophantine equations has a solution. Work of
Davis, Putnam, Robinson, and Matiyasevich showed that no such algorithm exists. It turns out
that the problem is still undecidable for very restricted classes of systems of quadratic equations;
this was used in [4] to show that the extension problem for maps to S2n is undecidable. We
generalize their work: extension problems for maps to a given Y are shown to encode systems of
Diophantine equations in which terms are values on vectors of variables of a fixed bilinear map
which depends on Y . We conjecture that Hilbert’s tenth problem restricted to any such subtype is
undecidable and prove this in certain special cases. However, the general case seems quite difficult;
in particular, it would imply a long-standing conjecture on the undecidability of Hilbert’s tenth
problem over number rings.

1.3. Computational complexity. Unlike Čadek et al. [5], [6], whose algorithms are polynomial
for fixed d, and like Vokř́ınek [32], we do not give any kind of complexity bound on the run time
of the algorithm which computes [X,Y ]f . In fact, there are several steps in which the procedure
is to iterate until we find a number that works, with no a priori bound on the size of the number,
although it is likely possible to bound it in terms of dimension and other parameters such as the
cardinality of the torsion subgroups in the homology of Y . There is much space to both optimize
the algorithm and discover bounds on the run time.
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1.4. The fiberwise case. In a paper of Čadek, Krčál, and Vokř́ınek [6], the results of [5] are
extended to the fiberwise case, that is, to computing the set of homotopy classes of lifting-extensions
completing the diagram

(1.2)

A
f
→→↙ ↖

i
↓↓

Y

p
↓↓↓↓

X

↗↗

g
→→ B,

where X is 2d-dimensional and the fiber of Y
p−→ B is d-connected. Vokř́ınek [32] also remarks

that his results for odd-dimensional spheres extend to the fiberwise case. Is there a corresponding

fiberwise generalization for the results of this paper? The näıve hypothesis would be that [X,Y ]fp

is computable whenever the fiber of Y
p−→ B is a rational H-space through dimension n. This is

false; as demonstrated by the example below, rational homotopy obstructions may still crop up in
the interaction between base and fiber.

The correct fiberwise statement should relate to rational fiberwise H-spaces, as discussed for
example in [12]. However, such a result presents technical difficulties which will require significant
new ideas to overcome.

Example 1.3. Let B = S6 × S2 and Y be the total space of the fibration

S7 → Y
p0−→ B × (S3)2

whose Euler class (a.k.a. the k-invariant of the corresponding K(Z, 7)-bundle) is

[S6 × S2] + [(S3)2 × S2] ∈ H8(B × (S3)2).

Then the fiber of p = π1 ◦ p0 : Y → B is the H-space (S3)2 × S7, but the intermediate k-invariant
given above has a term which is quadratic in the previous part of the fiber.

Given a system of s polynomial equations each of the form∑︂
1≤i<j≤r

a
(k)
ij (xiyj − xjyi) = bk,

with variables x1, . . . , xr, y1, . . . , yr and coefficients bk and a
(k)
ij , we form a space X ′ by taking

⋁︁
r S

3

and attaching s 6-cells, the kth one via an attaching map whose homotopy class is∑︂
1≤i<j≤r

a
(k)
ij [idi, idj ],

where idi is the inclusion map of the ith 3-sphere. We fix a map f ′ : X ′ → S6 which collapses the
3-cells and restricts to a map of degree −bk on the kth 6-cell. This induces a map f = f ′× id from
X = X ′ × S2 to B.

A lift of f to B × (S3)2 corresponds to an assignment of the variables xi and yi. The existence
of a further lift to Y is then equivalent to whether this assignment is a solution to the system of
equations above. Since the existence of such a solution is in general undecidable by [4, Lemma 2.1],
so is the existence of a lift of f through p.

Remark 1.4. The role of S2 in this example is to make the fiber into a rational H-space. If we let
B = S6 and Y be the total space of the fibration

S5 → Y → B × (S3)2

with Euler class [S6] + [(S3)2], then the fiber of Y → B is no longer a product S5 × (S3)2, even
rationally, but rather has a nontrivial rational k-invariant in its Postnikov tower.
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1.5. Structure of the paper. I have tried to make this paper readable to any topologist as well
as anyone who is familiar with the work of Čadek et al. Thus §2 and 3 attempt to introduce all
the necessary algebraic topology background which is not used in Čadek et al.’s papers: a bit of
rational homotopy theory and some results about H-spaces. For the benefit of topologists, I have
tried to separate the ideas that go into constructing a structure on mapping class sets from those
required to compute this structure. The construction of the group and action in Theorem A is
discussed in §4. In §5, we introduce previous results in computational homotopy theory from [5],
[6], [10], and in §6 we use them to compute the structure we built earlier. Finally, in §7 and 8, we
discuss Hilbert’s tenth problem and its relation to undecidability of the extension problem.

Acknowledgements. I would like to thank Shmuel Weinberger for explaining some facts about
H-spaces, and Marek Filakovský, Lukáš Vokř́ınek, and Uli Wagner for other useful conversations
and encouragement. I would also like to thank the two referees for their careful reading and their
many corrections and suggestions which have greatly improved the paper. The second referee, in
particular, caught a major error which was present in previous versions. I was partially supported
by NSF grant DMS-2001042.

2. Rational homotopy theory

Rational homotopy theory is a powerful algebraicization of the topology of simply connected
topological spaces first introduced by Quillen [21] and Sullivan [30]. The subject is well-developed,
and the texts [11] and [9] are recommended as a comprehensive reference. This paper requires
only a very small portion of the considerable machinery that has been developed, and this short
introduction should suffice for the reader who is assumed to be familiar with Postnikov systems
and other constructs of basic algebraic topology.

The key topological idea is the construction of rationalized spaces: to any simply connected CW
complex X one can functorially (at least up to homotopy) associate a space X(0) whose homology

(equivalently, homotopy) groups are Q-vector spaces.3 There are several ways of constructing
such a rationalization, but the most relevant to us is by induction up the Postnikov tower: the
rationalization of a point is a point, and then given a Postnikov stage

K(πn(X), n) →→ Xn
→→

↓↓↓↓

E(πn(X), n+ 1)

↓↓↓↓

Xn−1
kn →→ K(πn(X), n+ 1),

one replaces it with

K(πn(X)⊗Q, n) →→ Xn(0)
→→

↓↓↓↓

E(πn(X)⊗Q, n+ 1)

↓↓↓↓

Xn−1(0)
kn⊗Q

→→ K(πn(X)⊗Q, n+ 1).

This buildsXn(0) givenXn−1(0), and thenX(0) is the homotopy type of the limit of this construction.
We say two spaces are rationally equivalent if their rationalizations are homotopy equivalent.

The second key fact is that the homotopy category of rationalized spaces of finite type (that is,
for which all homology groups, or equivalently all homotopy groups, are finite-dimensional vector
spaces) is equivalent to several purely algebraic categories. The one most relevant for our purpose
is the Sullivan DGA model.

3It’s worth pointing out that this fits into a larger family of localizations of spaces, another of which is used in the
proof of Lemma 3.3.
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A differential graded algebra (DGA) over Q is a cochain complex of Q-vector spaces equipped with
a graded commutative multiplication which satisfies the (graded) Leibniz rule. A familiar example
is the algebra of differential forms on a manifold. A key insight of Sullivan was to associate to every
space X of finite type a minimal DGAMX constructed by induction on degree as follows:

• MX(1) = Q with zero differential.
• For n ≥ 2, the algebra structure is given by

MX(n) =MX(n+ 1)⊗ ΛHom(πn(X);Q),

where ΛV denotes the free graded commutative algebra generated by V .
• The differential is given on the elements of Hom(πn(X);Q) (indecomposables) by the dual
of the nth k-invariant of X,

Hom(πn(X);Q)
k∗n−→ Hn+1(X;Q),

and extends to the rest of the algebra by the Leibniz rule. Although it is only well-defined
up to a coboundary, this definition makes sense because one can show by induction that
Hk(MX(n− 1)) is naturally isomorphic to Hk(Xn−1;Q), independent of the choices made
in defining the differential at previous steps.

Note that from this definition, it follows that for an indecomposable y of degree n, dy is
an element of degree n+1 which can be written as a polynomial in the indecomposables of
degree < n. In particular, it has no linear terms.

The DGAMX is the functorial image of X(0) under an equivalence of homotopy categories.
Many topological constructions can thus be translated into algebraic ones. This paper will use

the following:

• The Eilenberg–MacLane space K(π, n) corresponds to the DGA ΛHom(π,Q) with genera-
tors concentrated in dimension n and zero differential.
• Product of spaces corresponds to tensor product of DGAs. In particular:

Proposition 2.1. The following are equivalent for a space X:
(a) X is rationally equivalent to a product of Eilenberg–MacLane spaces.
(b) The minimal model of X has zero differential.
(c) The rational Hurewicz map π∗(X)⊗Q→ H∗(X;Q) is injective.

Finally, we note the following theorem of Sullivan:

Theorem 2.2 (Sullivan’s finiteness theorem [30, Theorem 10.2(i)]). Let X be a finite complex and
Y a simply connected finite complex. Then the map [X,Y ]→ [X,Y(0)] induced by the rationalization
functor is finite-to-one.

Note that this implies that if the map Y → Z between finite complexes induces a rational
equivalence, then the induced map [X,Y ]→ [X,Z] is also finite-to-one.

3. H-spaces

A pointed space (H, o) is an H-space if it is equipped with a binary operation add : H ×H → H
satisfying add(x, o) = add(o, x) = x (the basepoint acts as an identity). In addition, an H-space is
homotopy associative if

add ◦(add, id) ≃ add ◦(id, add)
and homotopy commutative if add ≃ add ◦τ , where τ is the “twist” map sending (x, y) ↦→ (y, x).
We will interchangeably denote our H-space operations (most of which will be homotopy associative
and commutative) by the usual binary operator +, as in x+ y = add(x, y).
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A classic result of Sugawara, see [29, Theorem 3.4], is that a homotopy associative H-space which
is a connected CW complex automatically admits a homotopy inverse x ↦→ −x with the expected
property add(−x, x) = o = add(x,−x).

Examples of H-spaces include topological groups and Eilenberg–MacLane spaces. If H is simply
connected, then it is well-known that it has the rational homotopy type of a product of Eilenberg–
MacLane spaces. Equivalently, from the Sullivan point of view, H has a minimal modelMH with
zero differential; see [9, §12(a) Example 3] for a proof. On the other hand, a product of H-spaces
is clearly an H-space. Therefore we can add “X is rationally equivalent to an H-space” to the list
of equivalent conditions in Prop. 2.1. We will generally use the sloppy phrase “X is a rational
H-space” to mean the same thing.

It is easy to see that an H-space operation plays nice with the addition on higher homotopy
groups. That is:

Proposition 3.1. Let (H, o, add) be an H-space. Given f, g : (Sn, ∗)→ (H, o),

[f ] + [g] = [add ◦(f, g)] ∈ πn(H, o).

Another important and easily verified fact is the following:

Proposition 3.2. If (H, o, add) is a homotopy associative H-space, then for any pointed space
(X, ∗), the set [X,H] forms a group, with the operation given by [φ] · [ψ] = [add ◦(φ,ψ)]. If H is
homotopy commutative, then this group is likewise commutative.

Moreover, suppose that H is homotopy commutative, and let A → X be a cofibration (such as

the inclusion of a CW subcomplex), and f : A → H a map with an extension f̃ : X → H. Then
the set [X,H]f of extensions of f forms an abelian group with operation given by

[φ] + [ψ] = [φ+ ψ − f̃ ].

Throughout the paper, we denote the “multiplication by r” map

id+ · · ·+ id⏞ ⏟⏟ ⏞
r times

: H → H

by χr. The significance of this map is in the following lemmas, which we will repeatedly apply to
various obstruction classes:

Lemma 3.3. Let H be an H-space of finite type, A be a finitely generated coefficient group, and
let α ∈ Hn(H;A) be a cohomology class of finite order. Then there is an r > 0 such that χ∗

rα = 0.

In other words, faced with a finite-order obstruction, we can always get rid of it by precomposing
with a multiplication map. Before giving the proof, we develop a bit more of the theory:

Lemma 3.4. Let H be a simply connected H-space of finite type. Then for every r > 0,

χ∗
r(H

∗(H;Z)) ⊆ rH∗(H;Z) + torsion.

Proof. By Prop. 3.1, χr induces multiplication by r on πn(H). Therefore by Prop. 2.1(c), it induces
multiplication by r on the indecomposables of the minimal model MH . Therefore it induces
multiplication by some rk on every class in Hn(H;Q). □

Combining the two lemmas gives us a third:

Lemma 3.5. Let H be a simply connected H-space of finite type and A a finitely generated coefficient
group. Then for any r > 0 and any n > 0, there is an s > 0 such that

χ∗
s(H

n(H);A) ⊆ rHn(H;A).
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Proof of Lemma 3.3. I would like to thank Shmuel Weinberger for suggesting this proof.
Let q be the order of α. By Prop. 3.1, for f : Sk → H, (χq)∗[f ] = q[f ].
Let H[1/q] be the universal cover of the mapping torus of χq; this should be thought of as an

infinite mapping telescope. By the above, the homotopy groups of H[1/q] are Z[1/q]-modules (the
telescope localizes them away from q). This implies, by [31, Thm. 2.1], that the reduced homology
groups are also Z[1/q]-modules. To understand the cohomology groups, we use the exact sequence

0→ Ext(Hn−1(H[1/q]), A)→ Hn(H[1/q];A)→ Hom(Hn−1(H[1/q]), A)→ 0

coming from the universal coefficient theorem. If M is a Z[1/q]-module, then so is Hom(M,G) for
any abelian group G: for any homomorphism h, we take [h/q](m) = h(m/q). Since Ext(M,G) is
the first homology of the chain complex

0→ Hom(M, I0)→ Hom(M, I1)→ · · · ,

where I∗ is an injective resolution of G, it is also a Z[1/q]-module. It follows that Hn(H[1/q];A)
is a Z[1/q]-module. Now, by the Milnor exact sequence [15], the map

Hn(H[1/q];A)→ lim←−
(︁
· · ·

χ∗
q−→ Hn(H;A)

χ∗
q−→ Hn(H;A)

)︁
is surjective, and hence this inverse limit is also a Z[1/q]-module.

Now we would like to show that for some t, (χ∗
q)
tα = 0, so that we can take r = qt. Suppose

not, so that (χ∗
q)
tα is nonzero for every t. Clearly every element in the sequence

α, χ∗
qα, (χ

∗
q)

2α, . . .

has order which divides q; moreover, since there are finitely many such elements, the sequence
eventually cycles. Extrapolating this cycle backward gives us a nonzero element of the inverse limit
above, which likewise has order dividing q. This contradicts the fact that this inverse limit is a
Z[1/q]-module. □

Note that this proof does not produce an effective bound on t. This prevents our algorithmic
approach from yielding results that are as effective as those of Vokř́ınek in [32].

We will also require the similar but more involved fact.

Lemma 3.6. Let (H, o, add) be a simply connected H-space of finite type, U another space of finite
type, A a finitely generated coefficient group, and n > 0.

(i) Suppose that α ∈ Hn(H × U, o × U ;A) is torsion. Then there is an r > 0 such that
(χr, id)

∗α = 0.
(ii) Let α ∈ Hn(H × U, o× U ;Z). Then for every r > 0,

(χr, id)
∗α ∈ rHn(H × U, o× U ;Z) + torsion.

(iii) For every r > 0 there is an s > 0 such that

(χs, id)
∗Hn(H × U, o× U ;A) ⊆ rHn(H × U, o× U ;A).

Proof. Let where i2 : U → H × U is the inclusion u ↦→ (o, u). We first note that since the map
i∗2 on cohomology is a surjection in every degree, Hn(H × U, o × U ;A) = ker i∗2. Thus we can
equivalently prove parts (i) and (ii) for an α ∈ Hn(H × U ;A) such that i∗2α = 0. We use several
not-quite-standard algebraic topology facts which can be found in [28, §5.5].

We first consider A = Z. For this we use the Künneth formula for cohomology, which gives a
natural short exact sequence

(3.7) 0→
⨁︂
k+ℓ=n

Hk(H)⊗Hℓ(U)→ Hn(H × U)→
⨁︂

k+ℓ=n+1

Tor(Hk(H), Hℓ(U))→ 0.
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To demonstrate (i), we will first show that we can choose an r0 such that (χr0 , id)
∗α is in the

image of
⨁︁

k+ℓ=nH
k(H) ⊗ Hℓ(U); in other words, such that the projection of (χr0 , id)

∗α to⨁︁
k+ℓ=n+1Tor(H

k(H), Hℓ(U)) is zero. To see this, recall that for cyclic groups A and B, Tor(A,B)
is trivial unless both A and B are finite, and that the Tor functor distributes over direct sum. There-
fore Tor(Hk(H), Hℓ(U)) is generated by elementary tensors η⊗ν where η ∈ Hk(H) and ν ∈ Hℓ(U)
are torsion elements. By Lemma 3.3, for each such elementary tensor, we can pick r(η) such that
χ∗
r(η)η = 0 and therefore

(χr(η), id)
∗(η ⊗ ν) = 0 ∈ Tor(Hk(H), Hℓ(U)).

We then choose r0 to be the least common multiple of all the r(η)’s.
Now fix a decomposition of each Hk(H) and Hℓ(U) into cyclic factors to write (χr0 , id)

∗α as a
sum of elementary tensors. Since i∗2α = 0, (χr0 , id)

∗α has no summands of the form 1⊗u; moreover,
each summand is itself torsion. For every other elementary tensor h ⊗ u, we can use Lemma 3.3
(if h is torsion) or Lemma 3.5 (otherwise, since then u is torsion) to find an s(h, u) such that
χ∗
s(h,u)h⊗ u = 0.

Finally, we can take r to be the product of r0 with the least common multiple of the s(h, u)’s.
This completes the proof of (i) for A = Z.

To see (ii), we use the fact that the Künneth sequence (3.7) splits, albeit non-naturally. Therefore,
since we are ignoring torsion, we may assume α ∈

⨁︁
k+ℓ=nH

k(H)⊗Hℓ(U). Applying Lemma 3.4

to Hk(H) for all 0 < k < n, we get the result.
Finally, (iii) with integer coefficients follows from (i) and (ii).
Now we need to handle other coefficient groups. We can assume A is a finite cyclic group, since

everything we need commutes with direct sums. For this case we use a version of the universal
coefficient theorem which states that

0→ Hn(H × U)⊗A→ Hn(H × U ;A)→ Tor(Hn+1(H × U), A)→ 0

is an exact sequence. Let α ∈ Hn(H × U, o × U ;A) be torsion. We use the same outline as
before to show that (i) holds. First we see that there is an r0 such that (χr0 , id)

∗α is in the kernel
of the map to Tor(Hn+1(H × U), A); this follows from the integral case of (i) and the fact that
Tor(G,A) contains only the A-torsion elements of G. Next we see that the preimage of (χr0 , id)

∗α
in Hn(H ×U)⊗A is also annihilated by some (χr1 , id)

∗; this follows from the integral case of (iii).
Then (χr0r1 , id)

∗α = 0.
The general case of (iii) again follows from (i) and (ii). □

4. The algebraic structure of [X,Y ]f

We start by constructing the desired structure on [X,Y ]f when Y is a rational H-space. From
the previous section, such a Y is rationally equivalent to a product of Eilenberg–MacLane spaces.
In particular, it is rationally equivalent to H =

∏︁∞
n=2K(πn(Y ), n), which we give the product

H-space structure. We will harness this to prove the following result.

Theorem 4.1. Suppose that Y is a rational H-space through dimension d, denote by Yd the dth
Postnikov stage of Y , and let Hd =

∏︁∞
n=2K(πn(Y ), n). Suppose (X,A) is a finite simplicial pair

and f : A→ Y a map. Then [X,Yd]
f admits a virtually free and faithful action by [X,Hd]

f induced
by a map Hd → Yd.

The proof of this theorem occupies the rest of the section. Later, in §6, we give an algorithm
for computing this action which closely mirrors this proof. Before beginning the proof of Theorem
4.1, we see how such an algorithm would also provide the algorithms whose existence is asserted in
Theorem A.
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If (X,A) has cohomological dimension d+1, then there is no obstruction to lifting an extension
X → Yd of f to Y , as the first obstruction lies in Hd+2(X,A;πd+1(Y )) ∼= 0. Therefore [X,Y ]f is
nonempty if and only if [X,Yd]

f is nonempty.
If (X,A) has cohomological dimension d, then in addition every such lift is unique: the first

obstruction to homotoping two lifts lies in Hd+1(X,A;πd+1(Y )) ∼= 0. Therefore [X,Y ]f ∼= [X,Yd]
f .

4.1. An H-space action on Yn. Denote the nth Postnikov stages of Y and H by Yn and Hn,
respectively, and the H-space zero and multiplication on Hn by on and by + or addn : Hn ×Hn →
Hn. We will inductively construct the following additional data:

(i) Maps Hn
un−→ Yn

vn−→ Hn inducing rational equivalences such that vnun is homotopic to the
multiplication map χrn for some integer rn.

(ii) A map actn : Hn × Yn → Yn defining an H-space action, (that is such that actn(on, x) = x
and the diagram

(4.2)

Hn ×Hn × Yn
(addn,id)

→→

(id,actn)
↓↓

Hn × Yn
actn
↓↓

Hn × Yn
actn →→ Yn

commutes up to homotopy) which is “induced by un” in the sense of the homotopy com-
mutativity of

(4.3)

Hn ×Hn
(id,un)

→→

addn
↓↓

Hn × Yn
(χrn ,vn)→→

actn
↓↓

Hn ×Hn

addn
↓↓

Hn
un →→ Yn

vn →→ Hn.

Note that when we pass to rationalizations, the existence of such a structure is obvious: one takes
un(0) to be the identity, actn(0) = addn(0), and vn(0) to be multiplication by rn.

4.2. The action of [X/A,Hd] on [X,Yd]
f . Now suppose that we have constructed the above struc-

ture. Then addd induces the structure of a finitely generated abelian group on the set [X/A,Hd],
which we identify with the set of homotopy classes of maps X → Hd sending A to od ∈ Hd.
Moreover, this group acts on [X,Yd]

f via the action [φ] · [ψ] = [actd ◦(φ,ψ)].
It remains to show that this action is virtually free and faithful. Indeed, notice that pushing this

action forward along vd gives the action of of [X/A,Hd] on [X,Hd]
vdf via [φ] · [ψ] = rd[φ] + [ψ],

which is clearly virtually free and faithful. This implies that the action on [X,Hd]
vdf is virtually

free. Moreover, the map vd◦ : [X,Yd]f → [X,Hd]
vdf is finite-to-one by Sullivan’s finiteness theorem.

Thus the action on [X,Yd]
f is also virtually faithful.

4.3. The Postnikov induction. Now we construct the H-space action. For n = 1 all the spaces
are points and all the maps are trivial. So suppose we have constructed the maps un−1, vn−1, and
actn−1, and let kn : Yn−1 → K(πn(Y ), n + 1) be the nth k-invariant of Y . For the inductive step,
it suffices to prove the following lemma:

10



Lemma 4.4. There is an integer q > 0 such that we can define un to be a lift of un−1χq, and
construct vn and a solution actn : Hn × Yn → Yn to the homotopy lifting-extension problem

(4.5)

Hn ×Hn

(id,un)

↓↓

addn →→ Hn
un →→ Yn

↓↓↓↓

Hn × Yn

actn

→→

(χq ,id)
→→ Hn × Yn →→ →→ Hn−1 × Yn−1

actn−1
→→ Yn−1

so that the desired conditions are satisfied.

Proof. First, since Y is rationally a product, kn is of finite order, so by Lemma 3.3 there is some
q0 such that knun−1χq0 = 0, and therefore

Hn

↓↓↓↓

û →→ Yn

↓↓↓↓

Hn−1

un−1χq0 →→ Yn−1;

is a pullback square. We will define un = ûχq2q1 , with q1 and q2 to be determined and q = q2q1q0.
Now we construct actn. Given a map f , we write M(f) to mean its mapping cylinder, and let

Hactn−1 : Hn−1 ×M(un−1)→ Yn−1

be a map which restricts to actn−1 on Hn−1 × Yn−1 and addn−1 on Hn−1 × Hn−1. Such a map
exists because (4.3) holds in degree n− 1. We will construct a lifting-extension

(Hn ×Hn) ∪ (on ×M(û))
↓↓

↓↓

[addn ◦(χq1 ,id)]∪id →→ M(û)
project

→→ Yn

↓↓↓↓

Hn ×M(û)

ˆ︁Hact

→→

(χq1q0 ,id)
→→ Hn ×M(û) →→ →→ Hn−1 ×M(un−1)

Hactn−1
→→ Yn−1

It is easy to see that then for any q2 > 0,

actn = (ˆ︁Hact|Hn×Yn) ◦ (χq2 , id)
satisfies (4.5). Moreover, then the desired identity actn(on, x) = x is automatically satisfied.

Note that the outer rectangle commutes since we know (4.3) holds in degree n− 1. Now, write

A = Hn ×M(û)

B = (Hn ×Hn) ∪ (on ×M(û))

C = on ×M(û).

Since û is a rational equivalence, so are the inclusions of Hn × Hn into A and B. Therefore, the
obstruction O ∈ Hn+1(A,B;πn(Y )) to finding the lifting-extension is of finite order. We will show
that when q1 is large enough, this obstruction is zero.

The obstruction group fits into the exact sequence of the triple (A,B,C):

· · · → Hn(B,C;πn(Y ))
δ−→ Hn+1(A,B;πn(Y ))

rel∗−−→ Hn+1(A,C;πn(Y ))→ · · · ,
and so the image rel∗O in Hn+1(A,C;πn(Y )) is torsion. By Lemma 3.6(i), that means that
(χs, id)

∗(rel∗O) = 0 for some s > 0.
Now we look at a preimage under δ of (χs, id)

∗O, which we call α ∈ Hn(B,C;πn(Y )). By
excision,

Hn(B,C;πn(Y )) ∼= Hn(Hn ×Hn, on ×Hn;πn(Y )).
11



Applying Lemma 3.6(iii), we can find a t such that χ∗
tα ∈ ker δ and therefore

δ((χt, id)
∗α) = (χst, id)

∗O = 0.

Thus for q1 = st, we can find a map ˆ︁Hact completing the diagram.

Now we ensure that (4.2) commutes by picking an appropriate q2. Define ˆ︂act = ˆ︁Hact|Hn×Yn ;
then the diagram

Hn ×Hn × Yn
(addn,id)

→→

(id,ˆ︂act)
↓↓

Hn × Yn
ˆ︂act
↓↓

Hn × Yn
ˆ︂act →→ Yn

commutes after rationalization. Since (4.2) commutes in degree n − 1, the sole obstruction to
homotopy commutativity is a torsion class in Hn(Hn ×Hn × Y ;πn(Yn)). Therefore we can again
apply Lemma 3.6(i), this time with H = Hn × Hn and U = Yn, to find a q2 which makes the
obstruction zero.

All that remains is to define vn. But we know that un is rationally invertible, and so we can find
some vn such that vnun is multiplication by some rn. Moreover, for any such vn, the right square
of (4.3) commutes up to finite order. Thus by increasing rn (that is, replacing vn by χr̂vn for some
r̂ > 0) we can make it commute up to homotopy. □

5. Building blocks of homotopy-theoretic computation

We now turn to describing the algorithms for performing the computations outlined in the
previous two sections. This relies heavily on machinery and results from [5], [6], and [10] as building
blocks, which in turn rely on building blocks from the work of Rubio, Sergeraert, and others [25],
[23], [24]. This section is dedicated to explaining these building blocks.

Our spaces are stored as simplicial sets with effective homology. Roughly speaking this means a
computational black box equipped with:

• A way to refer to individual simplices and compute their face and degeneracy operators.
This allows us to, for example, represent a function from a finite simplicial complex or
simplicial set to a simplicial set with effective homology.
• A fully effective chain complex with a chain homotopy equivalence to this set. We do not
need to make this completely precise, but for example it allows one to compute the homology
and cohomology in any degree and with respect to any finitely generated coefficient group,
and to know both their isomorphism type and (co)chains representing individual classes.

This is easy to construct for finite simplicial complexes. But effective homology is designed to
work with simplicial sets that can be described algorithmically but are not necessarily finite; in our
case, these are finite Postnikov stages of spaces of finite type. We refer to [23] for a more detailed
overview.

Now we summarize the operations which are known to be computable from previous work.

Theorem 5.1. (a) Given a finitely generated abelian group π and n ≥ 2, a model of the
Eilenberg–MacLane space K(π, n) can be represented as a simplicial set with effective ho-
mology and a computable simplicial group operation. Moreover, there are algorithms imple-
menting a chain-level bijection between n-cochains in a finite simplicial complex or simplicial
set X with coefficients in π and maps from X to K(π, n) (the observation dates back to at
least [25], but see [5, §3.7] or [24, §7.5] for a detailed explanation).

(b) Given a finite family of simplicial sets with effective homology, their product can be repre-
sented as a simplicial set with effective homology (see [24, §8.2] or [5, §3.1]).
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(c) Given a simplicial map f : X → Y between simplicial sets with effective homology, there is a
way of representing the mapping cylinder M(f) as a simplicial set with effective homology.
(In [6] this is remarked to be “very similar to but easier than Prop. 5.11”; the related
algebraic mapping cylinder construction is done explicitly in e.g. [22, §3].)

(d) Given a map p : Y → B, we can compute the nth stage of the Moore–Postnikov tower for p,
in the form of a sequence of Kan fibrations between simplicial sets with effective homology
[6, Theorem 3.3] (cf. [5, Theorem 1.2] for the non-relative version).

(e) Given a diagram

A↓↓

↓↓

→→ Pn

↓↓↓↓

X →→

↗↗

Pn−1

where Pn → Pn−1 is a step in a (Moore–)Postnikov tower as above, there is an algorithm
to decide whether a diagonal exists and, if it does, compute one [6, Prop. 3.7].

(f) Given a fibration p : Y → B of simply connected simplicial complexes and a map f : X → B,
we can compute any finite Moore–Postnikov stage of the pullback of p along f [6, Addendum
3.4].

(g) Given a diagram

A
f
→→

↓↓

i
↓↓

Y

p
↓↓↓↓

X

↗↗

g
→→ B,

where A is a subcomplex of a finite complex X and p is a fibration of simply connected
complexes of finite type, we can compute whether two maps u, v : X → Y completing
the diagram are homotopic relative to A and over B [10, see “Equivariant and Fiberwise
Setup”].

(h) Given a diagram

A
f
→→

↓↓

i
↓↓

Y

p

↓↓

X

↗↗

g
→→ B

where A is a subcomplex of a finite complex X, Y and B are simply connected, and p

has finite homotopy groups, we can compute the (finite and perhaps empty) set [X,Y ]fp of
homotopy classes of maps completing the diagram up to homotopy.

Proof. We prove only the part which is not given a citation in the statement.

Part (h). Let d = dimX. One starts by computing the dth stage of the Moore–Postnikov tower
of p : Y → B using (d). From there, we induct on dimension. At the kth step, we have computed
the (finite) set of lifts to the kth stage Pk of the Moore–Postnikov tower. For each such lift, we use
(e) to decide whether it lifts to the (k + 1)st stage, and compute a lift u : X → Pk+1 if it does.
Then we compute all lifts by computing representatives of each element of Hk+1(X,A;πk+1(p))
and modifying u by each of them. Finally, we use (g) to decide which of the maps we have obtained

are duplicates and choose one representative for each homotopy class in [X,Pk+1]
f
p . We are done

after step d since [X,Pd]
f
p
∼= [X,Y ]fp . □
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6. Computing [X,Y ]f

We now explain how to compute the group and action described in §4. We work with a represen-
tation of (X,A) as a finite simplicial set and a Postnikov tower for Y , and perform the induction
outlined in that section to compute [X,Yd]

f for a given dimension d. The algorithm verifies that Y
is indeed a rational H-space through dimension d; however, it assumes that Y is simply connected
and returns nonsense otherwise.

6.1. Setup. Let d be such that Yd is a rational H-space. Since the homotopy groups of Y can be
computed, we can use Theorem 5.1(a) and (b) to compute once and for all the space

Hd =

d∏︂
n=2

K(πn(Y ), n),

and the binary operation addd : Hd × Hd → Hd is given by the product of the simplicial group
operations on the individual K(πn(Y ), n)’s. The group of homotopy classes [X/A,Hd] is naturally

isomorphic to
∏︁d
n=2H

n(X,A;πn(Y )), making this also easy to compute. Finally, given an element
of this group expressed as a word in the generators, we can compute a representative map X → Hd,
constant on A, by generating the corresponding cochains of each degree on (X,A) and using them
to build maps to K(πn(Y ), n).

We then initialize the induction which will compute maps ud, vd, and actd and an integer rd
satisfying the conditions of §4. Since H1 = Y1 is a point, we can set r1 = 1 and u1, v1, and act1 to
be the trivial maps.

6.2. Performing the Postnikov induction. The induction is performed as outlined in §4.3,
although we have to be careful to turn homotopy lifting and extension problems into genuine ones.
Suppose that maps un−1, vn−1, and actn−1 as desired have been constructed, along with a map

Hactn−1 : Hn ×M(un−1)→ Yn−1

which restricts to addn−1 on Hn−1 × Hn−1 and actn−1 on Hn−1 × Yn−1. There are five steps to
constructing the maps in the nth step:

1. Find q0 such that un−1χq0 lifts to a map û : Hn → Yn, and fix such a map.
2. Find q1 such that the diagram

(Hn ×Hn) ∪ (on ×M(û))
↓↓

↓↓

[addn ◦(χq1 ,id)]∪id →→ M(û)
project

→→ Yn

↓↓↓↓

Hn ×M(û)

ˆ︁Hact

→→

(χq1q0 ,id)
→→ Hn ×M(û) →→ →→ Hn−1 ×M(un−1)

Hactn−1
→→ Yn−1

has a lifting-extension ˆ︁Hact along the dotted arrow, and fix such a map.

3. Find q2 such that ˆ︁Hact|Hn×Yn ◦ (χq2 , id) makes the diagram (4.2) commute up to homotopy.
Now we can define

un : Hn → Yn by un = ûχq1q2 ;

Hactn : Hn ×M(un)→ Yn by Hactn = ˆ︁Hact ◦ (χq2 , id∪χq1q2);
actn : Hn × Yn → Yn by actn = Hactn |Hn×Yn .

4. Find q3 so that the diagram

Hn
→→ →→

χq3

→→M(un) →→ Hn
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can be completed by some v̂ :M(un)→ Hn, and fix such a map.
5. Find q4 so that setting

vn = v̂χq4 and rn = rn−1q0q1q2q3q4

makes the diagram (4.3) commute up to homotopy.

The first step is done by determining the order of the k-invariant kn ∈ Hn+1(Yn−1;πn(Y )). If
this order is infinite, then Y is not rationally a product of Eilenberg–MacLane spaces, and the
algorithm returns failure. Otherwise q0 is guaranteed to exist, and we can compute it by iterating
over multiples of the order until we find one that works.

The rest of the steps are guaranteed to succeed for some value of qi, and each of the conditions
can be checked using the operations of Theorem 5.1, so this part can also be completed by iterating
over all possible values until we find one that works.

6.3. Computing the action. Let G = [X/A,Hd]; we now explain how to compute [X,Y ]f as a
set with a virtually free and faithful action by G.

First we must decide whether there is a map X → Hd extending vdf : A→ Hd. If the set [X,Yd]
f

has an element e, then vdf has an extension vde, so if we find that there is no such extension, we
return the empty set. Otherwise we compute such an extension ψ0.

Lemma 6.1. We can determine whether an extension ψ0 : X → Hd of vdf exists, and compute
one if it does.

Proof. Recall that Hd =
∏︁d
n=2K(πn(Y ), n). Write projn for the projection to the K(πn(Y ), n)

factor. Then the extension we desire exists if and only if for each n < d, the cohomology class in
Hn(A;πn(Y )) represented by projn vdf has a preimage in Hn(X;πn(Y )) under the map i∗.

We look for an explicit cocycle σn ∈ Cn(X;πn(Y )) whose restriction to A is projn vdf . We
can compute cycles which generate Hn(X;πn(Y )) (because X has effective homology) as well
as generators for δCn−1(X;πn(Y )) (the coboundaries of individual (n − 1)-simplices in X). Then
finding σn or showing it does not exist is an integer linear programming problem with the coefficients
of these chains as variables.

Now if σn exists, then it also determines a map X → K(πn(Y ), n). Taking the product of these
maps for all n ≤ d gives us our ψ0. □

We now compute a representative aN for each coset N of rdG ⊆ G. Since this is a finite-index
subgroup of a fully effective abelian group, this can be done algorithmically, for example by trying
all words of increasing length in a generating set until a representative of each coset are obtained.
For each aN , we compute a representative map φN : X → Hd which is constant on A. Then the
finite set

S = {ψN = ψ0 + vdudφN : N ∈ G/rdG}
contains representatives of the cosets of the action of [X/A,Hd] on [X,Hd]

vdf obtained by pushing
the action on [X,Y ]f forward along vd.

Now, for each element of S we apply Theorem 5.1(h) to the square

A
f
→→

i
↓↓

Yd

vd
↓↓

X

↗↗

ψN
→→ Hd

to compute the finite set of preimages under vd in [X,Yd]
f . To obtain a set of representatives of

each coset for the action of [X/A,Hd] on [X,Yd]
f , we must then eliminate any preimages that are

in the same coset. In other words, we must check whether two preimages ψ̃ and ψ̃
′
of ψN differ by
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an element of [X/A,Hd]; any such element stabilizes vdψ̃, and so its order must divide rd. Since
there are finitely many elements whose order divides rd, we can check for each such element φ in

turn whether [φ] · [ψ̃] ≃ [ψ̃
′
].

Finally, to finish computing [X,Yd]
f we must compute the finite stabilizer of each coset. This

stabilizer is contained in the finite subgroup of [X/A,Hd] of elements whose order divides rd.
Therefore we can again go through all elements of this subgroup and check whether they stabilize
our representative.

6.4. Summary. We conclude this section with a formal summary of the algorithm.

Input: • A simplicial pair (X,A).
• A simplicial complex Y , assumed to be simply connected.
• A simplicial map f : A→ Y .
• A positive integer d.

Output: If Yd is not rationally an H-space, algorithm not applicable. Otherwise:
• The dth Postnikov stage Yd of Y , represented as a simplicial set with effective homology.
• A product of Eilenberg–MacLane spaces Hd, represented as a simplicial set with effec-
tive homology.
• The group [X/A,Hd], represented as a fully effective abelian group.

• A finite (possibly empty) set C of maps f̃ i : X → Yd representing cosets of the action
of [X/A,Hd] on [X,Yd]

f .

• For each i, the stabilizer of f̃ i, represented as a finite subgroup Σi ⊆ [X/A,Hd].
Main steps: Here is the outline of the algorithm:

A. Initialize the computation:
• Compute the homotopy groups of Y through dimension d.

• Construct the space Hd =
∏︁d
n=2K(πn(Y ), n), and compute the group [X/A,Hd].

• Set r1 = 1, and u1, v1, act1, and Hact1 to be the unique maps between the
relevant spaces (which are all points).

B. for n = 2 through d:
• Compute the k-invariant kn ∈ Hn+1(Yn−1;πn(Y )). If it is of infinite order,
return algorithm not applicable.
• Otherwise, compute the action of Hn on Yn and associated data as outlined in

§6.2, namely the positive integer rn and maps un, vn, actn, and Hactn.
C. Using the algorithm of Lemma 6.1, determine whether there is a map X → Hd which

extends vdf : A→ Hd.
• If there isn’t, return (Yd, Hd, [X/A,Hd], C = ∅, ∅).
• If there is, compute such a map ψ0 : X → Hd.

D. for each N ∈ [X/A,Hd]/rd[X/A,Hd]:
• Choose a representative homotopy class in [X/A,Hd], and a representative map
φ : (X,A)→ (Hd, o) in this homotopy class.
• Compute the map ψ = ψ0 + vdudφ : X → Hd.
• For each homotopy class of maps completing the diagram

A
f
→→

i
↓↓

Yd

vd
↓↓

X

↗↗

ψ
→→ Hd

up to homotopy, compute a representative f̃ i : X → Yd.

Write C0 for the set of all the f̃ i.
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E. Remove duplicates from C0, that is, take a subset C ⊆ C0 which includes only one map
from each orbit of the action of [X/A,Hd] on [X,Yd]

f .

F. For each f̃ i ∈ C, compute the stabilizer as a subgroup of the torsion subgroup of
[X/A,Hd] and return (Yd, Hd, [X/A,Hd], C, stabilizers).

7. Variants of Hilbert’s tenth problem

In [4], the authors show that the existence of an extension is undecidable by using the undecid-
ability of the existence of solutions to systems of diophantine equations of particular shapes:

Lemma 7.1 (Lemma 2.1 of [4]). The solvability in the integers of a system of equations of the
form ∑︂

1≤i<j≤r
a
(q)
ij xixj = bq, q = 1, . . . , s or(Q-SYM)

∑︂
1≤i<j≤r

a
(q)
ij (xiyj − xjyi) = bq, q = 1, . . . , s(Q-SKEW)

for unknowns xi and (for (Q-SKEW)) yi, 1 ≤ i ≤ r, is undecidable.

We conjecture a very broad generalization of this result.

Conjecture 7.2. For any nonzero bilinear map B : Zm × Zn → Zp, the solvability in the integers
of a system of equations of the form

(Q-BLIN(B))
r∑︂

i,j=1

a
(q)
ij B(ui,vj) = cq, q = 1, . . . , s

for unknowns ui = (ui1, . . . , uim) and vj = (vj1, . . . , vjn), 1 ≤ i, j ≤ r, is undecidable.

We will show this conjecture in certain special cases, most notably the case p = 1. However,
the general case would, for instance, imply the undecidability of Hilbert’s tenth problem over the
ring of integers of any number field, first conjectured by Denef and Lipshitz [8]. This narrower
conjecture is still open in general, although Mazur and Rubin [14] show using work of Poonen [18]
and Shlapentokh [26] that it is implied by the Shafarevich–Tate conjecture in number theory. On
the other hand, undecidability is known unconditionally in many cases, for example for totally real
number fields and their quadratic extensions. For a survey, see [19, Theorem 14.1].

Before discussing the relationship between these two problems, we give a precise definition:

Definition. Given a ring R and a subring S, Hilbert’s tenth problem over R with coefficients in S is
the decision problem: given a finite list of polynomials in S[x1, . . . , xn], do they have a simultaneous
zero in Rn?

Proposition 7.3. Let R be the ring of integers of a number field. Then Hilbert’s tenth problem
over R with coefficients in R and in Z are computationally equivalent.

This is implicit in Poonen’s survey [19]; I would like to thank Emil Jeřábek on MathOverflow
for the following proof.

Proof. Given a system of polynomials p1, . . . , pm ∈ R[x1, . . . , xn], we construct an equivalent system
with coefficients in Z. Let ξ ∈ R be such that R(0) = Q(ξ). We introduce a new variable z
representing ξ, and replace the coefficients of each pi with corresponding polynomials in z to obtain
polynomials qi(x1, . . . , xn, z) with rational coefficients. Finally we add the minimal polynomial
fξ(z) of ξ to our system. Then q1, . . . , qm, fξ has a solution over R if and only if p1, . . . , pm does,
since for any ξ′ such that fξ(ξ

′) = 0, there is an automorphism of R taking ξ to ξ′.
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The polynomials q1, . . . , qm, fξ have rational coefficients, and we can clear the denominators by
multiplying by a sufficiently large integer. □

Now we further reduce the problem to fit in our framework.

Lemma 7.4. Let R be any ring. If Hilbert’s tenth problem with coefficients in a ring S ⊆ R is
undecidable over R, then so is the solvability of a system of equations of the form

(Q-DIFF)

r∑︂
i,j=1

a
(q)
ij xiyj = cq, q = 1, . . . , s

in unknowns xi and yj, 1 ≤ i, j ≤ r, and again with coefficients in S.

Proof. The proof exactly follows that of Lemma 2.1 of [4], but we give it for completeness. We reduce
any system of equations over R to a system of the form (Q-DIFF). First, we note that any system
of equations can be converted into a quadratic system by introducing new unknowns representing
products and powers. Now to convert a general quadratic system in unknowns z1, . . . , zr to a system
of the form (Q-DIFF), we introduce variables x0, . . . , xr and y0, . . . , yr, replace every quadratic term
of the form zizj (where i and j are not necessarily distinct) with xiyj , every linear term zi with
xiy0, and introduce the following additional equations:

x0y0 = 1; xiy0 − x0yi = 0, i = 1, . . . , r.

This forces x0 and y0 to be units and inverses of each other; moreover, if x0, . . . , xr, y0, . . . , yr is a
solution to the newly constructed system of the form (Q-DIFF), then zi = xiy0 = x0yi is a solution
to the original quadratic system. Conversely, given a solution z1, . . . , zr to the original system, we
can take x0 = y0 = 1 and xi = yi = zi for i = 1, . . . , r. □

This immediately implies:

Proposition 7.5. Let R be a ring which is finitely generated and free as a Z-module (for example,
the ring of integers of a number field, or the matrix ring Mn(Z)). Then Hilbert’s tenth problem
over R with coefficients in Z is undecidable if and only if (Q-BLIN(B)) is undecidable, where B
describes the multiplication law in R in terms of some Z-basis (or, possibly, three different Z-bases
for the left factor, the right factor, and the product).

Example 7.6. The solvability in the integers of systems of the form (Q-BLIN(B)) is undecidable,
where B : Z2 × Z2 → Z2 is given by

B(u,v) =

(︃
uT

(︃
1 0
0 −1

)︃
v,uT

(︃
0 1
1 0

)︃
v

)︃
.

This bilinear map describes the multiplication law for Z[i] in the basis {1, i}; Hilbert’s tenth problem
over Z[i] and any other quadratic number ring is undecidable by [7].

We conclude the section with two more special cases of Conjecture 7.2.

Proposition 7.7. Suppose that B : Zm×Zn → Zp is a bilinear map such that for some L : Zp → Z,
L ◦ B has rank 1. Then the solvability in the integers of systems of the form (Q-BLIN(B)) is
undecidable.

Proof. After changes of basis for Zm, Zn, and Zp, we can assume that B1(u,v) = cu1v1 for some
c ∈ Z, where B1 is the first coordinate of B. Now consider a general system of the form (Q-DIFF).
We use it to build a corresponding system

(7.8)

r∑︂
i,j=1

a
(q)
ij B(ui,vj) = cqB(e1, e1), q = 1, . . . , s,
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where e1 = (1, 0, . . . , 0). We claim this system is equivalent.
Given a solution x1, . . . , xr, y1, . . . , yr to (Q-DIFF), clearly x1e1, . . . , xrer, y1e1, . . . , yrer is a

solution to (7.8). Conversely, given a solution u1, . . .ur,v1, . . . ,vr to (7.8), u11, . . . , ur1, v11, . . . , vr1
is a solution to (Q-DIFF). □

Theorem 7.9. The solvability in the integers of systems of the form (Q-BLIN(B)) is undecidable
when p = 1, that is, when B(u,v) = uTBv for some m× n matrix B.

Remark 7.10. One readily sees from the proof that this result admits various generalizations:

(1) The result holds with the integers replaced by any PID R in which Hilbert’s tenth problem
is undecidable, such as R = Z[i]. When R is finite-dimensional and free as a Z-module,
a Diophantine system of this form over R with integer coefficients can be reinterpreted as
an integral Diophantine system of the form (Q-BLIN(A ⊗ B)), where A : Zd ⊗ Zd → Zd
describes the multiplication law in R and A⊗B is interpreted as a map

(Zd ⊗ Zm)⊗ (Zd ⊗ Zn)→ (Zd ⊗ Z).

Therefore, the solvability of systems of the form (Q-BLIN(A⊗B)) is again undecidable.
(2) The result also holds for p > 1 if the following algebraic condition is satisfied: there are

decompositions Qm = L⊕S and Qn = L′⊕S′ such that L and L′ are one-dimensional and
the bilinear map B ⊗ Q : Qm ⊗ Qn → Qp restricts to zero on L ⊗ S′ and S ⊗ L′ and is
nonzero on L⊗ L′.

Remark 7.11. Proposition 7.7 and Theorem 7.9 are in some sense opposite extremes: the more
independent coordinates in the image of B, the likelier one is to find a direction in which the rank
is low. In between we have the case where B : Zn × Zn → Zn has full rank in every direction;
this includes multiplication laws of rings of integers of number fields and may be the most difficult
situation.

Proof of Theorem 7.9. We show that a system of the form (Q-DIFF) can be simulated with one of
the form Q-BLIN(B). By Lemma 7.4, this is sufficient to show that solvability of systems of the
form Q-BLIN(B) is undecidable. The proof is again closely related to that of the undecidability of
(Q-SYM) in [4].

We first show that we can replace B with a diagonal matrix.

Lemma 7.12. Given an m× n matrix B, there is a square diagonal full-rank matrix B′ such that
for every choice of {aij} and cq, the system

(7.13)

r∑︂
i,j=1

a
(q)
ij uTi Bvj = cq, q = 1, . . . , s

has a solution if and only if the system

(7.14)
r∑︂

i,j=1

a
(q)
ij (u′

i)
TB′v′

j = cq, q = 1, . . . , s

has a solution.

Proof. We can write B = SAT where A is the Smith normal form and S and T are invertible m×m
and n × n matrices, respectively. Then the vectors (ui,vj)i,j=1,...,r are a solution to the system
(7.13) if and only if (STui, Tvj)i,j=1,...,r are a solution to the system

r∑︂
i,j=1

a
(q)
ij uTi Avj = cq, q = 1, . . . , s.
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The matrix A consists of a full-rank diagonal submatrix B′ in the top left corner and zeros every-
where else. After removing variables which don’t appear in any terms with nonzero coefficients, we
obtain the system (7.14) with this B′. □

Thus we may assume that m = n and B = (bkℓ) is a diagonal matrix of full rank.
Now consider a general system of the form (Q-DIFF). We use it to build a system of the form

(Q-BLIN(B)) with variables

ui1, . . . , uin and vj1, . . . , vjn, 1 ≤ i ≤ r,
zkℓ and wkℓ, 1 ≤ k, ℓ ≤ n.

Define n× n matrices Z = (zkℓ) and W = (wkℓ). Then the equations of our new system are

(7.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r∑︂
i,j=1

a
(q)
ij uTi Bvj = b11cq, q = 1, . . . , s,

ZTBW = B,

(uTi BW )ℓ = 0, i = 1, . . . , r, ℓ = 2, . . . , n,

(ZTBvj)k = 0, j = 1, . . . , r, k = 2, . . . , n.

To complete the proof, we must show that the system (7.15) has a solution if and only if (Q-DIFF)
does. It is easy to see that {xi, yj}1≤i,j≤r is a solution to (Q-DIFF) if and only if

Z =W = In, ui = xie1, vj = yje1,

where e1 is the basis vector (1, 0, . . . , 0), is a solution to (7.15). In particular, if (Q-DIFF) has a
solution, then so does (7.15). Conversely, suppose that we have a solution for (7.15). Since they
are integer matrices and B has nonzero determinant, Z and W must both have determinant ±1
and are invertible over Z. Then (7.15) also has the solution

u′
i = Z−1ui, v′

j =W−1vj , Z ′ =W ′ = In,

and xi = u′i1, yj = v′j1 is a solution for (Q-DIFF). □

8. Undecidability of extension problems

Theorem 8.1. Let Y be a simply connected finite complex which is not a rational H-space. Then
the problem of deciding, for a finite simplicial pair (X,A) and a map φ : A → Y , whether an
extension to X exists is at least as hard as deciding solvability for systems of equations of the form
(Q-BLIN(B)), for a bilinear map B depending on Y . Moreover, it is enough to consider pairs
satisfying cd(X,A) = d+ 1, where d is the smallest degree such that Yd is not a rational H-space.

Examples of target spaces Y for which this gives us a proof of undecidability include CPn for
any n, CP 2#CP 2, punctured products of odd-dimensional spheres, Grassmannians, and any Y
such that πd(Y ) has rank 1. In general, one should be able to prove undecidability of the extension
problem for a wide range of target spaces after computing their Sullivan minimal model.

Before proving the theorem in full generality, we review the proof in [4] of the case Y = S2,
where undecidability is shown by reduction from Hilbert’s tenth problem for systems of equations
of the type (Q-SYM). How do the authors encode equations in an extension problem? There are
three ingredients, all encoded into cells of the pair (X,A):

• Variable cells: copies S2
i of S2 in X which are not in A, and hence can be mapped to Y

with arbitrary degree.
• 3-spheres encoding constant terms of equations: copies S3

q of S3 in A, which are mapped
to Y with a fixed Hopf invariant bq by the map φ.
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• 4-cells encoding equations. The qth 4-cell is attached to the rest of X by the map

−2bq idS3
q
+

∑︂
1≤i<j≤r

a
(q)
ij [idS2

i
, idS2

j
],

where [α, β] denotes the Whitehead product of α and β: the composition

S3 attaching map of the top cell of S2×S2

−−−−−−−−−−−−−−−−−−−−−−−−→ S2 ∨ S2 α∨β−−→ X(3).

In summary, A is a wedge of 3-spheres and X consists of a wedge of 2- and 3-spheres with 4-cells
attached.

The homotopy class of a map S3 → S2 is determined by its Hopf invariant, an integer. The
Whitehead product [idS2 , idS2 ] : S3 → S2 has Hopf invariant 2, and the Whitehead product is
bilinear in the two variables. Therefore, the 4-cells force the degrees xi on S

2
i of an extension of φ

to X to satisfy the equations (Q-SYM).
The minimal model of S2 is (︁⋀︁

(a2, b3), da = 0, db = a2
)︁
.

The Hopf invariant can be thought of as the result of pairing with b. There is therefore a relationship
between the differential and the Whitehead product:

⟨b, [f, g]⟩ = 2⟨a, f⟩⟨a, g⟩.
Such a relationship holds more generally.

In the general case, we use a similar tactic, but with higher-order Whitehead products, originally
defined by Porter [20]. Given spheres Sn1 , . . . , Snκ , their product can be given a cell structure with
one cell for each subset of {1, . . . , κ}. Define their fat wedge Vκi=1S

ni to be this cell structure
without the top face. Let N = −1 +

∑︁κ
i=1 ni, and let τ : SN → Vκi=1S

ni be the attaching map
of the missing face. By definition, α ∈ πN (Y ) is contained in the κth-order Whitehead product
[α1, . . . , ακ], where αi ∈ πni(Y ), if it has a representative which factors through a map

SN
τ−→ Vκi=1S

ni
fα−→ Y

such that [fα|Sni ] = αi. Note that there are many potential indeterminacies in how higher-
dimensional cells are mapped, so [α1, . . . , ακ] is a set of homotopy classes rather than a unique
class. This set may be empty: for example, if the ordinary Whitehead product [α, β] is nonzero,
then [α, β, γ] is empty for any γ because there is no way to extend the map α ∨ β to the product
cell. However, this is not the case in our situation:

Lemma 8.2. Suppose that Y is a rational H-space through degree d−1. Then every d-dimensional
higher-order Whitehead product in Y(0) is nonempty.

Proof. Let αi : S
ni → Y(0), for i = 1, . . . , κ be homotopy classes of maps, and suppose

∑︁
i ni = d+1.

Since Yd−1(0) is an H-space,
⋁︁
i αi :

⋁︁
i S

ni → Yd−1(0) extends via the H-space operation to a map
F :

∏︁
i S

ni → Yd−1(0). The obstruction to lifting F to Y(0) lies in (d+ 1)-dimensional cohomology,
and therefore the restriction of F to the fat wedge lifts to Y(0). □

Importantly, higher-order Whitehead products are graded symmetric and multilinear in a weak
sense. It is easy to see that the factors commute or anticommute as determined by the grading.
For multilinearity, notice that if two maps f, g : Sn×X → Y agree on ∗×X, where ∗ ∈ Sn is some
base point, then there is a well-defined map “f + g” given by

(8.3) Sn ×X “pinch the waist”×id−−−−−−−−−−−−−→ (Sn ∨ Sn)×X f∪∗×Xg−−−−−→ Y,

which induces addition in πn(Y, f(∗, x)) on every fiber Sn × {x}. Likewise, if f, g : Vκi=1S
ni → Y ,

where f ◦ τ and g ◦ τ represent elements of [α1, . . . , ακ] and [α′
1, α2, . . . , ακ] respectively, agree on
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∏︁κ
i=2 S

ni , then a similar operation yields a well-defined element [f + g] ∈ [α1 + α′
1, α2, . . . , ακ]. In

particular, taking f = g and performing the operation repeatedly, we get that

[cα1, . . . , ακ] ⊇ c[α1, . . . , ακ]

(see e.g. [20, Theorem 2.13]). Note, however, that there is no more general notion of additivity.
We can use this weak multilinearity to relate Lemma 8.2 to Y itself:

Lemma 8.4. For i = 1, . . . , κ, let αi ∈ πni(Y ), and denote the image in πni(Y(0)) by αi(0).
If [α1(0), . . . , ακ(0)] ⊆ πN (Y(0)) is nonempty, then there are positive integers r1, . . . , rκ such that
[r1α1, . . . , rκακ] is nonempty in πN (Y ). Moreover, if Y is of finite type, then the set of ri can be
chosen to depend only on the set of ni.

Proof. We prove a stronger statement: if β ∈ πN (Y(0)) is an element of [α1(0), . . . , ακ(0)], then for
some R = r1 · · · rκ, Rβ lifts to an element of [r1α1, . . . , rκακ] ⊆ πN (Y ).

Let f : Vκi=1S
ni → Y(0) be a map such that f ◦τ is a representative of β. Denote by (r1, . . . , rκ)f :

Vκi=1S
ni → Y(0) the corresponding map in which the ith factor is multiplied by ri in the sense of

(8.3). We construct a map Vκi=1S
ni → Y , one cell at a time. Suppose that Z is a subcomplex

of Vκi=1S
ni including the boundary of a particular cell e (WLOG, the top cell of

∏︁s
i=1 S

ni for
some s < κ), and F : Z → Y is a lift of (r1, . . . , rκ)f for some factors r1, . . . , rκ. In particular,
if τs : SM → Z is the attaching map of this cell, then the obstruction to extending F ◦ τs to
a lift of (r1, . . . , rκ)f |e is a finite order element of πM+1(Y ), and there is an rnew > 0 such that
rnew[F ◦ τs] = 0. (In the finite type case, we can choose rnew to be the cardinality of the torsion
subgroup of πM+1(Y ).) Using an (8.3)-type construction to multiply the first factor of F by rnew,
we get a lift of (rnewr1, r2, . . . , rκ)f |Z∪e to a map Z ∪ e→ Y .

Starting with Sn1 ∨ · · · ∨Snκ and performing the operation for every higher cell, we obtain a lift
of Rβ for some R. □

Finally, in the setting of the theorem, certain d-dimensional higher-order Whitehead products
don’t only exist but are virtually unique:

Lemma 8.5. Suppose that Y is a rational H-space through degree d−1. Then for some κ ≥ 2, there
is a nonempty κth-order Whitehead product in πd(Y ) containing no torsion elements. Moreover,
for the smallest such κ, all κth-order Whitehead products in πd(Y ) are unique up to torsion.

Proof. Fix a minimal modelMY for Y and a basis of generators for the indecomposables Vn in each
degree n which is dual to a basis for πn(Y )/torsion. Since Y is not a rational H-space, there is some
least d such that the differential in the minimal modelMY is nontrivial. Recall that for a minimal
model, each nonzero term in the differential is at least quadratic. For each of the generators η of
Vd, dη is a polynomial in the lower-degree generators. Denote by P-degree the degree of an element
of the minimal model as a polynomial in these generators, as opposed to the degree imposed by
the grading. Let κ be the minimal P-degree of any monomial in any dη.

To prove the lemma, we use the connection, first investigated in [1], between the differential in
the minimal model and higher-order Whitehead products. The main theorem of [1], Theorem 5.4,
gives a formula for the pairing between an indecomposable η ∈ Vn and any element of an ith-order
Whitehead product set in πn, assuming that every term of dη has P-degree at least i. This formula
is somewhat complicated, but is i-linear in the pairings between factors of the terms of dη and
factors of the Whitehead product.

It follows that, given an element of a κth-order Whitehead product set in πd(Y ), its pairings
with each of the generators η are given uniquely by this formula. Since Vd is dual to πd(Y ) ⊗ Q,
all elements of the κth-order Whitehead product set are in the same rational homotopy class.

Consider a particular η and a particular term µ of dη whose P-degree is κ. Let α1, . . . , ακ be
elements of π∗(Y ) dual to the variables in this term. By Lemmas 8.2 and 8.4, some [r1α1, . . . , rκακ] is
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nonempty. Every element of this set pairs nontrivially with dη, since there is a nonzero contribution
from µ and a zero contribution from all other terms. Therefore the set does not contain a torsion
element. □

Proof of Theorem 8.1. We reduce from the problem (Q-BLIN(B)), for an appropriate bilinear map
B. For each instance of this problem, we construct a pair (X,A) and map f : A→ Y such that an
extension exists if and the instance has a solution.

Fix a minimal modelMY for Y and a basis of generators η1, . . . , ηp for the indecomposables Vd
in degree d. By Lemma 8.5, there is a nontrivial and rationally unique higher-order Whitehead
product [α1, . . . , ακ] ⊂ πd(Y ), where αi ∈ πdi(Y ). Moreover, by Lemma 8.4, we may choose
α3, . . . , ακ and positive integers ρ1 and ρ2 so that for every choice of β ∈ ρ1πd1(Y ) and γ ∈ ρ2πd2(Y ),
[β, γ, α3, . . . , ακ] is nonempty.

Now we fix α3, . . . , ακ and vary β and γ. For each ηk, the pairing ⟨ηk, [β, γ, α3, . . . , ακ]⟩ is bilinear
in β and γ. In particular, after fixing Z-bases for ρ1πd1(Y ) ∼= Zm and ρ2πd2(Y ) ∼= Zn, we get a
bilinear map B : Zm × Zn → Zp.

Now given a system of the form (Q-BLIN(B)), we will build a (d + 1)-dimensional pair (X,A)
and a map f : A → Y such that the extension problem has a solution if and only if the system
does. We define

A =
s⋁︂
q=1

Sdq ∨
κ⋁︂
i=3

Sdi ,

and let f : A→ Y send

• Sdi to Y via a representative of αi;
• Sdq to Y via an element of πd(Y ) whose pairing with ηk, for each k, is ckq.

Finally, we build X from A′ = A ∨
⋁︁r
i=1 S

d1
i ∨

⋁︁r
j=1 S

d2
j as follows:

• Add on cells so that for every i and j, X includes the fat wedge V(Sd1i , S
d2
j , S

d3 , . . . , Sdκ),

and these fat wedges only intersect in A′. Let φij : S
d → X be the attaching map of the

missing (d+ 1)-cell for the (i, j)th fat wedge.

• Add on spheres Sd1′i together with the mapping cylinder of a map Sd1i → Sd1′i of degree ρ1,

and spheres Sd2′j together with the mapping cylinder of a map Sd2j → Sd2′j of degree ρ2.

• Then, for each q, add a (d+1)-cell attached along a representative of ρ([Sdq ]−
∑︁r

i,j=1 a
(q)
ij [φij ]),

where ρ is the exponent of the torsion part of πd(Y ).

It is easy to see that Hn(X,A) = 0 for n > d.
We claim that (X,A) and f pose the desired extension problem. Indeed, any extension of f

to f̃ : X → Y sends each Sd1i to an element βi ∈ ρ1πd1(Y ) and each Sd2j to an element γj ∈
ρ2πd2(Y ), as constrained by the mapping cylinders. Then f̃ ◦ φij : Sd → Y represents an element
of [βi, γj , α3, . . . , ακ]. Then the (d+ 1)-cells force the equations of (Q-BLIN(B)) to hold.

Conversely, given a satisfying assignment for (Q-BLIN(B)), there is an extension f̃ : X → Y .
To see this, note that such a satisfying assignment gives us values for βi and γj up to torsion,
and by construction there is an extension to the fat wedges and the mapping cylinders. Moreover,

under any such extension, f∗[S
d
q ] and

∑︁r
i,j=1 a

(q)
ij f̃∗[φij ] ∈ πd(Y ) are rationally equivalent; thus

when multiplied by ρ they are equal, and the map extends to the (d+ 1)-cells of X. □

Examples. We conclude by discussing some instances of Y for which the extension problem is
undecidable. For example, if there are α3, . . . , ακ such that there exists a rationally nontrivial
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Whitehead product [α1, α2, α3, . . . , ακ] ∈ πd(Y ) and the image of the map

πd1(Y )⊗ πd2(Y )→ πd(Y )

β ⊗ γ ↦→ [β, γ, α3, . . . , ακ]

is one dimensional, then the extension problem is undecidable by Theorem 7.9. This situation
includes the cases where Y is a fat wedge of odd spheres (in this case the one-dimensional subspace
is generated by the universal Whitehead product) and CPn (in this case the one-dimensional
subspace is generated by [α, . . . , α]⏞ ⏟⏟ ⏞

n+1 times

), as well as any Y such that πd(Y ) has rank 1.

A different case is that of CP 2#CP 2. In this case, we give explicit generators for the low-
dimensional part of the minimal model:(︂⋀︂

(a21, a
2
2, b

3, c3, . . .), dai = 0, db =
1

2
a21 −

1

2
a22, dc = a1a2, . . .

)︂
.

Here the ai are dual to the two-dimensional classes αi representing the spheres in the two copies
of CP 2. The 3-dimensional generators are governed by the 4-cell of CP 2#CP 2, which ensures that
[α1, α1]+ [α2, α2] = 0. Then the pairing of b and c with Whitehead products of linear combinations
of α1 and α2 is described by the matrices(︃

1 0
0 −1

)︃
and

(︃
0 1
1 0

)︃
from Example 7.6. Thus the extension problem for maps from 4-complexes to CP 2#CP 2 is equiv-
alent to Hilbert’s tenth problem for Z[i], and hence undecidable.

One can construct similar (though perhaps less natural) examples for other number rings.
Finally, as a demonstration of the wide range of natural examples that can be covered with our

techniques, we show that the extension problem is undecidable for Y = ˜︂Grk(Rn), the Grassmannian
of oriented k-planes in Rn, when 2 ≤ k ≤ n− 2. The minimal models of these spaces are computed
explicitly in [17]. Letting d be the least dimension for which the differential is nontrivial, this
computation tells us:

• Whenever k ̸= n/2, or when k = n/2 is odd, πd(˜︂Grk(Rn)) has rank 1, and therefore the

extension problem for maps into ˜︂Grk(Rn) is undecidable.
• When k = n/2 and k is even, write t = k/2. In this case, d = 4t− 1, πd(˜︂Grk(Rn)) has rank
2, and the two generators have differentials

dv0 = ht − τ2, du0 = στ.

Here σ and τ are generators of degree k, and ht is a polynomial in generators p1, . . . , pt−1,
where pi has degree 4i, and pt = σ2. Namely, ht is such that

(1 + p1 + · · ·+ pt)(1 + h1 + h2 + · · · ) = 1.

From this formula one sees that the terms of dv0 of multi-degree (k, k), which are “seen”
by pairing with Whitehead products between elements of πk, are

−σ2 − τ2, when t is odd; p2t/2 − σ
2 − τ2, when t is even.

This lets us write down the bilinear maps

πk(˜︂Grk(Rn))⊗Q× πk(˜︂Grk(Rn))⊗Q→ πd(˜︂Grk(Rn))⊗Q
induced by the Whitehead product. When t is odd, the bilinear form given by pairing with
2u0 − v0 has rank 1, and we can apply Proposition 7.7. When t is even, we are in the
situation of Remark 7.10(2). (Both these claims only rely on the rational structure and are
independent of integral information.) In both cases, we know that the relevant version of
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Hilbert’s tenth problem is undecidable, and therefore so is the extension problem for maps

into ˜︂Grk(Rn).
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6. M. Čadek, M. Krčál, and L. Vokř́ınek, Algorithmic solvability of the lifting-extension problem, Discrete & Com-

putational Geometry 57 (2017), no. 4, 915–965.
7. J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214–220.
8. J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18

(1978), no. 3, 385–391.
9. Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205,

Springer, 2012.
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