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ABSTRACT. Given a simplicial pair (X, A), a simplicial complex Y, and a map f: A — Y, does f
have an extension to X7 We show that for a fixed Y, this question is algorithmically decidable for
all X, A, and f if Y has the rational homotopy type of an H-space. As a corollary, many questions
related to bundle structures over a finite complex are likely decidable. Conversely, for all other Y,
the question is at least as hard as certain special cases of Hilbert’s tenth problem which are known
or suspected to be undecidable.

1. INTRODUCTION

When can the set of homotopy classes of maps between spaces X and Y be computed? That
is, when can this (possibly infinite) set be furnished with a finitely describable and computable
structure? It is reasonable to restrict the question to the setting of finite complexes: otherwise
one risks encountering spaces that themselves take an infinite amount of information to describe.
Moreover, the question of whether this set has more than one element is undecidable for X = S*,
as shown by Novikov as early as 1955H Therefore it is also reasonable to require the fundamental
group not to play a role; in the present work, Y is always assumed to be simply connectedﬂ

We answer this question with the following choice of quantifiers: for what Y and n can the set
of homotopy classes [X,Y] be computed for every n-dimensional X? Significant partial results in
this direction were obtained by E. H. Brown [2] and much more recently by Cadek et al. [3], [5], [4]
and Vokiinek [32]. The goal of the present work is to push their program closer to its logical limit.

To state the precise result, we need to sketch the notion of an H-space, which is defined precisely
in §3] Essentially, an H-space is a space equipped with a binary operation which can be more or
less “group-like”; if it has good enough properties, this allows us to equip sets of mapping classes
to the H-space with a group structure.

The cohomological dimension cd(X, A) of a simplicial or CW pair (X, A) is the least integer d
such that for all n > d and every coefficient group m, H"(X, A;7) = 0.

Theorem A. LetY be a simply connected simplicial complex of finite type and d > 2, and suppose

Y has the rational homotopy type of an H-space through dimension d. That is, there
() is a map from'Y to an H-space (or, equivalently, to a product of Eilenberg—MacLane
spaces) which induces isomorphisms on 7, ® Q for n < d.

Then for any simplicial pair (X, A) of cohomological dimension d+1 and simplicial map f : A =Y,
the existence of a continuous extension of f to X is decidable.
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IThis is the triviality problem for group presentations, translated into topological language. This work was
extended by Adian and others to show that many other properties of nonabelian group presentations are likewise
undecidable.

2The results can plausibly be extended to nilpotent spaces.
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Moreover, there is an algorithm which, given a simply connected simplicial complex Y, a simpli-
cial pair (X, A) of finite complexes of cohomological dimension d and a simplicial map f: A=Y,

(1) Determines whether (x) is satisfied;

(2) If it is, outputs the set of homotopy classes rel A of extensions [X,Y]/ in the format of
a (perhaps empty) set on which a finitely generated abelian group acts virtually freely and
faithfully (that is, with a finite number of orbits each of which has finite stabilizer).

We give a few remarks about the statement. First of all, it is undecidable whether Y is simply
connected; therefore, when given a non-simply connected input, the algorithm cannot detect this
and returns nonsense, like previous algorithms of this type.

Secondly, we provide evidence for the conjectural converse to the first part of Theorem [A} that if
(%) is not true, then the extension problem for pairs of cohomological dimension d+1 is undecidable.
We prove this in a range of special cases, but the general case appears to be connected to deep
unsolved problems in number theory. The best that can be said is that if the converse is false, it
must be due to a strange number-theoretic coincidence.

Finally, the difference between d 4+ 1 in the first part of the theorem and d in the second is
significant: if cd(X, A) = d + 1, then we can decide whether [X, Y]/ is nonempty, but our method
of describing this set breaks down. For example, a homotopy class of maps S' x §? — S2 is
determined by two numbers: the degree d of the map on the S? factor and the (relative) Hopf
invariant h on the 3-cell. However, h is well-defined only up to multiples of 2d, and so in a natural
sense

[S' x §%,8% = | |z/2rZ.
reZl
This structure does not fit into the framework we construct in this paper for describing [X, Y]f .
Other similar examples are described in [13 §3], and it would be interesting to give a general,
perhaps computable, description for [X, Y]/ (or even just [X,5?"]) in this “critical” dimension.

1.1. Examples. The new computability result encompasses several previous results, as well as new
important corollaries. Here are some examples of spaces which satisfy condition (*) of Theorem

(a) Any simply connected space with finite homology groups (or, equivalently, finite homotopy
groups) in every dimension is rationally equivalent to a point, which is an H-space. The
computability of [X,Y] when Y is of this form was already established by Brown [2].

(b) Any d-connected space is rationally an H-space through dimension n = 2d. Thus we recover
the result of Cadek et al. [5] that [X, Y]/ is computable whenever X is 2d-dimensional and
Y is d-connected. This implies that many “stable” homotopical objects are computable.
One example is the group of oriented cobordism classes of n-manifolds, which is isomorphic
to the set of maps from S™ to the Thom space of the tautological bundle over Gr,,(R***1).

(¢) The sphere S™ for n odd is rationally equivalent to the Eilenberg-MacLane space K(Z,n).
Therefore [X, S”]f is computable for any finite simplicial pair (X, A) and map f: A — S";
this is the main result of Vokfinek’s paper [32].

(d) Any Lie group or simplicial group Y is an H-space, so if Y is simply connected then [X, Y]f
is computable for any X, A, and f.

(e) Classifying spaces of connected Lie groups also have the rational homotopy type of an
H-space [9, Prop. 15.15]. Therefore we have (somewhat aspirationally):

Corollary 1.1. Let G be a connected Lie group, and suppose that the classifying space BG
has a computable representation. Then:
(i) Let X be a finite CW complex. Then the set of isomorphism classes of principal G-
bundles over X is computable.
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(ii) Let (X, A) be a finite CW pair. Then it is decidable whether a given principal G-bundle
over A extends over X.

In particular, given a representation G — G L, (R), we should be able to understand the set
of vector bundles with a G-structure. This includes real oriented, complex, and symplectic
bundles, as well as spin and metaplectic structures on bundles. However, doing this in
practice requires paying attention to computational models of Lie groups, Grassmannians,
bundles, and so forth.

(f) More generally, some classifying spaces of topological monoids have the rational homotopy
type of an H-space. This includes the classifying space BG,, = BAut(S") for S™-fibrations
(see [16, Appendix 1] and [27]); therefore, the set of fibrations S™ — E — X over a finite
complex X up to fiberwise homotopy equivalence is computable.

Conversely, most sufficiently complicated simply connected spaces do not satisfy condition x| The
main result of [4] shows that the extension problem is undecidable for even-dimensional spheres,
which are the simplest example. Other examples include complex projective spaces and most
Grassmannians and Stiefel manifolds.

1.2. Proof ideas. Suppose that Y has the rational homotopy type of an H-space through di-
mension d, but not through dimension d + 1. To prove the main theorem, we must provide an
algorithm which computes [X, Y]/ if cd(X,A) < d and decides whether [X,Y]/ is nonempty if
cd(X, A) = d + 1. This builds on work of Cadek, Kréal, Matousek, Vokifnek, and Wagner [5].

To provide an algorithm, we use the rational H-space structure of the dth Postnikov stage Yy of
Y. In this case, we can build an H-space H of finite type together with rational equivalences

H—Y;— H

as well as an “H-space action” of H on Yy, that is, a map act : H x Y; — Yy which satisfies various
compatibility properties. These ensure that the set [X/A, H| (where A is mapped to the basepoint)
acts via composition with act on [X,Yy]f. In turn, [X/A, H] is a product of cohomology groups
and therefore easily computable, and this allows us to also compute [X, Y]/, When cd(X, A) < d,
the obvious map [X,Y]f — [X,Y,]/ is a bijection; when cd(X, A) = d + 1, this map is a surjection.
This gives the result.

In the last part of the paper, we study the extension problem in the case that Y is not a rational
H-space through dimension d and connect it to Hilbert’s tenth problem. Recall that Hilbert asked
for an algorithm to determine whether a system of Diophantine equations has a solution. Work of
Davis, Putnam, Robinson, and Matiyasevich showed that no such algorithm exists. It turns out
that the problem is still undecidable for very restricted classes of systems of quadratic equations;
this was used in [4] to show that the extension problem for maps to S?" is undecidable. We
generalize their work: extension problems for maps to a given Y are shown to encode systems of
Diophantine equations in which terms are values on vectors of variables of a fixed bilinear map
which depends on Y. We conjecture that Hilbert’s tenth problem restricted to any such subtype is
undecidable and prove this in certain special cases. However, the general case seems quite difficult;
in particular, it would imply a long-standing conjecture on the undecidability of Hilbert’s tenth
problem over number rings.

1.3. Computational complexity. Unlike Cadek et al. [5], [6], whose algorithms are polynomial
for fixed d, and like Vokiinek [32], we do not give any kind of complexity bound on the run time
of the algorithm which computes [X, Y]f . In fact, there are several steps in which the procedure
is to iterate until we find a number that works, with no a priori bound on the size of the number,
although it is likely possible to bound it in terms of dimension and other parameters such as the
cardinality of the torsion subgroups in the homology of Y. There is much space to both optimize
the algorithm and discover bounds on the run time.
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1.4. The fiberwise case. In a paper of Cadek, Kréal, and Vokifnek [6], the results of [5] are
extended to the fiberwise case, that is, to computing the set of homotopy classes of lifting-extensions
completing the diagram

A

A
(1.2) f

7 g
X — B,

where X is 2d-dimensional and the fiber of ¥ £ B is d-connected. Vokiinek [32] also remarks
that his results for odd-dimensional spheres extend to the fiberwise case. Is there a corresponding

fiberwise generalization for the results of this paper? The naive hypothesis would be that [X, Y]{;

is computable whenever the fiber of Y 2 B is a rational H-space through dimension n. This is
false; as demonstrated by the example below, rational homotopy obstructions may still crop up in
the interaction between base and fiber.

The correct fiberwise statement should relate to rational fiberwise H-spaces, as discussed for
example in [12]. However, such a result presents technical difficulties which will require significant
new ideas to overcome.

Example 1.3. Let B = S% x S? and Y be the total space of the fibration
STy 2 B x (5%)?2
whose Euler class (a.k.a. the k-invariant of the corresponding K (Z, 7)-bundle) is
(S x S%] +[(53)% x §?] € H®(B x (5%)%).

Then the fiber of p = 71 o pg : Y — B is the H-space (S3)? x S7, but the intermediate k-invariant
given above has a term which is quadratic in the previous part of the fiber.
Given a system of s polynomial equations each of the form

> az(?) (ziy; — %) = b,

1<i<j<r

with variables x1, ..., 2, y1, - .., ¥y, and coefficients b and aé?), we form a space X' by taking \/,. 53

and attaching s 6-cells, the kth one via an attaching map whose homotopy class is

3 ag?) lid;, id;],

1<i<g<r

where id; is the inclusion map of the ith 3-sphere. We fix a map f’ : X’ — S® which collapses the
3-cells and restricts to a map of degree —by, on the kth 6-cell. This induces a map f = f’ x id from
X =X'x 5% to B.

A lift of f to B x (5%)? corresponds to an assignment of the variables x; and y;. The existence
of a further lift to Y is then equivalent to whether this assignment is a solution to the system of
equations above. Since the existence of such a solution is in general undecidable by [4, Lemma 2.1],
so is the existence of a lift of f through p.

Remark 1.4. The role of S? in this example is to make the fiber into a rational H-space. If we let
B = S% and Y be the total space of the fibration

S® 5Y — B x (8%)?

with Euler class [S%] + [(S?)?], then the fiber of Y — B is no longer a product S° x (5%)2%, even
rationally, but rather has a nontrivial rational k-invariant in its Postnikov tower.
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1.5. Structure of the paper. I have tried to make this paper readable to any topologist as well
as anyone who is familiar with the work of Cadek et al. Thus §2| and [3| attempt to introduce all
the necessary algebraic topology background which is not used in Cadek et al.’s papers: a bit of
rational homotopy theory and some results about H-spaces. For the benefit of topologists, I have
tried to separate the ideas that go into constructing a structure on mapping class sets from those
required to compute this structure. The construction of the group and action in Theorem [4] is
discussed in In §5| we introduce previous results in computational homotopy theory from [5],
[6], [10], and in §6| we use them to compute the structure we built earlier. Finally, in §7] and |8, we

discuss Hilbert’s tenth problem and its relation to undecidability of the extension problem.

Acknowledgements. I would like to thank Shmuel Weinberger for explaining some facts about
H-spaces, and Marek Filakovsky, Lukas Vokiinek, and Uli Wagner for other useful conversations
and encouragement. I would also like to thank the two referees for their careful reading and their
many corrections and suggestions which have greatly improved the paper. The second referee, in
particular, caught a major error which was present in previous versions. I was partially supported
by NSF grant DMS-2001042.

2. RATIONAL HOMOTOPY THEORY

Rational homotopy theory is a powerful algebraicization of the topology of simply connected
topological spaces first introduced by Quillen [21] and Sullivan [30]. The subject is well-developed,
and the texts [11] and [9] are recommended as a comprehensive reference. This paper requires
only a very small portion of the considerable machinery that has been developed, and this short
introduction should suffice for the reader who is assumed to be familiar with Postnikov systems
and other constructs of basic algebraic topology.

The key topological idea is the construction of rationalized spaces: to any simply connected CW
complex X one can functorially (at least up to homotopy) associate a space Xy whose homology
(equivalently, homotopy) groups are Q-vector spacesﬂ There are several ways of constructing
such a rationalization, but the most relevant to us is by induction up the Postnikov tower: the
rationalization of a point is a point, and then given a Postnikov stage

K (m(X), n) X, E(m(X),n+ 1)

l

kn
Xp—1 —— K(mp(X),n+ 1),

one replaces it with

K (ma(X) © Qun) —— Xy —— Blma(X) ©Qun + 1)

| e

Xn-100) — K(m(X) ® Q,n +1).

This builds X, given X,,_y(q), and then X q) is the homotopy type of the limit of this construction.
We say two spaces are rationally equivalent if their rationalizations are homotopy equivalent.

The second key fact is that the homotopy category of rationalized spaces of finite type (that is,
for which all homology groups, or equivalently all homotopy groups, are finite-dimensional vector
spaces) is equivalent to several purely algebraic categories. The one most relevant for our purpose
is the Sullivan DGA model.

3It’s worth pointing out that this fits into a larger family of localizations of spaces, another of which is used in the
proof of Lemma
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A differential graded algebra (DGA) over Q is a cochain complex of Q-vector spaces equipped with
a graded commutative multiplication which satisfies the (graded) Leibniz rule. A familiar example
is the algebra of differential forms on a manifold. A key insight of Sullivan was to associate to every
space X of finite type a minimal DGA Mx constructed by induction on degree as follows:

e Mx (1) = Q with zero differential.
e For n > 2, the algebra structure is given by

Mx(n) =Mx(n+1)® AHom(m,(X);Q),

where AV denotes the free graded commutative algebra generated by V.
e The differential is given on the elements of Hom(m,(X); Q) (indecomposables) by the dual
of the nth k-invariant of X,

Hom(7,(X); Q) ﬁ Hn+1(X§ Q),

and extends to the rest of the algebra by the Leibniz rule. Although it is only well-defined
up to a coboundary, this definition makes sense because one can show by induction that
H*(Mx(n — 1)) is naturally isomorphic to H*(X,_1;Q), independent of the choices made
in defining the differential at previous steps.

Note that from this definition, it follows that for an indecomposable y of degree n, dy is
an element of degree n + 1 which can be written as a polynomial in the indecomposables of
degree < n. In particular, it has no linear terms.

The DGA My is the functorial image of X(g) under an equivalence of homotopy categories.
Many topological constructions can thus be translated into algebraic ones. This paper will use
the following:

e The Eilenberg-MacLane space K (mw,n) corresponds to the DGA A Hom(7, Q) with genera-
tors concentrated in dimension n and zero differential.
e Product of spaces corresponds to tensor product of DGAs. In particular:

Proposition 2.1. The following are equivalent for a space X :

(a) X is rationally equivalent to a product of Filenberg—MacLane spaces.
(b) The minimal model of X has zero differential.

(c) The rational Hurewicz map m.(X) ® Q — H.(X;Q) is injective.

Finally, we note the following theorem of Sullivan:

Theorem 2.2 (Sullivan’s finiteness theorem [30, Theorem 10.2(i)]). Let X be a finite complex and
Y a simply connected finite complex. Then the map [X,Y] — [X,Y(q)] induced by the rationalization
functor is finite-to-one.

Note that this implies that if the map Y — Z between finite complexes induces a rational
equivalence, then the induced map [X,Y] — [X, Z] is also finite-to-one.

3. H-SPACES

A pointed space (H,o0) is an H-space if it is equipped with a binary operation add : H x H — H
satisfying add(z, 0) = add(o, x) = = (the basepoint acts as an identity). In addition, an H-space is
homotopy associative if

add o(add, id) ~ add o(id, add)

and homotopy commutative if add ~ add o7, where 7 is the “twist” map sending (x,y) — (v, z).
We will interchangeably denote our H-space operations (most of which will be homotopy associative
and commutative) by the usual binary operator +, as in x + y = add(x, y).
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A classic result of Sugawara, see [29, Theorem 3.4], is that a homotopy associative H-space which
is a connected CW complex automatically admits a homotopy inverse x — —x with the expected
property add(—z,z) = o = add(z, —z).

Examples of H-spaces include topological groups and Eilenberg—MacLane spaces. If H is simply
connected, then it is well-known that it has the rational homotopy type of a product of Eilenberg—
MacLane spaces. Equivalently, from the Sullivan point of view, H has a minimal model My with
zero differential; see [9, §12(a) Example 3] for a proof. On the other hand, a product of H-spaces
is clearly an H-space. Therefore we can add “X is rationally equivalent to an H-space” to the list
of equivalent conditions in Prop. We will generally use the sloppy phrase “X is a rational
H-space” to mean the same thing.

It is easy to see that an H-space operation plays nice with the addition on higher homotopy
groups. That is:

Proposition 3.1. Let (H,o0,add) be an H-space. Given f,g: (S™,x) — (H,o0),
[f1+ lg] = [add o(f, g)] € m(H, 0).
Another important and easily verified fact is the following:

Proposition 3.2. If (H,o0,add) is a homotopy associative H-space, then for any pointed space
(X, ), the set [X, H] forms a group, with the operation given by [¢] - [¢] = [add o(p,)]. If H s
homotopy commutative, then this group is likewise commutative.

Moreover, suppose that H is homotopy commutative, and let A — X be a cofibration (such as
the inclusion of a CW subcomplex), and f : A — H a map with an extension f:X — H. Then
the set [X, H|! of extensions of f forms an abelian group with operation given by

o] + [ = [+ ¢ — f].
Throughout the paper, we denote the “multiplication by r” map
id+---+id: H —+ H
o
T times

by xr. The significance of this map is in the following lemmas, which we will repeatedly apply to
various obstruction classes:

Lemma 3.3. Let H be an H-space of finite type, A be a finitely generated coefficient group, and
let o € H"(H; A) be a cohomology class of finite order. Then there is an r > 0 such that x a = 0.

In other words, faced with a finite-order obstruction, we can always get rid of it by precomposing
with a multiplication map. Before giving the proof, we develop a bit more of the theory:

Lemma 3.4. Let H be a simply connected H-space of finite type. Then for every r > 0,
Xr(H*(H;Z)) CrH*(H;Z) + torsion.

Proof. By Prop. Xr induces multiplication by r on ,,(H ). Therefore by Prop. (C), it induces
multiplication by r on the indecomposables of the minimal model Mpg. Therefore it induces
multiplication by some r* on every class in H"(H; Q). O

Combining the two lemmas gives us a third:

Lemma 3.5. Let H be a simply connected H-space of finite type and A a finitely generated coefficient
group. Then for any r > 0 and any n > 0, there is an s > 0 such that

Xs(H"(H); A) CrH™(H; A).
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Proof of Lemma 3.5 1 would like to thank Shmuel Weinberger for suggesting this proof.

Let g be the order of . By Prop. for f:S% — H, (xq)[f] = qlf]-

Let H[1/q] be the universal cover of the mapping torus of x,; this should be thought of as an
infinite mapping telescope. By the above, the homotopy groups of H[1/q| are Z[1/q]-modules (the
telescope localizes them away from ¢). This implies, by [31, Thm. 2.1], that the reduced homology
groups are also Z[1/g]-modules. To understand the cohomology groups, we use the exact sequence

0 — Ext(H,—1(H[1/q]),A) — H"(H[1/q]; A) — Hom(H,—1(H[1/q]),A) — 0

coming from the universal coefficient theorem. If M is a Z[1/g]-module, then so is Hom(M, G) for
any abelian group G: for any homomorphism h, we take [h/q](m) = h(m/q). Since Ext(M,G) is
the first homology of the chain complex

0 — Hom(M, I°) — Hom(M,I') = ---

where I* is an injective resolution of G, it is also a Z[1/g]-module. It follows that H"(H[1/q]; A)
is a Z[1/g]-module. Now, by the Milnor exact sequence [15], the map

H(H[1/q); A) = lim (- 5 B (H; 4) X H(H; 4))

is surjective, and hence this inverse limit is also a Z[1/q]-module.
Now we would like to show that for some ¢, (xj)' = 0, so that we can take 7 = ¢*. Suppose
not, so that (X;;)toz is nonzero for every t. Clearly every element in the sequence

a g ()% ..

has order which divides ¢g; moreover, since there are finitely many such elements, the sequence
eventually cycles. Extrapolating this cycle backward gives us a nonzero element of the inverse limit
above, which likewise has order dividing ¢. This contradicts the fact that this inverse limit is a
Z[1/q]-module. O

Note that this proof does not produce an effective bound on ¢. This prevents our algorithmic
approach from yielding results that are as effective as those of Vokiinek in [32].
We will also require the similar but more involved fact.

Lemma 3.6. Let (H,o,add) be a simply connected H-space of finite type, U another space of finite
type, A a finitely generated coefficient group, and n > 0.

(i) Suppose that « € H"(H x U,o x U; A) is torsion. Then there is an r > 0 such that
(xr,id)*a = 0.
(ii) Let o« € H"(H x U,0 x U;Z). Then for every r > 0,

(Xr,id)* € rH"(H x U,0 x U; Z) + torsion.
(iii) For every r > 0 there is an s > 0 such that
(xs,1d)"H™"(H x U,o x U; A) CrH"(H x U,0 x U; A).

Proof. Let where is : U — H x U is the inclusion u — (o,u). We first note that since the map
i5 on cohomology is a surjection in every degree, H"(H x U,o x U;A) = keri;. Thus we can
equivalently prove parts (i) and (ii) for an a« € H"(H x U; A) such that i = 0. We use several
not-quite-standard algebraic topology facts which can be found in [28] §5.5].

We first consider A = Z. For this we use the Kiinneth formula for cohomology, which gives a
natural short exact sequence

(37 00— @ HH eHU)—»H'H=U)~ @ To(HH),H(U)) 0.
k+l=n k+l=n+1
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To demonstrate (i), we will first show that we can choose an ry such that (x,,,id)*a is in the
image of @, ,_, H*(H) ® H(U); in other words, such that the projection of (xy,,id)*a to
Drtr—nit Tor(H*(H), H*(U)) is zero. To see this, recall that for cyclic groups A and B, Tor(A, B)
is trivial unless both A and B are finite, and that the Tor functor distributes over direct sum. There-
fore Tor(H*(H), HY(U)) is generated by elementary tensors n®v where n € H*(H) and v € H(U)
are torsion elements. By Lemma for each such elementary tensor, we can pick r(n) such that
X:f(n)n = 0 and therefore

(Xr(n)»1d)*(n®@ v) = 0 € Tor(H*(H), H (V).

We then choose g to be the least common multiple of all the r(n)’s.

Now fix a decomposition of each H¥(H) and H*(U) into cyclic factors to write (x,,,id)*« as a
sum of elementary tensors. Since i3 = 0, (Xr,,1d)* @ has no summands of the form 1®wu; moreover,
each summand is itself torsion. For every other elementary tensor h ® u, we can use Lemma, (3.3
(if h is torsion) or Lemma (otherwise, since then u is torsion) to find an s(h,u) such that
X:(h,u)h Qu=0.

Finally, we can take r to be the product of ry with the least common multiple of the s(h,u)’s.
This completes the proof of (i) for A = Z.

To see (ii), we use the fact that the Kiinneth sequence splits, albeit non-naturally. Therefore,
since we are ignoring torsion, we may assume « € @, ,_, 1 F(H) ® HY(U). Applying Lemma
to H*(H) for all 0 < k < n, we get the result.

Finally, (iii) with integer coefficients follows from (i) and (ii).

Now we need to handle other coefficient groups. We can assume A is a finite cyclic group, since
everything we need commutes with direct sums. For this case we use a version of the universal
coefficient theorem which states that

0— H'HxU)®A— H"(H xU; A) — Tor(H"™ (H x U), A) = 0

is an exact sequence. Let o € H"™(H x U,o0 x U; A) be torsion. We use the same outline as
before to show that (i) holds. First we see that there is an rg such that (x,,,id)*a is in the kernel
of the map to Tor(H""1(H x U), A); this follows from the integral case of (i) and the fact that
Tor(G, A) contains only the A-torsion elements of G. Next we see that the preimage of (xr,,id)*«
in H"(H x U) ® A is also annihilated by some (x;,,id)*; this follows from the integral case of (iii).
Then (Xryr,,1id)*a = 0.

The general case of (iii) again follows from (i) and (ii). O

4. THE ALGEBRAIC STRUCTURE OF [X,Y]/

We start by constructing the desired structure on [X,Y]/ when Y is a rational H-space. From
the previous section, such a Y is rationally equivalent to a product of Eilenberg—MacLane spaces.
In particular, it is rationally equivalent to H = [[>7, K(m,(Y),n), which we give the product
H-space structure. We will harness this to prove the following result.

Theorem 4.1. Suppose that Y is a rational H-space through dimension d, denote by Yy the dth
Postnikov stage of Y, and let Hy = [, o K(m,(Y),n). Suppose (X, A) is a finite simplicial pair
and f: A —Y amap. Then [X,Yy)5 admits a virtually free and faithful action by [X, Hg]! induced
by a map Hy — Yy.

The proof of this theorem occupies the rest of the section. Later, in §6| we give an algorithm

for computing this action which closely mirrors this proof. Before beginning the proof of Theorem
we see how such an algorithm would also provide the algorithms whose existence is asserted in
Theorem [A]

9



If (X, A) has cohomological dimension d 4 1, then there is no obstruction to lifting an extension
X — Yy of f to Y, as the first obstruction lies in H™2(X, A;7mg,1(Y)) = 0. Therefore [X, Y]/ is
nonempty if and only if [X, Y3}/ is nonempty.

If (X, A) has cohomological dimension d, then in addition every such lift is unique: the first
obstruction to homotoping two lifts lies in H9T1 (X, A; 74, 1(Y)) = 0. Therefore [X, Y]/ = [X, Yy)/.

4.1. An H-space action on Y,,. Denote the nth Postnikov stages of Y and H by Y,, and H,,
respectively, and the H-space zero and multiplication on H,, by o, and by + or add,, : H,, x H,, —
H,,. We will inductively construct the following additional data:

(i) Maps H, Iy, 2 H, inducing rational equivalences such that v,u, is homotopic to the
multiplication map x,, for some integer ry,.

(ii) A map act,, : H, x Y,, = Y, defining an H-space action, (that is such that act, (o, x) = x
and the diagram

(addy,,id)
H,xH,xY,——H, xY,

(42) J{(id,actn) laetn

H, xY, actn Y,

commutes up to homotopy) which is “induced by u,,” in the sense of the homotopy com-
mutativity of

(id,un) (Xrn on)
H,xH,—H, xY,——'H, x H,

(4.3) laddn l laddn

H, tn Y, on H,,.

Note that when we pass to rationalizations, the existence of such a structure is obvious: one takes
Up(0) to be the identity, act, ) = add,(g), and v,(g) to be multiplication by ry,.

4.2. The action of [X/A, Hy] on [X,Y,]/. Now suppose that we have constructed the above struc-
ture. Then addy induces the structure of a finitely generated abelian group on the set [X/A, Hy],
which we identify with the set of homotopy classes of maps X — Hy sending A to o4 € Hjy.
Moreover, this group acts on [X, Y]/ via the action [¢] - [¢)] = [actq o(ip, ¥)].

It remains to show that this action is virtually free and faithful. Indeed, notice that pushing this
action forward along vy gives the action of of [X/A, Hy] on [X, Hy]"/ via [p] - W] = rale] + [¢],
which is clearly virtually free and faithful. This implies that the action on [X, Hd]”df is virtually
free. Moreover, the map vgo : [X, Yy)f — [X, Hy]"4f is finite-to-one by Sullivan’s finiteness theorem.
Thus the action on [X, Y]/ is also virtually faithful.

4.3. The Postnikov induction. Now we construct the H-space action. For n = 1 all the spaces
are points and all the maps are trivial. So suppose we have constructed the maps u,_1, vn_1, and
actp—1, and let &k, : Y;,_1 — K(m,(Y),n + 1) be the nth k-invariant of Y. For the inductive step,
it suffices to prove the following lemma:

10



Lemma 4.4. There is an integer ¢ > 0 such that we can define u, to be a lift of up—1xq, and
construct v, and a solution act, : H, x Y, — Y, to the homotopy lifting-extension problem

H, x H, addn H, — 3,
(4.5) (id,un)l ot T } l
H,xY, ﬁ H, XY, — s H,  x Y,y |
q»

so that the desired conditions are satisfied.

Proof. First, since Y is rationally a product, k, is of finite order, so by Lemma there is some
qo such that kpu,—1x4, = 0, and therefore

H,—* vy,

l l

H, 1 Yo _1;

Un—1Xqq

is a pullback square. We will define u,, = X ,q,, With g1 and g2 to be determined and ¢ = g2q1qo.
Now we construct act,. Given a map f, we write M (f) to mean its mapping cylinder, and let

Hactn_l : Hn—l X M(un_l) — Yn—l

be a map which restricts to act,_1 on H,_1 x Y,_1 and add,,_1 on H,,_1 X H,_1. Such a map
exists because (4.3)) holds in degree n — 1. We will construct a lifting-extension

[addy o(xq ,id)]Uid project

Ma) —222 Ly,

(Ho x Hy,) U (o x M(@)) oo

e —— R Hactn—1
H, x M(t) —————— Hp x M(4) —» Hp—1 X M(up—1) —— Y1
(Xa140-1d)
It is easy to see that then for any g» > 0,
a‘Ctn = (Ha’Ct|Hn><Yn) © (X(Izvid)

satisfies (4.5). Moreover, then the desired identity acty(o,,x) = z is automatically satisfied.
Note that the outer rectangle commutes since we know (4.3)) holds in degree n — 1. Now, write

A= H, x M(u)
B = (H, x Hy) U (0, x M(4))
CZOnXM(’&)

Since u is a rational equivalence, so are the inclusions of H,, x H, into A and B. Therefore, the
obstruction O € H"*1(A, B;m,(Y)) to finding the lifting-extension is of finite order. We will show
that when ¢q; is large enough, this obstruction is zero.

The obstruction group fits into the exact sequence of the triple (A, B, C):

o HY(B,Cima(Y)) S HYY A, By (V) 25 B YA, s (V) = -+

and so the image rel* @ in H"t1(A,C;n,(Y)) is torsion. By Lemma, (i), that means that
(xs,1d)*(rel* O) = 0 for some s > 0.
Now we look at a preimage under ¢ of (xs,i1d)*O, which we call « € H"(B,C;m,(Y)). By
excision,
H"(B,C;m,(Y)) =2 H"(Hy, X Hy,, 0, X Hp;mp(Y)).
11



Applying Lemma [3.6[(iii), we can find a ¢ such that xjo € kerd and therefore
3((xe,1d)* @) = (xst,1d)"O = 0.

Thus for ¢; = st, we can find a map Hact completing the diagram.

Now we ensure that (4.2) commutes by picking an appropriate go. Define act = ITEEW H, XY}
then the diagram

(add,, id)
H,xH,xY,—>H,xY,

J(id,a?t) Jaa

H,xY, — " .y

commutes after rationalization. Since commutes in degree n — 1, the sole obstruction to
homotopy commutativity is a torsion class in H"(H,, x Hy, x Y;m,(Y,)). Therefore we can again
apply Lemma (i), this time with H = H, x H, and U = Y,,, to find a ¢ which makes the
obstruction zero.

All that remains is to define v,. But we know that u,, is rationally invertible, and so we can find
some v, such that v,u, is multiplication by some r,. Moreover, for any such v,, the right square
of commutes up to finite order. Thus by increasing r,, (that is, replacing v, by x;v, for some
7> 0) we can make it commute up to homotopy. ]

5. BUILDING BLOCKS OF HOMOTOPY-THEORETIC COMPUTATION

We now turn to describing the algorithms for performing the computations outlined in the
previous two sections. This relies heavily on machinery and results from [5], [6], and [I0] as building
blocks, which in turn rely on building blocks from the work of Rubio, Sergeraert, and others [25],
[23], [24]. This section is dedicated to explaining these building blocks.

Our spaces are stored as simplicial sets with effective homology. Roughly speaking this means a
computational black box equipped with:

e A way to refer to individual simplices and compute their face and degeneracy operators.
This allows us to, for example, represent a function from a finite simplicial complex or
simplicial set to a simplicial set with effective homology.

o A fully effective chain complex with a chain homotopy equivalence to this set. We do not
need to make this completely precise, but for example it allows one to compute the homology
and cohomology in any degree and with respect to any finitely generated coefficient group,
and to know both their isomorphism type and (co)chains representing individual classes.

This is easy to construct for finite simplicial complexes. But effective homology is designed to
work with simplicial sets that can be described algorithmically but are not necessarily finite; in our
case, these are finite Postnikov stages of spaces of finite type. We refer to [23] for a more detailed
overview.

Now we summarize the operations which are known to be computable from previous work.

Theorem 5.1. (a) Given a finitely generated abelian group m and n > 2, a model of the
FEilenberg—MacLane space K(m,n) can be represented as a simplicial set with effective ho-
mology and a computable simplicial group operation. Moreover, there are algorithms imple-
menting a chain-level bijection between n-cochains in a finite simplicial complex or simplicial
set X with coefficients in m and maps from X to K(m,n) (the observation dates back to at
least [25], but see [B, §3.7] or [24, §7.5] for a detailed explanation).

(b) Given a finite family of simplicial sets with effective homology, their product can be repre-

sented as a simplicial set with effective homology (see [24], §8.2] or [5l, §3.1] ).
12



(¢) Given a simplicial map f : X — Y between simplicial sets with effective homology, there is a
way of representing the mapping cylinder M(f) as a simplicial set with effective homology.
(In 6] this is remarked to be “very similar to but easier than Prop. 5.117; the related
algebraic mapping cylinder construction is done explicitly in e.g. [22, §3].)

(d) Given a map p:Y — B, we can compute the nth stage of the Moore—Postnikov tower for p,
in the form of a sequence of Kan fibrations between simplicial sets with effective homology
[6, Theorem 3.3] (cf. [5, Theorem 1.2] for the non-relative version).

(e) Given a diagram

A—— P,

L]

X — Pn,1

where P, — P,_1 is a step in a (Moore—)Postnikov tower as above, there is an algorithm
to decide whether a diagonal exists and, if it does, compute one [0, Prop. 3.7].

(f) Given a fibrationp : Y — B of simply connected simplicial complexes and a map f : X — B,
we can compute any finite Moore—Postnikov stage of the pullback of p along f [6l, Addendum
3.4].

(9) Given a diagram

Y

A
A
{//p
Ve
x 9

— B,

j\

where A is a subcomplex of a finite complex X and p is a fibration of simply connected
complezes of finite type, we can compute whether two maps u,v : X — Y completing
the diagram are homotopic relative to A and over B [10), see “Equivariant and Fiberwise
Setup”].

(h) Given a diagram

LY

A
A
{ d lp
79
X—B
where A is a subcomplex of a finite complex X, Y and B are simply connected, and p

has finite homotopy groups, we can compute the (finite and perhaps empty) set [X, Y]f; of
homotopy classes of maps completing the diagram up to homotopy.

Proof. We prove only the part which is not given a citation in the statement.

Part (h). Let d = dim X. One starts by computing the dth stage of the Moore—Postnikov tower
of p: Y — B using @ From there, we induct on dimension. At the kth step, we have computed
the (finite) set of lifts to the kth stage P of the Moore—Postnikov tower. For each such lift, we use
to decide whether it lifts to the (k + 1)st stage, and compute a lift u : X — Py, if it does.
Then we compute all lifts by computing representatives of each element of H**1(X, A; 741 (p))
and modifying u by each of them. Finally, we use to decide which of the maps we have obtained

are duplicates and choose one representative for each homotopy class in [X, Pk-+1]£. We are done
after step d since [X, Pd]g >~ X, Y]ZJ,C. O

13



6. CoMPUTING [X, Y]/

We now explain how to compute the group and action described in We work with a represen-
tation of (X, A) as a finite simplicial set and a Postnikov tower for Y, and perform the induction
outlined in that section to compute [X, Y]/ for a given dimension d. The algorithm verifies that Y
is indeed a rational H-space through dimension d; however, it assumes that Y is simply connected
and returns nonsense otherwise.

6.1. Setup. Let d be such that Y is a rational H-space. Since the homotopy groups of Y can be
computed, we can use Theorem [5.1fa) and (b) to compute once and for all the space

d
Hy = [ K(ma(¥),n),
n=2

and the binary operation addy : Hy x Hy — Hy is given by the product of the simplicial group
operations on the individual K (m,(Y),n)’s. The group of homotopy classes [X/A, Hy| is naturally
isomorphic to HZ:Z H™(X, A;m,(Y)), making this also easy to compute. Finally, given an element
of this group expressed as a word in the generators, we can compute a representative map X — Hy,
constant on A, by generating the corresponding cochains of each degree on (X, A) and using them
to build maps to K(m,(Y),n).

We then initialize the induction which will compute maps ug4, v4, and acty and an integer rq
satisfying the conditions of % Since Hy = Y} is a point, we can set 1 = 1 and uq, vy, and acty to
be the trivial maps.

6.2. Performing the Postnikov induction. The induction is performed as outlined in
although we have to be careful to turn homotopy lifting and extension problems into genuine ones.
Suppose that maps u,_1, v,_1, and act,_1 as desired have been constructed, along with a map

Hact,,—1 : H, X M(un 1) — Y,
which restricts to add,,—; on H,_1 X H,_1 and act,—; on H,_1 X Y,,_1. There are five steps to
constructing the maps in the nth step:
1. Find gg such that wu,_1xg, lifts to a map @ : H, — Y, and fix such a map.
2. Find ¢ such that the diagram

[addy o(xq -id)]Uid project

(Hp x Hy) U (0p x M (@) M(t) ————==Y,

- = Hact,,—1
H, x M(a ﬁ}H X M(t) —» Hp—1 X M(up—1) —— Y1
Xq1490-!

has a lifting-extension Hact along the dotted arrow, and fix such a map.

3. Find ¢z such that I%R\anyn 0 (Xgo,1d) makes the diagram (4.2]) commute up to homotopy.
Now we can define

Up : Hy — Yy, by Up = ﬂXthqz;
Hacty : Hy x M(un) = Y, by Hact,, = Hact o (g, id UXgyq, );
acty : Hy, x Y, — Y, by act, = Hacty, | g, xv, -

4. Find g3 so that the diagram
Hp—— M(uy) - — 3 Hy
— T\ 4

Xaqs
14



can be completed by some ¢ : M (u,) — H,, and fix such a map.
5. Find g4 so that setting

Up = 0Xq, and Tn =Tp-190919243G4
makes the diagram (4.3) commute up to homotopy.

The first step is done by determining the order of the k-invariant k, € H" (Y, _1;m,(Y)). If
this order is infinite, then Y is not rationally a product of Eilenberg—MacLane spaces, and the
algorithm returns failure. Otherwise qq is guaranteed to exist, and we can compute it by iterating
over multiples of the order until we find one that works.

The rest of the steps are guaranteed to succeed for some value of ¢;, and each of the conditions
can be checked using the operations of Theorem so this part can also be completed by iterating
over all possible values until we find one that works.

6.3. Computing the action. Let G = [X/A, H,]; we now explain how to compute [X,Y]/ as a
set with a virtually free and faithful action by G.

First we must decide whether there is a map X — Hy extending vyf : A — Hy. If the set [X, Y]/
has an element e, then vy f has an extension vge, so if we find that there is no such extension, we
return the empty set. Otherwise we compute such an extension 1)y.

Lemma 6.1. We can determine whether an extension 1o : X — Hg of vqf exists, and compute
one if it does.

Proof. Recall that H; = Hi:z K(m,(Y),n). Write proj,, for the projection to the K(m,(Y),n)
factor. Then the extension we desire exists if and only if for each n < d, the cohomology class in
H"(A;m,(Y)) represented by proj, vqf has a preimage in H"(X;m,(Y")) under the map i*.

We look for an explicit cocycle o, € C™(X;m,(Y)) whose restriction to A is proj, vqf. We
can compute cycles which generate H™(X;m,(Y)) (because X has effective homology) as well
as generators for §C"1(X;m,(Y)) (the coboundaries of individual (n — 1)-simplices in X). Then
finding o,, or showing it does not exist is an integer linear programming problem with the coefficients
of these chains as variables.

Now if o,, exists, then it also determines a map X — K (m,(Y),n). Taking the product of these
maps for all n < d gives us our ). O

We now compute a representative ay for each coset N of ryG C . Since this is a finite-index
subgroup of a fully effective abelian group, this can be done algorithmically, for example by trying
all words of increasing length in a generating set until a representative of each coset are obtained.
For each apy, we compute a representative map ¢y : X — Hy which is constant on A. Then the
finite set

S = {n = tho + vguapn : N € G/rqG}
contains representatives of the cosets of the action of [X/A, Hy] on [X, H, d]’l)df obtained by pushing

the action on [X,Y]f forward along v,.
Now, for each element of S we apply Theorem 5. to the square

A*f>yd

A
zl , 7 J{vd
/7
X H,

to compute the finite set of preimages under vy in [X,Yy]f. To obtain a set of representatives of
each coset for the action of [X/A, Hy] on [X,Yy]f, we must then eliminate any preimages that are

in the same coset. In other words, we must check whether two preimages 1,7} and zL/ of Yy differ by
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an element of [X/A, Hy]; any such element stabilizes Ud{b, and so its order must divide r4. Since
there are finitely many elements whose order divides ry, we can check for each such element ¢ in
turn whether [¢] - [¢)] ~ [’(L,]

Finally, to finish computing [X, Y]/ we must compute the finite stabilizer of each coset. This
stabilizer is contained in the finite subgroup of [X/A, Hy] of elements whose order divides rg.
Therefore we can again go through all elements of this subgroup and check whether they stabilize
our representative.

6.4. Summary. We conclude this section with a formal summary of the algorithm.
Input: e A simplicial pair (X, A).
e A simplicial complex Y, assumed to be simply connected.
e A simplicial map f: A — Y.
e A positive integer d.
Output: If Y, is not rationally an H-space, ALGORITHM NOT APPLICABLE. Otherwise:
e The dth Postnikov stage Y; of Y, represented as a simplicial set with effective homology.
e A product of Eilenberg—MacLane spaces H, represented as a simplicial set with effec-
tive homology.
e The group [X/A, Hy], represented as a fully effective abelian group.
e A finite (possibly empty) set C of maps fz : X — Y, representing cosets of the action
of [X/A, Hy) on [X, Yy)7.
e For each i, the stabilizer of }”i, represented as a finite subgroup ¥; C [X/A, Hy].
Main steps: Here is the outline of the algorithm:
A. Initialize the computation:
e Compute the homotopy groups of Y through dimension d.
e Construct the space Hy = Hi:z K (m,(Y),n), and compute the group [X/A, Hy].
e Set r1 = 1, and wuq, vy, acty, and Hact; to be the unique maps between the
relevant spaces (which are all points).
B. for n = 2 through d:
e Compute the k-invariant k, € H""1(Y,_1;7,(Y)). If it is of infinite order,
return ALGORITHM NOT APPLICABLE.
e Otherwise, compute the action of H, on Y, and associated data as outlined in
§6.2, namely the positive integer r,, and maps u,, v,, act,, and Hact,.
C. Using the algorithm of Lemma determine whether there is a map X — Hy which
extends vgf : A — Hy.
e If there isn’t, return (Yy, Hy, [X/A, Hy),C = 0,0).
e If there is, compute such a map g : X — Hy.
D. for each N € [X/A, Hq|/rqa[X/A, Hg):
e Choose a representative homotopy class in [X/A, Hy|, and a representative map
¢ :(X,A) = (Hg,o0) in this homotopy class.
e Compute the map ¥ = g + vquqp : X — Hy.
e For each homotopy class of maps completing the diagram

A*f>Yd

A
=’
X5 Hy

up to homotopy, compute a representative j“l X =Y,

Write Cy for the set of all the f,.
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E. Remove duplicates from Cy, that is, take a subset C C Cy which includes only one map
from each orbit of the action of [X/A, Hy] on [X, Y]/,

F. For each }z € C, compute the stabilizer as a subgroup of the torsion subgroup of
[X/A, Hg] and return (Yy, Hg, [X/A, Hyl, C, stabilizers).

7. VARIANTS OF HILBERT’S TENTH PROBLEM

In [4], the authors show that the existence of an extension is undecidable by using the undecid-
ability of the existence of solutions to systems of diophantine equations of particular shapes:

Lemma 7.1 (Lemma 2.1 of [4]). The solvability in the integers of a system of equations of the
form

(Q-SYM) Z agg)azixj = by, g=1,...,5 or
1<i<j<r
(Q-SKEW) Z al(?) (iyj — xjYi) = by, g=1,...,s
1<i<j<r

for unknowns x; and (for (Q-SKEW)) y;, 1 <1i <, is undecidable.
We conjecture a very broad generalization of this result.

Conjecture 7.2. For any nonzero bilinear map B : Z'™ x Z™ — 7P, the solvability in the integers
of a system of equations of the form

IS
(Q-BLIN(B)) S dYBu,v)=cp  q=1,...,s
ij=1
or unknowns W; = (Ujl, ..., Uim) and v = (Vi1,...,0in), 1 < 1,7 < r, is undecidable.
J J J J

We will show this conjecture in certain special cases, most notably the case p = 1. However,
the general case would, for instance, imply the undecidability of Hilbert’s tenth problem over the
ring of integers of any number field, first conjectured by Denef and Lipshitz [8]. This narrower
conjecture is still open in general, although Mazur and Rubin [14] show using work of Poonen [1§]
and Shlapentokh [26] that it is implied by the Shafarevich-Tate conjecture in number theory. On
the other hand, undecidability is known unconditionally in many cases, for example for totally real
number fields and their quadratic extensions. For a survey, see [19, Theorem 14.1].

Before discussing the relationship between these two problems, we give a precise definition:

Definition. Given a ring R and a subring S, Hilbert’s tenth problem over R with coefficients in S is
the decision problem: given a finite list of polynomials in S[z1,...,x,], do they have a simultaneous
zero in R™7

Proposition 7.3. Let R be the ring of integers of a number field. Then Hilbert’s tenth problem
over R with coefficients in R and in Z are computationally equivalent.

This is implicit in Poonen’s survey [19]; I would like to thank Emil Jefdbek on MathOverflow
for the following proof.

Proof. Given a system of polynomials p1,...,pm € R[x1,...,2Z,], we construct an equivalent system
with coefficients in Z. Let £ € R be such that Ry = Q(§). We introduce a new variable z
representing &, and replace the coefficients of each p; with corresponding polynomials in z to obtain
polynomials ¢;(z1,..., Ty, 2) with rational coefficients. Finally we add the minimal polynomial
fe(z) of € to our system. Then g¢i,...,qm, f¢ has a solution over R if and only if p1,...,pm does,
since for any &' such that f¢(¢) = 0, there is an automorphism of R taking & to &’
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The polynomials ¢, ..., qn, f¢ have rational coefficients, and we can clear the denominators by
multiplying by a sufficiently large integer. O

Now we further reduce the problem to fit in our framework.

Lemma 7.4. Let R be any ring. If Hilbert’s tenth problem with coefficients in a ring S C R is
undecidable over R, then so is the solvability of a system of equations of the form
T
(Q-DIFF) Z az(g)xiyj = ¢q, g=1,...,s
ij=1
in unknowns z; and yj, 1 < 14,5 <r, and again with coefficients in S.

Proof. The proof exactly follows that of Lemma 2.1 of [4], but we give it for completeness. We reduce
any system of equations over R to a system of the form (Q-DIFF). First, we note that any system
of equations can be converted into a quadratic system by introducing new unknowns representing
products and powers. Now to convert a general quadratic system in unknowns z1, ..., z, to a system
of the form (Q-DIFF), we introduce variables zy, . .., z, and ¥, . . ., yr, replace every quadratic term
of the form z;z; (where i and j are not necessarily distinct) with z;y;, every linear term z; with
x;yo, and introduce the following additional equations:

Toyo = 1; Tiyo —xoy; =0, 1=1,...,r
This forces xg and yo to be units and inverses of each other; moreover, if zq,..., %, yo,-..,yr iS a
solution to the newly constructed system of the form (Q-DIFF), then z; = x;y0 = zoy; is a solution
to the original quadratic system. Conversely, given a solution z1, ..., 2, to the original system, we
can take ro=yo=1land x; =y; =z; fori =1,...,r. O

This immediately implies:

Proposition 7.5. Let R be a ring which is finitely generated and free as a Z-module (for example,
the ring of integers of a number field, or the matriz ring My, (Z)). Then Hilbert’s tenth problem
over R with coefficients in Z is undecidable if and only if (Q-BLIN(B)) is undecidable, where B
describes the multiplication law in R in terms of some Z-basis (or, possibly, three different Z-bases
for the left factor, the right factor, and the product).

Example 7.6. The solvability in the integers of systems of the form (Q-BLIN(B)) is undecidable,
where B : Z? x 72 — 72 is given by

B(u,v) = <uT (é 01> v, ul <(1) é) v> .

This bilinear map describes the multiplication law for Z[i] in the basis {1, }; Hilbert’s tenth problem
over Z[i] and any other quadratic number ring is undecidable by [7].

We conclude the section with two more special cases of Conjecture

Proposition 7.7. Suppose that B : Z" X Z™ — 7P is a bilinear map such that for some L : 7P — 7,
L o B has rank 1. Then the solvability in the integers of systems of the form (Q-BLIN(B)|) is

undecidable.

Proof. After changes of basis for Z™, Z", and ZP, we can assume that Bi(u,v) = cujv; for some
¢ € Z, where B is the first coordinate of B. Now consider a general system of the form (Q-DIFF]).
We use it to build a corresponding system

(7.8) Z aé?)B(ui,vj) = ¢,B(eq,e1), g=1,...,s,



where e; = (1,0,...,0). We claim this system is equivalent.

Given a solution z1,...,%p,y1,...,y, to (Q-DIFF), clearly ziei,...,x,€, y1€1,...,9,€, is a
solution to (7.8). Conversely, given a solution uy,...u,,vi,..., v, to (7.8), w11, ..., Up1, V11, - .-, Up1
is a solution to (Q-DIFF). O

Theorem 7.9. The solvability in the integers of systems of the form (Q-BLIN(B)|) is undecidable
when p = 1, that is, when B(u,v) = u? Bv for some m x n matriz B.

Remark 7.10. One readily sees from the proof that this result admits various generalizations:

(1) The result holds with the integers replaced by any PID R in which Hilbert’s tenth problem
is undecidable, such as R = Z[i]. When R is finite-dimensional and free as a Z-module,
a Diophantine system of this form over R with integer coefficients can be reinterpreted as
an integral Diophantine system of the form (Q-BLIN(A ® B)), where A : Z¢ ® Z¢ — 74
describes the multiplication law in R and A ® B is interpreted as a map

(280 72™) @ (21 Z") — (24 ® 7).

Therefore, the solvability of systems of the form (Q-BLIN(A ® B)) is again undecidable.

(2) The result also holds for p > 1 if the following algebraic condition is satisfied: there are
decompositions Q™ = L@ S and Q" = L' ® S’ such that L and L’ are one-dimensional and
the bilinear map B ® Q : Q™ ® Q" — QP restricts to zero on L ® S’ and S ® L' and is
nonzero on L @ L'.

Remark 7.11. Proposition @ and Theorem are in some sense opposite extremes: the more
independent coordinates in the image of B, the likelier one is to find a direction in which the rank
is low. In between we have the case where B : Z" x Z" — Z" has full rank in every direction;
this includes multiplication laws of rings of integers of number fields and may be the most difficult
situation.

Proof of Theorem 7.9. We show that a system of the form (Q-DIFF) can be simulated with one of
the form [Q-BLIN(B)] By Lemma , this is sufficient to show that solvability of systems of the
form |Q-BLIN(B)|is undecidable. The proof is again closely related to that of the undecidability of

(Q-SYM) in [,

We first show that we can replace B with a diagonal matrix.

Lemma 7.12. Given an m X n matriz B, there is a square diagonal full-rank matriz B' such that
for every choice of {a;;} and c,, the system

T
(7.13) Z agg)uiTij = ¢q, g=1,...,s
ij=1

has a solution if and only if the system

T
(7.14) Z al(-?)(u;)TB'V; = ¢q, g=1,....,s
ij=1

has a solution.

Proof. We can write B = SAT where A is the Smith normal form and S and T are invertible m xm
and n X n matrices, respectively. Then the vectors (ui,vj)m:l’m,r are a solution to the system
(7.13) if and only if (ST u;, TV;)ij=1,..r are a solution to the system

,
(). T _ _
g aijuiAvj—cq, g=1,...,s.
ij=1
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The matrix A consists of a full-rank diagonal submatrix B’ in the top left corner and zeros every-
where else. After removing variables which don’t appear in any terms with nonzero coefficients, we
obtain the system (7.14) with this B’. O

Thus we may assume that m = n and B = (bxy) is a diagonal matrix of full rank.
Now consider a general system of the form (Q-DIFF). We use it to build a system of the form
(Q-BLIN(B)) with variables
uil,...,umandvjl,...,vjn, 1§i§7“,
zZre and wgy, 1<k, <n.
Define n x n matrices Z = (zp¢) and W = (wyy). Then the equations of our new system are

T

Z az(»jq.)uiTij =biicg, qg=1,...,s,
ij=1
(7.15) Z'BW = B,
(uBW), =0, i=1,...,r, £=2,...,n,
\ (Z'Bv)i, =0, j=1,...,r, k=2,...,n.

To complete the proof, we must show that the system (7.15) has a solution if and only if (Q-DIFF)
does. It is easy to see that {x;, y;}1<i j<r is a solution to (Q-DIFF) if and only if

Z =W = In, u; — r;eq, V; = yjel,

where e; is the basis vector (1,0,...,0), is a solution to (7.15). In particular, if (Q-DIFF) has a
solution, then so does (7.15). Conversely, suppose that we have a solution for (7.15). Since they
are integer matrices and B has nonzero determinant, Z and W must both have determinant +1
and are invertible over Z. Then (7.15) also has the solution

/ —1 / —1 ! !
u, =7 ", vy =Wy, Z'=W'=1I,,

and z; = ujy,y;j = v} is a solution for (Q-DIFF). O

8. UNDECIDABILITY OF EXTENSION PROBLEMS

Theorem 8.1. Let Y be a simply connected finite complex which is not a rational H-space. Then
the problem of deciding, for a finite simplicial pair (X, A) and a map ¢ : A — Y, whether an
extension to X exists is at least as hard as deciding solvability for systems of equations of the form

(Q-BLIN(B))), for a bilinear map B depending on Y. Moreover, it is enough to consider pairs
satisfying cd(X, A) = d + 1, where d is the smallest degree such that Yq is not a rational H-space.

Examples of target spaces Y for which this gives us a proof of undecidability include CP™ for
any n, CP?#CP?, punctured products of odd-dimensional spheres, Grassmannians, and any Y
such that 74(Y") has rank 1. In general, one should be able to prove undecidability of the extension
problem for a wide range of target spaces after computing their Sullivan minimal model.

Before proving the theorem in full generality, we review the proof in [4] of the case Y = S2,
where undecidability is shown by reduction from Hilbert’s tenth problem for systems of equations
of the type (Q-SYM). How do the authors encode equations in an extension problem? There are
three ingredients, all encoded into cells of the pair (X, A):

e Variable cells: copies S? of S? in X which are not in A, and hence can be mapped to YV’
with arbitrary degree.
e 3-spheres encoding constant terms of equations: copies Sg of $3 in A, which are mapped
to Y with a fixed Hopf invariant b, by the map ¢.
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e 4-cells encoding equations. The gth 4-cell is attached to the rest of X by the map
—2bgidgg+ D ayfidg,idg],
1<i<j<r
where [o, 3] denotes the Whitehead product of o and /3: the composition

g3 attaching map of the top cell of 5% x 52 G2y §2 % X(g)
In summary, A is a wedge of 3-spheres and X consists of a wedge of 2- and 3-spheres with 4-cells
attached.

The homotopy class of a map S% — S? is determined by its Hopf invariant, an integer. The
Whitehead product [idg2,idg2] : S% — S? has Hopf invariant 2, and the Whitehead product is
bilinear in the two variables. Therefore, the 4-cells force the degrees x; on SZ~2 of an extension of ¢

to X to satisfy the equations (Q-SYM]).

The minimal model of S? is

(A(a*,b%),da = 0,db = a?).
The Hopf invariant can be thought of as the result of pairing with b. There is therefore a relationship
between the differential and the Whitehead product:

(b, [f,9]) = 2(a, f){a, g).

Such a relationship holds more generally.

In the general case, we use a similar tactic, but with higher-order Whitehead products, originally
defined by Porter [20]. Given spheres S™, ..., S™ their product can be given a cell structure with
one cell for each subset of {1,...,x}. Define their fat wedge V{_;S™ to be this cell structure
without the top face. Let N = =1+ >"" | n;, and let 7 : SN — V%_, 8™ be the attaching map
of the missing face. By definition, o € wn(Y) is contained in the wth-order Whitehead product
[a1, ..., a], where a; € Ty, (Y), if it has a representative which factors through a map

SN Toyr gm oy

such that [fu|smi] = «a;. Note that there are many potential indeterminacies in how higher-
dimensional cells are mapped, so [aq,...,ax| is a set of homotopy classes rather than a unique
class. This set may be empty: for example, if the ordinary Whitehead product [«, ] is nonzero,
then [a, 3,7] is empty for any - because there is no way to extend the map « V 3 to the product
cell. However, this is not the case in our situation:

Lemma 8.2. Suppose thatY is a rational H-space through degree d—1. Then every d-dimensional
higher-order Whitehead product in Y () is nonempty.

Proof. Let a; : 8™ — Y gy, for i =1, ...,k be homotopy classes of maps, and suppose > =d+1.
Since Yy_1(0) is an H-space, VoV, 8™ — Yy 1(0) extends via the H-space operation to a map
F: TI; S™ — Yg_1(0)- The obstruction to lifting F' to Y{q) lies in (d + 1)-dimensional cohomology,
and therefore the restriction of F' to the fat wedge lifts to Y. 0

Importantly, higher-order Whitehead products are graded symmetric and multilinear in a weak
sense. It is easy to see that the factors commute or anticommute as determined by the grading.
For multilinearity, notice that if two maps f,g: S™ x X — Y agree on * x X, where x € S™ is some
base point, then there is a well-defined map “f + ¢g” given by

“pinch the waist” xid

(8.3) S"x X (57 v §7) x x L2xd, y

which induces addition in m, (Y, f(*,2z)) on every fiber S™ x {z}. Likewise, if f,g: V&  S™ =Y,
where f o7 and g o7 represent elements of [a1, ..., a,] and [, a9, ..., ay] respectively, agree on
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[17, 5™, then a similar operation yields a well-defined element [f + g] € [a1 + o), a2,...,a,]. In
particular, taking f = g and performing the operation repeatedly, we get that

[car, ... au] D clag,. .., a]

(see e.g. [20, Theorem 2.13]). Note, however, that there is no more general notion of additivity.
We can use this weak multilinearity to relate Lemma [8:2 to Y itself:

Lemma 8.4. For i = 1,...,K, let o € m,,(Y), and denote the image in m,,(Y(0)) by (-
If [ogoys - - -5 ()] € TN (Y{0)) s monempty, then there are positive integers r1,...,7x such that
[riaa, ..., reay] is nonempty in wn(Y). Moreover, if Y is of finite type, then the set of r; can be
chosen to depend only on the set of n;.

Proof. We prove a stronger statement: if 3 € mn(Y{g)) is an element of [av(g), - - -, ()], then for
some R =1y - 1y, R lifts to an element of [riaq,...,rwa,] C 7y (Y).
Let f: VIS — Yoy be a map such that for is a representative of 5. Denote by (riy...,me)f:
715" — Y|g) the corresponding map in which the ith factor is multiplied by 7; in the sense of
(8.3). We construct a map V¥ ;5™ — Y, one cell at a time. Suppose that Z is a subcomplex
of V£ ,S8™ including the boundary of a particular cell e (WLOG, the top cell of []7_, S™ for

some s < k), and F' : Z — Y is a lift of (r1,...,r,)f for some factors rq,...,7,. In particular,
if 7, : SM — Z is the attaching map of this cell, then the obstruction to extending F o 7, to
a lift of (r1,...,74)f|e is a finite order element of my/41(Y), and there is an ryey > 0 such that

Tnew|F © Ts] = 0. (In the finite type case, we can choose rpey to be the cardinality of the torsion
subgroup of mar4+1(Y).) Using an (8.3)-type construction to multiply the first factor of F' by mpew,

we get a lift of (rpew”1,72,-..,7%)f|zue to amap ZUe — Y.
Starting with S™ Vv -.-V S§™ and performing the operation for every higher cell, we obtain a lift
of Rf for some R. O

Finally, in the setting of the theorem, certain d-dimensional higher-order Whitehead products
don’t only exist but are virtually unique:

Lemma 8.5. Suppose that Y is a rational H-space through degree d—1. Then for some k > 2, there
is a nonempty rkth-order Whitehead product in m4(Y') containing no torsion elements. Moreover,
for the smallest such k, all kth-order Whitehead products in wq(Y') are unique up to torsion.

Proof. Fix a minimal model My for Y and a basis of generators for the indecomposables V;, in each
degree n which is dual to a basis for 7, (Y")/torsion. Since Y is not a rational H-space, there is some
least d such that the differential in the minimal model My is nontrivial. Recall that for a minimal
model, each nonzero term in the differential is at least quadratic. For each of the generators 7 of
V4, dn is a polynomial in the lower-degree generators. Denote by P-degree the degree of an element
of the minimal model as a polynomial in these generators, as opposed to the degree imposed by
the grading. Let x be the minimal P-degree of any monomial in any dn.

To prove the lemma, we use the connection, first investigated in [1], between the differential in
the minimal model and higher-order Whitehead products. The main theorem of [1], Theorem 5.4,
gives a formula for the pairing between an indecomposable 1 € V,, and any element of an ith-order
Whitehead product set in 7,, assuming that every term of dn has P-degree at least i. This formula
is somewhat complicated, but is i-linear in the pairings between factors of the terms of dn and
factors of the Whitehead product.

It follows that, given an element of a xkth-order Whitehead product set in m4(Y’), its pairings
with each of the generators n are given uniquely by this formula. Since Vj is dual to 74(Y) ® Q,
all elements of the kth-order Whitehead product set are in the same rational homotopy class.

Consider a particular n and a particular term p of dn whose P-degree is k. Let aq,...,ax be

elements of 7, (Y") dual to the variables in this term. By Lemmasand some [riaq, ..., ey is
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nonempty. Every element of this set pairs nontrivially with dr, since there is a nonzero contribution
from p and a zero contribution from all other terms. Therefore the set does not contain a torsion
element. 0

Proof of Theorem [8.1. We reduce from the problem (Q-BLIN(B))), for an appropriate bilinear map
B. For each instance of this problem, we construct a pair (X, A) and map f: A — Y such that an
extension exists if and the instance has a solution.

Fix a minimal model My for Y and a basis of generators 71, ...,n, for the indecomposables V,
in degree d. By Lemma there is a nontrivial and rationally unique higher-order Whitehead
product [ai,...,0x] C mg(Y), where o € w4, (Y). Moreover, by Lemma we may choose
as, ..., o and positive integers p; and pa so that for every choice of 8 € pymy, (Y) and v € pamg, (Y),
8,7, as,...,q;] is nonempty.

Now we fix asg, . . ., a, and vary 8 and «y. For each ny, the pairing (n, [5,7, as, . . ., ax]) is bilinear
in 8 and 7. In particular, after fixing Z-bases for pimg, (Y) = Z™ and pamg, (V) = Z", we get a
bilinear map B : Z™ x Z™ — ZP.

Now given a system of the form (Q-BLIN(B)|), we will build a (d + 1)-dimensional pair (X, A)
and a map f : A — Y such that the extension problem has a solution if and only if the system

does. We define

K

A=\/siv\/ 8%,

g=1 =3
and let f: A — Y send

e S% to Y via a representative of «;;
° S;l to Y via an element of m4(Y") whose pairing with 7, for each k, is c¢y,.

Finally, we build X from A’ = AV \/_; S v\/_; S as follows:

e Add on cells so that for every ¢ and j, X includes the fat wedge V(S;il,S]C-lz, Sds .., 8,
and these fat wedges only intersect in A’. Let ¢;; : S% — X be the attaching map of the
missing (d 4 1)-cell for the (i, 7)th fat wedge.

e Add on spheres Sidll together with the mapping cylinder of a map Sid1 — Sgll of degree p1,
and spheres S]C-l"” together with the mapping cylinder of a map S;lz — Sj@/ of degree ps.

e Then, for each ¢, add a (d+1)-cell attached along a representative Ofp([Sg] —> i1 @ a'? )[golj])
where p is the exponent of the torsion part of m4(Y").

It is easy to see that H, (X, A) =0 for n > d.

We claim that (X, A) and f pose the desired extension problem. Indeed, any extension of f
to f X — Y sends each Sdl to an element 5; € pimg, (Y) and each Sd2 to an element vy; €
p2mq, (YY), as constrained by the mapping cylinders. Then fo wij 1 8¢ — Y represents an element
of [Bi,vj, a3, ..., ). Then the (d+ 1)-cells force the equations of to hold.

Conversely, given a satisfying assignment for , there is an extension f : X — Y.
To see this, note that such a satisfying assignment gives us values for 3; and ~; up to torsion,
and by construction there is an extension to the fat wedges and the mapping cylinders. Moreover,
under any such extension, f*[Sg] and )7 al(?)f* [pij] € mg(Y) are rationally equivalent; thus
when multiplied by p they are equal, and the map extends to the (d + 1)-cells of X. O

Examples. We conclude by discussing some instances of Y for which the extension problem is
undecidable. For example, if there are as,...,q, such that there exists a rationally nontrivial
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Whitehead product [ag, g, as, ..., ak] € m4(Y) and the image of the map
Ta, (V) @ 7, (V) = ma(Y')
By [B,7, a3, o

is one dimensional, then the extension problem is undecidable by Theorem This situation
includes the cases where Y is a fat wedge of odd spheres (in this case the one-dimensional subspace
is generated by the universal Whitehead product) and CP™ (in this case the one-dimensional
subspace is generated by [a,...,a]), as well as any Y such that 74(Y) has rank 1.

—

n+1 times

A different case is that of CP2#CP?2. In this case, we give explicit generators for the low-

dimensional part of the minimal model:
1 1
(/\(a%,a%, b2,c3,...),da; = 0,db = ia% - Ea%, dc = ajag, .. >

Here the a; are dual to the two-dimensional classes «; representing the spheres in the two copies
of CP2. The 3-dimensional generators are governed by the 4-cell of CP?#CP?, which ensures that
[a1, 1]+ [@2, az] = 0. Then the pairing of b and ¢ with Whitehead products of linear combinations
of a1 and a9 is described by the matrices

b %) = ()

from Example [7.6, Thus the extension problem for maps from 4-complexes to CP?#CP? is equiv-
alent to Hilbert’s tenth problem for Z[i], and hence undecidable.

One can construct similar (though perhaps less natural) examples for other number rings.

Finally, as a demonstration of the wide range of natural examples that can be covered with our
techniques, we show that the extension problem is undecidable for Y = Gry(R"), the Grassmannian
of oriented k-planes in R", when 2 < k < n — 2. The minimal models of these spaces are computed
explicitly in [I7]. Letting d be the least dimension for which the differential is nontrivial, this
computation tells us:

e Whenever k # n/2, or when k = n/2 is odd, Trd(a}k(R”)) has rank 1, and therefore the
extension problem for maps into Gri(R") is undecidable.
e When k = n/2 and k is even, write ¢t = k/2. In this case, d = 4t — 1, m4(Grg(R")) has rank
2, and the two generators have differentials
dvg = hy — 7'2, dug = oT.

Here o and 7 are generators of degree k, and h; is a polynomial in generators pi,...,pr—1,
where p; has degree 4i, and p; = 02. Namely, h; is such that

(I+pr+-+p)A+h+he+-)=1

From this formula one sees that the terms of dvy of multi-degree (k, k), which are “seen”
by pairing with Whitehead products between elements of 7, are
—0? — 72, when t is odd; pt2/2 — 02— 72, when t is even.
This lets us write down the bilinear maps
m1(Cri(R™) ® Q x 75(Cr(R™) ® Q — ma(Gri(R™)) @ Q

induced by the Whitehead product. When t is odd, the bilinear form given by pairing with

2ug — vg has rank 1, and we can apply Proposition When t is even, we are in the

situation of Remark [7.10{2). (Both these claims only rely on the rational structure and are

independent of integral information.) In both cases, we know that the relevant version of
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17.

18.

19.
20.

21.
22.

23.
24.
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27.

28.
29.

30.

31.

Hilbert’s tenth problem is undecidable, and therefore so is the extension problem for maps
into Grg(R™).
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