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Abstract—In a world designed for legs, quadrupeds, bipeds,
and humanoids have the opportunity to impact emerging robotics
applications from logistics, to agriculture, to home assistance. The
goal of this survey is to cover the recent progress toward these
applications that has been driven by model-based optimization
for the real-time generation and control of movement. The
majority of the research community has converged on the idea of
generating locomotion control laws by solving an optimal
control problem (OCP) in either a model-based or data-driven
manner. However, solving the most general of these problems
online remains intractable due to complexities from intermittent
unidirectional contacts with the environment, and from the many
degrees of freedom of legged robots. This survey covers methods
that have been pursued to make these OCPs computationally
tractable, with specific focus on how environmental contacts
are treated, how the model can be simplified, and how these
choices affect the numerical solution methods employed. The
survey focuses on model-based optimization while paving its
way for broader combination with learning-based formulations
to accelerate progress in this growing field.

I. INTRODUCTION

Over the past decade, we have witnessed rapid growth in
the capabilities of legged robots, transitioning from a state of
the art where only a few research groups had access to capable
platforms, to one where robust locomotion is now common in
industry and academic laboratories. This rapid progress has
been enabled by a combination of advances across design
and control, with optimization-based control strategies play-
ing a central role in many of the milestone demonstrations
during this period. Through these advances, current bipeds,
quadrupeds, and humanoids can now walk reliably in nominal
environments, and these improved capabilities have led to the
first practical deployments of legged systems (e.g., the robot
Spot from Boston Dynamics). In a world built for legs, the
growing scope of these deployments offers a broad opportunity
for impact on applications spanning logistics (e.g., delivery),
agriculture, and home assistance, among many others.

Across these applications, optimization-based control strate-
gies offer many advantages as a pathway to (or component of)
capable autonomy. Two prevailing types of optimization-based
control have been pursued: predictive and reactive. Predictive
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Fig. 1. Optimization-based control has been a common enabler for legged
systems to handle complex environments [3], [10], [34], [58]-[60].

controllers consider an explicit system model to “reason” (in a
strictly mathematical sense) about the consequences of their
actions, iteratively devising and improving motion plans in
response to the situation at hand. Reactive controllers, by
contrast, only consider their actions for the current instant.
The execution of these controllers may depend on the system
model, or may be model-free (e.g., the result of offline policy
optimization). The benefits of the model-based approach are
that it allows one to naturally consider safety constraints,
which will be critical for many of the envisioned applications
for legged robots. An additional motivation is that first-
principles models generalize well to unforeseen situations,
which will be an asset for flexible autonomous deployments.
There is also a growing interest in extending model-based
methods by augmenting or complementing them with learning-
based approaches, e.g., learning hard-to-model aspects of the
physics, accounting for perception, or addressing higher-level
aspects of decision making that are not amendable to physics-
based reasoning. With this big picture in mind, a central goal
of the review is to synthesize the past decade of model-based
advances so that they can be further improved in the future and
also incorporated with learning-based strategies—ultimately
accelerating the practical deployment of legged robots.

A. Historical Context for the Survey

Much of the recent progress in optimization-based control
for robots rests on decades of progress from the mathematical
programming community and its early translation to our field.
The idea of using optimization for the specification and control
of robot movement traces back to decades before its current
popularity (e.g., [61]). The 1990s saw the use of quadratic
programming for torque control of redundant manipulators
[62], with the 2000s seeing generalizations of these ideas for
the control of humanoids in simulation [63]—[65]. The advent



of polynomial-time solutions to important classes of convex
optimization problems in the mid-1990s [66] and subsequent
commercial solvers (e.g., [67]) has contributed to the rise in
maturity and accessibility of optimization solutions for control.
Building on these advances, work in the late 2000s and in the
wave of research before the 2015 DARPA Robotics Chal-lenge
(DRC) focused on convex optimization for maintaining balance
via reactive control (e.g., [43], [68], [69]). The role of
optimization in these accomplishments has since led to
recent work on pushing the boundaries of predictive control
for quadrupeds and humanoids executing broader dynamic
locomotion in more challenging environments.

B. Survey Goals

The overarching goal of this survey is to provide a synthe-
sized entry point into this recent body of work. As such, our in-
tention is for the survey to serve as the most effective resource
for early-stage graduate students, while also providing new
perspectives and targeted follow-on reading for established
experts. Work since the DRC has led to many new methods for
optimization through contacts, for real-time optimization using
new simplified models, and through advances to numerical
methods for handling ever more complicated robot models.
These advances are the primary focus of the review.

Beyond covering this past work, a secondary motivation
for this survey is to provide the background for the next
steps in legged locomotion research, enabling these systems
to move beyond nominal environments and unlock mobility in
unstructured terrains. A great deal of current research
interest focuses on how to combine machine learning strategies
with previously developed model-based ones. In this sense,
the survey will provide valuable background for machine
learning practitioners to come up to speed on existing model-
based approaches. Other research continues to push forward
numerical methods and algorithms for legged robots to make
informed model-based decisions. The survey should serve as
a valuable overview of recent work for these groups as well.

II. PROBLEM STATEMENT AND OVERVIEW

During the last decade, most of the research community
working on legged robots (humanoids and quadrupeds in
particular) has converged to the idea of generating motion
based on the formulation of an Optimal Control Problem
(OCP). In a high-level form, such an OCP can be written as:

r(r)win(i)rr(\)ize Cost(x(); u(); () (1a)

subject to M(q)_ + C(q;) + glg) = ST + Je(q)" (1b)
ContactConstraints(x(t); (t); u(t); Env) (1c)
KinematicsConstraints(x(t)) (1d)
InputConstraints(u(t); x(t)) (1e)
TaskConstraints(x(t); u(t); (t)) 8t: (1f)

The (infinite-dimensional) decision variables of the OCP are
the trajectories of state x = (q;), control u, and contact
forces exchanged between the robot and the environment
Env. The robot configuration is represented as q, whereas

its velocity as . Eq. (1a) is a user-defined cost function
representing a metric to minimize, such as energy consumption
or distance to a desired target. Eq. (1b) represents the nonlinear
whole-body robot dynamics [70], where M(q) is the mass
matrix, C(q; ) accounts for Coriolis and centrifugal forces,
q(g) contains the gravity forces, S is typically a matrix that
selects the actuated degrees of freedom, and J.(q) is the con-
tact Jacobian. Eq. (1c) encodes the contact-related constraints,
such as non-penetration of rigid objects and friction-cone force
constraints. Eq. (1d) includes state constraints resulting from
the kinematics, such as joint position and velocity limits.
Eq. (1e) typically includes the motor torque limits, but it could
in general represent any input constraint. Finally, (1f) can be
used to include any task-specific constraint in the OCP, such
as fixed initial/final state, or field-of-view limits for a camera.
Clearly, this OCP is very general and therefore allows
one to encode a wide variety of movements. For instance,
point-to-point locomotion can be generated by specifying the
initial and final robot states [29]. An object manipulation
behavior could instead be computed by including the state
of the object in x and specifying its desired value with an
appropriate cost function [32], [71], [72]. While appreciating
its versatility, we should acknowledge that some intrinsic
limitations do exist in the OCP approach. For instance, it is
hard to ensure stability [29] or robustness for the computed
trajectories [39]. However, this review focuses on another lim-
itation and how to address it: the computational complexity of
the problem. Indeed, problem (1) hides several challenges, the
main ones being: non-smoothness/stiffness of the dynamics,
nonconvexity, and dimensionality. The rest of this section acts
as an executive summary of the rest of the paper by briefly
discussing different approaches to tackle these challenges.
Each aspect is analyzed more thoroughly in Sections I11-VI.

A. Contact Models

The first issue (non-smoothness/stiffness), which is dis-
cussed in detail in Section IlI, arises from physical contacts
modeled in (1c). Contacts can be modeled as either rigid or
visco-elastic. With appropriate choices, visco-elastic models
ensure continuous dynamics, and smoothing techniques can
be used to make them differentiable. The downside of visco-
elastic models is that large stiffness values are necessary
to generate realistic behaviors. This feature leads to stiff
differential equations with corresponding numerical challenges
for simulation and optimization.

Alternatively, contacts can be modeled as rigid (i.e., no
penetration is allowed). When two points make contact, their
relative velocity must immediately become zero to avoid pen-
etration. Therefore, the robot dynamics must be described by
a mix of continuous-time and discrete-time equations, i.e., as a
hybrid dynamic system. The resulting OCP can then be tackled
either as a Linear Complementarity Program (LCP) [10], [13],
[73] or as a Mixed Integer Program (MIP) [21], both of which
require customized optimization techniques that are typically
much less efficient than classic smooth optimization strategies.

A common way around this non-smoothness is to let the
user fix the order in which contacts are made and broken.



This makes the dynamics time-switched (a special case of hy-
brid dynamics) and the OCP differentiable, therefore efficient
smooth optimization can be used. The obvious downside is
that it may be hard to guess the contact phases.

B. Dynamic Models

Besides the contact dynamics, the other major source of
complexity is the robot multi-body dynamics (1b), which
is high-dimensional and nonlinear. In turn, this makes the
resulting optimization problem high-dimensional and non-
convex. The high dimension is especially concerning in the
context of online optimization, where fast computation times
are mandatory. The non-convexity instead is always concern-
ing, as it makes the solver sensitive to the initial guess that s
used. As partial or total remedy to these issues, several
simplified models have been proposed in the literature (also
known as reduced-order models, or template models), and they
are discussed in Section |V. These models should capture the
most important part of the robot dynamics with a reduced
state size. For example, for locomotion, the widely-used
Linear Inverted Pendulum (LIP) model [47] considers only the
contact locations and the Center of Mass (CoM) of the robot,
neglecting the details of joint angles and velocities. While
simplified models are key enablers for fast online computation,
their simplifying assumptions (e.g., constant CoM height), or
neglected constraints [74] (e.g., joint position and torque
bounds) can severely limit the generated motions.

C. Optimal Control Solution Methods

After the OCP is mathematically formulated, there are a
range of design choices that remain for solving it. General
optimal control methods can be categorized as direct methods,
indirect methods, or those based on dynamic programming.
Within robotics, direct optimization methods prevail almost
universally. However, even after choosing to use a direct
method, the optimization formulation needs to be approx-
imated as a finite-size nonlinear program to be solved by a
numerical solver. This approximation process is called
transcription and it crucially affects the results in terms of
accuracy, numerical stability, and computational complexity.

Two families of transcription methods have been used in
robotics (shooting and collocation) and we discuss them in
Section V. A shooting method known as Differential Dynamic
Programming (DDP) has been a topic of recent interest in the
community due to its favorable computational properties and
provision of a locally optimal feedback policy. More generally,
but specific to direct optimization for locomotion, we examine
how contact modeling choices affect the choice of transcription
tools and algorithms available, which becomes most critical
when optimization is left to freely choose contact sequences.
Table | serves to categorize the choices that state-of-the-art

papers have used in adopting different approaches for
modeling the contacts and their sequencing, for simplifying
the dynamics, and, ultimately, for numerically solving variants
of (1). In practice, the highlighted approaches play a key role
in breaking problem (1) into many smaller subproblems that
focus on building an overall solution in a hierarchical fashion

TABLE |
OVERVIEW OF THE STATE OF THE ART.
Papers Cmtzr:jtslct Gait Dynamics Transcription
[IT-15]1 Soft/Smoothed Optimized Full DDP
[6] Soft/Smoothed Optimized Full Collocation
[7] Soft/Smoothed Optimized Simplified Collocation
[81, [9] Rigid Optimized Full DDP
[10]-[15] Rigid Optimized Full Collocation
[16]-[24] Rigid Optimized Simplified Collocation
[25]-[28] Rigid Fixed Full DDP
[29]-[31] Rigid Fixed Full Multiple Shooting
[32]-[34] Rigid Fixed Full Collocation
[26], [35] Rigid Fixed Simplified Multiple Shooting
[36]-[38] Rigid Fixed Simplified DDP
[39]-[46] Rigid Fixed Simplified Collocation
[471-[57] Rigid Fixed Simplified Single Shooting

(e.g., solving for footsteps first, then optimizing motions with
fixed footsteps).

D. Trajectory Stabilization via Whole-Body Control

Depending on the complexity of the formulated OCP, the
computation time may be too large for it to be solved inside a
fast control loop for Model Predictive Control (MPC). In these
cases, a reactive stabilizing controller is required to execute
the computed motion on real hardware, or to provide control of
aspects of the system that were ignored during trajectory
optimization (e.g., due to modeling simplifications). In the
last decade, the legged robotics community has converged
on a certain class of reactive optimization-based whole-body
control techniques, which mainly rely on the fast solution of
small convex Quadratic Programs (QPs) to compute motor
commands as a function of state feedback.

These QP techniques have represented an evolution of
previous operational-space control paradigms for the control of
manipulators. However, for legged systems, new problems re-
lated to contact constraints, impacts, self-collisions, etc., have
motivated a broader perspective on this classical problem. The
most general extensions have focused on treating constraints
via task-space inequalities. In spite of many extensions, the
formulation of reactive control as an instantaneous control
strategy has enabled the method to retain a convex formu-
lation that is lost in more general transcription strategies.
The convex-optimization perspective on reactive control has
also enabled other paradigms [43], [75]-[77], conventionally
separate from operational-space control, to be incorporated as
well. We describe these techniques in Section VI, while also
reflecting on recent advances in whole-body MPC.

[11. CONTACT

Computationally tractable treatment of physical, frictional
contact with the environment, which leads to stiff and/or
discontinuous equations of motion, is a fundamental challenge
in optimization-based control for robotics and a primary
distinction between (1) and standard optimal control problems.
As a result, design decisions for (i) how to model the effects of
contact and (ii) the sequencing or scheduling of contact events
play a significant role in distinguishing different approaches to
solving (1). Specifically, the details in this section center on
how the choice of contact model affects parameterizations of
the force and the form of the contact constraints in (1c).



This section is comprised of two parts. In Section IlI-A,
we outline common techniques and associated numerical chal-
lenges for numerical models of contact dynamics. In Section
[11-B, we describe how the need to sequence contact events
affects the algorithmic and modeling choices.

A. Modeling contact

Highly accurate mechanics models define contact as visco-
elastic, representing local deformations of surfaces and the
corresponding stress-strain relationships. Some approaches in
robotics, particularly in soft robotics (e.g., [78]), do attempt to
accurately represent deformation, which prevents interpenetra-
tion between bodies. Rigid-body approximations, by contrast,
do not consider deformation but do permit some penetration
between contacting bodies. The resulting contact forces are
modeled as a function of penetration depth, relative normal
and tangential velocities, and material properties. Rigid-body
models are most commonly used and will be the focus of this
review. Noting critical definitions here, we write (q) to be the
vector-valued signed distance function, for all possible con-tacts.
Jn(q) and J¢(q) are the normal and tangential Jacobians, such
that Jn(q) and Jt(q) are the contact frame velocities. Normal
and tangential forces are similarly decomposed into, and ¢,
and, where convenient, we use Jc(q) and to represent
stacked contact Jacobians and forces. The contact force,
therefore, can be expressed as

= Fcontact(; Je )5

Common methods treat this function as a nonlinear spring
and damper (e.g., [79], [80]), where unilateral constraints
determine when the spring releases; typically, contact forces
cannot “pull”, constraining n 0, and so separation occurs if
< 0. However, to accurately represent the interaction be-tween
rigid bodies, Fcontact is numerically stiff [81], inheriting the
mechanical stiffness of the material properties in the robot.
When making and breaking contact ( = 0), Fcontact may also
be non-differentiable. Frictional effects exhibit similarissues:
in dry Coulomb friction, + depends on the sign of the
tangential velocity, which is discontinuous.

Simply introducing these stiff or discontinuous dynamics to
(1) leads to a poorly conditioned optimization problem and is
generally avoided. Algorithmic approaches, therefore, tend to
focus on one of two choices: (i) infinitely stiff representations,
as hybrid models, or (ii) smoothing or softening Fcontact to
improve numerical performance. An illustrative example of a
single contact is shown in Fig. 2, demonstrating the resulting
state trajectory and, critical for optimization-based control, the
sensitivity of the solution with respect to initial conditions.

1) Hybrid dynamics: In the limit of infinite stiffness, when
contact is initiated, the resulting forces become impulsive;
impacts, therefore, cause an instantaneous jump in velocity.
While a full description of hybrid systems is outside the scope
of this review (see [84], [85] for an overview), we briefly note
the principles here. Hybrid systems are defined by modes,
guards, and resets. In this context, the mode is the contact
state: identifying which objects are touching, and whether they
are sticking or sliding. Guards determine when mode transi-
tions occur, for instance making or breaking contact, and the
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Fig. 2. In an illustrative conceptual example, a particle heads toward a
wall, with inelastic impact when g = 0. Three common contact models are
compared, showing (top-to-bottom) position, velocity, and sensitivity of
velocity to initial conditions. (Blue) A Hunt-Crossley spring model [82]
activates when contact occurs at q(t) = O, allowing some penetration.
The sensitivity @v(t)=@qo is well-defined, though not smooth (C1) at the
impact. (Orange) a relaxed (softened) complementarity model, like MuJoCo, is
smooth, with contact forces occurring prior to contact [83]. (Green) a hybrid
model with inelastic impact captures rigid behavior with an instantaneous
jump in velocity, noting that @v(t)=@qp is undefined at impact. All models
have well-defined gradients away from the impact event, enabling effective
differentiation in these regimes. For the hybrid and spring model, these
gradients are zero prior to contact; for the relaxed model, as it is smooth,
these gradients are non-zero everywhere.

reset map R specifies the result of the transition (e.g., impact)
x* = R(x ). Within a given mode, the dynamics are well-
defined and differentiable; thus, this formulation compresses
the complexity of contact to the guards and transition events.
Referring to the root optimal control problem (1), a hybrid
formulation typically explicitly splits the decision variables
x(); u(); () by mode, introducing boundary constraints at the
resets when transcribing the dynamics in Section V.

2) Complementarity models: A mathematically equivalent
formulation of hybrid contact dynamics relies upon comple-
mentarity constraints [86], [87], where a relationship between
and x implicitly defines the hybrid dynamics. For example, a
non-penetration condition (q) 0, combined with , 0, and the
property that forces can only be non-zero when in contact
leads to the complementarity constraint

0n? (q) 0;

where n ? (gq) means that the vectors , and (gq) must
be orthogonal, which is equivalent to T (q), = 0. This
formulation can be expressed in time-stepping [73] or
continuous [88] models, with a similar set of complementarity
constraints used to capture Coulomb friction.

3) Pathologies: Hybrid formulations of multi-contact
robotics, while effective for simulation and control, can exhibit
certain pathologies where solutions do not exist or where



infinite solutions are possible [86], [89]. These challenges are
the limiting case of the high sensitivity to initial conditions
seen in the stiff differential equations. From the perspective
of optimization-based control, stiff dynamics leads directly to
poorly conditioned optimization problems. Alternatively, for
instance when using hybrid or complementarity models, plan-
ning algorithms that assume uniqueness therefore implicitly
(perhaps even unbeknownst to the algorithm designer) select
from the set of possible solutions (a property, for instance, of
[10]). In many scenarios, this selection is benign; in others, it
indicates that the resulting trajectory is practically impossible
to track, due to the non-uniqueness. Non-uniqueness can occur
in many scenarios; most commonly, if Jc(q) is rank deficient.
Think, for example, of static indeterminacy with a four-legged
table, where the normal force distribution is indeterminate.

4) Hybrid differentiability: In the hybrid formulation, while
both the resulting trajectories x(t) and the equations of mo-
tion may be discontinuous, under certain circumstances it is
possible to generate well-conditioned derivatives of x(t) with
respect to initial conditions and control actions [90], [91] (see
Fig. 2 for an example). Typically, these derivatives exist if
the sequence of modes is constant; the event times themselves
might change, but the order does not and all transitions are
inevitable. When deviations might change the mode sequence,
resulting trajectories are often not differentiable with respect
to initial conditions or parameterizations, but may admit
more general sensitivity characterizations [90]. Practically, if a
trajectory x(t) does not make contact, then no amount of local
differentiation provides insight into the effects of initiating
contact; put more explicitly, solutions x(t) are non-analytic in
their initial conditions and control inputs. This property poses
natural challenges for optimizers to discover new contacts
through local information alone, and this motivates many
relaxations or other tailored strategies for scheduling contacts.

To mitigate this issue, certain simulators ensure global
differentiability or even smoothness (termed differentiable sim-
ulation, e.g., MuloCo [83] or TDS [92]). While these methods
do consistently generate local gradients, this inevitably ties
the accuracy (stiffness) of the underlying model to stiffness
in the resulting optimization problem. The precise nature of
this trade-off and the relevance of the different modeling
inaccuracies (see, e.g., [93], [94]) remain unknown.

B. Scheduling contact

As the discussion of differentiability above implies, there
are clear distinctions in computational tractability between ver-
sions of (1) with a fixed, known mode sequence and variations
where the optimization problem must also determine the order-
ing. In many robotics problems, this sequence may be clear;
for example, bipedal walking over flat terrain typically follows
a “left foot, right foot” ordering with minimal deviation. In
others, for instance, movements using whole-body contact or
locomotion over varied surfaces with multiple potential
foothold locations, the challenge of finding an optimal ordering
may dominate the control problem.

1) Known modes sequences: In this setting, once dis-
cretized (see Section V), the hybrid optimal control problem

is differentiable with respect to the transcribed decision vari-
ables. In some settings, particularly when deploying simplified
models or when seeking stability proofs, it is common to use
minimal coordinates to represent the configuration of a robot
in contact (e.g., [95], [96]). Contact points are transformed
into pin joints, removing degrees of freedom and simplifying
the resulting optimal control problem. When contact modes
change, however, the hybrid jump must also capture the
change in dimension of the state space. The use of minimal
coordinates is computationally efficient, although it is difficult

to impose constraints (e.g., friction) on ; as inverse dynamics
are necessary to reconstruct the constraint forces. Furthermore,
in multi-contact settings, where the contacts generate a closed
chain, global definitions of minimal coordinates may not exist.

The more general formulation utilizes the same excess,
or floating-base coordinates for all contact modes. The con-
strained dynamics then enforce that active contacts remain
touching [29], [97]. Some approaches directly compute the

force, e.g., (x;u) [97]. This approach has the advantage
of relative simplicity, though heuristics are necessary when
the rigid-body force is non-unique. Alternate methods include

(t) as a decision variable (see (1)), along with corresponding
constraints to ensure physical accuracy. Imposing constraints
differentially in this fashion comes at the risk of constraint
drift due to integration error, typically addressed via implicit
integration schemes [33], Baumgarte stabilization [27], or a
mixture of approaches [98].

2) Hybrid sequence optimization: As an immediate ex-
tension of the known-sequence scenario, one could jointly
optimize over the discrete states of the hybrid sequence and the
corresponding robot motion. This can naturally be expressed
via mixed-integer optimization [17], [21], or as a bilevel
optimization problem [16]. Mixed-integer programs (MIPs)
have been used to compute contact sequences accounting for
obstacle avoidance and step-to-step reachability [99] and ap-
proximated as computationally efficient L1-norm minimization
(SL1M) [100]. Other strategies ensure “quasi-static” feasibility
by limiting the search to “quasi-flat” contact surfaces (i.e.,
surfaces where the friction cone contains the gravity direction)
[100]. In the worst case, these methods must explore every
possible mode sequence, and so are most effective when
there are relatively few potential sequences or when effective
heuristics are available to guide the search.

Sampling-based techniques are an alternative to MIPs. For
instance, rapidly-exploring random trees (RRTs) have been
used to plan footsteps on flat ground, avoiding obstacles [101].
Similarly, probabilistic road maps (PRMs) have been used to
plan a collision-free path for the robot’s base, keeping it close
enough to the environment to allow for contact creation [102].

3) Contact-implicit planning: Contact-implicit (alterna-
tively, contact-invariant) methods are variations on hybrid op-
timization that embed the relationship between state and force
into a nonlinear program, implicitly representing the hybrid
mode without discrete variables. Approaches here are most
often based on either the complementarity formulation [10],
[103] or on smooth approximations of the contact dynamics
[3], [7]. Prior to convergence, these methods typically violate
strict complementarity, thus simultaneously exploring multiple
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contact sequences. Contact-implicit optimization, however, can
suffer from poor numerical conditioning and can require high-
quality initial guesses. Contact-implicit methods have found
applications in many robotic domains, including MPC [1]
and gait optimization for microrobots [14]. Recent work has
focused on improving numerical performance, for example by
using simplified models [18], [20] or improving the accuracy
of the numerical integration schemes [12], [13]. While these
methods are typically limited to offline computation, progress
has been made in real-time scheduling of contact [15], [23]
These previous contact-implicit approaches explicitly ac-
count for the hybrid nature of planning through contact.
Alternatively, gradient-based methods, like iLQR or DDP
(see Section V-C), can be applied. This is most common
when coupled with a differentiable contact model, enabling
the optimization method to “discover” new modes (when it
happens to bump into them, perhaps guided by the smoothingin
the differentiable model) [1], [5]. Other methods maintain a
rigid model, and consider gradient analyses around the contact
sequence found during forward simulation (e.g., [8], [9]),
leveraging the almost everywhere differentiability discussed
above. Broadly speaking, these methods are typically highly
sensitive to their initializations and struggle to discover contact
sequences that vary dramatically from that of the initial guess.

C. Summary

When the sequence of environmental contacts can be known
a priori, then the choice of contact model should focus purely
on physical realism, as nearly any transcription method can be
applied without disruption. It is substantially more difficult,
however, to simultaneously plan motion and contact schedule.
While significant progress has been made over the last decade,
contact planning remains the main challenge for generating
arbitrary locomotion behaviors in complex environments. Ul-
timately, this challenge arises from our reliance on gradient-
based optimization, which despite being the workhorse behind
the progress discussed in this survey, is fundamentally unsuited
for non-smooth contact-implicit problems.

1) Relationship to learning: While this review focuses on
model-based optimization, there is an implicit requirement that
such a model must first be identified or learned. Methods

for learning and identification of contact align closely with
the modeling choices detailed in this section. When contact
modes are known or can be easily identified for the training
data, hybrid approaches are commonly used [93]. Otherwise,
machine learning can be directly applied to a smoothed or dif-
ferentiable contact model (e.g., [104]). Alternatively, contact-
implicit methods have led to data-efficient mechanisms for
contact model learning [105]. Aside from identifying models,
machine learning has also shown promise in identifying (or
providing high-quality guesses for) potential mode sequences
for control [106], [107], where an effective pre-solve for
the mode schedule substantially reduces the computational
difficulty of the subsequent trajectory optimization. We note,
as well, that model-free reinforcement learning (RL), which
has been widely applied to similar problems in control (e.g.,
legged locomotion [108]), also commonly leverages smoothed
(or stochastic [109]) contact models.

IV. SIMPLIFIED MODELS

A second source of complexity for the efficient solution of
(1) arises from the whole-body dynamics model (1b). As noted
earlier, the dynamics of legged systems are high-dimensional
and nonlinear, and these features correspondingly make the
optimization problem high-dimensional and nonconvex. These
challenges motivate simplified models in place of (1b) that
capture its most salient features in a reduced set of differential
equations. A central question is then how to select such a
simplified model. We use the evolution in Fig. 3 to walk
through the most common modeling simplifications adopted.

The role that contacts play within the whole-body dynamics
(1b) has motivated the majority of simplified models em-
ployed to date. For a floating-base system, it is common to
partition the generalized velocity as = (; j) wherep =
('s; vb) 2 R® gives the angular and linear velocity of the
floating base and j the generalized velocity of the joints. With
this partitioning in , the dynamics are partitioned as
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Suppose now that the robot is given a desired motion
(qa(t); a(t)). Considering (2), the left-hand side of the equa-
tion is fixed along the desired motion, and so the motion



is possible only when the equation can be satisfied through
proper choice of joint torques and contact forces . If the robot
has sufficiently strong actuators, then can be chosen to satisfy
the bottom set of equations. However, since joint torques do
not affect the first six rows, the main dynamic limitations on
movement are determined by the contact force constraints (i.e.,
friction and unilaterality).

A. Centroidal Dynamics - Modeling and Optimization

It can be shown that the first six rows of (2) describe the
evolution of the net linear and angular momentum of the
system as a whole [110], [111]. It is common to consider
the angular momentum about the CoM denoted kg 2 R3, as
this quantity is both conserved during free flight and empiri-
cally remains close to zero during human walking. Denoting
the total linear momentum as lg 2 R3, these momenta
compose the centroidal momentum hg = (kg; lg) 2 R®
[112]. This quantity is related to the generalized velocities
via hg = Ag(q), where Ag(q) is called the centroidal
momentum matrix [112]. Consider a case with nc contact
points at locations fpig & . It can be shown that the top rows of
(2) are equivalent to: =1

Ne
_ ke _ 0 X (pi Pcom) i .
ke = = Mag+ - o (3)
where pcom = [Cx; Cy;cz]"7 gives the CoM position, M the

total mass, and ag the gravitational acceleration [110], [111].
It is important to note that M %pCOM = |lg. These centroidal
momentum dynamics (3) (also called the centroidal dynamics)
motivate solving a reduced problem posed over trajectories
for the CoM pcom, angular momentum kg, contact locations
pi, and contact forces i. Such a reduction loses detail about
contacting limbs, with forces no longer restricted according to
the contact models of the previous section.

While the reduction to a centroidal dynamics model ad-
dresses the high-dimensionality of the original problem, it
remains non-trivial to ensure that centroidal solutions are
whole-body feasible, since they neglect the geometric con-
straints and actuation bounds. This omission in the model has
motivated planning with whole-body kinematics and centroidal
dynamics [18], or by alternating between centroidal dynamics
and whole-body solves [26], [55]. Despite these advances,
heuristic constraints on the CoM and footholds (e.g., to ensure
reachability) remain prevalent, and simple bounds on the
angular momentum (or fixing it to zero) are often used to
simplify the problem.

Even with these simplifications, the centroidal dynamics (3)
contains nonlinearities in the angular momentum equation due
to bilinear terms from the cross product (p; pcom) .
Tailored methods to address these terms have been a topic of
great focus. Dai et al. [41] consider fixing a-priori a polytopic
or ellipsoidal region for the CoM, enabling optimization of an
upper bound on the magnitude of the angular momentum.
Valenzuela [113] considers relaxing the bilinear equalities with
McCormick envelopes and employing mixed-integer convex
optimization (see also, [21], [22]). Fernbach et al. [46] pre-
sented a development where contact locations are fixed and

the CoM trajectory is parameterized via a Bézier curve with
one free knot point, which avoids nonlinear effects. Overall,
many choices exist for optimizing centroidal trajectories, with
tradeoffs between accuracy and computational efficiency.

It is possible to further simplify the optimization of contact
forces by considering their net effect. Given frictional limi-
tations, each individual contact force ; is constrained to a
friction cone Ci. Then, the net effect of these forces is a 6D

cone knO\(vn as the Contact Wrench Cone (CWC)

Xe Pi=com i

CWC = i2C; 8i2fl:::;ncg
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When each friction cone is replaced with a polygonal approx-
imation (e.g., friction pyramid), then the CWC is a polyhedral
convex cone, and many tools from computational geometry
are available to support its use in planning (c.f., [114]). The
CWC plays an integral role in checking for static stability
in multicontact scenarios [115], [116] and more recently has
seen applicability for multicontact CoM motion generation
[42]. Feasibility constraints based on the CWC are natural
generalizations of the zero-moment point (ZMP) criteria [117]
to multicontact. Since the computation of the CWC is itself
costly, it is most useful when the CWC can be precomputed
offline (e.g., when contact locations are known in advance).

B. Other Simplified Models

The centroidal dynamics (3) are a special modeling simpli-
fication in that they represent a projection of the equations of
motion without adding artificial restrictions on possible move-
ments (i.e., any whole-body feasible motion can be projected
to a feasible solution of the centroidal dynamics). Many other
simple models follow by adopting artificial motion restrictions
(or approximations) to further simplify analysis and optimiza-
tion. The suitability of these approximations/restrictions is
often dictated by the robot morphology being modeled.

A common simple model for quadruped locomotion is the
single-rigid-body (SRB) model (e.g., [57], [118], [119]). This
simplification is motivated by the light leg designs of many
quadruped robots, which makes the total rotational inertia of
the system |g about the CoM approximately invariant with
configuration [120]. Thus, the SRB can be viewed as a
restricted version of the centroidal momentum model in the
case when the mass distribution takes a constant shape.
Variations on the model accommodate inertia shaping [119],
[121], however, there is an important subtlety that must be
kept in mind. While the linear momentum of a system is
related to its CoM velocity (i.e., the rate of change in some
average position), the angular momentum cannot, in general,
be equated to the rate of change in any meaningful average
orientation of the system [122]. This property is intimately
related to the fact that the conservation of angular momentum,
in general, defines a non-holonomic constraint [110].

The most common simple model for humanoid gait plan-
ning considers the centroidal dynamics with k¢ = 0 (i.e.,
thus removing consideration of orientation dynamics) and the
additional restriction that the CoM height ¢, takes a fixed
value denoted h. Rather than considering a collection of



contact points, when walking on level ground, the overall
Center of Pressure (CoP) position pcor = [px; Py; Pz]T can
be considered with p, = 0 an assumed ground height.
These restrictions lead to the LIP B/Iodel [47] with dynamics:
ey = !12(cx;y Px;y) where ! = = g=h represents its natural
frequency. The beauty and power of the LIP reside in that these
dynamics are linear, enabling convex optimization for planning
CoM and CoP trajectories [49] or linear systems tools (e.g.,
LQR) for trajectory tracking [43].

More recently, work has focused on discharging assump-
tions on the CoM height for added flexibility [123]. One
approach is to model height variations as a perturbation to the
LIP [52] along with constraint tightening to ensure robust fea-
sibility. Rather than treating height variations as a disturbance,
they can be introduced into the dynamics model [36], [123]. A
common simple form is pcom = ag+k(pcom Pcor) Where k
represents a variable stiffness-like parameter, constrained to be
positive. Strategies for running (e.g., based upon the spring-
loaded inverted pendulum model) [124], [125] can be seen
as placing additional restrictions on the form of k to mimic
a Hookean spring. Overall, these point mass models remain
most applicable to bipeds and humanoids where orientation
dynamics can be minimized by ensuring all GRFs pass close
to the CoM. This is also the case with a subset of quadruped
gaits (e.g., trot walking), while others (e.g., bounding) cannot
satisfy kg = 0, and are more amenable to SRB models.

C. Summary

Modeling simplifications are commonly employed to reduce
the computational burden for dynamic planning in legged
robots. The most successful of these models (e.g., the cen-
troidal model, SRB model, and LIP model) focus their mod-
eling detail on addressing motion limitations imposed by
contact interactions. The centroidal model does not impose
any restrictions on motions (i.e., it represents a projection of
the whole-body dynamics), while the other simplified models
result from adding motion restrictions. These simplifications
can unlock new structure (e.g., linearity) that can be leveraged
for motion optimization problems over them (e.g., using the
methods in the next section). In all cases, many whole-body
details remain to be planned (e.g., swing foot trajectories). This
omission represents a main downside to simple model plan-
ning, motivating more advanced numerical methods (Section
V) for the efficient optimization of whole-body plans.

1) Relationship with learning: There are many ways
emerging learning strategies have been used to advance the
application of simplified models for locomotion planning.
With regard to the models themselves, this review has covered
existing strategies based on considerations of physics and
expert intuition. Moving forward, the automatic discovery of
simple models remains an important open problem (c.f.,
[126]). Other work has looked at how to close the gap
between simplified models and their whole-body counterparts,
for example, to learn constraints on simplified models that
address kinematics constraints at the whole-body level [74] or
that address the gap via learning robust MPC strategies [127].
Yet other strategies have wrapped full RL pipelines around

low-level control based on simple models [128] to increase
the sample efficiency of learning. It should be acknowledged
that even though RL strategies are often architected (e.g., via
autoencoders) to learn low-dimensional representations within
their layers (c.f., [129]), these latent representations remain
difficult to interpret. It is an open problem whether the existing
simplified models may be used to increase the interpretability
of learned controllers as well.

V. NUMERICAL METHODS FOR SOLVING OCPs

While the decomposition of our general problem formula-
tion in Section || (e.g., via modeling simplifications) remains a
bit of an art, the technical details of solving a trajectory
optimization problem represent a field unto its own. This field
has benefited from contributions across engineering applica-
tions ranging from chemical process control [130], to flight
planning [131], and others. We begin this section by making a
few simplifications to our general problem (1), so that we may
review the most common methods for solving OCPs at large,
which provides context for the most common approaches taken
for robotics in particular. We then gradually discharge our
original simplifications, and explain nuances that arise in OCPs
for locomotion. The treatment of these nuances has recently
fueled a rapid increase in whole-body optimization, where the
need for online re-planning has led to the development of fast
structure-exploiting solvers tailored for robotics.

To begin, let us consider (1) in the case of a single contact
phase (e.g., optimizing a trajectory for a humanoid doing an
in-place dance on two feet). For better alignment with the dy-
namic optimization literature, we rewrite the dynamics (1b) as a
system of first-order ordinary differential equations (ODEs)
x(t) = f(x(t); u(t); p(t)), with contact forces (t) treated
(mathematically) as time-varying parameters p(t) = (t). The
formulation can also be readily extended to consider time-
invariant parameters. In the presence of contacts, the contact
points must not move relative to the ground, which can be
written as an algebraic constraint g(t; x(t); u(t); p(t)) = O.
These ODEs, combined with the algebraic constraints, lead to
a system of differential-algebraic equations (DAEs) [130]. A
generic nonlinear OCP for such a system can then be
considered as:

VA t
minimize ‘(x(t); u(t); p(t))dt + L(x(ts)) (4a)
x();u();p() to
subject to x (t) = f(x(t); u(t); p(t)) (4b)
0= g(x(t);u(t);p(t))  8t2 [to;tr]; (4c)

where the objective function, with running cost * and terminal
cost L, is minimized over the time interval [to; tf] subject to
the system dynamics defined by the DAEs. While the variables
above match those in our original formulation (1), the problem
could equally apply to a whole-body or simplified model.

For locomotion problems, the formulation (4) requires ex-
tension to consider how the dynamics change in different



Supporting Theory

Computation

Global

Hamilton-Jacobi-Bellman (HJB)

Numerical PDE Solvers or Dynamic Programming

Direct (discretize then optimize)
Local

Indirect (optimize then discretize)

Numerical Integration

Pontryagin Maximum Principle (PMP)

Direct Shooting/Collocation & NLP
Indirect Shooting/Collocation & Root Find

TABLE 1l
HIGH-LEVEL RELATIONSHIP BETWEEN OPTIMAL CONTROL SOLUTION METHODS. THIS SURVEY FOCUSES MOSTLY ON DIRECT METHODS FOR
CONTINUOUS-TIME PROBLEMS DUE TO THEIR PROMINENCE IN ROBOTICS APPLICATIONS.

contact modes. Here, we assume that the mode sequence is
fixed a-priori, and consider the multi-phase problem:
"Z #

ph Sj

minimize ’j (x(t); u(t); (t))dt+ L (‘.x(s )j)
x(s)l;;::(:):;;r:n();h j=1 s

p (52)
subject to x (t) = fj(x(t); u(t); (1)) (5b)
gi(x(t); u(t); (t)) = 0 (5¢)
hi(x(s;)) = 0 (5d)
x(s7) = Rj(x(s; ) (5e)
8t2 [sj 1;si; j = Lu5npn (5f)
So = to; Sn,, = tf; (58)

where j = 1;:::; npnh denotes the phase index, with the time
interval of the j-th phase given by [s; 1;sj], and npnh the
number of phases. At the mode switch, a guard constraint
(5d) is typically used to ensure the active contact points are
in contact with the environment. Depending on the contact
model, the reset maps (5e) may correspond to the impact
dynamics or to switching between coordinate representations.

Generally speaking, many methods for solving an OCP only
apply directly to (4) in the ODE case, but often admit exten-
sions to the DAE and multi-phase settings. These methods
can be categorized in three groups: global methods based
on the Hamilton-Jacobi-Bellman (HJB) equation (or Dynamic
Programming in discrete-time), local indirect methods, and
local direct methods (see Table I1).

Methods based on Dynamic Programming exploit Bellman’s
principle of optimality [132] to solve a discrete-time version
of the OCP (4). They do so via finding the optimal cost-to-go V
(to; xo) (also called the Value function). In continuous time, the
Value function must satisfy a Partial Differential Equation
(PDE) known as the HJB. Its solution can be approximated
by discretizing time and space and applying dynamic program-
ming. Howeuver, it is well-known that the complexity of this
strategy increases exponentially with the number of states and
controls. Therefore, it is not directly applicable to most legged
robots, requiring clever approximate decomposition strategies
for application to high DoF models [133], [134].

Indirect methods transform the original OCP into a Bound-
ary Value Problem by using Pontryagin’s Maximum Princi-
ple [135] to formulate the so-called co-state equations. This
approach enables pre-optimizing the control as a function of
state and co-state if the dynamics are control affine—which is
the case for most legged robots. Indirect methods turn the
OCP into a root-finding problem, which can provide fast and
accurate solutions. It can be challenging to initialize the
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Fig. 4. Depiction of multiple shooting. Each shooting segment is associated
with a numerical simulation (e.g., via a numerical integration method).
Optimization variables include the states x; at the beginning of each segment
and variables describing the controls applied in each segment. Constraints
enforce continuity, i.e., that the defect between segments is zero.

co-state for these methods, and additional mechanisms (e.g.,
homotopy) are needed to enforce state inequalities [136].

Direct methods have been more broadly adopted by the
legged robotics community, and are generally compatible with
DAEs. In direct methods, the OCP is transcribed into a finite-
dimensional Nonlinear Program (NLP) by discretizing the con-
trols and states with respect to time. Therefore, direct methods
directly find the minimum of (1a), where the NLP can be
solved with well-established optimization techniques, e.g., Se-
quential Quadratic Programming (SQP) [137]. The differences
between various direct methods lie in how the discretization is
carried out. In the following, we focus exclusively on the three
prominent direct methods in the community, namely direct
multiple shooting, direct collocation, and Differential Dynamic
Programming (DDP). A more comprehensive review can be
found in [138].

A. Multiple shooting

In direct shooting methods [139], the controls u(t) are
discretized over the time horizon, while the state trajectories
are obtained via forward integration. In contrast to single
shooting, where a single integration is performed over the
whole time horizon, in multiple shooting, the time horizon is
discretized, then integration is performed on each of the
segments (Fig. 4). The initial state of each segment is added
to the decision variables, and continuity constraints are in-
troduced to guarantee that the final state of each segment i
(computed with integration) matches the initial state of the
next segment i + 1. In essence, as in Fig. 4, the initial
optimization problem is divided into smaller optimization
problems over the discretized grid, whose initial conditions
can be set separately. By parameterizing the time horizon with a
series of Initial Value Problems (IVP), the time interval over
which integration is performed is shortened, reducing
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Fig. 5. Depiction of collocation. Each finite element is associated with a
polynomial that approximates the trajectory. Optimization variables include
the states x; at each endpoint, and states/controls at each collocation point.
Constraints enforce that the endpoint defect is zero, and that the slope of the
approximating polynomial matches the evaluation of the dynamics function f
at each collocation point.

the high sensitivity issue of single shooting and preventing
states from diverging. This makes multiple shooting deliver
rather robust solutions, as shown in [140], which motivated
many researchers to use it for motion generation with complex
robots.

In particular, the use of multiple shooting has been popu-lar
for generating motions considering whole-body dynamics
where contact modes are set a priori, i.e., predefined contact
sequences. This is the case of [29] and [31], where contacts
are assumed to be rigid and impacts are instantaneous and
inelastic. The resulting OCP is then a multi-phase problem
with discontinuous phase transitions, as in (5). In [30], the
authors used multiple shooting to optimize virtual constraints
as part of gait design for a Hybrid Zero Dynamics (HZD)
controller with a compliant bipedal robot.

B. Collocation

In direct collocation (also known as direct transcription
[138]) the original OCP is transformed into an NLP having
control and state trajectories as decision variables. Controls
and states are discretized over a time grid, where the intervals
are called finite elements (see Fig. 5). Controls are approxi-
mated in each finite element by a finite-dimensional represen-
tation, and the states are approximated by polynomials. The
system dynamics are then enforced by imposing continuity
constraints to eliminate endpoint defects at the end of each
element and through internal collocation constraints imposed
at each of the collocation points (see Fig. 5). These collocation
constraints enforce that the slope of the approximating polyno-
mial matches the system dynamics f(x(t); u(t); p(t)) at each
collocation point. The choice of the number and location of
these collocation points has been thoroughly investigated [141]
because it affects the accuracy of the method. More details can
be found in [142], [143].

Collocation has been a popular method to compute walking
motions for legged robots using whole-body models. In [34], a
periodic motion was generated for a whole-body bipedal robot,
where the convergence of the periodic cycle was guaranteed
through the implementation of HZD virtual constraints. In
[144], the authors used collocation to generate motions for a
quadruped robot, where the contact sequences were prede-
fined. Collocation constraints were modified to address contact
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constraints in [33], providing third-order integration accuracy
with demonstrations on a full-body humanoid.

Most robotics methods to date have considered collocation
where the system dynamics are expressed as a system of
first-order ODEs. Vanilla collocation methods apply separate
approximating polynomials for each component of the state
(e.g., separate polynomials for q and g ), with their consistency
only enforced at collocation points [145]. Recent work [145],
[146] has shown the benefit of using a unified interpolating
polynomial for the components of q and g, which ensures their
consistency across the trajectory, and improves accuracy [145].

C. Differential Dynamic Programming (DDP)

In recent years a high interest has grown for DDP and its
variants. DDP [147] is an age-old method for solving discrete-
time unconstrained OCPs. The method is based on Dynamic
Programming, but it overcomes the curse of dimensionality
by working with a local quadratic estimate of the Value func-
tion. This makes DDP different from Dynamic Programming,
because the method does not attempt to exhaustively explore
the state space of nonconvex problems. DDP can be roughly
seen as an efficient iterative algorithm for solving the banded
system of linear equations associated with the KKT conditions
of an unconstrained OCP transcribed with collocation. Indeed,
DDP closely resembles Netwon’s method [148], but it is not
completely equivalent to it. The main difference is that to solve
the KKT system, DDP expresses the control inputs as linear
functions of the state, but then, instead of computing control
perturbations by using linearized dynamics from the KKT
system, it forward simulates with the nonlinear dynamics. This
makes DDP a direct single shooting strategy (since the state is
computed by integrating the dynamics), but it is better suited to
handle unstable dynamics compared to vanilla shooting since
its use of state feedback helps prevent divergence.

DDP requires the second derivatives of the dynamics to
achieve quadratic convergence. While this is a desirable
property, it may be challenging to compute these terms for
complex systems. Variants of DDP that make use of Hessian
approximations have been more popular, such as iLQR and
iLQG [1], [149], [150], with other recent work focused on
efficiently computing the full Hessian [151], [152].

Many extensions to the original DDP algorithm have been
considered to address constraints beyond those from the sys-
tem dynamics. Box DDP [153] accounts for box constraints
on the control inputs. Hierarchical DDP [150] allows for the
optimization of a hierarchy of cost functions in lexicographic
order. DDP extensions that can treat arbitrary nonlinear in-
equality state-control constraints have been proposed based
either on interior-point techniques [154], active-set meth-
ods [155], Augmented Lagrangian [156], [157], or relaxed
barrier [38] approaches. Recently DDP has also been extended
to handle implicit dynamics [5], multi-phase dynamics [27],
[97], mode switching constraints [158], and switch timing [28],
[158], all of which are useful for handling contacts. Even
though DDP was born as a single-shooting method, it has been
extended to multiple shooting [159]—-[161] to further improve
its handling of sensitive dynamics.



D. Contact Implicit Considerations

As a departure from the main assumptions of this section,
contact-implicit (or contact-invariant) formulations (e.g., as
first discussed in Section I11-B2) instead seek to optimize the
mode sequence. The choice of transcription strategy is highly
coupled with the contact model adopted. When using shooting
methods, the key need is for gradients that relate changes
in states/controls to trajectory outcomes. For example, when
adopting a relaxed contact model, the outcomes of simulation
are always differentiable, enabling shooting solvers and/or
DDP [1], [5]. When adopting an event-driven hybrid model,
these methods can still be used when paired with suitable
hybrid sensitivity analysis, as in [9]. Likewise, discrete-time
shooting can be applied with time-stepping LCP solvers [8],
although both this and the hybrid case exhibit pathologies that
prevent differentiability in corner cases (c.f., Section IlI-A4).

When using direct collocation methods, existing contact-
implicit methods rely on complementary constraints in the
optimization. First-order methods [10] have been extended to
high-order schemes, assuming the mode is not changing during
an element [11]-[13]. These methods either require impacts
at the element boundaries [13], [162] or sacrifice accuracy to
allow impacts during the element [12], [13]. There is a trade-
off, since enforcing impacts at the element boundaries requires
additional complementarity constraints. The alternative is to
consider relaxations of the LCP constraints [23], which again
present trade-offs for accuracy and computational complexity.

E. Summary

Within robotics, direct methods remain the most attractive
numerical approaches for trajectory optimization. While both
direct shooting and direct collocation can be used in cases
when the mode sequence is fixed a priori, contact-implicit
strategies require more careful consideration regarding the
contact modeling choices adopted and how those affect tran-
scription. Recent years have seen progress in accelerating the
solution of shooting problems through the use of DDP, with
recent sparse QP solvers (e.g., [163]) opening the door for sim-
ilar accelerations to closely related collocation formulations.

1) Relationship to learning: There have been many moti-
vating examples of learning being used to support trajectory
optimization. A common strategy is to employ learned net-
works to warm start optimization (see, e.g., [164]). Another
common way for learning to support trajectory optimization is
by learning the value function, which enables online trajectory
optimization over shorter horizons [165]. Other strategies
simplify the optimization by learning footholds [166], e.g.,
akin to a higher-level contact planner.

VI.

There are many ways in which state-of-the-art locomotion
architectures combine planning with optimal control solutions
for deployment online, depending on computational hardware,
robot complexity, and task complexity, as depicted in Fig. 6.
The most hierarchical strategy (left column) decomposes lo-
comotion control into footstep planning, CoM planning (via
MPC with a simplified model), and whole-body reactive

ONLINE WHOLE-BODY PLANNING AND CONTROL
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Fig. 6. Different potential strategies for breaking Problem 1 into smaller
pieces to ease computational challenges.

control (e.g., [43]). Recent trends have been flattening this
hierarchy, in particular, as optimization solvers have matured.
Several recent demonstrations are relying on whole-body MPC
(right column). The current state-of-the-art still breaks the
contact planning into a high-level module, as contact implicit
schemes do not yet run at the rates necessary for online
control. Owing to its connection with the previous section, we
review whole-body MPC before returning to the more classical
methods of reactive whole-body control.

A. Online Whole-Body MPC

Within the past few years, the deployment of MPC with
whole-body models of legged robots has gone from an aspira-
tional target to one with broad experimental support. While we
provide a short overview here, the interested reader is referred
to an excellent and complementary recent review on the topic
[167]. Work by Katayama and colleagues and Mastalli and
colleagues have shown how to accelerate DDP methods by
leveraging inverse dynamics modeling [28], [168] of full rigid-
body dynamics for quadrupeds. As a representative data point,
[168] ran MPC at 50 Hz using a 1 s horizon with 100 timesteps of
10 ms. Other quadruped work has shown the viability of using
whole-body  kinematics and centroidal/single-rigid-body
dynamics [169]-[171] for MPC. Contrary to the previous DDP
results, [171] employed sparse QP solvers [163] for MPC (100
Hz update, 1 s horizon, 15 ms timesteps). A commonality in
these online strategies is the willingness to live with the sub-
optimal. Real-time iteration schemes [172] are applied where
trajectory optimization only runs a few iterations before re-
sampling the initial state and proceeding to solve again [171].
Beyond quadrupeds, a recent milestone [173] demonstrated
online MPC with a 22 DoF model of the TALOS humanoid
operating at 100 Hz (0.5 s planning horizon, 10 ms timesteps)
and employing DDP’s local feedback between updates [38].

Across these demonstrations, a few commonalities emerge.
The first is the use of a long planning horizon. The work in
[169] nicely characterizes the effects of the horizon on
performance and notes that planning for less than two gait
cycles leads to a loss of stability. Within the literature on
MPC theory, a proper design of terminal constraints and costs
allows the use of shorter horizons without sacrificing recursive
feasibility and stability—however such theoretical certificates
remain out of reach for the robot models currently in use.
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Fig. 7. A classical use of a Whole-Body QP in a pipeline to execute a simple-
model plan obtained from the methods of the previous sections. A typical list of
tasks and constraints is also depicted.

Instead, significant effort has gone into warm starting solvers
[173], which might be unneeded if the theoretical problem was
more thoroughly addressed. Given the computation challenges
with high DoF humanoid robots, and limited applicability of
single-rigid-body models, we see the most opportunity for
growth in whole-body MPC for humanoids moving forward.

B. Instaneous Whole-Body Control

In cases when computational hardware or model/task com-
plexity prevents the use of whole-body MPC, hierarchical
schemes such as the one on the left of Fig. 6 are necessary.
For example, consider the setup in Fig. 7. When performing
trajectory optimization over simplified models (e.g., the SRB
or a point-mass model), the OCP may be able to be solved
quickly, but there are still many details that need to be defined
(e.g., swing leg motion). Instantaneous control schemes are
widely used in practice as a means to accomplish this goal, or
more generally to track desired trajectories. The popularity of
these methods owes to their ease of implementation and the
fact that, with well-chosen objectives/constraints, the problem
can be written as a Quadratic Program (QP), or a close variant,
and solved quickly (from hundreds of s to a few ms).

1) Formulation: In instantaneous settings, one common
way to define the motion is by specifying quantities e; that
we want to regulate to 0, or keep above 0. For example, let us
suppose we want the robot to follow a walking gait that was
generated using the LIP model. For the robot CoM to track the
LIP trajectory, we want to achieve ej(q;t) = 0 where e; 2 R3
gives the error between the target position from the LIP and the
true CoM position computed from g via forward kinematics.
Other tasks, such as collision avoidance, are naturally captured
by inequality constraints ej(q) 0. More generally, e; canbe a
function of any subset of (q;;t). Such a definition is often
called a task error function by reference to the task function
[174] or operational-space [175] formalism.

A key point is that the dynamics (1b) are linear in _,, and .
This points at writing the regulation at the acceleration level
where and can also be used directly to affect motions.

Task Dynamics: Consider a general task in the case where
q= ande; 2 R™. Differentiating ei(q; t) twice w.r.t. time:

& (g;;_;t) = Jila)_ + Ji(q;) + ai(a;; t); (6)
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where J; is the Jacobian matrix of e; and a; = @2%e=@t%. To
bring or keep e; to a desired value, one then writes @ = e or
e emn where e“'/e”“in is a function of any subset of (q;; t)
that indicates how we want to regulate e;. This gives an
equality/inequality that is linear in _:

Jia)_ = ¢ Jifa;)  ai(g;t): (7)
If e; also depends on , a single differentiation leads to:
@; (@;
" e; ¢ Ji(a;) Lok (8)
Both (7) and (8) can be written as
Ai(g; )_ = bi(a;; t): (9)

Task expressions: The most common tasks involve ge-
ometric features (e.g., body or CoM position) that are di-
rect functions f; of q. Typical equality tasks have the form
ei(q;t) = fi(q) f%a;t), where f¢ is the target value. For
Lie group tasks (e.g., orientation), this error can be generalized
as ei(q; t) = fi(q) fid(q;t), where  denotes a meaningful
difference in the Lie group [176]. This general definition can
capture tasks for the CoM, body positions, body orientations,
joint posture, and others. Other equality tasks include a gaze
task [177], visual servoing [178], or any subpart of one of the
above [59], [179]. Inequality tasks commonly include joint
bounds, collision avoidance, and balance [177]. Few tasks

depend directly on . This is the case of joint speed limits, but

also the centroidal momentum task [180]-[182] e; = Ag(q).

We can also call tasks, by extension, constraints or motion
requirements that are directly written on _,, and and do not
need regulation. These include, for example, limits on _,, or

friction constraints on the forces (to prevent sliding), that are

usually approximated using a linear form C 0 (e.g., as was

also considered to simplify the CWC in Section IV-A).

Direct references can also be given for these variables. For
example, 9= 0 can be used for force control.

Regulation of Equality Tasks: The task error e; is often
driven to 0 by first specifying a desired value for the derivative
e{"' where | is the number of differentiations (1 or 2) such
that q.“) is an affine function of _, or . For geometric
equality tasks (I = 2), the most common approach follows a
PD construction: eid = Kgei Kpei, where Kq and Ky are
positive definite matrices, usually taken as diagonal matrices

with Kq = 2K}3=2 to obtain critical damping. A common
(and essential) equality task relates to maintaining contacts.
Most often, hard contacts are assumed and e is set to 0 or a
damping term is used to stabilize any slippage [59].

Within the framework of HZD, a critical task comes from
the construction of virtual constraints that specify actuated
joints as a function of a state-dependent phase variable [96].
Historically, HZD controllers were first implemented via ana-
lytical feedback linearization [96], while later being connected
to constrained optimization methods herein [75].

Born out of HZD implementation advances, an alternative
for making e; converge to zero is to design a Control Lyapunov
Function (CLF) V; for ej. Then, the inequality V; iV
forces the exponential convergence of e; to 0, where ; sets



the convergence rate. This is the idea behind the CLF-QP
[75], which guarantees convergence when the inequalities are
always feasible. However, ensuring persistent feasibility with
practical robot models remains an open challenge.

Regulation of Inequality Tasks: Inequality tasks at the
acceleration level, such as joint torque limits or force friction
cones, can be directly imposed. Inequality tasks at the velocity
level, such as joint velocity limits, can be regulated by setting
e;.rm“‘ such that e; remains positive after a controller time step
t: e |+ = e+ te; 0. This approach works well for small
t, and implies setting e ™" = .ei=t. Inequality tasks at the
position level, such as joint position limits or obstacle
avoidance, are much harder to enforce. The most common
approach is to compute @™" so that e* is posjtive, but this
can easily lead to conflicts with acceleration-level constraints
[183]. Alternative approaches range from a trick of increasing
t in the computation of e* [177], [183], to bounding
velocities based on the distance to the position limit [184],
to control barrier functions (CBFs) [76]. How-ever, none of
these approaches ensure compatibility between position-level
and acceleration-level inequalities. The only methods that
can guarantee them are those that account for position-level
and acceleration-level inequalities at once [185], [186], albeit
under the assumption of constant acceleration bounds.
Enforcing position constraints remains precarious with
instantaneous control, since it is the evolution of the system
over an extended time period that determines whether the
constraint can be respected in the future. This observation
motivates predictive strategies (e.g., MPC) to address position
inequality constraints via lookahead.

2) Resolution: Instantaneous control schemes make the
assumption that the state x is known and constant during the

control period t. This is supported by the fact that t is
small (typically between 1 and 10 ms), and relies on the ability
to solve the problem in that time. The contact state (i.e., which
bodies are in contact) is assumed fixed at each control cycle.

Under these conditions, and if the friction cones are approx-
imated as pyramids, aggregating all the desired behaviors of
the tasks leads to a set of linear constraints:

M_ LT
= aC

ST = C 4 (10a) J_
(10b) A_i_ +A;i+A;i = b;

for non-contact tasks i; (10c)

where (10a) is a reorganization of (1b), (10b) gives contact
constraints, and (10c) is a generalization of (9) to account for
tasks directly written on or . Problem (10) represents what we
would like the robot to achieve. The idea is to solve (10) for
_,,and as best as possible (as discussed below). On position-
or velocity-controlled robots, _is integrated and the resulting
configuration [59] or velocity [178] is sent to the robot. For a
torque-controlled robot, is used as a command.

Pre-solving variants: Problem (10) is written over all 3
variables _, and . This gives great flexibility to express new
tasks/constraints and offers a clear vision of what we want to
achieve. However, the specific structure, of (10a) and (10b)
can be exploited to pre-solve some variables and constraints
before passing the problem to a solver.
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The form of S = 0 | for legged robots allows ex-
pressing as a linear function of _ and and eliminating it
from the problem. Only the non-actuated rows of (10a) are
kept [59], [182], leading to a near-universal decrease in
computation time. Alternatively, joint accelerations _ can be
eliminated via (10a) with the inversion of M [187], or forces
can be eliminated via projection on the nullspace of the
contact constraints [188], [189]. Finally, both _and can be
eliminated via (10a)-(10b), leaving as the only variable.
Regardless, the optimal pre-solving variant is highly coupled
with the numerical solver used.

Arbitrating conflict: For most task sets considered in
practice, task requirements will conflict, meaning (10) has
no solution. In this case, one can measure violations with an
L2 norm, and specify how important it is to minimize each
violation. Two main approaches exist that can be combined:
weighing each violation (also known as soft priorities) or
defining a hierarchy between them (strict priorities).

Numerous works use a QP approach: all inequality con-
straints and some equality constraints in (10) are kept in the
QP, making them the top priority. The weighted L2 norms of
all other constraint violations form the objective of the QP. For
example, let us consider the problem of tracking a LIP-based
reference trajectory, while trying to use minimal joint torques
within bounds. In this case, a QP could be formulated as:

minimize wiklcom_ + Jeom (pCodM + eCodM)kz

—

+ Wzkk2
subject to M_+ C + g= ST + )7

= ac (fixed contacts)

(dynamics) Jc_

C O (friction cones)
;11 (other top-priority constraints):::

with Jcom being the CoM Jacobian, p%oM the target CoM
acceleration, and e‘éoM the desired acceleration of ecom .

The use of QP formulations for reactive control is now
nearly universal, but follows a long historical development.
After an early work motivated by the inclusion of unilateral
contact forces [190], the QP-based inverse dynamics approach
started with [63], [65] and closely related convex formulations
[64], continuing with [59], [179], [191], [192] among many
others. An advantage of this approach is that it relies on mature
off-the-shelf solvers, which are often free (e.g., [193], [194]).
Its main limitations are the inability to handle inequalities at
lower priority levels, and its need for detailed tuning.

One of the benefits of the QP formalism is its flexibility to
incorporate other control paradigms into reactive whole-body
control. For example [43], [195] embed long-horizon optimal
control for simple-model tasks via cost function terms for de-
scending a task-space value function. Other work has explored
the incorporation of passivity-based control approaches that
improve robustness to unmodeled effects [77]. To improve
robustness through other means, recent QP strategies have
explored methods for controls to be invariant to velocity jumps
from impact events [196], which are hard to detect in practice.
Alternative strategies that consider soft contact can also be
incorporated into whole-body QPs [197]-[199].



In contrast to using a weighting approach for tasks, a
hierarchical approach assigns an explicit priority level for
each task. Tasks at the same level can be combined with
weights, and top-priority constraints need not be feasible.
The resulting problem is called lexicographic least-squares
or hierarchical QP (HQP) [177], [180], [182]. Kanoun [200]
presented the first solver to tackle inequality constraints at
any priority level, followed by computational improvements
in [180], [182]. Dedicated solvers [201], [202] have been
introduced to solve the problem efficiently in one pass. The
hierarchical formulation is a strict superset of the QP-based
formulation and is the limit case for when the ratio between
task weights goes to infinity [203]. An HQP can be solved
faster using a dedicated solver [202], both in theory and
practice. However, computational costs and the complexity of
handling singularities [204] have limited broad use.

C. Summary

This section has focused on common methods for reactive
control that coordinate the selection of joint torques and
contact forces at the current instant. These methods comple-
ment predictive control (i.e., over a horizon). By focusing
on an instantaneous control problem, the formulation inher-its
a desirable structure (e.g., nonlinear constraints become
linear ones). This enables solutions at rapid rates, which are
amenable to computation using off-the-shelf QP solvers. There
are many different variants to such whole-body problems that
consider priorities between tasks, or that strategically pre-solve
for some decision variables to accelerate the QP solution.
While these methods have represented a natural outgrowth of
operational-space control to legged robotics applications, the
shift from solving these problems analytically to solving them
via QPs has enabled many other control paradigms to be
considered, including CLFs, CBFs, passivity-based strategies,
and others guided by value functions. Overall, while there
remain opportunities to further improve these methods, the
current state of the art represents a reliable technology for
future applications.

VII. OUTLOOK AND PROSPECTS

We conclude this survey by reflecting on some of the main
trends that were identified through the literature review, and
also some of the notable gaps that remain to be addressed.

A. Main Trends

Main trends for optimization with contacts: The past five
years have seen an increase in contact implicit approaches
that avoid specifying gait/contact sequences a-priori. These
methods have considered either compliant contact or MIP/LCP
strategies. Solution speed remains a challenge for these meth-
ods, as does non-convexity of the problem. Strategies that
combine planning and/or learning with contact implicit meth-
ods appear as a necessary next step. In the near term, fixing
contact sequences/timing remains the most viable option for
practical deployment in applications that require online opti-
mization (e.g., in MPC). In the end, while much more recent
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work has concentrated on addressing rigid contacts, other
approaches end up being similar since rigid complementarity
constraints are often relaxed and smoothed, leading to similar
operations as with compliant models.

Main trends in the dynamic models adopted for model-
based optimization: The past five years have observed an
increase in model complexity used for MPC (with several
examples using the full model). This advance has occurred
from an increased understanding of gradient-based numerical
methods and the availability of fast open-source software
libraries to compute robot dynamics and its derivatives [205].
With Moore’s law ending, subsequent advances may center
on parallelization. However, even with increases in computa-
tional speed, the nonconvexity of problems is an unavoidable
challenge with complex models. This observation suggests
that simple models will likely remain pertinent in the near
future. The review points out that a combination with learning
strategies that include exploration (as in conventional RL)
presents promise for optimization-based strategies to avoid
poor local minima when adopting complex models.

Main trends for transcription: The past five years have
included emphasis on DDP methods as well as extensions
of collocation schemes to contact-constrained/implicit settings.
Adoption of DDP has been motivated in part by its demon-
strated scalability to high-DoF systems. However, recent work
has also shown specialized Riccati-like solvers [163], which
have the promise to bring many of the advantages of shoot-
ing via DDP to other transcription approaches. While the
numerical methods are improving, convergence to infeasible
solutions is a challenge for complex systems, and this holds
with any of the transcription methods. The review points that
addressing these challenges is an important open point for
future work. Further, simultaneous methods (collocation and
multiple shooting) will present additional opportunities for
algorithm-level parallelism to take advantage of how compu-
tational resources are expected to grow in the coming decades.

Main trends for learning for optimal control: Learn-
ing has emerged as a valuable ally for the application of
trajectory optimization (TO) on challenging systems such
as legged robots. Learning can be combined with TO in
different ways. Recent work has proposed learning the robot
dynamics model, e.g., using Deep Neural Networks [206] or
Gaussian Processes [207]. Supervised learning can be used to
exploit motion-capture data, for instance, to obtain human-like
walking trajectories [208]. Cost functions, instead of being
defined by expert users, can be learned, e.g. using active
learning techniques [209]. Another promising approach that
has been recently investigated is to learn good initial guesses
to speed up the convergence of OCP solvers [164], [210].
Finally, another method to help OCP solvers is to learn an
approximation of the Value function, which can then be used as
a terminal cost to guide the solver [106], [165].

B. Overview of Open Problems

Formal Analysis: Despite a great deal of recent progress,
there is a broad lack of formal analysis regarding the properties
and operation of existing optimization-based robot control



paradigms. Existing theoretical results regarding the stability
and recursive feasibility of nonlinear MPC are mostly focused
on the simplified problem of regulation to an equilibrium or
tracking a feasible reference state trajectory [211], which
leaves a theoretical gap for the classes of problems considered
in the locomotion community. Another barrier to meaningful
analysis is a relative lack of work addressing considerations
of robustness to bounded or stochastic uncertainty (e.g., [25],
[52], [212]). Such a treatment would, for example, be critical
to understanding how our control frameworks interact with
state estimation. While there are clear academic open ques-
tions, it remains an open question of its own as to how much
additional performance such analysis would unlock.

Reducing the Expertise Required: Beyond the technical
expertise required for model-based control, there remains a
great deal of domain-specific expertise required for crafting
cost functions and constraints. It remains a challenge to
remove the human as an outer loop in the tuning of problem
formulations. A part of the issue is that it is often not apparent
how to write down cost functions for even simple tasks. For
example, the problem of opening a door has binary success,
and such cost structures are largely incompatible with current
tools. Whether through automated methods, or through new
tools that enable a broader set of cost designs, the best path
for reducing required domain-specific expertise remains open.

Given the complexity of the numerical methods involved
for online optimal control, an additional consideration is
the availability of well-maintained open-source software for
newcomers to rapidly deploy OCP solutions. In this regard,
the recent review of Carpentier and Wieber [213] provides an
excellent resource on various dynamics and optimal control
packages available for formulating and solving optimal control
problems for robotics. While we encourage engagement with
these tools, we likewise call on everyone to contribute to their
advancement and maintenance so that we might continue to
accelerate the impact of OCP methods on robotics practice.

Optimal Control Versus or With RL?: With the recent
progress in RL for legged locomotion (e.g., [129], [214])
much debate has surrounded whether real-time optimization
or reinforcement learned policies are the path forward. RL
methods have some clear benefits, the main one probably
being their generality. Indeed, since gradients of the model
dynamics are not required, these methods have no trouble
with non-smooth contact-implicit problems, which are instead
hard to solve with conventional gradient-based OCP solvers.
An interesting explanation of why that is the case has been
recently provided in [215], drawing a connection between
Policy Gradient and the stochastic optimization technique
Randomized Smoothing. Although our community has grown
attached to gradient-based optimization, in order to overcome
the challenges discussed in this survey it may be worth explor-
ing gradient-free approaches, with RL being among the most
promising. Another positive feature of RL methods (especially
those based on Dynamic Programming [216]) is their ability to
avoid local minima, which is fundamental to solve non-convex
problems. Indeed, while standard TO algorithms simply follow
the gradient, some RL methods can exploit the learned action-
Value function to get out of local minima.
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Still, there remain exciting opportunities for how model-
based optimization can help accelerate learning. Strategies
such as the popular guided policy search method [217] and
relatives (see, e.g., [218], [219]) can leverage TO to cut down
on needed exploration and guide learning. Another important
opportunity for future work is to use the efficient constraint-
handling nature of TO to help make learning safe [220].
Overall, since RL and OCP methods try to solve similar
problems [221] (especially in offline simulations where models
are unavoidable), the history of their synergy is still quite early.

C. Closing Remarks

Reflecting on the trajectory of the field, we see a great deal of
commonality between the transformation that is taking place
now and the one that occurred in the mid-2010s. In 2007, con-
vex optimization strategies for reactive control were beginning
to appear, with no shortage of concern regarding both (a) their
online computation requirements or (b) the abandonment of
previously available closed-form control solutions. By 2015,
these methods were commonplace.

From where we are today, early demonstrations of whole-
body MPC on hardware have greatly benefited from the struc-
tural understanding of physics-based models from previous
reactive control developments, while also adopting reactive
methods for low-level control. Yet, open challenges remain
regarding (a) online computation and (b) the abandonment of
convexity properties that would give solution assurances.

While we believe these state-of-the-art methods will become
technologies in the near future, we also look forward to the
way the community will build upon them via combination
with the next generation of learning-based controllers, where
shared optimal control fundamentals will allow model-based
methodologies to inform and accelerate learning. Challenges
regarding (a) offline computation requirements and (b) a lack
of generalization guarantees with RL seem to both be well
addressed by structure exploiting methods from model-based
optimization, and we hope this survey will play a small
role in helping those solutions come to light. Overall, the
evolutionary progress of the field shows a steady maturation
toward applications in logistics, agriculture, construction, and
yet others. With external commercial funding at unprecedented
levels, we look forward to the next decade of progress from
legged robots, which promises to be greater than the previous.
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