SpecFaaS: Accelerating Serverless Applications
with Speculative Function Execution

Jovan Stojkovic, Tianyin Xu, Hubertus Franke®, Josep Torrellas

University of Illlinois at Urbana-Champaign

TIBM Research

{jovans2, tyxu} @illinois.edu, frankeh@us.ibm.com, torrella@illinois.edu

Abstract—Serverless computing has emerged as a popular
cloud computing paradigm. Serverless environments are conve-
nient to users and efficient for cloud providers. However, they can
induce substantial application execution overheads, especially in
applications with many functions.

In this paper, we propose to accelerate serverless applications
with a novel approach based on software-supported specula-
tive execution of functions. Our proposal is termed Speculative
Function-as-a-Service (SpecFaaS). It is inspired by out-of-order
execution in modern processors, and is grounded in a characteri-
zation analysis of FaaS applications. In SpecFaaS, functions in an
application are executed early, speculatively, before their control
and data dependences are resolved. Control dependences are pre-
dicted like in pipeline branch prediction, and data dependences
are speculatively satisfied with memoization. With this support,
the execution of downstream functions is overlapped with that
of upstream functions, substantially reducing the end-to-end
execution time of applications. We prototype SpecFaaS on Apache
OpenWhisk, an open-source serverless computing platform. For
a set of applications in a warmed-up environment, SpecFaaS
attains an average speedup of 4.6x. Further, on average, the
application throughput increases by 3.9x and the tail latency
decreases by 58.7%.
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I. INTRODUCTION

Serverless computing is an attractive cloud computing
paradigm, where users upload application code and the cloud
provider secures all the libraries, runtime environment, and
system services needed to run it. The basic unit of execution
is a function, which runs in an ephemeral, stateless container or
micro virtual machine (VM) created and scheduled on demand
in an event-driven manner. Applications are then composed of
multiple interdependent functions. Compared with traditional
monolithic cloud applications, function-based serverless ap-
plications can attain elasticity, fine-grained billing, and high
resource utilization. All major cloud providers offer such
Function as a Service (FaaS) environment, including AWS
Lambda [9], Microsoft Azure [56], IBM Cloud Functions [41],
and Google Cloud Functions [34]. There are also many open-
source frameworks for serverless experimentation [1]-[4],
[18], [39], [80].

Despite these attractive benefits, current serverless work-
loads suffer from multiple overheads, including cold start [6],
[48], [52], [80], virtualization, RPC or HTTP invocation, and
the need to persist outputs to global storage. Importantly,
in applications with many functions, where cross-function
control and data dependences are common, such overheads

accumulate. The result is long application response times,
despite using state-of-the-art frameworks such as AWS Step
Functions [14], Azure Durable Functions [54], IBM Cloud
Composer [40], or Google Cloud Workflows [35].

In this paper, we aim to fundamentally accelerate the execu-
tion of function-based serverless applications. We want to go
beyond current work which, while effective, either focuses on
cold-start effects (e.g. [6], [7], [20], [24], [27], [29], [32], [36],
[48], [52], [59], [60], [66], [69], [72], [80]) or targets one type
of overhead such as cross-function communication [8], [22],
[44], data access latency [43], [62], [65], [74], [82], [85], or
RPC invocation [61], [76]. What we seek is a novel way to
execute applications in this paradigm.

An analysis of serverless applications suggests a way to
accelerate this environment. Specifically, we find that the
outcomes of the branches that encode cross-function control
dependences are fairly predictable. Moreover, in this environ-
ment where functions are stateless by definition, cross-function
data dependences are often predictable. Indeed, functions often
produce the same outputs every time that they are invoked with
the same inputs. Hence, the data that a function will generate
for the subsequent function is typically predictable.

With these insights, we propose to accelerate serverless ap-
plications using software-supported speculation. Our proposal
is termed Speculative Function-as-a-Service (SpecFaa¥). It is
inspired by the out-of-order execution of modern processors.
In SpecFaaS, functions in an application are executed early,
speculatively, before their control and data dependences are
resolved. Control dependences are predicted with a software-
based branch predictor, while data dependences are specu-
latively satisfied with memoization. With this support, the
execution of downstream functions is overlapped with that
of upstream functions, substantially reducing the end-to-end
execution time of applications.

While a function execution is speculative, SpecFaaS pre-
vents its buffered outputs from being evicted to global storage.
When the dependences are resolved, SpecFaaS proceeds to
validate the function. If no dependence violation is detected,
the function commits. Otherwise, the buffered speculative data
is discarded and the offending functions are squashed and re-
executed. SpecFaaS provides policies to configure the degree
of speculation based on control/data dependence predictability.

We prototype SpecFaaS on Apache OpenWhisk [18], an
open-source serverless computing platform. SpecFaaS runs
transparently to the applications. We evaluate SpecFaaS using



three application suites, namely Alibaba [50], TrainTicket [87],
and FaaSChain. They have a total of 16 FaaS applications of,
on average, 12 functions each. In a warmed-up environment,
SpecFaaS attains an average speedup of 4.6x. Further, on
average, the application throughput increases by 3.9 x and the
tail latency reduces by 58.7%.

Overall, this paper makes the following contributions:

o SpecFaaS, a novel approach to accelerate serverless ap-
plications with speculative function execution.

o A characterization of dependences and overheads in large
serverless applications.

o An implementation and evaluation of SpecFaaS on the
OpenWhisk platform.

II. BACKGROUND
A. Serverless Applications

Large, complex serverless applications are organized as
workflows of multiple interdependent functions. To construct
these workflows, FaaS platforms typically have composition
frameworks, such as AWS Step Functions [14], Azure Durable
Functions [54], IBM Cloud Composer [40], or Google Cloud
Workflows [35]. These frameworks allow developers to specify
control- and data-flow dependences between functions, such
as producer-consumer relationships, control branches, loops,
parallel execution, and error handling.

In this paper, we implement our infrastructure on top of
OpenWhisk [18], an open-source serverless framework that
has been used in many prior studies [19], [57], [68], [86].
Listing 1 shows the code snippet of a smart home serverless
application that is described in [45], [77], using OpenWhisk
Composer [17]. This application is composed of seven func-
tions and Figure 1 shows the workflow.

import composer
def main(Q):
return composer. ('Login',
composer. (
'ReadTemp',
'Normalize',
composer. ('CompareTemp ',
'TurnAir'),
'Done'),
'Fail')

Listing 1: Code snippet that implements a smart home FaaS
application using OpenWhisk Composer.
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Fig. 1: The workflow of the FaaS application in Listing 1.
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The application specifies two types of dependences us-
ing the when and sequence directives. The when direc-
tive is a branch statement, which specifies a control depen-
dence: when(br cond, true target, false target)

If br cond returns true, we execute true target,
otherwise, we execute false target. The sequence
directive expresses data dependence: sequence(source,
destination). The output of the source function will be
used as the input of the destination function. Applications
can also use loop structures, which are specified with while
and do_while directives. These directives are compiled to
the same code as when, and so we will not consider them
separately. It is also possible to execute multiple functions
in parallel with the parallel directive. Such directive is
currently not supported by OpenWhisk Python Composer, and
thus we have implemented it ourselves.

An application’s workflow is exposed to the FaaS platform.
However, the code of each function may not be visible.
Therefore, we treat every function as a blackbox.

B. Serverless Workflow Execution

The execution of the functions in an application’s workflow
needs to satisfy all data and control dependences. For example,
in Figure 1, Functions ReadTemp and Fail do not execute
until Login finishes and returns the condition that determines
which function to execute next. Similarly, Normalize does
not execute until ReadTemp finishes and produces its output.

Serverless platforms schedule each function to execute as
soon as it reaches the ready state. Typically, function schedul-
ing is done by a Controller component, which keeps track
of the state of the workflow graph. In OpenWhisk, after a
function completes, the controller calls a helper function called
Conductor. The conductor picks the next function to execute.
Then, the controller initializes a Worker that first encapsulates
the function in an execution environment (a container [53] or
a micro VM [7], [51]) and then launches the function.

C. Implicit Workflows

The workflows described so far are called Explicit, in that
the developer explicitly specifies the whole graph topology
and the controller knows the next function to execute. How-
ever, workflows can also be created in an implicit manner.
In Implicit (or multi-tier) workflows, functions invoke other
functions as subroutines. Specifically, a function calls another
function, waits on the results, and then continues with its
own execution, possibly to call other functions. There are
gather functions that invoke multiple simple services and then
aggregate the obtained data. An application example from
Alibaba [50] is shown in Figure 2. Since the FaaS platform
may not know the code of functions, it does not know ahead
of time which functions a given function can invoke.
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Fig. 2: Example of an application with implicit workflow.



Studies by Alibaba [50] and Facebook [75] show that
the multi-tier paradigm is popular in production-level mi-
croservice architectures. The largest open-source serverless
applications [33], [87] are also built in this way. Note that
the caller function is blocked while waiting for the results
from a callee.

ITII. FAAS ENVIRONMENT CHARACTERIZATION

Our work is driven by the characteristics of FaaS appli-
cation workflows. In this section, we analyze three FaaS
application suites running on OpenWhisk. These suites are Al-
ibaba [50], TrainTicket [87], and FaaSChain, which we detail
in §VIIL. Alibaba and TrainTicket use implicit workflows, while
FaaSChain uses explicit workflows. Table I characterizes these
application suites. For each suite, we show the number of
applications and, on average per application: the number of
functions, the number of cross-function branches, the number
of cross-function data dependences, the number of callees per
function with calls, the maximum application DAG depth, and
the application execution time in a warmed-up environment.
For TrainTicket and FaaSChain, the execution time is obtained
by running the applications on AMD EPYC 7402P servers as
described in Section VII; for Alibaba, the execution time is
obtained from the traces.

TABLE I: FaaS application suites considered.

[ Characteristic [ Alibaba | TrainTicket [ FaaSChain |

Workflow Type Implicit Implicit Explicit
# of Applications 5 5 6
Per-appl. metrics:

Avg # Functions 17.6 11.2 7.8

Avg # Branches N/A 1.8 2.5

Avg # Data Deps. 34 4.8 2.7

Avg # Callees/Func. 34 4.8 N/A

Max DAG Depth 5 3 10

Avg Exec. Time (ms) 387.2 268.8 160.0

Our analysis reveals the following observations:

Observation 1: Even under warmed-up conditions, function
execution per se constitutes less than 1/2 of the time taken to
invoke and run an FaaS function.

Figure 3 shows the average response time of a function
invocation under cold start conditions in each of the three ap-
plication suites. Each bar is broken down into five categories,
each with a number expressing their duration in ms. The
bottom-most category is Container Creation, which includes
creating the container and network stack, and connecting to
the network. This category is the one taking the longest by far
(1500ms), and is shown broken into two pieces in the figure.
Next is Runtime Setup, which involves injecting the function
code and starting the docker proxy. This category is also large
and, together with the previous one, constitutes the cold-start
overhead.

Platform Overhead is the time for the communication be-
tween different FaaS platform components such as front-end,
controller, and worker when the new request comes. Transfer
Function Overhead is the time between when a function
completes and its successor starts execution. For implicit
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Fig. 3: Breakdown of a function’s response time.

workflows, this time corresponds to an HTTP or RPC call; for
explicit workflows, it corresponds to additional communication
between worker and controller, and the execution of the
conductor function. Finally, Function Execution is the actual
function execution.

From the bars, we get a sense of the overheads: function
execution only accounts for 33-42% of the total function
response time in warm-up conditions (or 1% in cold-start
conditions). Our goal is to minimize Platform Overhead and
Transfer Function Overhead, and overlap Function Execution
across functions. In addition, if the system runs under cold-
start conditions, we want to overlap Container Creation and
Runtime Setup across functions.

Observation 2: The sequence of functions executed in an FaaS
application is highly deterministic.

The sequence of functions that an application executes can
change across invocations of the application. The reason is
that some functions conclude with a branch condition that can
transfer execution to different functions. In addition, in implicit
workflows, some functions call other functions conditionally.
In this experiment, we measure, for a given application, the
sequence of functions that it executes from beginning to end.
We record how many times we observe each of the possible
different sequences. We then select the most popular sequence.

On average, the most popular sequence accounts for 90% of
the total invocations of the application in Alibaba and 98% in
TrainTicket. We do not report the result for FaaSChain because
its control dependences use synthetic data (§VII). Based on
this result, our goal will be to develop software branch
predictors to pick functions to execute early, speculatively,
before knowing whether they will need to execute.

Observation 3: Most FaasS functions do not read from writable
global state; many do not even write to global state.

While FaaS functions are stateless by definition, in addition
to taking inputs and producing outputs, they may read and
write global state. In this experiment, we first measure the
fraction of functions that either do not read global state
or, if they do, they read read-only state. For example, this
fraction is 75.8% for TrainTicket and 85.1% for FaaSChain



across the runs. These functions are guaranteed to produce
the same outputs every time that they are invoked with the
same inputs. Given these large fractions, our goal will be
to maintain memoization tables that record pairs of {inputs,
outputs} observed for functions. These tables will allow us to
predict the outputs of functions in advance, hence allowing
the early, speculative execution of successor functions.

An interesting subset of these functions are those that,
in addition, do not modify the global state. These functions
produce the same outputs for the same inputs and have no side
effects. The fraction of such functions is 57.6% for TrainTicket
and 61.7% for FaaSChain. These functions can not only be
memoized, but their execution can be skipped altogether!

Observation 4: Remote storage is not frequently updated.

We analyze traces of the blob accesses in Microsoft’s Azure
Functions [55], [65] and observe that write operations are not
common. Specifically, out of 40M accesses, only 23% are
writes. Moreover, two thirds of blobs are read-only. Out of the
writable blobs, 99.9% are written less than 10 times overall.
Finally, the time between a write and a subsequent read to the
same storage location is more than 1s in 96% of the times,
and more than 10s in 27% of the times. This means that reads
and writes to the same location are separated from each other,
and are rarely issued in the same function invocation.

Observation 5: FaaS functions have few types of side-effects.

To confirm that the behavior of our application suites
is representative, in this experiment, we take another 110
open-source serverless functions from various benchmark
suites [11], [25], [42], [47], [84] and analyze their side effects.
Our analysis shows that, in agreement with the previous
sections, a major portion of the functions (63.4%) does not
have any side-effects. The rest have only three types of side-
effects: writes to global storage, writes to temporary local files,
and HTTP requests.

Observation 6: CPUs are not fully utilized in the cloud.

Recent studies on resource utilization of cloud and datacen-
ter systems [26], [28], [38], [49], [63] report that computing re-
sources are commonly over-provisioned and not fully utilized.
In this experiment, we extract from the Alibaba traces [50]
the CPU utilization of the bare-metal nodes in the Alibaba
cloud. For each node, we compute the P90 CPU utilization—
i.e., the utilization U such that, for 90% of the time, the CPU
is utilized U or less. We then generate the P90 distribution
for all the nodes in the cluster. Figure 4 shows the CDFs for
P90, P80, P70, P60, and P50. We can see that, most of the
time, the CPU usage is 60-80%. Thus, the environment could
support some cycles wasted due to misspeculation.

IV. SPECFAAS OVERVIEW

With SpecFaaS, we propose a new approach to accelerate
serverless applications that are composed of multiple func-
tions. The idea is to optimistically execute functions specula-
tively, before their control or data dependences are resolved.
Later, if a mis-speculation is detected, the optimistically-
executed functions are squashed and potentially re-started.
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Fig. 4: P50-P90 CPU utilization of Alibaba’s bare-metal nodes.

SpecFaaS’ rationale is our observations that the sequence of
functions executed in an application is highly predictable and
that individual functions, when passed the same inputs, typi-
cally produce the same outputs. As a result, with SpecFaaS,
we can substantially reduce the end-to-end execution time of
serverless applications.

SpecFaaS is inspired by the out-of-order execution of
instructions in modern processors—a function in SpecFaaS
is analogous to an instruction in processors. Consider Fig-
ure 5(a), which shows one possible conventional execution
of the smart-home application of Figure 1. All functions
are executed in sequence. There are two types of cross-
function dependences that prevent any concurrent execution
of functions: control (e.g., between Login and ReadTemp) and
data (e.g., between ReadTemp and Normalize). If SpecFaaS
correctly predicts the cross-function control dependences, the
execution timeline will look like Figure 5(b); if SpecFaaS
correctly predicts both control and data dependences, the
timeline will look like Figure 5(c).

Time

|Login |ReadTemp |Norma|ize|CompareTemp |TurnAir |

(a) Conventional Execution

Time Time
ReadTemp ReadTemp
Normalize Normalize

CompareTemp

CompareTemp
TurnAir

(b) Control-only Speculative Execution

TurnAir

(c) Full Speculative Execution

Fig. 5: Possible execution of the smart-home application of
Figure 1: conventionally (a) and with speculation (b and c).

To predict control dependences, SpecFaaS adds to the FaaS
controller a Branch Predictor software table with an entry for
each function that may invoke different functions. The entry
contains probability information to decide on the next function
to invoke. When a function is about to execute, the branch
predictor is queried. If an entry is found, the outcome with the
highest probability is identified and the corresponding function
is also invoked, speculatively.

To predict data dependences, the FaaS controller is aug-
mented with a Memoization software table for each function
that creates outputs. For a given function, the table contains the



pairs of {input, output} values that the function has taken and
produced, respectively, in the past. When a function is about
to execute with certain input values, its memoization table
is queried. If an entry with such input values is found, the
corresponding output values are retrieved and the next func-
tion of the application in sequence is concurrently invoked,
speculatively, taking the retrieved values as inputs.

A function may read data values beyond those that it ex-
plicitly takes as inputs. Moreover, it may write other variables
beyond those declared as outputs. Consequently, as a function
executes speculatively, its global writes are buffered in a Data
Buffer and not merged with the global state until the function’s
speculative execution is validated. The Data Buffer is shared
by all the concurrently-running functions of a given application
invocation. Similarly, global reads first access the Data Buffer,
to check if the Data Buffer contains the desired data, as the
current function or earlier, less-speculative functions may have
generated it. The Data Buffer is also used to detect data
dependence violations—i.e., a speculative function that has
read data that is later updated by a predecessor function.

On a misspeculation, the FaaS controller squashes the
mispredicted function and all its successors, and invalidates
the corresponding data in the Data Buffer. In case of a control
misspeculation, the controller then launches the correct-path
functions (Figure 6(a)); in a data misspeculation, the controller
re-launches the successor functions, now with the correct input
values and correct Data Buffer state (Figure 6(b)).

Time

Time

ReadTemp

Normalize

Co@reTe CompareTemp I

Tu v@r

TurnAir I

(a) Control (b) Data

Fig. 6: Control (a) and data (b) misspeculations.

To reduce execution overheads, SpecFaaS also keeps in the
FaaS controller node a software table with the sequence of
functions that the application needs to execute. This Sequence
Table is created at the application compile time. For each
function, it records the next function to execute. For functions
that may invoke one of multiple possible functions, the entry
incorporates the branch predictor entry described above. The
Sequence table allows the controller to immediately identify
the next function to call without the need to invoke a compo-
nent like the Conductor in OpenWhisk, hence minimizing the
Transfer Function Overhead (§ III).

SpecFaaS is a generic design for modern serverless infras-
tructures. It works with both implicit and explicit application
workflows (§ II). Moreover, while in this paper it targets
warmed-up environments, it is also effective if the FaaS
infrastructure is not equipped with any of the previously-
proposed optimizations that remove the function cold-start
overheads shown in Figure 3. Indeed, consider Figures 5(a)

and 5(c). Each of the bricks shown may or may not include
the function start-up overheads; in either case, SpecFaaS can
reduce the execution time of the application substantially. In
this paper, we will assume by default that all the function
start-up overheads have been removed by previously-proposed
optimizations. Finally, while we implement SpecFaaS in the
OpenWhisk serverless framework [18], it can be implemented
in other frameworks as well.

V. SPECFAAS DESIGN

Figure 7 shows an overview of the SpecFaaS system. For
a given application, the controller node maintains a soft-
ware structure representing the pipeline of not-yet-committed
functions of the application (Function Execution Pipeline).
Functions are ordered in program order and tagged based
on whether they are speculative or not, and whether they
have completed or not. In addition, the controller keeps
the application’s Sequence table (which includes the Branch
Predictor), the application’s Data Buffer and, for each function
in the application, the Memoization table. The Sequence
and Memoization tables can remain in the controller across
invocations of the application and, at every invocation of the
application, are augmented with more execution information.

Controller

FaaS Workflow

Sequence Table
with Branch

e |
Predictor ‘ |_"'f4 ‘f3 ‘fl ‘fo ‘
1

Memoization

Function Execution Pipeline

Tables Scheduler
Validator/
Squasher Data Buffer

Worker

-

Worker

Worker
4 fo

Worker
1fa 2 f3 3 fi

Parallel
Workers

Fig. 7: Overview of the SpecFaaS system.

During execution, the controller repeatedly picks the next
function to execute (speculatively or not) from the Sequence
table, launches it in one of the nodes, and detects any misspec-
ulations. If a function misspeculates, the controller squashes
and potentially re-launches the function and its successors;
otherwise, it eventually commits the function. In the process,
the controller updates the application’s Function Execution
Pipeline, Sequence table, Data Buffer, and Memoization ta-
bles. We now describe the main structures.

A. Sequence Table and Branch Prediction

The Sequence table lists the ordered sequence of functions
to be executed—like the sequence of instructions in a pro-
gram. It enables the controller to pick the next function to
launch with minimal overhead. However, like programs, FaaS
applications have branches that SpecFaaS wants to predict in
advance. Hence, the entries of the Sequence table for functions
with branches are augmented with a branch predictor entry.

Figure 8(a) shows an application where function f5 can be
followed by either f3 or fg. Figure 8(b) shows the application’s



Sequence table. The entry for f; includes a pointer to the entry
for f¢ and a branch predictor entry. The latter contains state
that determines whether the controller should take the branch
to fe or just proceed to the next entry, which is f3’s.
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(b) Sequence Table with Branch Predictor
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Path
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1
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Fig. 8: Example of execution workflow (a) and corresponding
Sequence table with Branch Predictor (b).

The branch predictor entry contains the probability to take
the branch. Such probability is obtained by recording the
outcome of previous invocations of f5. If the probability
is higher than a threshold, the controller will speculatively
launch fg; if it is lower than another, lower threshold, it will
speculatively launch fs. In our case, we find that branches in
FaaS applications are highly biased. More specifically, we find
that the path of functions executed from the beginning of the
application until the branch typically determines the branch
outcome. For example, it may be that if f; is reached from f,
and f1, the branch is typically taken, but if reached from f
and f11 (not shown in the picture), it is typically not taken.
Hence, as shown in Figure 8(b), a branch prediction entry has
a sub-entry for each possible path that reaches fs.

If the branch at a given function f can have N targets, then
the Sequence table entry for f has N-1 pointers and a branch
predictor entry with the probabilities of invoking each of the
targets (for each path reaching f). While OpenWhisk does not
support more than two targets, other frameworks do [14], [35].

The controller keeps a record of the sequence of functions
executed so far. On a branch, it checks the appropriate pre-
dictor and decides which speculative path to follow. Once the
branch resolves non-speculatively, the controller updates the
predictor and, if the prediction was incorrect, squashes the
mispredicted functions and executes the correct path.

B. Function Memoization

A function often produces outputs that are consumed as
inputs by its successor function. To speed-up execution, Spec-
FaaS executes the successor function speculatively without
waiting for the predecessor function to complete. To accom-
plish this, the controller maintains a per-function Memoization
table. The table contains input values that a function has taken-
in in the past, and the corresponding output values that the
function has produced. With this support, when the controller
launches a function f with a given set of inputs, it checks
f's Memoization table. If the specific input values are found,
the controller retrieves the output values from the table and
speculatively launches the successor function of f passing the
retrieved values as inputs. When f commits, the controller
validates f’s execution.

Note that, even if f is invoked with inputs present in its
Memoization table, we still need to execute f. This is because
many FaaS functions also read and write global (i.e., non-
private) data beyond their inputs and outputs. As a result,
f may read global data that causes f to produce unexpected
outputs. Further, f may issue updates to global state, which
cannot be skipped. In addition, f may get squashed before
completing execution. For example, the Data Buffer may
detect a dependence violation (§V-C), where f reads a global
variable that is later written by a predecessor of f. Because of
all these cases, f must execute and validate at its commit time
that it produces the expected outputs. If f generates unexpected
outputs, when f commits, f's Memoization table is updated.

Some FaaS functions are pure, meaning that they do not
read or write any global state. Therefore, the inputs that
they take fully determine the outputs that they will generate,
and they do not have side effects. To speed-up execution,
SpecFaaS allows programmers to declare pure functions using
the pure-function annotation (§VI). When the controller is
about to launch a function and finds from its Memoization
table that the function is pure, it skips the execution of the
function and launches the successor function with the outputs
retrieved from the table.

If a function takes input values that are not yet in its
Memoization table, the successor is not launched until the
predecessor completes. Later, when the predecessor completes
and commits, the pair of input-output values are saved in a new
row of the Memoization table.

Our measurements of real-world datasets show that Memo-
ization table sizes are relatively modest. The combined tables
for all the functions in one application use 100 to 1K entries,
which consume 1.5KB to 30KB.

C. Data Buffering

In serverless environments, nodes may have software caches
that temporarily store remote data accessed by a locally-
running function [43], [62], [65], [74], [82]. While different
designs are possible, the goal of the caches is for functions to
be able to re-access previously-accessed data with low latency.

In SpecFaaS, because some functions are executed specu-
latively, we need one additional level of data buffering per
application invocation. A new buffer, called the Data Buffer,
exists in the node running the controller for the application
invocation. The Data Buffer can receive requests from all the
nodes that are currently running functions of the application
invocation. Its goal is to detect and manage data dependences
between two concurrently-executing functions of the appli-
cation: (i) a non-speculative and a speculative function, or
(ii) a speculative and a more speculative function. If an in-
order RAW dependence is detected, the requested data is
forwarded from the Data Buffer to the node running the
successor function; if the RAW dependence is out-of-order, the
controller sends a squash signal to the successor function (and
to the successor’s successors, recursively). The Data Buffer is
also able to manage in-order and out-of-order WAW and WAR
dependences without squashes.



At a high level, the Data Buffer is used as follows. When a
function updates a record, the runtime system, in addition to
updating the local cache, it sends the update to the Data Buffer.
The Data Buffer stores the update and checks if any successor
function has prematurely read the record. If so, the successor
function (and its successors) are squashed and re-started.

When a function reads a record that the function has not
accessed before, the runtime system sends the request to the
Data Buffer, which provides the record. The record is also
stored in the local cache. Note that the Data Buffer is only
accessed if the read is exposed—i.e., the function has not yet
read or written the record. If the read is not exposed, the read
gets the data from the local cache.

In more detail, the Data Buffer is a table with a row
for each record accessed by the in-progress functions of the
application—i.e., the functions that are being executed or that
have just executed but not yet committed. Each row has the
address of the record plus a circular buffer with as many
columns as the maximum number of in-progress functions
supported, ordered by their program order. Each column has
Valid (V), Read (R), and Write (W) bits, and space to store the
updated record. Figure 9 shows a Data Buffer with two rows
and three columns per row. Assume that the non-speculative
function uses the leftmost column and, as successor functions
are executed speculatively, they take the second and third
columns in order. When a write or a read to a record from
function i reaches the Data Buffer, the controller accesses the
row for the record and performs the following operations.

Functioni—1 Function i Functioni + 1

Address
v|r|w| pata |v[r|[w| pata |v[r|w| para
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Fig. 9: Data Buffer for an application invocation. Each row
corresponds to a record, and each column to an in-progress
function of the application invocation.

Write Operation. The controller scans the R bit of all the
successor functions of i in order. The scanning ends at (and
includes) the first column that has the W bit set. If any column
has the R bit set, the controller sends a squash message
to the corresponding function and all its successors. Then,
the columns for the squashed functions are invalidated and
re-assigned to a new speculative execution of the squashed
functions. Moreover, the local cache of the squashed functions
is invalidated. The updated record is stored in Function i’s
column and the W bit is set.

Read Operation. The controller scans the W bit of all the
predecessor functions of i in reverse order. As soon as a set W
bit is found, the data in that column is read and provided to
the requester. If no W bit is set, the data is requested from the
global storage and provided to the requester. In either case,
the R bit in Function i’s column is set.

When a Function i that executes non-speculatively com-
pletes, it can commit. In the Data Buffer, committing involves
writing back to global storage the records in Column i that

have the W bit set, clearing out Column i, and re-assigning it
to a new, most speculative function. The immediate successor
function becomes non-speculative.

As an example, consider Figure 9. If Function i issues a
write to Record 2, an out-of-order RAW dependence is de-
tected and the controller will squash Function i+ 1. If Function
i issues a read to Record I, an in-order RAW dependence is
detected and the Data Buffer will provide Value I generated
by Function i-1.

The logic described seamlessly handles WAR (R; — Wa2)
and WAW (W; — W) dependences. Indeed, assume out-
of-order dependences: W5 occurs first; later, when the other
access (Rq or W) occurs, it will neither read from W5 nor
squash W5y’s function. Assume now in-order dependences:
when W5 occurs last, it affects neither R; nor Wi.

Minimizing the frequency of squashes. It is possible that
a communication over remote storage between two functions
of the same application triggers a squash in many of the
application’s invocations. To avoid this case, we augment
the controller as follows. When the controller detects that a
function is frequently squashed due to prematurely reading
a given record that a predecessor function later updates, the
controller remembers the producer-consumer function pair and
the record causing the data dependence. The next time that
the consumer tries to read the record, if the record is not yet
updated by the producer, the controller stalls the consumer.
The consumer remains stalled until the producer either updates
the record or completes its execution. With this support, we
minimize the number of squash operations.

D. Speculating Implicit Workflows

The presence of applications with implicit workflows re-
quires some extensions to SpecFaaS. To describe them, we use
as an example the workflow of Figure 10(a), where function
f1 can call subroutine functions f, and fs.

As indicated in § II-A, FaaS frameworks do not typically
know the internals of functions and, therefore, do not know
the static call graph of implicit workflows. Consequently,
SpecFaaS may be able to augment the Sequence table, Data
Buffer, and Memoization tables with information for fo and
fs only after one or more dynamic invocations of fi. After
those, the structures are augmented as follows.

The Sequence table is augmented to support implicit work-
flows as shown in Figure 10(b). The entry for f; has as many
pointers as functions it can call. The pointers have a Call (C)
bit set, to indicate that this is a call. In the example, the f;
entry has pointers to the entries for fo and f3. Each of these
entries has a Return (R) bit that, when set, tells the controller
to return to the caller on completion. In addition, the entry for
f1 has one Branch Predictor entry for each of the functions
it can call. As in Figure 8, a Branch Predictor entry has as
many sub-entries as possible paths that may reach f;. With
this design, when the controller launches fi, it checks the two
Branch Predictor entries and decides whether to speculatively
launch any combination of f5 and f3—possibly in addition to
the function that follows f7 in sequence.
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Fig. 10: Extensions to the SpecFaaS structures to support implicit workflows.

The Memoization table of f; is also augmented to support
implicit workflows. As shown in Figure 10(c), each row of
the f; table contains, in addition to the usual f; input and
output values, the expected input values for fo and f3. With
this support, when the controller launches f; (speculatively
or otherwise) with the input values from one row of the
Memoization table, it can also speculatively launch fo and
fs with their corresponding input values from the same row.

With these structures, we can now examine the execution
of the fi, fo, and f5 functions. Figure 10(d) shows the
conventional execution of this implicit workflow, assuming
that both fo and f3 are executed and that we have three
cores (one for each row of Figure 10(d)). We see that f;
stalls while f; and f3 execute, keeping the core idle. In
contrast, Figure 10(e) shows the execution under SpecFaaS.
The three functions execute concurrently, with at least fo and
f3 executing speculatively. When the core running f; reaches
the point where it needs to call fs, if fo has not yet completed,
it stalls until f5> completes; then, it resumes executing f;. We
choose to stall because the continuation of f; is often data-
dependent of f, and, if these dependences are violated, the
whole f; has to be squashed. The same policy is used for
f3. However, as shown in Figure 10(e), when f; reaches the
point of calling f3, f3 has already completed. Therefore, f;
does not need to stall.

Our policy of stalling the caller until the callee has finished
executing speculatively is also key to simplifying the operation
of the Data Buffer. With this policy, before a function f calls
a subroutine s, both f and s have columns in the Data Buffer
and f is a predecessor of s. When s returns, the Data Buffer
column of s is merged into the column for f.

Figure 10(f) shows the Data Buffer for our example work-
flow. Between times O and ¢; (when fy completes), the Data
Buffer has columns for fi, fo, and f3—as usual, columns to
the right are more speculative. At t;, the fo column is merged
into f1’s. Between ¢; and to (when f; is about to call f3

and finds that fs5 has already completed), the Data Buffer has
two columns. At ¢y, the f3 column is merged into fi’s. At
any time, reads and writes always manipulate the Data Buffer
with the algorithm of §V-C.

E. Implications on Scalability and Security

SpecFaaS does not introduce scalability bottlenecks. In
particular, the controller is not a bottleneck, as a machine has
many independent controllers spread across different nodes—
each controller managing a set of invocations of the same or
different applications. The same is true for the controllers in
current systems.

In current systems, the controller for an application invo-
cation already keeps track of the function chain’s progress
and receives results from all the functions in the chain.
With SpecFaaS, the controller additionally keeps the sequence
table with the branch predictor, memoization tables, and Data
Buffer for the chain. These structures are relatively small. The
sequence table with the branch predictor and the memoization
tables are kept on a per-application basis, the Data Buffer is
kept on a per application invocation basis. The Data Buffer is
destroyed at the end of the application invocation.

SpecFaaS can guarantee that executing and squashing spec-
ulative functions does not result in information leakage as fol-
lows. First, structures like branch predictors and memoization
tables are never updated with speculative data. Second, on
a squash, any software structure that holds speculative state
(e.g., the Data Buffer) is invalidated. Finally, any state that
a speculative function loads into microarchitectural processor
structures (e.g., caches or TLBs) can be handled with known
defenses (e.g., partitioning the structure, flushing the structure
on context-switch or squash, etc.). We implement the first two
but not the last one. The reason is that, for the microarchitec-
ture to be safe from speculative attacks, one would also have
to implement known defenses against branch miss-speculation
attacks (e.g., Spectre), which would slow-down both SpecFaaS
and the baseline configuration substantially.



VI. SPECFAAS IMPLEMENTATION ASPECTS

We have implemented SpecFaaS on top of Apache Open-
Whisk [18], a serverless cloud platform. SpecFaaS runs trans-
parently to serverless applications. We modify the OpenWhisk
controller to support speculative execution, the software struc-
tures required, and the function runtime to intercept remote
storage operations. The implementation takes about 1K lines
of Scala and 500 lines of Python. In this section, we describe
some of the implementation challenges.

Minimizing Squash Cost. When SpecFaaS detects a mis-
speculation or dependence violation, it needs to squash the
incorrectly-executed functions. There are three ways in which
SpecFaaS can implement the squashing mechanism. First,
SpecFaaS could allow the squashed functions to complete their
execution in the background but never propagate the functions’
global state updates. This approach allows container reuse
for subsequent invocations but wastes CPU cycles. Second,
SpecFaaS could squash the functions by terminating the con-
tainers as soon as the mis-speculation or violation is detected.
This approach frees the CPUs from useless execution, but it
takes a long time to stop a container (=10s). Moreover, this
approach disallows the reuse of the containers for subsequent
invocations. Finally, our chosen mechanism is to kill only
the processes executing the functions inside the containers
while leaving the containers alive. This approach frees CPU
cycles, is very fast (=1ms), and allows safe container reuse
for subsequent invocations.

We modify the function runtime. Instead of having a sin-
gle process perform the function initialization and serve all
invocation requests, the SpecFaaS runtime has two types of
processes: the Initializer process that performs the function ini-
tialization and waits on new requests, and Handler processes
that serve requests. When the initializer receives a request,
it forks a handler process and forwards the input values to it.
The handler executes the function, returns the results, and dies.
Every request is served by a new handler process. In this way,
squashing a function is cheap, as it only involves terminating
the handler process. The container and its initializer process
remain active and can serve subsequent requests.

Side-effect Handling. As observed in §III, FaaS functions
have three common types of side effects: writes to global
storage, writes to temporary local files, and HTTP requests.
SpecFaaS handles writes to global storage with the Data Buffer
mechanism (§V-C). Writes to temporary local files are handled
by a scheme similar to copy-on-write for memory pages. As
long as a handler process only reads from a file, it can use
the shared initial file. However, when it tries to update the
file, it creates its own temporary file, with a unique name.
From this moment on, all reads and writes by the handler
are directed to the new temporary file. When the handler
completes execution, all of its temporary files are discarded.
We implement this functionality by intercepting file-related
syscalls and redirecting the operations to the appropriate files.

SpecFaaS detects when a speculative function tries to issue

an HTTP request that is not a function call or a storage access.

In this case, it delays the operation until the function turns
non-speculative. This is implemented by intercepting sendto
socket syscalls and checking flags to see the origin of the call
and whether the caller function is speculative. When a stalled
speculative function turns non-speculative, if the speculation
is validated, the sendto operation in performed; otherwise the
function is squashed without performing the sendro operation.
In the applications we measure in this paper, functions do
not have other side effects. However, SpecFaaS handles a wide
range of other potential side effects. It handles them in a man-
ner similar to how it handles the sendto operation. Specifically,
all globally-visible side effects need to invoke syscalls. Some
syscalls are safe, while others are not. For example, the getters
syscalls (i.e., get PID, UID, time, capabilities, file-status, etc.)
account for about 50 syscalls and are safe. SpecFaaS maintains
a list of unsafe syscalls and, whenever a speculative function
issues one such call, SpecFaaS intercepts it and suspends the
function until the function turns non-speculative.
Storage Request Interception. SpecFaaS is transparent to the
application. Its runtime intercepts read and write operations
issued by functions to the global storage. Specifically, we
modify the function runtime to intercept the get and set
operations to the Redis [5] key-value store. The runtime
redirects operations first to the OpenWhisk controller, which
may update the Data Buffer. When a function commits, its
buffered updates are flushed to global storage; when a function
is squashed, its buffered updates are discarded. Given that the
key-value interface is the main storage interface for FaaS [32],
[33], [43], [70], [82], our interception is generically applicable
to other storage services.
Function Annotations. SpecFaaS gives programmers the op-
tion to specify custom speculation policies for functions in
a workflow. We implement this capability with OpenWhisk’s
function annotation support [16]. SpecFaaS currently supports
two annotations. The first one is non-speculative, which
specifies that the function should not be executed speculatively.
In this case, the controller does not launch the function
until all its predecessor functions are committed. We use this
annotation when we know that the function has dependences
that would typically induce squashes. The second annotation
is pure-function, which specifies that the function is pure
and, therefore, the controller should skip its execution if it
finds a matching input in the function’s Memoization table.
Configurability. SpecFaaS provides configurations to tune
the level of speculation based on the workload type and
the load of the machine. First, SpecFaaS does not perform
branch speculation for branches whose current probability
of being taken is within a configurable, short range around
50%. Second, SpecFaaS reduces the depth of speculation (i.e.,
the number of functions that are speculative at a time) to a
configured threshold when the load of the machine is above a
certain other threshold.

VII. EXPERIMENTAL METHODOLOGY

Platform. We run our experiments on five AMD EPYC 7402P
servers. Each server has one socket with 24 cores (each 2-way



TABLE II: Applications used in the evaluation.

FaaSChain — 6 real-world FaaS applications with explicit workflows ]

Login

Banking [13]
FlightBook [12]
HotelBook [33]
SmartH [84]
OnlPurch [77]

TrainTicket — 5 open-source FaaS applications with implicit workflows ]

Login user and send profile info (3 functions)
Withdraw money from account (6 functions)
Book flight, hotel and car for trip (11 functions)
Book the best available nearest hotel (7 functions)
Turn A/C if temp is above threshold (7 functions)
Buy an item from the closest store (13 functions)

TcktApp Get all tickets for a given trip (15 functions)
TripInfApp Get information about the trip (24 functions)
QueryTrvl Get travel-specific information (8 functions)
GetLeftApp Get unsold tickets for given time frame (5 functions)
CancelApp Cancel an order (4 functions)

Alibaba — 5 implicit workflow applications from production-level traces ]

multi-threaded), a 128MB Last Level Cache (LLC) and 128GB
of DRAM. The OS is Ubuntu 20.04.2 LTS.

Our evaluation focuses on warmed-up scenarios, where
functions and containers are available in main memory. Before
starting our measurements, we first run the functions, and do
not evict any containers from memory—our servers have suffi-
cient memory to host all the containers in memory. Therefore,
our evaluation does not count cold-start effects, which have
been the main focus of much prior work (e.g., [8], [32],
[57], [60], [65], [73], [80], [83], [86]). Note that SpecFaaS
is effective in both warmed-up and cold-start scenarios (§IV).

We set the following values for the configurable parameters.
First, a RAW dependence that causes the squash of a given
function three times in a row triggers the controller to stall
the function. Second, branches whose current probability of
being taken is 60% or higher, 40% or lower, or between 40-
60% are speculatively taken, speculatively not taken, and not
speculated, respectively. Finally, for machine loads between
60-70%, between 70-80%, and above 80%, the maximum
speculation depth is 6, 5, and 4 functions, respectively.

Application Suites. To comprehensively evaluate SpecFaaS,
we use three application suites: FaaSChain, TrainTicket [87],
and Alibaba [50]. Table II lists the applications in each suite,
and Table I characterizes these suites.

FaaSChain. We developed this new FaaS application suite
that has six real-world FaaS applications. The applications
have different characteristics, with chain lengths varying from
2 to 10. Functions are implemented in Python and use explicit
workflow, following the best practices in AWS [10].

TrainTicket. We select five representative applications from
the serverless TrainTicket suite [31]. Applications are com-
posed with implicit workflows, mainly because the code is
ported from a microservice-based implementation.

Alibaba. We select five representative implicit application
workflows from Alibaba’s production microservice traces [50].
Traces provide the call graphs of each application (from which
we infer the workflow) and the execution time of each function
of the application. However, the function code is unavailable.
For space reasons, in the evaluation, we show data only for
the average across the five applications.

Application Input Data Sets. For FaaSChain, we use real-
word data sets from repositories in the web [15], [58], [79]. In

some cases, the data set does not provide enough information
to determine the outcomes of control dependences, such as
for login information in the workflow of Figure 1. In such
cases, we use synthetic data for the outcomes of branches.
Specifically, we assume a 90% hit rate for the branch predictor,
which is the average hit rate observed in Alibaba’s traces. We
discuss the impact of branch prediction accuracy in §VIII-E.

For TrainTicket, we lack a sizable input data set of train
tickets. Hence, as a high-fidelity input set, we use a real-world
dataset of three million airline tickets purchased in 2021 from
the Bureau of Transportation Statistics [23].

Like in prior research on serverless systems [8], [20], [36],
[68], [71], [78], [86], we use the Poisson distribution to model
the request inter-arrival time. In the evaluation, we use Low,
Medium, and High, to refer to load levels of 100, 250 and 500
application requests per second (RPS), respectively.

VIII. EVALUATION
A. Response Time and Speedups

We measure the end-to-end response time of applications,
from the moment the client sends a request to the point it
receives the result. Using this response time, we compute the
speedup of SpecFaaS over the OpenWhisk baseline. Recall
that all our experiments are performed under warmed-up
conditions. Figure 11 shows the average speedup of each
application for different loads. The figure also shows bars for
the average of each application suite.
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Fig. 11: Speedup of SpecFaaS over the baseline for different
request loads.

SpecFaaS effectively reduces the response times and, as a
result, delivers speedups across all applications and load levels.
On average, the speedup is 4.6%.

Consider the FaaSChain applications. On average, SpecFaaS
delivers speedups of 5.2x, 5.0x, and 4.9x in low, medium,
and high load, respectively. Typically, the speedups slightly
decrease with higher load because of the higher resource
utilization induced by parallel function execution in SpecFaaS.
However, for short-running applications like Login, speedups
increase. The reason is that, as the load increases, Platform
and Transfer Function overheads (§III) account for a larger
fraction of the execution time, and SpecFaaS reduces them.

The TrainTicket and Alibaba applications show similar
speedups. For TrainTicket, SpecFaaS attains average speedups
of 4.2x, 4.4x, and 4.3 in low, medium, and high loads. For
Alibaba the average speedups are 4.4x, 4.5x, and 4.6x.

As indicated in §IV, SpecFaaS is effective in both cold
and warmed-up environments. We repeat the experiments in



Figure 11 without warming-up the environment and see similar
average speedups across all loads: 5.2x, 4.5x, and 4.7x for
FaaSChain, TrainTicket, and Alibaba, respectively.

B. Speedup Breakdown

We attribute the speedups of SpecFaaS to three main com-
ponents: branch prediction, data memoization, and squash op-
timization. Squash optimization was described in Section VI:
rather that using the naive approach of terminating the contain-
ers on mis-speculation or violation (second approach in that
section), SpecFaaS terminates processes but not containers. To
assess the impact of each component, we apply one technique
at a time. Figure 12 shows the speedups for the different
applications averaged across all loads. We apply, in order and
cumulatively, branch prediction, data memoization, and squash
optimization.

[ BranchPredictor 1 DataMemoization HEl Branch+Memoization [ SquashOpt
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Fig. 12: Breakdown of SpecFaaS speedups.

Three of the FaaSChain applications (Login, Banking, Fight
Booking) do not have data dependences; consequently, their
bars have only two categories. Moreover, for implicit work-
flows, as used in TrainTicket and Alibaba, the branch predictor
and the memoization table optimizations cannot work without
each other. First, without branch prediction as shown in
Figure 10(b), we cannot even build a memoization table, like
the one in Figure 10(c). Second, consider a function f that
calls subroutines. Without a memoization table for f, branch
prediction cannot help because we cannot speculatively call the
subroutines since we do not know their inputs. In contrast, in
explicit workflows, if f finishes with a branch, we know the
input of its successor functions because they take the same
input as f. Therefore, for TrainTicket and Alibaba, a single
category combines branch prediction and memoization.

The figure shows that all three techniques contribute sub-
stantially to the speedups. Consider the branch predictor first.
Without it, SpecFaaS would not be able to speculate on control
dependences. With it, SpecFaaS attains an average speedup
of 2.9x in FaaSChain. The branch predictor of SpecFaaS
obtains an average branch prediction hit rate of 98% and 90%
in TrainTicket and Alibaba, respectively. For FaaSChain, we
assume a 90% hit rate (§VII).

Consider now memoization. Without it, SpecFaaS would not
be able to speculate on data dependences. With it, SpecFaaS
attains substantial additional speedups. The combination of
branch prediction and memoization delivers average speedups
of 3.9x, 3.5x, and 3.5x for FaaSChain, TrainTicket, and
Alibaba, respectively. A modest-sized memoization table suf-
fices. For example, a 50-entry memoization table obtains an

average 96% hit rate in TrainTicket applications. In FaaSChain
applications, which vary more, the average hit rate with 50
entries ranges from 65% to 98%. In addition, many functions
are pure and, therefore, SpecFaaS could use the memoization
table to avoid executing them completely. For example, this is
the case for more than 57.6% of the function invocations in
TrainTicket. However, to be conservative in the evaluation, we
do not perform this additional optimization. The Data Buffer
size is also modest: it has at most 12 columns and 4 rows, for
a total of 3KB.

Finally, the squash optimization is also effective. By apply-
ing it on top of the other two optimizations, SpecFaaS attains
average speedups of 5.0x, 4.4x, and 4.5x for FaaSChain,
TrainTicket and Alibaba, respectively.

C. Throughput Improvement

We define effective throughput as the maximum number of
requests per second that are serviced without QoS violation.
A QoS violation occurs when the average response time of the
requests is more than 2x the response time when the system
only serves one single request. Table III shows the average
effective throughput of each application suite for baseline and
SpecFaaS, and the improvement obtained by SpecFaaS. From
the table, we observe that SpecFaaS improves the effective
throughput substantially. On average across application suites,
SpecFaaS improves the throughput by 3.9x.

TABLE III: Effective throughput in requests per second.

Application Suite | Baseline | SpecFaaS | Improvement |

FaaSChain 118.3 485.0 4.1x
TrainTicket 90.3 346.0 3.8%
Alibaba 81.6 304.2 3.7x
Average 96.7 378.4 3.9x%

D. Tail Latency

SpecFaaS also reduces tail latency significantly. Figure 13
shows the P99 (99th percentile) response time of SpecFaaS
normalized to the baseline for the three application suites and
different loads. On average across loads, SpecFaaS reduces the
tail latency by 62%, 56% and 58% for FaaSChain, TrainTicket,
and Alibaba, respectively. The average tail latency reduction
across loads and applications is 58.7%.
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Fig. 13: Tail latency of SpecFaaS normalized to the baseline
tail latency for varying system loads.

The reason for the high tail latency in baseline is the
sequential allocation of resources and execution of functions,
and the high transfer function overhead. The system waits
for a function to complete before allocating resources for the
following function. Instead, SpecFaaS allocates resources and
executes functions early on.



E. Effect of Branch Prediction

We analyze the effect of branch prediction hit rates on over-
all performance. Figure 14 shows the speedup of SpecFaaS
over the baseline for the FaaSChain applications and averaged
across all loads, as we vary the branch prediction hit rates. We
show data for 100%, 90%, 70%, and 50% hit rates.
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Fig. 14: Speedup of SpecFaaS over the baseline for different
branch prediction hit rates.

As we decrease the hit rate from 100% (a perfect predictor)
to 90% (the hit rate observed with Alibaba’s trace [50]), the
average speedup decreases by 5.7%. As the hit rate continues
to decrease, the speedups decrease substantially. The impact of
branch misprediction depends on where the branches are in the
application workflow. If they are in the front-end, more work
is likely to be discarded. Although not shown, the difference
between the perfect and imperfect predictors becomes larger
when the load is high because misspeculation is relatively
more costly in such environments.

F. Resource Utilization

SpecFaaS uses more resources than the baseline because
some speculative work is squashed. In this section, we measure
the contribution of the squashed work to the CPU utilization.
We take the FaaSChain applications and vary the hit rate of
speculation (i.e., how frequently control and data speculation
succeed) from 100% to 50%. Table IV shows the average
CPU utilization for two speculative environments: LazySquash
(where mis-speculated functions are allowed to complete their
execution in the background before squashing) and SpecFaaS
(where mis-speculated functions are immediately squashed).
The CPU utilizations are normalized to the baseline, which
is also shown in the table with a utilization of one. The last
column of the table shows the average speedup of SpecFaaS
over baseline. The data corresponds to the average of all loads.

TABLE 1IV: Normalized average CPU utilization for
FaaSChain for different speculation hit rates.

[ HitRate | Baseline | LazySquash | SpecFaaS | Speedup |

100% 1 1 1 5.2
90% 1 1.09 1.03 5.0x
70% 1 1.24 1.08 4.6
50% 1 1.43 1.15 4.0x

The 90% row is bolded because it corresponds, approxi-
mately, to the average speculation hit rate attained by Spec-
FaaS. We see that, for this hit rate, SpecFaaS increases CPU
utilization by only 3%, while achieving a 5x speedup. This
is a tolerable cost, as the CPUs are typically busy only 60-
80% of the time (§III). Moreover, squashing mis-speculated
functions immediately saves substantial CPU cycles.

IX. RELATED WORK

Most prior works address performance bottlenecks when
executing a single function. They use lightweight containers
specialized for serverless environments [7], [60], snapshotting
techniques to reduce VM boot time [24], [29], and techniques
that provide isolation for multi-tenancy [85]. Moreover, to
reduce cold start latency, serverless platforms keep function
containers alive for a grace period [32], [59], [69], and
researchers propose advanced techniques [6], [48], [52], [66],
[80]. SpecFaaS speeds-up multi-function applications.

Function workflows have recently gained great attention.
However, prior work primarily focuses on addressing the
cascading cold start via proactive and just-in-time resource
provisioning [20], [27], [36], [72]. These solutions bring the
next function to execute into warm state and thus, can only
mitigate the cold start effect. SpecFaaS addresses both cold
and warmed-up invocations through function overlap.

Netherite [22] is a distributed execution engine that allows a
function to pass global updates to its successor function before
the updates make it to global storage—a process they call
speculation. SpecFaaS uses a similar form of data forwarding
in the Data Buffer, plus speculation of function execution.

SAND [8] and Faastlane [44] reduce latency and improve
resource efficiency of function chaining by executing all the
functions of a workflow in the same container. The techniques
are orthogonal to and can be combined with SpecFaaS.

Prior work proposed different local and remote in-memory
caching techniques to bring data closer to processing units
in FaaS systems [43], [62], [65], [74], [82]. SpecFaaS is
orthogonal to these techniques and, additionally, uses caching
to buffer speculative data.

Many works proposed memoization techniques for dataflow
jobs [21], [30], [37], [46], [64], [67], [81]. Contrary to
SpecFaaS, these systems are not speculative. Hence, they do
not need mechanisms to detect wrong memoization, squash
incorrect executions, or restart from the correct state.

X. CONCLUSION

This paper proposes to accelerate serverless environments
with a novel approach based on speculation. Our proposal,
SpecFaa$, executes functions in an application early, specula-
tively, before their control and data dependences are resolved.
The execution of downstream functions is overlapped with
that of upstream ones, substantially reducing the end-to-end
execution time of applications. Our evaluation on Apache
OpenWhisk showed that SpecFaaS is very effective. On aver-
age, it attains an application speedup of 4.6 in a warmed-up
environment. Further, the application throughput increases by
3.9x and the tail latency reduces by 58.7%.
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