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ABSTRACT: The reported changes in self-diffusion of small
molecules during reactions have been attributed to “boosted
mobility”. We demonstrate the critical role of changing
concentrations of paramagnetic ions on nuclear magnetic
resonance (NMR) signal intensities, which led to erroneous
measurements of diffusion coeflicients. We present simple methods
to overcome this problem. The use of shuffled gradient amplitudes
allows accurate diffusion NMR measurements, even with time-
dependent relaxation rates caused by changing concentrations of
paramagnetic ions. The addition of a paramagnetic relaxation agent
allows accurate determination of both diffusion coeflicients and
reaction kinetics during a single experiment. We analyze a copper-
catalyzed azide—alkyne cycloaddition “click” reaction, for which
boosted mobility has been claimed. With our methods, we accurately measure the diffusive behavior of the solvent, starting materials,
and product and find no global increase in diffusion coeflicients during the reaction. We overcome NMR signal overlap using an
alternative reducing agent to improve the accuracy of the diffusion measurements. The alkyne reactant diffuses slower as the reaction
proceeds due to binding to the copper catalyst during the catalytic cycle. The formation of this intermediate was confirmed by
complementary NMR techniques and density functional theory calculations. Our work calls into question recent claims that
molecules actively propel or swim during reactions and establishes that time-resolved diffusion NMR measurements can provide
valuable insight into reaction mechanisms.
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B INTRODUCTION

be due to convection artifacts.'” More recently, it has been

Motion at the molecular level is central for the development
of molecular machines and devices.” Biology is rich in
examples of active movement in molecular systems, which
provide inspiration for synthetic chemical analogues.lc’d’f The
diffusive motion of molecular species can be monitored by
dynamic light scattering,” fluorescence correlation spectrosco-
py,4 or nuclear magnetic resonance (NMR) spectroscopy.5
Diffusion NMR provides information about molecular motion
and can be used to determine the size and diffusive properties
of molecules and enzymes® in situ and noninvasively.”
Diffusion NMR has been used to argue that molecular
species involved in chemical reactions display mobility higher
than passive Brownian motion.® The energy released during
the reaction was claimed to directly propel the molecule
(displayed schematically in Figure 1a).” Such a phenomenon
would have tremendous implications for our fundamental
understanding of chemical reactions. However, there is
currently no theoretical explanation that supports these
observations." The first example to claim enhanced diffusion
of small molecules during a catalyzed reaction involved a
Grubbs metathesis catalyst,” although this was later found to
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claimed that an increase in molecular mobility during reactions
is a general phenomenon, as purportedly the reactants and the
solvent show enhanced diffusion in a number of chemical
reactions.” In the most spectacular example,8 a reactant in a
copper-catalyzed azide—alkyne cycloaddition (CuAAC) “click”
reaction (Figure 1b) showed an apparent 60% increase in its
diffusion coefficient, while the diffusion coefficient of the
residual solvent had an apparent 20% increase. We re-
examined this experiment and concluded that there is no
enhanced diffusion,'" while the authors maintain their claims.'”

Herein we outline factors that can affect diffusion NMR
measurements of dynamic systems involving changing
concentrations of paramagnetic species, which is the case for
the CuAAC reaction. We show that the addition of an inert
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Figure 1. Enhanced diffusion during the CuAAC reaction? (a)
Proposed “boosted mobility”: catalyst C converts species A to B while
surrounded by solvent (green). The energy released during the
reaction has been claimed to lead to increased (active) diffusion of all
species, including solvent and reactant.”"® (b) Reaction scheme for
(i) the redox reaction between copper(Il) and ascorbate'* and (ii) the
CuAAC reaction studied. (c) Representative spectra from a diffusion
"H NMR experiment during the reaction.

paramagnetic relaxation agent, in modest concentrations, can
allow simultaneous measurement of accurate diffusion
coefficients and kinetics, which is otherwise not possible.
The results have been verified independently by three
laboratories using different types of NMR probes, acquisition
methods, and reagent sources (SI-8.4).

B RESULTS AND DISCUSSION

Pulsed gradient spin-echo (PGSE) or stimulated-echo
(PGSTE) NMR’ can simultaneously measure the self-diffusion
coefficient, D, and concentration of different molecular species.
The measured NMR signal intensity, I, for the PGSE sequence
is given by the Stejskal—Tanner equation:"

I=1, exp[—Dyzgzéz(A - 15)} = I, exp[—Db]

3 (1)
where I, is the NMR signal intensity in the absence of the
applied gradient (ideally proportional to concentration), y is
the gyromagnetic ratio of the nucleus, g and 6 describe the
amplitude and duration of the magnetic field gradient pulse,
respectively, and the delay A defines the timescale over which
diffusion is measured. Estimates of D and I; are determined by
nonlinear regression of eq 1 onto the data. In dynamic systems,

factors other than g that influence the signal intensity durinég
the measurement lead to processing and analysis problems.'

During chemical reactions, concentration changes lead to
time-dependent I; values. If the changes in concentration are
correlated to the order of the gradient pulse amplitudes applied
in a diffusion NMR experiment, the diffusion coefficient will be
miscalculated (SI-8.3, SI-13)."” A less obvious factor that
influences I, is the relaxation rate,'® ie., changes in the
longitudinal relaxation time constant (T;) or transverse
relaxation time constat (T,). Both T, and T, are influenced
by the local environment and dynamics of the nucleus being
observed and thus depend on factors like viscosity and the
presence of paramagnetic species.18

The T, of HDO in D,O is well-known to depend on the
concentration of paramagnetic ions such as copper(H)]8 or
gadolinium(11I)."” Typical data shown in Figure 2 demonstrate
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Figure 2. Dependence of longitudinal relaxation constant, T}, on the
concentration of paramagnetic ions. T; of the residual HDO peak
with varying CuSO, or gadolinium—diethylenetriaminepentaacetic
acid (Gd-DTPA) concentration, obtained by inversion recovery
experiments ("H NMR 500 MHz, 298 K, 12 relaxation delays ranging
from 0.1 ms to 120 s, depending on the expected T)). Dashed lines:
T, = 1/(a + b[M]), where [M] is the concentration of the
paramagnetic species. " Data are in agreement with first reports.m’19

that changes in very low concentrations of copper(I) ions
result in significant changes in T relaxation. We find the T for
HDO changes from 15 + 1 s in D,0 (SI-5.1) to 1.2 + 0.1 s at
just 1 mM copper(II) sulfate (SI-5.3), consistent with earlier
reports. © This is important as very small (ie., catalytic)
concentrations of copper(II) ions will result in substantial
changes in the relaxation rates of HDO and all species in
solution.

We now consider the T, of HDO during the CuAAC
reaction (Figure 1b). In the initial stages of the reaction,
paramagnetic copper(Il) is reduced to the catalytically active
copper(I), dramatically changing the T, of HDO.”' We find
that in a D, O solution of 250 mM azide 1 and 250 mM alkyne
2 the T, of HDO is 12 + 2 s, as measured by inversion
recovery experiments (SI-5.5).> The addition of 20 mM
copper(I) sulfate shortened the T, to just 69 + 4 ms>—a
~190-fold change (SI-5.6).”* These results indicate that the T,
of HDO can change by two orders of magnitude as
paramagnetic copper(II) is reduced to copper(I). We verified
these changes by measuring the time-resolved T, during the
CuAAC reaction using saturation recovery NMR experiments
(Figure 3a and SI-6). If the changing T, is correlated to a
monotonic order of gradient amplitudes used in the diffusion
experiment,8 then the diffusion coefficient of HDO appears
enhanced (Figure 3d, green ). For example, in the first 10
min of the reaction the apparent diffusion coeflicient for HDO
is 2.09 X 107 m*s™, compared to 1.78 X 107 m* s™" after 40
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Figure 3. Effect of T changes on the diffusion coefficient during the
CuAAC reaction. (a) T; of the residual HDO peak during the
CuAAC reaction obtained by saturation recovery. (b) Intensity from
PGSTE diffusion NMR experiments with (green M, I(g)) and without
(O, I(g = 0)) magnetic field gradients. (c) Stejskal—Tanner plots for
fitting eq 1 for first (i) and last (ii) diffusion experiments. I(g = 0) (O)
shows the portion of intensity change due to T, changes; dividing the
intensities obtained in the presence (green M) and absence (O) of the
applied gradients (I(g)/I(g = 0), A) corrects for the T, change. (d)
Time-resolved diffusion coefficients calculated from the intensity
(green M) or the ratio (I(g)/ I(g=0), A). Parameters: 250 mM azide
1, 250 mM alkyne 2, 20 mM copper(II) sulfate, 80 mM sodium
ascorbate, D,0; "H NMR 400 MHz, PGSTE, § = 2.5 ms, A = 25 ms,
and recovery delay during acquisition AQ_= 3.15 s.*°

min. This apparent change of ~17% in diffusion coefficient is
not due to viscosity (SI-10) or temperature changes (SI-11),
which both vary <2%. Furthermore, the increase cannot be
attributed to convection (SI-8.2).

To isolate the effect of relaxation changes, we repeated the
diffusion measurement during the CuAAC reaction with all
diffusion gradient amplitudes set to zero (SI-1.3; maintaining
all other parameters). The data, shown in Figure 3b without
gradients (O), reveal a steady decrease in the HDO signal
intensity throughout the experiment. This result confirms that
a proportion of the signal attenuation during this time is not
due to the application of diffusion gradient pulses. The
Stejskal—Tanner plots of the first and last diffusion measure-
ment (Figure 3c) compare the signal intensities obtained with
(green squares) and without (circles) the application of
gradient pulses as a function of (apparent) b. The ratio of the
two (I(g)/I(g = 0), triangles) corresponds to the signal
attenuation due to diffusion alone. Fitting this ratio (Figure 3c,
triangles) results in the correct, and constant, diffusion

coefficient throughout the reaction (Figure 3d, triangles, see
analytical theory SI-13.3). However, this is not the most
straightforward method to calculate accurate diffusion
coeflicients in dynamic systems.

Fortunately, it is possible to accurately determine diffusion
coefficients during chemical reactions, despite changes in
concentration or relaxation. This is achieved by randomly
ordering (shuffling) the gradient pulse amplitudes used in the
diffusion NMR experiment. Shuffling the amplitudes removes
the correlation between diffusive attenuation and non-
diffusion-based intensity changes (51-8.3).2“'>'7 Here we
introduce a list of 500 shuffled gradients where the order of
any consecutive 16 gradients has a Pearson correlation
coefficient <0.1 (see SI-12.3). This list serves as an example
to be used for any time-resolved NMR diffusion experiments.
When we apply the shuffled gradient method during the
CuAAC reaction, we find no diffusion enhancement for any
species (Figure 4a and S1-8.1),"" only decreased diffusion.'"™

The concentration of paramagnetic ions influences the
relaxation rates of all species in solution, not just HDO. This
can complicate the extraction of kinetic data, as signal integrals
reflect both concentration and relaxation changes. We see this
in the decreasing signal intensity of the residual HDO (Figures
3b and 4b-i), despite no water being consumed in the reaction.
The effect is also apparent in the nonconstant sum of integrals
for reactant and product signals (Figure 4c-i), resulting in
substantially incorrect reaction rates (Figure 4d-i). The signal
intensity changes from dynamic relaxation constants can be
counteracted by the addition of a paramagnetic relaxation
agent, such as organic-soluble chromium(III) acetylacetonate”’
or water-soluble §adolinium—diethylenetriaminepentaacetic
acid (Gd-DTPA).”*° The paramagnetic relaxation agent
must not react or otherwise interfere with the studied reaction.
Gadolinium(III) fulfills this requirement for the CuAAC
reaction.

In most NMR experiments, an interscan delay of 5 X T is
required for complete longitudinal relaxation, which yields
maximum signal. More rapid scanning will result in integrals
not being strictly proportional to concentration. This will
complicate analysis that requires quantitative signal intensities,
including diffusion measurements. The incomplete relaxation
is no problem for static diffusion NMR measurements,
provided a sufficient signal-to-noise ratio is achieved. However,
in dynamic systems the signal loss during the recovery delay
(where the delay is <5 X T;) can become problematic. The
issue is exemplified in Figure 4b-i, where T of HDO increases
from 70 ms to over S s, leading to a decrease in signal intensity
(here, recovery time 1.5 s). A further complication in PGSTE
diffusion experiments is the magnetization lost due to T,
relaxation during the diffusion time, A, which also reduces the
signal-to-noise ratio. In cases where A > T), the loss of
magnetization during the diffusion time is very significant; this
should be considered when adding a paramagnetic relaxation
agent into a system.

For the studied CuAAC reaction, the addition of 230 yuM
Gd-DTPA to a solution of 250 mM of azide 1 and alkyne 2 in
D,0 lowered the T; of HDO to 270 + 50 ms (SI-5.7). Such a
short T satisfies the required S X T, for a relaxation delay of
1.5 s. The addition made no substantial change to the diffusion
coefficients throughout the reaction (Figure 4a). However, the
intensity of the HDO signal now increases ~10% throughout
the reaction (Figure Sb-ii). This change in intensity is due to
the copper catalyzed H—D exchange between the terminal
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Figure 4. Addition of paramagnetic relaxation agent corrects artifacts from changing T). (a) Time-resolved diffusion coefficients of selected peaks
during the CuAAC reaction without (solid line) and with Gd-DTPA (dotted line). Dashed lines represent the control diffusion coefficients in 250
mM azide 1, alkyne 2, 80 mM sodium ascorbate solution in D,0 (D,), or after the reaction for the product. (b) Solvent signal intensities (I,) from

diffusion NMR experiments. (c) Apparent concentrations (capp,

from I,) for the CH, group in azide 1 and its corresponding position in product 3.

(d) Apparent rates calculated from the concentrations in (c); linear fit applied over every 100 gradient slices (ca. 12 min). (a—d) (i) Without and
(ii) with Gd-DTPA. Parameters: 250 mM azide 1, 250 mM alkyne 2, 20 mM copper(II) sulfate, 80 mM sodium ascorbate (with 230 M Gd-
DTPA), D,0; 'H 500 MHz, PGSTE, § = 2 ms, A = 50 ms, and spoiler recovery delay = 1.5 s. Shaded area represents the standard deviation over

three experiments.

alkyne and D,O, which also causes a decrease in the intensity
of the terminal alkyne signal. Deuterium substitution at the
terminal position is evidenced by loss of a *J,y; coupling (2.3
Hz) at the propargylic 'H resonance (SI-9.4), and deuterium
coupling and intrinsic isotope shifts are observed in the *C
NMR signals of the alkyne (51-9.3.2).%

The Gd-DTPA also affects the relaxation of the CuAAC
reactants and product. For example, the T of the methylene
protons of azide 1 (in 250 mM azide 1 and alkyne 2 solution)
is reduced from 3.8 + 0.2 s (SI-5.5) without Gd-DTPA to 220
+ 100 ms (SI-5.7) with Gd-DTPA, which fulfills the 5 X T,
requirement. As a result, the signal intensities more accurately
represent the concentrations,” allowing reliable reaction
kinetics to be determined (Figures 4c-ii and 4d-ii).

While the diftusion coeflicients of the residual solvent and
reducing agent (sodium ascorbate, SI-8.1) are constant over
time, we notice a reproducible decrease in the diffusion
coefficient of both reactants during the reaction. The decrease
can be partially attributed to the overlap of these peaks with
signals for the slower diffusing ascorbate, which worsens as the
reaction progresses (Figure lc and SI-S.S).“a To remove this
artifact, the experiments were repeated with hydrazine
monohydrate as the reducing agent instead of sodium
ascorbate. As above, Gd-DTPA was added to allow the
collection of accurate kinetic data (Figure 5). These experi-
ments reveal a constant diffusion coefficient for azide 1, but
there is still a decrease of 16 & 2% for the diffusion coeflicient
of alkyne 2 after 80 min (Figure Sa) which results from alkyne
complexation to copper ions.

Measured diffusion coeflicients reflect the weighted average
of species that are in fast exchange on the NMR timescale.”
The fraction of the alkyne bound to copper ions increases
during the reaction, and hence the 'H NMR chemical shift of
the terminal alkyne moves significantly downfield, consistent
with copper binding (Figure 1c and S1-9.2.1).°" Density
functional theory (DFT) studies, following reported proto-
col,*” confirmed this shift is expected as the ratio of free to
bound alkyne changes (SI-9.1). We also observed the alkyne

20887

3C NMR chemical shifts move downfield during the reaction
(S1-9.2.2), consistent with the observation of a weighted
average of copper-bound”'® and free alkyne in solution. Both
the 'H and "C NMR chemical shifts and the diffusion
coefficient of the alkyne stop changing once the reaction has
reached completion. The opposite chemical shift changes were
observed when we titrated free alkyne into a finished reaction,
consistent with a changing average environment of free and
bound alkyne (SI-9.3).

The 'H and "C NMR chemical shifts of the product,
especially the triazole signal, change during the reaction for the
same reason: the signal is the weighted average of the copper-
bound and free molecule. The proportion of the product
bound to copper is highest when the product concentration is
low. The bound fraction decreases as the more product is
formed and the weighted average becomes closer to that of the
free product. The copper ion likely binds a combination of
triazole and alkyne ligands, similar to the commonly used
ligand tris((1-benzyl-4-triazolyl)methyl)amine (TBTA) which
can be used to stabilize copper(I) during CuAAC reactions.™
Linewidth analysis during the reaction is also consistent with
the expected changing rates of exchange (SI-9.2.1). This
analysis shows how a chemical reaction can be monitored by
using complementary NMR techniques, including diffusion
NMR measurements.

In this study, we have focused on the apparent diffusion
enhancement of the CuAAC reaction—the most spectacular of
the results presented in a recent report.” The other reactions
that have been reported showed smaller changes in diffusion
coefficients and were subject to the same problematic
experimental design and analysis as have been discussed in
detail for the CuAAC reaction (e.g, use of monotonically
increasing gradient lists and incorrect normalization of
diffusion data)."" Therefore, it is very likely all other reactions
examined in the report” are affected by the artifacts discussed
above, and there is no “boosted mobility” at all.
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Figure 5. Alternative reducing agent removes NMR signal overlap and
reveals evidence of copper complexation. (a) Time-resolved diffusion
coefficients of selected peaks during the CuAAC reaction; dashed line
is Dy. (b) Solvent signal intensity (I,) extracted from diffusion NMR
experiments. (c) Concentrations (from I) for the CH, group in azide
1 and its corresponding position in product 3. (d) Rates calculated
from the concentrations in (c) with linear fit applied over every 100
gradient slices (ca. 30 min). Parameters: 250 mM azide 1, 250 mM
alkyne 2, 20 mM CuSO,, 200 mM hydrazine monohydrate, 230 M
Gd-DTPA, D,0; 'H 400 MHz, PGSTE, § = 1 ms, A = 10 ms, and
spoiler recovery delay = 0.5 s. Shaded areas represent the standard
deviation over three experiments.

B CONCLUSION

The addition of a paramagnetic relaxation agent assists
accurate measurement of time-resolved diffusion coefficients
and reaction kinetics during chemical reactions with fluctuating
concentrations of paramagnetic ions. The results have been
verified by three separate laboratories with different NMR
spectrometers, equipped with standard or specialized probes,
each using different data acquisition methods, verifying the
robust nature of our protocol.

The diffusion NMR methods we present can reveal new
insight into well-studied chemical reactions. Here, the
observed time-dependent NMR chemical shift and diffusive
behavior of the alkyne reactant is consistent with a CuAAC
catalytic cycle’® in which alkyne entry occurs through
formation of a discrete copper(I)—alkyne 7 complex.”> To
the best of our knowledge, this is the first experimental
evidence for the precursor to the copper(I) acetylide, whose
formation can be rate-determining for the overall cycle.”

The methods presented can be used for studying chemical
systems where rates of diffusion and chemical reactions are
useful parameters, such as polymerizations or supramolecular
self-assemblies. Crucially, this study has shown that claims of
boosted mobility during chemical reactions have no exper-
imental basis that we could identify. Within experimental error,
we show there is no diffusion enhancement at any stage of the
reaction above Brownian diffusion. In stark contrast to the
claim of 20% diffusion enhancement for the solvent,® we find
the diffusion coeflicient is constant within +2%.
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