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Abstract. To succeed in a competitive business environment, optimal capital
investment plays a significant role. A firm cannot ignore the penalty associ-
ated with carrying excessive or insufficient production capacity. We provide a
model of the optimal rate of capital investment under uncertainty incorporating
a penalty to study the key impact. The penalty is modeled as a squared devi-
ation between the expected and the desired levels. The payoff functional thus
incorporates a nonlinear function of the expected capital level. This control
problem is of the mean field type. We obtain a closed form solution by a direct
method. As expected for mean field type control problems, the optimal feedback
depends not only on the current states, but also on the initial conditions. We
perform numerical studies to quantitatively address how risk control in capital
level deviation affects the optimal investment policy.
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1. Introduction

When firms make capital investment decisions under uncertainty, they must
deal with risk management. Carrying excessive capital capacity would endanger
the return on assets of a firm due to poor asset turnover. Insufficient capital
stock harms the profitability of a firm such as failing to seize a growth oppor-
tunity or undertaking a costly expansion. It is thus tempting for a firm to
operate by maximizing operating revenue while minimizing risk (i.e., curtailing
penalty) that may generate form undesirable capital deviations over time. Al-
though there is impressive volume of work studying how adjustment costs and
irreversibility affect a firm’s optimal investment under uncertainty (e.g. Cooper
and Haltiwanger [11], Bo and Lensin [7], and Caballero [10]...etc.), little work
exists in the literature on how risk originating from fluctuations in the capital
level affects the optimal capital investment (eg. Bensoussan, Hoe and Yan [6]).

We study the optimal rate of capital investment of a firm facing uncertainty
with respect to risk control in undesirable capital level fluctuations. To accom-
plish the goal, we extend the study of Abel and Eberly [2] by adding a penalty
term to the payoff functional. The penalty term, accounting for undesirable de-
viations from the desired capital level, is modeled through a squared deviation
between the expected and the desired levels. The control problem presented
is no longer a stochastic control problem, but rather a mean field type control
problem, which is time inconsistent. As a consequence, the dynamic program-
ming method for the classical control cannot be applied here.

Due to the simplifying feature that the control density does not exist in
our model formulation, we use the direct method to solve our mean field type
control problem! explicitly in which the solution is sought as in the calculus of
variations, computing the Gateaux differential. The direct method that we use
yields the optimal control and the optimal value directly. We show that this
method leads to the same result as that obtained from an HJB equation for the
standard stochastic control problem, and it is extendable to the mean field type
control problem. We are able to arrive at a closed form solution for our mean
field type control problem. Unlike Abel and Eberly [2], the optimal feedback
(i.e., the optimal rate of capital investment) depends not only on the current
state of the output price process, but also on the initial conditions of the output
price and capital levels.

In the following, we first revisit the model of Abel and Eberly [2] with the
direct method, which bypasses dynamic programming and thus avoids writing

IThere are several methods for solving mean field type control problems, for example, the
maximum principle (e.g. Andersson and Djehiche [3], Buckdahn Djehiche and Li [9], Li [14],
Buckdahn, Li and Ma [8], among others), the HIB-FP (Hamilton-Jacobi-Bellman-Fokker-
Planck) system introduced by Bensoussan, Frehse and Yam [5]...etc.
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an HJB equation. We then present our mean field type control problem. We
modify the payoff functional studied in Abel and Eberly [2] to account for the
penalty due to the deviation of the expected capital level from the desired level,
which is the main interest of our study. We present in detail the implementation
of the direct method to obtain the closed form optimal policy. Finally, we
demonstrate the significance of risk control in capital level deviation on the
optimal investment policy through numerical studies. Managerial insights are
inferred accordingly.

2. The model of Abel and Eberly

2.1. Setting of the problem

We first briefly review the model of Abel and Eberly [2]. A firm decides
its rate of capital investment (the control) denoted by v(¢). The corresponding
capital z(t) is defined by

dx(t)
e v(t) — 0x(t) 2.1)
z(0) = x,

where the coefficient § represents the depreciation unit rate. The price of output
y(t) follows a geometric Brownian motion described by

dy(t) = pydt + oydw(t),
y(0) =y,

where w(t) is a standard Wiener process, and coefficients y > 0, o > 0 repre-
sent the growth rate and volatility respectively. The price of output combined
with the capital contributes to the profit of the firm. Therefore, the manager
considers the evolution of the value y(t) to decide the investment, v(¢). So the
control, v(t), is random and adapted to the filtration F* = {o(y(s),s < t)}. The
state of the system is the pair (x(¢),y(t)) in spite of the fact that y(¢) evolves
by itself.

The output technology is assumed to be of the Cobb-Douglas form P(x4,1;) =
lf x% _5, where x is the capital input, { is the labor input, and 0 < £ < 1. A firm
chooses l; to maximize the instantaneous profit at time ¢ because the labor is
assumed to be costless and instantaneously adjustable with a fixed wage, W.
Therefore, the instantaneous operating profit is cy(¢)7x(t) where v = 1(1 — &)
and ¢ =y~ (y — 1)WY,

In addition, investment in capital stock incurs an additional adjustment cost,
which is assumed to be quadratic in the control variable, i.e., v(t)?/2. The payoff
is defined by

(2.2)
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+o00 ,02
Joy(0() = B /0 et [ey®na - "D, (2.3)

where « is the discount rate.
The firm maximizes its expected discounted operating revenue over time
through capital investment, so the value function is

u(z,y) = Sl(l[)) Joy((.)). (2.4)

We assume z,y > 0. The control v(¢) is positive, so the state z(t) is positive.
Since v(t) = 0 is admissible, the value function u(z,y) > 0.

The following assumptions and notations will be in force throughout this
paper. ‘We assume

p=a—2yu—2y—1)o? > 0. (2.5)

2. The control v(t) belongs to the class of adapted processes such that
+o0 2
t
E/‘ meéLh<+w. (2.6)
0

‘We denote

2
¢ 0, and B:A—.
2p

= >
a+d—yp—(y—1)0?/2

(2.7)

2.2. Solution of the problem by direct approach

The classical approach for solving the standard stochastic optimal problem
of (2.3) is to write down the HJB equation and to solve it explicitly. However, we
proceed differently here by presenting a direct approach. The direct approach is
implementable in this model because z(t) is the solution of a simple first order
ordinary differential equation. We can write

¢
z(t) = ze™% +/ e 01=5) y(s)ds. (2.8)
0

We state the result of Abel and Eberly [2] in the following proposition.

Proposition 2.1. With the assumption (2.5), the value function u(x,y) is finite
and given by

u(z,y) = Azxy” + By?. (2.9)
The optimal feedback is given by
8(t) = Ay(1)", (2.10)

and therefore is independent of the state z(t).
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Proof. We prove (2.9) directly without using dynamic programming. We can,
in fact, compute directly J; ,(v(.)) for any v(.). Using (2.8) we can write

Ty (w() = E/+°O oot [cy(t)"f ( e 0t +/Ote_6(t_s)v(s)ds) - ”22(”] dt

+oo 2
— o / Ay dt — B / emet = 2(75) dt

¢
+ CE/ e~ (Tt y (1) </ e’ v(s)ds) dt.
0 0

Inverting the order of integration of the last term, we have

CE/ e @)ty (1) (/ e’ u(s )ds) dt
=cE /0+°° % v(s) (/s+ e~ (atd)t y(t)”dt) ds. (2.11)

From Ito’s formula, we get (recalling the definition of ¢ given in (2.7))

de= (@Dt (1) = 7%6_(0‘*'5)’5 y(t)7dt + yoe OOyt dw(t).  (2.12)

We integrate over t between s and T large, and get

e~ (@+0)T y(T)Y — e~ (at+d)s y(s)?
e (T T
= / e (Tt () dt + ~yo / e~ @Ity (1) Y dw(t). (2.13)
Moreover, from (2.12), we easily observe

1
6—(a+5)T y(T)’Y _ y'y exp {7 <% + 5,)/20,2)]" + fya'w(T) .

Therefore,

C
E672(a+6)T y(T)2'y _ ygfye(*22+7202)T

_ y2'ye(7267o¢7p)T’

which tends to 0 as T — +oco. Thus exp{—(a + )T} y(T)” — 0 in L2 Since
fST e~ @Dt y(t)Vdt — f:oo e~ @+t y(1)Vdt a.s., we can pass to the limit in L2
in equation (2.13) and obtain

(@t gy = C

+00 Foo
4 e—(ato)t y(t)’ydt + ,YO./ e~ (atd)t y(t)’de(t).
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Using this relation in (2.11), we get

+oo “+oo
cE/ %% v(s) </ e~ (ato)t y(t)”dt) ds
0 s

+oo +oo
= AE/ e?% v(s) {e(‘”é)s y(s)” + 70/ e~ (DY) dw(t)| ds
0

S

+o0o
= AE/ v(s)e”* y(s)ds,
0

recalling that v(s) is adapted. Collecting results, we obtain
—+o00 “+o00
Joy(()) = cxE / e (Tt y()Vdt + AE / v(t)e ty(t)Vdt  (2.14)
0 0

_E/-+oo et @dt
0 2

We note also that cE f0+oo e @+t y(t)7dt = Ay?; hence

v (t)
2

“+oo
Joy(0() = Azy? + E /0 emat [Av(t)y(t)V - dt. (2.15)

From this expression, it is immediate that the optimal control is ¥(t) = Ay(t)”
and thus

A2 +oo A2
u(z,y) = Azy” + 7E/0 e~ y(t)?dt = Azy" + %y%,

which completes the proof of (2.9). |

3. Mean field type control model

3.1. Setting of the model

We now study the optimal rate of capital investment for a firm which faces
uncertainty and gets penalized if its expected capital level deviates from its fixed
desired level. We define the following payoff functional

+oo
J2(00)) = Ty (v()) - g/o et Ba(t) — 72dt. (3.1)

We have added to the functional J, ,(v(.)) (cf. (2.3)) a penalty term to minimize
the distance between the expected capital level, Fxz(t), and a desired capital
level, Z. This penalty term accounts for the costs of the undesirable capital
level deviation. The squared distance is necessary since the deviation from
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the desired fixed capital level in either directions harms the performance of a
firm. In (3.1), £ measures the magnitude of the penalty. It can be viewed as
a surrogate of a manager’s risk aversion. The more risk averse a manager is,
the larger is the €. The penalty term is a nonlinear function of the expected
value of z(t). Because of this term, this is not a standard control problem, but
a mean field type control problem which is time inconsistent. In sections that
follow, we show that the direct method of Proposition 2.1 extends to this type
of problem.

Remark 1. When we say that feedback is time consistent or inconsistent, we
refer to a function of = and time t only(z(s) is the state process with x(t) = x).
Introducing the probability law of the state process in the feedback will make
it time consistent, but for a different state space.

Remark 2. Tt is true that a large crowd with a benevolent dictator leads to
a mean field type control. However, in our work, we are dealing with a risk
management problem. It turns out that it is a mean field type control.

3.2. Computation of Gateaux differential

The functional J; , (v(.)) of (3.1) can be written explicitly as

+o0 v2
J2,(0() = Ay + E /O et [avtyy(ry - D (3.2)

2

c —+o0 t
- 7/ e ot (xe_& -z +/ e 0t=s) Ev(s)ds> dt.
2Jo 0

We next compute the Gateaux differential at argument (.). We have

@JE (0(.) + 0v(.))]e=0

+0oo
= E/ t)(Ay(t)” — o(t))dt (3.3)

t t
- s/ e (:ce‘” -+ / e 0(t=s) E@(s)ds) / e 0= Bu(s)ds dt,
0 0 0

and by inverting the order of integration in the last integral, we get

Tz (00) + 000)|

“+oo
—F / =ty (8) (Ay()T — 5(t))dt (3.4)
0

—+oo
- EE/ e u(t)
0



560 A. Bensoussan, C. Hoe and Z. Yan

+oo S
X </ e~ (@0(=0) (g0 _ 7 4 / e~ 0= Ef)(T)dT)ds) dt.
¢ 0

3.3. Optimality condition

The functional (3.2) is strictly concave in the Hilbert space
“+oo
V= {v() v(t)is adapted to F, E/ e~ u(t)|?dt < +oo}.
0

We note that, because of the penalty term, it is worthwhile to introduce the
possibility of disinvesting, i.e., when x is much larger than z. So we drop
the constraint v(t) > 0. We assume, of course, that this is physically possible.
Otherwise, the solution will be considered as an ideal benchmark.

The optimal o(.) satisfies

%Ji,y(ﬁ(.) + 91}(.))’0 =0 V() eV, (3.5)

It follows from formula (3.4) that ¢(¢) must satisfy the equation

+oo s
0(t) = Ay(t)Y — ¢ </ e (@) (s=t) (pe=0s _ 7 4 / e 007 E@(T)dT)ds) ,
¢ 0
(3.6)

whose solution is derived in the next section.

4. Optimal control

4.1. Equation for the mean

Since the term in ¢ is deterministic in equation (3.6), we get easily by taking
the expected value

Eb(t) = Ayrerbtz(=1o)1 (4.1)

+oo S
—€ (/ e~ (a+d)(s—t) <ze_6s -z +/ e 00s=T) Eﬁ(T)dT) ds) .
¢ 0

After integration by parts, we verify the formula

—+o00 s
/ e~ (atd)(s—1) (ze“ss + / e 0(s=) E@(T)dT) ds
t 0

1 t +o0
= % [xe_‘;t +/0 e °t=%) Eip(s)ds —|—/t e_(‘s*'“)(s_t)E@(s)ds} .
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Therefore (4.1) becomes

ot

. 1 xe~ z
Bo(0) = Ay exp o (n+ 500 = D0 )1] —<(Zgs - o 55)
t —+o00
_ ¢ —3(t=s) pg —(+a)(s—1) 5
PRDY; {/0 e Ev(s)der/t e B(s)ds| .

If we introduce the function z(t) = Eo(t) e (@+t9! we obtain the functional
equation

—(a+26)t =,—(a+d)t
_ v _E _ xre _Ie
(0 = g7 e 3t~ (T o)

_ € /t e~ (at20)(t—s) Z(S)dS + /+OO Z(S)ds
a+25]/o . '

By computing the first and the second derivative, we can check that z(t) is the
solution of the second order differential equation

(4.2)

1
2" —(a+28) +ez= c(6 + py + 5027(7 _ 1))y7 exp {—%t} + ebze (@t
(4.3)
with the boundary conditions

2'(0) = —cy? +e(x — ), 2'(+o00)=0.
It can be easily verified that (4.2) and (4.3) are equivalent. Note that, since
z(t) is smooth and z’(+00) = 0, we must have z”’(4+00) = 0. The equation then
implies z(4o00) = 0.
4.2. Solution of the differential equation

We can solve explicitly the boundary value problem (4.3). We introduce the
solutions 8 > 0 and B* < 0 of the algebraic equation

B2 —(a+20)3—c=0; (4.4)
namely

a+20 4+ /(a+20)2 + 4e
B = 5

ﬁ*_a+25—\/(a+25)2+45 (4.5)
= 5 . .

)

Following standard but tedious calculations, we obtain

_ € st ey’ (i — ) — M
=5 e rm e -0 ) Sar o e
OApy 90 =00%/2) o s 0T v (4

T (B— (/AN —(c/An Y € Sa+0)+e
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4.3. Optimal feedback

We return to formula (3.6) which we write as follows

ot

R xre~ T
o0 = A" (5~ s (47)
t —+o00
€ —5(t—s) o / —(6+a)(s—1t) a
Py [/0 e Eo(s)ds + t e Ev(s)ds| .

Taking the mathematical expectation, we obtain

o(t) = Ay(t)” + Eo(t) — Ay™ exp Kw + %7(7 - 1)02)15}

= Ay(t)Y 4 e Tt 5 (1) — Ay? exp{(vu + %7(7 — 1)02)75] (4.8)

Using formula (4.6) and rearranging, we obtain the following proposition:

Proposition 4.1. The optimal rate of capital investment is given by:

o(t) = Ay(t)” + %e@*—&)t (49)
x[ v’ _(x_x)_M}
e+ (c/A)(0 + py + (v — 1)o?/2) S(a+0) +e
. eAy" 1 e t}
e+ (c/A) (6 + py +7(y — 1)0?/2) eXp[(W +37(r = 1o )
0T
T Sato) te

From Proposition 4.1, we see that the optimal control depends not only
on the current state y(t) (the output price process), but also on the initial
conditions x and y (capital level and output price level).

4.4. Computation of the value function

Using the optimal rate of capital investment given in Proposition 4.1, we
generate a formula for the optimal value uc(z,y) = Jg ,(9(.)) in the following
theorem.

Theorem 4.1. The optimal value of the firm is given by
uel,y) = J2,(00)) = Awy + By + S ACy” (4.10)
€
+ 5Ay7 [D1z + Do + e(Diz + D4T)]
+ e[Er2? + Eo®? + Esx® + (Ej2? 4+ Ey7% 4 Ejax)),

where C, D1, Do, D}, D}, E1, Eo, Es, Ei, El, E} are constants.
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Proof. Using the optimality condition, we first state
e . 1 Foo —at ~ € oo —at —dt —\2
Iy (0() = Azy” + iE e~ o(t)Ay(t)"dt — 5 e (ze™ — )" dt
0 0

c —+o00 t
- 7/ e (ze % - 7) / e =) Bo(s)ds dt,
2Jo 0

which can be rewritten as

e (5 e [T —at o5t =\2
JS (0() = Azy” — 5/ e (we™ — )" dt
0

zy
1 oo xe ot T
- F —2t 508 | Ay(t)Y — _—— dt
w58 [ et (v - (Zg - ) |

and, using (4.9), we obtain
Joy(0())

+oo
= Axy” — %/ em (a:e*‘;t — :2)2 dt + By*
0

+o00 —it T
2 7/ L 2 _fEe T
w3y [ eo|(amam- 0 -02) - (s

o0z(a + 9) ]

1 4+ cy”
Zo(BT=6)t _
t35° S(a+0)+e

B [6+(C/A)(5+m+7(71)02/2) -
e+ (c/A) (S + py + (v —

(z - 1)

1 2
o2/2) P [(w +37(r = 1o )t}

+67j dt
da+d)+e

82 e —at 1)6_5t T
B ?/o ‘ <a+25 B m)
G o gy 0t
X {ﬂe g L+(c/A)(5+Mfy+fy(»y,1)0.2/2) (x — &) 5(a+5)+5}
Ay? )
e+ (¢/A)S 4 py +(y — 1)02/2) eXP[(’Y,U +y(y—1)o /2)1&}

TR ——
da+d)+e
We can compute these integrals and obtain the formula
T, (0()) = Awy” + By® + SACY™

9
+ iAyW (D12 + Do + e(Dix + D4yT)]
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Figure 1. The expected optimal rate of investment with respect to € for various ¢

+ e[E12? + Eo7? + E3x7 + e(Eq2® + Ey7* + Ey27)),

where C, D17D27D/17D/27E1,E27E3’E/1,Eé’Eé are constants. This completes
the proof. O

Remark 3. We can recover the optimal control and the value function of Abel
and Eberly’s model [2] by letting ¢ = 0 in (4.9) and (4.10)

5. Numerical analyses

In this section, we explore how a risk-averse manager’s penalty term, e,
affects the expected optimal rate of capital investment over time.
We use the following parameter values as the base case scenario:

n=001;,0=020=01;,£=02, W=5 a=0.2; y=>5.

In addition, we choose the following two different sets of the initial capital level
and the desired capital level,

{x,7) = {15,45} and {60,45},

to explore two scenarios, that is, a firm’s initial capital level is either well below
or well above the desired capital level.
We have the following observations.

1. The expected optimal rate of capital investment is sensitive to the penalty,
€, that a risk averse entrepreneur assigns. Moreover, the sensitivity de-
creases as the investment progresses through time. That is, the expected
optimal rate of capital investment is less affected by the penalty, €, as-
signed as the investment progresses. Figure 1 illustrates this observation.
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Expectod Optiml nvestment Rate Expocied Opima nvestment Rate

Figure 2. The expected optimal rate of investment with respect to ¢ for various &

2. The penalty, €, determines how fast a manager adjusts the firm’s invest-
ment rate towards the desired level, where the slope of the expected op-
timal rate of capital investment is equal to zero. The larger the ¢ is,
the larger the investment rate (both investing and disinvesting) is made
at the beginning phase toward the desired level. Obviously, a firm has
an incentive to accelerate the investment/disinvestment toward the de-
sired level in order to avoid large losses in firm value due to the large
penalty imposed. A firm, however, may be able to adjust the rate of in-
vestment/disinvestment at a slower peace toward the desired level when
the loss of the firm’s value followed by the penalty is small.

To sum up, the risk term matters for the optimal rate of capital investment.
Furthermore, from both graphics, we see that the naive model, ignoring the
capital level deviation penalty (risk), leads to myopic decisions far from the
optimal policy.

6. Conclusion

We study the optimal rate of capital investment of a firm under uncertainty
penalized by the deviation of its expected capital level from the fixed desired
level. The control problem is of the mean field type.

Using the direct approach, we are able to arrive at a closed form solution.
The optimal rate of capital investment depends not only on the current state of
the output price process, but also on the initial conditions of the output price
level and the capital level. The optimal policy is significantly different from one
that ignores the penalty caused by undesirable capital level deviations. The
optimal rate of capital investment for a firm without the penalty is independent
of the initial capital level as well as the initial output price level. It depends
only on the current state of the output price process. We thus advise managers



566 A. Bensoussan, C. Hoe and Z. Yan

to employ the appropriate formulation of the optimal investment problem. If
a firm is exposed to the risk associate with undesirable capital deviations, the
risk (penalty) should be appropriately accounted for in its control problem.
Otherwise, myopic decisions may be made at the expense of a firm’s value. In
other words, incorporating risk control into a firm’s investment model is too
important to ignore.
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