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A highly correlated topological bubble phase 
of composite fermions
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Strong interactions and topology drive a wide variety of correlated 
ground states. Some of the most interesting of these ground states, such 
as fractional quantum Hall states and fractional Chern insulators, have 
fractionally charged quasiparticles. Correlations in these phases are 
captured by the binding of electrons and vortices into emergent particles 
called composite fermions. Composite fermion quasiparticles are randomly 
localized at high levels of disorder and may exhibit charge order when there 
is not too much disorder in the system. However, more complex correlations 
are predicted when composite fermion quasiparticles cluster into a bubble, 
and then these bubbles order on a lattice. Such a highly correlated ground 
state is termed the bubble phase of composite fermions. Here we report 
the observation of such a bubble phase of composite fermions, evidenced 
by the re-entrance of the fractional quantum Hall effect. We associate this 
re-entrance with a bubble phase with two composite fermion quasiparticles 
per bubble. Our results demonstrate the existence of a new class of strongly 
correlated topological phases driven by clustering and charge ordering of 
emergent quasiparticles.

Landau’s symmetry breaking paradigm provides a framework to classify 
phases described by local order parameters. Topological phases do 
not fit into this classification and are described instead by topological 
invariants. Topological phases are characterized by the formation of 
edge states and of an insulating bulk, and, in the vast majority of cases, 
symmetry breaking does not play any role. Indeed, the bulk of most 
ordinary topological phases, such as the integer quantum Hall state 
forming in the two-dimensional electron gas1, is an Anderson insulator. 
As the Landau level filling factor moves away from an integer value, 
bulk quasiparticles are generated, which are randomly localized. Local 
scanning probes provided evidence for such randomly localized bulk 
quasiparticles2. A representation of integer quantum Hall states with 
a finite quasiparticle density is shown in Fig. 1a.

In addition to ordinary topological phases characterized solely by 
topological invariants, there is a larger class of phases for which both 
topological and Landau-type orders need to be invoked. Such phases 
exhibit topologically protected edge states, while quasiparticles in 

their bulk break various spatial symmetries. An example of such a 
phase is the Wigner solid forming in the flanks of integer quantum 
Hall states3, which is related to the Wigner solid forming in the extreme 
quantum limit4. In the limit of no disorder, quasiparticles in the bulk 
of this phase are thought to order on a triangular lattice, while edge 
states maintain integer quantization of the Hall resistance. So far, 
conditions of low enough disorder for the formation of these types of 
Wigner solids were met in two-dimensional electron gases confined 
to gallium arsenide semiconductor (GaAs)3–9 and to graphene10. Even 
though microscopic observation of charge order is still lacking, meas-
urements of the pinning mode3, nuclear magnetic resonance charge 
topography5, the phonon mode6 and localization7–10 provide evidence 
of charge ordering in the bulk.

The complexity of charge order is known to increase in higher 
Landau levels, where more intricate broken symmetry topological 
phases are possible. Electronic bubble phases share the triangular 
lattice structure of the Wigner solid, but acquire an internal degree 
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It is important to appreciate that the Wigner solid of electrons 
and WSCFs are not identical to each other. Indeed, the WSCFs has 
more intricate quantum mechanical correlations compared to those 
of the electron Wigner solid. These correlations are depicted in Fig. 
1e as two vortices attached to each electron, and are embodied by 
a distinctive Laughlin–Jastrow term present in the many-body trial 
wave function of the WSCFs29. The vortex attachment procedure can 
therefore be understood as a recipe for generating topological phases 
with strong, higher-order quantum mechanical correlations. Charge 
order with even more complex correlations was predicted when the 
vortex attachment procedure is applied to electronic bubble phases. 
The resulting phases are referred to as bubble phases of composite 
fermions (BPCFs)39,40. A rendering of BPCFs with one and two CFQPs 
per bubble is shown in Fig. 1e,f, respectively.

Re-entrance of the ν = 5/3 FQHS
We focus on magnetotransport in the fractional quantum Hall regime 
in the lowest Landau level, in the region centred on ν = 3/2. Measure-
ments are performed on a sample of density n = 3.06 × 1011 cm−2 and 
mobility μ = 32 × 106 cm2 V–1 s–1. Numerous FQHSs of this region form 
at filling factors of the form ν = 2 − i/(2i + 1) = (3i + 2)/(2i + 1), where 
i is an integer41. The FQHSs at ν = 5/3,8/5, 11/7, 14/9, 17/11, 20/13 seen 
in Fig. 2 belong to this sequence, with i = 1,2,3,4,5,6. These FQHSs are 
particle–hole symmetric counterparts of the ones forming at 
ν = i/(2i + 1) in the presence of the spin degrees of freedom. FQHSs are 
identified by their vanishing longitudinal resistance Rxx = 0 and a Hall 
resistance quantized to the value Rxy = (2i + 1)h/(3i + 2)e2 . Here h is 
Planck’s constant and e the elementary charge. According to compos-
ite fermion theory, this sequence of FQHSs forms when spinful two-flux 
composite fermions fill an integer number of i = 1,2,3,4,5,6 of Λ-levels27,41. 
When the lowest Λ-level is completely filled, i = 1 and the ground state 
of the system is the ν = 5/3 FQHS. Similarly, when two Λ-levels are com-
pletely filled, i = 2 and one obtains the FQHS at ν = 8/5. Another series 
of FQHSs forms at ν = 2 − i/(2i − 1), where i = 2,3,4,5,6,7. Yet more FQHSs 
seen in Fig. 2, such as the ones at ν = 9/7, 14/11 and 12/7, do not belong 
to these series. The local minimum in Rxx near the magnetic field 
B = 7.06 T does not signal an FQHS; instead, it was recently associated 
with the Wigner solid9.

Transport near B = 7.76 T exhibits a particularly interesting feature 
that breaks the typical pattern between two neighbouring FQHSs. 
Indeed, neighbouring FQHSs in the lowest Landau level are typically 
separated by a single peak in Rxx

20. This is the case for data shown in Fig. 
2 for the transition between the ν = 8/5 and the ν = 11/7 FQHSs, the 
ν = 11/7 and the ν = 14/9 FQHSs, and for numerous other neighbouring 
FQHSs. However, transport in the transition region between the ν = 5/3 
and the ν = 8/5 FQHSs near B = 7.76 T is more complex: there are two Rxx 

of freedom: each lattice node consists of clusters or bubbles of 
electron-like quasiparticles11,12. A representation of this phase in the 
limit of no disorder with one and two quasiparticles per bubble is shown 
in Fig. 1b,c, respectively. Clearly, the one-quasiparticle electronic 
bubble phase is identical to the Wigner solid. They were predicted 
based on Hartree–Fock calculations performed in high Landau lev-
els11,12 and were later found to proliferate in two-dimensional electron 
gases hosted in GaAs13–18. More recently, they were also found in gra-
phene19. Clustering of electrons into bubbles is energetically favour-
able because of the existence of nodes in the overlapping electronic  
wavefunctions11,12,18.

Phases discussed so far support electron-like quasiparticles. Some 
of the most intriguing topological phases, such as fractional quantum 
Hall states (FQHSs)20–22 and fractional Chern insulators23–25, support 
fractionally charged quasiparticles that emerge from strong correla-
tions. Such correlations were first captured by Laughlin’s wave func-
tion26 and later found a natural and intuitive description within the 
theory of composite fermions27. Composite fermions are the emergent 
particles of this theory that form through binding of an even number 
of quantized vortices to electrons. Composite fermions experience 
an effective magnetic field that much reduced when compared to the 
externally applied field. In this description, the density of states of 
composite fermions consists of equally spaced energy levels called 
Λ-levels, and FQHSs arise as composite fermions fill an integer num-
ber of Λ-levels27. When a Λ-level is not fully filled, composite fermion 
quasiparticles (CFQPs) are generated27. In the bulk of these FQHSs, the 
CFQPs are randomly localized28, as depicted in Fig. 1d.

When CFQPs interact in a low-disorder environment, the bulk may 
acquire charge order, and therefore broken symmetry topological 
phases with a highly correlated nature may form. Such interactions are 
especially important in flatband systems, such as the two-dimensional 
electron gas in a magnetic field. Indeed, due to their interactions, 
CFQPs were predicted to order into a Wigner solid of composite fermi-
ons (WSCFs)29. A representation of the WSCFs is shown in Fig. 1e, and 
several numerical simulations have found evidence for their forma-
tion29–37. However, because WSCFs and Wigner solids exhibit similar 
insulating behaviour, these phases cannot easily be distinguished by 
commonly employed experimental probes. Resonances detected in 
the microwave frequency domain in the vicinity of Landau level filling 
factor ν = 1/3 were interpreted as being due to WSCFs38.
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Fig. 1 | Representation of various topological phases of the electron gas 
with different bulk insulators. Spheres represent quasiparticles in the valence 
energy level, whereas coloured backgrounds represent the vacuum of the 
quasiparticles, that is, completely filled lower energy levels. In the top row, 
electron quasiparticle-based topological phases are shown. a, An ordinary 
topological phase with a bulk Anderson insulator. b,c, Topological phases with 
broken symmetry, described as electronic bubble phases with one (b) and two 
(c) electrons per bubble. The one-electron bubble phase is identical to the 
Wigner solid. In the bottom row, CFQP-based topological phases are shown. d, An 
ordinary topological phase with a bulk Anderson insulator of CFQPs. e,f, BPCFs 
with one (e) and two (f) CFQPs per bubble. The phase with one CFQP per bubble 
is identical to the WSCFs. The two vertical arrows attached to an electron reflect 
the vortex attachment procedure and account for Laughlin–Jastrow correlations. 
Arrows along the sample boundary represent edge states.
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Fig. 2 | Magnetoresistance Rxx and Hall resistance Rxy over a broad range of 
magnetic fields B. Traces are obtained at the temperature T = 12 mK. Numerical 
labels indicate notable Landau level filling factors ν at which one integer and 
several FQHSs are shown. The structure of interest associated with the RFQHS 
develops near B = 7.76 T, located between Landau level filling factors 8/5 < ν < 5/3.
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peaks that are separated by a vanishingly small Rxx. Furthermore, as 
seen in Fig. 2, the Hall resistance Rxy at B = 7.76 T at the lowest tempera-
ture is quantized to 3h/5e2. These details may be further examined in 
Fig. 3. Altogether, we report four instances of similar complex trans-
port; three of these are shown in Extended Data Fig. 1 found in Sup-
plementary Information. Extended Data Figure 1 demonstrates 
reproducibility after thermal cycling and the observation of similar 
behaviour in a second sample. In Supplementary Information we also 
discuss anomalies at this filling factor region reported in earlier work.

Complex transport behaviour between two consecutive FQHSs can 
be due to either a spin transition or an unusual ground state. However, 
the transport behaviour observed near B = 7.76 T is inconsistent with a 
spin transition for three reasons. First, a quantized Hall resistance we 
observe at B = 7.76 T is not expected near a spin transition41,42. Second, 
the pattern of the longitudinal resistance measured near B = 7.76 T is 
different from that at a spin transition41,42. Third, a spin transition is 
not expected in the ν = 5/3 state41, but it is known to occur in the ν = 8/5 
state42,43. However, this transition is strongly dependent on the width of 
the confining quantum well42. The density 3.06 × 1011 cm−2 of our 30 nm 
wide quantum well samples greatly exceeds the critical density at this 
width42, hence the ν = 8/5 state in our sample forms deep inside the fully 
spin-polarized regime, far away from a spin transition. By ruling out a 
spin transition near B = 7.76 T, we ascertain that at this field there is a 
different ground state forming.

For insight on the unusual transport pattern near B = 7.76 T, we 
recall the transport phenomenology of the re-entrant integer quantum 
Hall states. These states are satellite formations near integer quantum 

Hall states associated with electronic bubble phases13–19. Both integer 
quantum Hall states and the re-entrant states are characterized by a 
vanishing Rxx and a quantized Rxy, but are separated from each other 
by a deviation from quantization. Transport behaviour near B = 7.76 T 
is similar: both the ν = 5/3 state and the region near B = 7.76 T are char-
acterized by a vanishing Rxx and a quantized Rxy, and they are separated 
by a deviation from quantization developing near B = 7.73 T. However, 
in contrast to the re-entrant integer states, the Hall resistance near 
B = 7.76 T is not quantized to an integer but rather to a fractional value 
Rxy = 3h/5e2. Henceforth we will refer to the unusual transport develop-
ing near B = 7.76 T as the re-entrant fractional quantum Hall state 
(RFQHS), and we associate it with a new ground state of the system. 
From data shown in Fig. 4 we infer that transport signatures for the 
RFQHS survive in our sample to temperatures as high as 60 mK.

Candidate ground states for the RFQHS
To understand the nature of the RFQHS, we invoke composite fermion 
theory27. As already discussed, at ν = 5/3 there is an FQHS. At this fill-
ing factor the two-flux composite fermions completely fill the low-
est Λ-level. An increasing B field in this region of filling factors results 
in a decrease of the effective magnetic field, which in turn leads to a 
decrease in the degeneracy of this Λ-level. An increasing B field past 
its value at ν = 5/3 therefore generates CFQPs that reside in the second 
Λ-level. At relatively low densities, these CFQPs of the second Λ-level 
are Anderson-localized by the disorder present, contributing thus to 
the plateau of the ν = 5/3 state.

Near B = 7.73 T, Rxx deviates from zero and Rxy deviates from quan-
tization. Such transport signatures are associated with delocalized 
CFQPs in the bulk. However, at an even larger magnetic field B = 7.76 T, 
there is a return to a nearly vanishing Rxx, a quantized Rxy and thus to 
localization. However, localization near B = 7.76 T is inconsistent with 
an Anderson type of localization. Instead, the observed re-entrant 
behaviour constitutes evidence for a correlated CFQP insulator in 
which localization is generated by pinning of a charge-ordered phase. 
A quantized Rxy = 3h/5e2 of both the correlated CFQP insulator forming 
at B = 7.76 T and the ν = 5/3 state suggests the same CFQPs are involved 
in the formation of both ground states. We thus identify the RFQHS 
with a correlated CFQP insulator in which the CFQPs order into a topo-
logical phase with a broken symmetry. According to existing theory, 
candidate ground states for this correlated CFQP insulator can be 
described as BPCFs, specifically the ones with one CFQP and two CFQPs 
per bubble39,40. There is therefore a close analogy between re-entrant 
integer quantum Hall states, interpreted as electronic bubble 
phases13–19, and the RFQHS, interpreted as BPCFs. In Extended Data Fig. 
2 of the Supplementary Information, we show that the lack of resistance 
anisotropy at B = 7.76 T is inconsistent with a stripe phase of CFQP 
interpretation of the RFQHS.

We now calculate the Λ-level filling factor ν∗ at which the RFQHS 
forms. We first find its electronic filling factor from the electron density 
n and the magnetic field B of formation ν = hn/eB = 1.628. Then, ν∗ can 
be obtained from the ν = 2 − ν∗/(2ν∗ + 1)  relation41. The calculated 
ν∗ = 1.45 value means that at the formation of the RFQHS, there is one 
Λ-level completely filled and another only partially filled. In this par-
tially filled second Λ-level, only a fraction ν∗p = 0.45 of the available 
states are filled. The quantity ν∗p = 0.45 represents the partial filling 
factor of the second Λ-level.

At ν∗ = 1.45, Hartree–Fock calculations predict that the BPCFs 
with one CFQP per bubble and those with two CFQPs per bubble are 
close in energy39,40. A sketch of the former is shown in Fig. 1e, whereas 
the latter is depicted in Fig. 1f. However, for correlated states of high 
complexity, such as BPCFs, energy calculations are increasingly diffi-
cult, and drawing a conclusion on the nature of competing ground 
states close in energy is not straightforward. To further our understand-
ing, we notice that the RFQHS forms at an unusually large Λ-level filling 
factor. Indeed, the partial Λ-level filling factor of the RFQHS is about a 
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factor of 4 larger than that of the WSCFs reported in ref. 38. A larger 
filling factor translates into a larger CFQP density, which is conducive 
to a more substatial overlap of the CFQP wavefunctions and thus may 
lead to correlations that otherwise are not possible. The essence of 
Hartree–Fock theories is that this wave function overlap affords new 
ways of minimizing the energy, through the formation of clusters of 
CFQPs, such as two-CFQP bubbles39,40. We think that the unusually large 
partial filling factor of the RFQHS favours an interpretation of BPCFs 
with two CFQPs per bubble.

The interpretation of the RFQHS as a BPCF with two CFQPs per 
bubble is further strengthened by a close analogy between electronic 
bubble phases and BPCFs. In high Landau levels, there are many elec-
tronic bubble phases18, but they are not centred to a partial filling factor 
larger than 0.3. The only known electronic bubble phases at a large 0.44 
partial filling factor form in the second Landau level16,44. According to 
Hartree–Fock calculations, these electronic bubble phases have two 
electrons per bubble45. An example of such a phase centred to a large 
partial filling factor is the one labelled as R2b in ref. 44. We notice that 
there is a close relationship between R2b and the RFQHS. First, both of 
these bubble phases share their orbital quantum number of the relevant 
constituents. Indeed, R2b forms in the second Landau level for elec-
trons16,44, and the RFQHS forms in the second Λ-level for composite 
fermions. Furthermore, the partial filling factors of the topmost energy 

level for both phases are unusually large and very close to each other: 
νp = 0.44 for R2b44 and ν∗p = 0.45 for the RFQHS. The close analogy 
between the two phases strengthens the interpretation of the RFQHS 
as a BPCF with two CFQPs per bubble.

Ground states at filling factors related by particle–hole symmetry 
are typically of a similar nature. It is thus worth examining the 
1/3 < ν < 2/5 filling factor range, which is related to the 8/5 < ν < 5/3 
range we studied by the ν ↔ 2 − ν  symmetry. Ground states in the 
1/3 < ν < 2/5 range are FQHSs46,47, such as the ones at ν = 4/11 and ν = 3/8. 
At the conjugate f ill ing fac tors ν = 2 − 4/11 = 18/11  and 
ν = 2 − 3/8 = 13/8 our data do not exhibit FQHSs, since the Hall resist-
ance measured at these filling factors does not exhibit plateaus consist-
ent with FQHSs. Instead, we observe the BPCF at a filling factor that 
falls between 13/8 and 18/11. This difference in the type of ground states 
at symmetry-related filling factors is highly unusual and it remains to 
be studied both theoretically and experimentally. We surmise that 
either a symmetry breaking term in the Hamiltonian or differences in 
quasiparticle interactions are possible explanations. Interactions are 
tuned by sample parameters, such as the finite width of the quantum 
well and Landau level mixing, and even small changes in these param-
eters can stabilize fundamentally different types of ground states. The 
transition from the paired FQHS to the stripe phase as driven by the 
width and Landau level mixing parameter constitutes such an 
example48.

We note that theories allow for WSCFs at CFQP densities lower 
than that of the BPCFs with two CFQPs per bubble. This phase would 
be signalled by full quantization, so it may already be present in our 
data; for example, near B = 7.65 T in Fig. 3. However, we found no trans-
port signature that separates such a WSCF from an Anderson insulator 
forming in the centre of the ν = 5/3 plateau, thus whether or not the 
WSCF forms near ν = 5/3 remains an open question. A related problem 
in the integer quantum Hall regime is discussed in ref. 8.

It has long been recognized that the success of the composite 
fermion theory in describing FQHSs hinges on the nearly independent 
nature of the CFQPs. Indeed, interactions between CFQPs are greatly 
reduced as a result of the Chern–Simmons gauge forces associated with 
vortex attachment countering the strong Coulomb repulsion of elec-
trons. However, because of the discreetness of the vortex attachment 
process, gauge forces do not always fully compensate the Coulomb 
repulsion. In such instances, the residual interaction between com-
posite fermions may stabilize unusual ground states, such as the BPCF.
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Methods
Data presented in the main text are generated from a sample we 
will refer to as Sample 1. Sample 1 is a two-dimensional electron gas 
confined to a 30 nm GaAs quantum well that is part of a GaAs/alu-
minum aallium arsenide (AlGaAs) heterostructure. Doping is done in 
a superlattice. The density of this sample is n = 3.06 × 1011 cm2 and the 
low-temperature mobility is μ = 32 × 106 cm2 V–1 s–1.

Magnetotransport measurements were performed in a van der 
Pauw sample geometry using standard lock-in technique. The excita-
tion current used was 3 nA. Our sample was mounted in vacuum on the 
copper tail of our dilution refrigerator, reaching the lowest estimated 
temperature of T = 12 mK.

Sample states were prepared by illumination with a red light emit-
ting diode located close to the sample and facing it. The illumination 
was performed near a sample temperature of 10 K, by passing a 4 mA 
current through the diode. Such an illumination slightly increases the 
sample density, and we believe it alleviates density inhomogeneities 
that may be present.

Data availability
Data are available upon request. Source data are provided with this 
paper.
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Extended Data Fig. 1 | Multiple observations of the RFQHS. Several 
longitudinal magnetoresistance 𝑅𝑥𝑥 and Hall resistance 𝑅x𝑦 measurements. 
Panels a and b have data from Sample 1, collected after cycling the sample to 

room temperature. Panel c has data from Sample 2. All panels exhibit the RFQHS, 
as evident from a splitting of the longitudinal magnetoresistance into two peaks 
and reentrance of the Hall resistance to Rxy = 3h/5e2.
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Extended Data Fig. 2 | The longitudinal magnetoresistance Rxx and Ryy as 
measured along two mutually perpendicular crystal directions and the Hall 
resistance. Data were collected from Sample 1 at T = 12 mK. While there are small 
but noticeable differences in the two longitudinal magnetoresistance traces, 

at the formation of the RFQHS the longitudinal magnetoresistance is nearly 
vanishing for both crystal directions and it is nearly isotropic. Panels a and b 
show data collected along two mutually perpendicular crystal axes of the GaAs 
crystal.
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