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ON THE FRØYSHOV INVARIANT AND MONOPOLE
LEFSCHETZ NUMBER

Jianfeng Lin, Daniel Ruberman & Nikolai Saveliev

Abstract

Given an involution on a rational homology 3-sphere Y with
quotient the 3-sphere, we prove a formula for the Lefschetz num-
ber of the map induced by this involution in the reduced mono-
pole Floer homology. This formula is motivated by a variant of
Witten’s conjecture relating the Donaldson and Seiberg–Witten
invariants of 4-manifolds. A key ingredient is a skein-theoretic ar-
gument, making use of an exact triangle in monopole Floer homol-
ogy, that computes the Lefschetz number in terms of the Murasugi
signature of the branch set and the sum of Frøyshov invariants as-
sociated to spin structures on Y . We discuss various applications
of our formula in gauge theory, knot theory, contact geometry, and
4-dimensional topology.

1. Introduction

The monopole Floer homology defined by Kronheimer and Mrowka
[37] using Seiberg–Witten gauge theory is a powerful invariant of 3–
manifolds which has had many important applications in low-dimen-
sional topology. Because of its functoriality [37, Theorem 3.4.3], the
monopole Floer homology of a 3–manifold is acted upon by its mapping
class group. However, the information contained in this action is not
easy to extract due to the gauge theoretic nature of the theory. In
this paper, we make some first steps towards understanding this action
by calculating the Lefschetz numbers of certain involutions making the
3–manifold into a double branched cover over a link in the 3–sphere.
Our study is motivated by the calculation of Lefschetz numbers in the
instanton Floer homology [63] and by a variant [61, Conjecture B] of
Witten’s conjecture [72] relating the Donaldson and Seiberg–Witten
invariants. The following theorem is the main result of the paper, and
it comes with many interesting applications.
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Theorem A. Let Y be an oriented rational homology 3–sphere with
an involution ⌧ : Y Ñ Y making it into a double branched cover of
S3 with branch set a non-empty link L. Denote by ⌧˚ : HM red

pY q Ñ

HM red
pY q the induced map in the reduced monopole Floer homology,

and by Lefp⌧˚q its Lefschetz number. Then

(1) Lef p⌧˚q “
2|L|

16
⇠pLq ´

ÿ

s

hpY, sq,

where |L| is the number of components of the link L and ⇠pLq is its
Murasugi signature [52], and the last term is the sum over all the spin
structures on Y of the Frøyshov invariants hpY, sq of the spin manifold
pY, sq. In particular, if the link L is a knot K in S3,

(2) Lefp⌧˚q “
1

8
sign pKq ´ hpY q,

where signpKq is the classical knot signature and hpY q is the Frøyshov
invariant for the unique spin structure on Y .

We are using here the rational numbers as the coe�cient ring of the
monopole Floer homology, and we will continue doing so throughout
the paper unless otherwise noted. We expect that a formula similar to
(1) will hold for any rational homology sphere Y and a di↵eomorphism
⌧ : Y Ñ Y of order n • 2. In the special case when the quotient Y {⌧
is an integral homology sphere Y 1 and the branch set is a knot K Ä Y 1,
we make this expectation precise and conjecture that

(3) Lef p⌧˚q “ n ¨ �pY 1
q `

1

8

n´1ÿ

m“0

signm{n
pKq ´

ÿ

s

hpY, sq,

where �pY 1
q is the Casson invariant of Y 1, signm{n

pKq is the Tristram–
Levine signature of K (see [63, Section 6]), and the last summation
extends to the spinc structures s on Y such that ⌧˚psq “ s. The origins of
this conjecture will be discussed in Section 1.2.1. In a recent paper [45],
the authors have proved this conjecture.

Remark 1.1. We will be working throughout with the Frøyshov
invariants hpY, sq, which are defined via monopole homology. However,
it is important to note that these are now known to be equivalent to
the Heegaard Floer theory correction terms dpY, sq, for which many
more calculations are available. In particular, the work of Kutluhan,
Lee, and Taubes [39, 40, 41, 42, 43], or alternatively, the work of
Colin, Ghiggini, and Honda [13, 14, 15] and Taubes [68], identifies the
monopole homology and the Heegaard Floer homology. Furthermore,
by combining the main results of [59, 28, 21], the absolute Q-gradings
in the two theories coincide. Therefore, the relation dpY, sq “ ´2hpY, sq

between the Frøyshov invariant and the Heegaard Floer correction term
holds for any rational homology spheres. This relation plays a role in
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our proof of Theorem A (see Proposition 6.4) as well in several of the
corollaries.

We conjecture that a version of Theorem A holds for Heegaard Floer
homology. This would be established by showing that the isomorphisms
cited above between the reduced Floer theories are natural with respect
to cobordisms, so that the Lefschetz numbers computed in the two the-
ories are the same.

Remark 1.2. To the best of our knowledge, Theorem A gives the
first interpretation of the classical knot signature (and more generally,
Murasugi’s link signature) in terms of the Seiberg–Witten gauge theory.
It can be viewed as a categorification result, with the Lefschetz number
substituted for the Euler characteristic. This result should be compared
with X.-S. Lin’s theorem [46] which expresses the signature of a knot
in S3 as (roughly) a signed count of the gauge equivalence classes of
certain flat SUp2q connections over the knot exterior.

1.1. An outline of the proof. Since Y is the double branched cover
of S3 with branch set L, we will also use the notation Y “ ⌃pLq and
assume that the orientation on Y is pulled back from the standard
orientation of S3. We need to show the vanishing of the link invariant

(4) �pLq “
1

2|L|´1

˜
Lef p⌧˚q `

ÿ

s

hp⌃pLq, sq

¸
´

1

8
⇠pLq

for all links L with non-zero determinant. This is done by an inductive
argument involving a skein relation between �pLq, �pL0q, and �pL1q,
where L0, L1 are resolutions of L at a certain crossing. The skein
relation for ⇠pLq can be proved directly, and the skein relations for the
other two terms are a consequence of an exact triangle relating the
monopole Floer homology of ⌃pLq, ⌃pL0q, and ⌃pL1q.

While the idea is straightforward, there are several technical obstacles
one needs to overcome. First of all, to understand the skein-theoretic
behavior of the monopole Lefschetz number (as a rational number), one
needs an exact triangle with Q–coe�cients; however, the original exact
triangle [38] has coe�cients in Z{2. While one may be able to adapt
the proof there by putting suitable plus and minus signs before various
terms appearing in the proof, keeping the signs straight is complicated
and would require a significant amount of work. Here, we follow an al-
ternative route: we show that, with some extra input from homological
algebra, one can deduce a Q–coe�cient exact triangle from the corre-
sponding Z{2 exact triangle using the universal coe�cient theorem. It
is a delicate matter to define the signs involved in the maps of this new
exact triangle so that they are compatible with the induced action of
⌧ ; we need this compatibility to deduce a vanishing result for the total
Lefschetz number.
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The second di�culty comes from the fact that the version of monopole
Floer homology that appears in the exact triangle is ~HMpY q, and it is
always infinite dimensional. To discuss the Lefschetz number, one needs
to modify ~HMpY q to a finite dimensional vector space by ignoring all
generators of su�ciently high degree. However, we lose the exactness of
the triangle by such a truncating operation. As a consequence, the skein
relation for �pLq only holds up to a universal constant C depending
on certain combinatorial data including the surgery coe�cients. To
prove that C always equals zero, we start from the example of two-
bridge links. Since such links are known to have vanishing �pLq, we
can use them to show that in some cases, the constant C vanishes and
the actual skein relation holds. With the help of this special skein
relation, we can produce more examples of links L with �pLq “ 0 and
prove the vanishing result for C in a more general situation. Repeating
this procedure several times, we eventually produce enough examples to
prove that C “ 0 in all possible cases.

After establishing the skein relation, one might hope to prove �pLq “

0 by an inductive argument. However, such an argument would need
to avoid links with zero determinant because double branched covers
of such links, not being rational homology 3-spheres, may have more
complicated monopole Floer homology. Unfortunately, it is not clear
how to reduce a general non-zero determinant link to the unknot solely
by resolving crossings without involving any zero determinant links. To
overcome this obstacle, we make use of Mullins’s skein theory for non-
zero determinant links [51]. Following his idea, we extend the inductive
statement by adding another skein relation relating �pLq with �pL̄q,
where L̄ is obtained from L by a crossing change. The relation is then
established by comparing the two exact triangles arising from the triples
pL,L0, L1q and pL̄, L1, L0q. Further development of these ideas can be
found in Karan [29].

1.2. Calculations and applications. Theorem A can be used in sev-
eral di↵erent ways. In some cases (for instance, when Y is an L-space),
the monopole Lefschetz number automatically vanishes and we obtain a
direct relation between the Frøyshov invariant and the Murasugi signa-
ture. In other cases, one can use formula (1) to compute the monopole
Lefschetz number. This Lefschetz number contains important informa-
tion about the action and can be used to explicitly describe the action
in some cases, leading to non-trivial conclusions. The applications we
present in this paper fall into four di↵erent categories: gauge theory,
knot theory, contact geometry, and 4-dimensional topology.

1.2.1. An application to gauge theory. Let X be a closed smooth
oriented 4-manifold such that

(5) H˚pX;Zq “ H˚pS1
ˆ S3;Zq and H˚pX̃;Qq “ H˚pS3;Qq,
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where X̃ is the universal abelian cover of X associated with a choice
of generator for H1

pX;Zq “ Z, called a homology orientation on X.
Associated with X are two gauge-theoretic invariants whose definition
depends on a choice of Riemannian metric on X but which end up being
metric independent. The invariant �FOpXq is roughly one quarter times
a signed count of anti-self-dual connections on the trivial SUp2q bun-
dle over X; and the invariant �SWpXq is roughly a signed count of the
Seiberg–Witten monopoles over X plus an index theoretic correction
term. The invariant �FOpXq was originally defined by Furuta and Ohta
[20] under the more restrictive hypothesis that H˚pX̃;Zq “ H˚pS3;Z),
and the invariant �SWpXq was defined by Mrowka, Ruberman, and
Saveliev [50] without any further assumptions on X̃.

Conjecture B. For any closed oriented homology oriented smooth
4-manifold X satisfying condition (5), one has

�FOpXq “ ´�SWpXq.

This conjecture is a slight generalization of [50, Conjecture B]. It
relates the Donaldson and Seiberg–Witten invariants of certain smooth
4-manifolds and therefore can be thought of as a variant of the Witten
conjecture [72] for manifolds with vanishing second Betti number. The
conjecture has been verified in a number of examples [61]. The follow-
ing theorem, which we prove in this paper, provides further evidence
towards it.

Theorem C. Let ⌧ : Y Ñ Y be an involution on a rational homology
sphere Y making Y into a double branched cover of S3 with branch set
a knot K, and let X be the mapping torus of ⌧ . Then

�FOpXq “ ´�SWpXq “
1

8
sign pKq.

Note that our conjectural formula (3) can be interpreted as a special
case of Conjecture B for the mapping torus of a di↵eomorphism of order
n, by using the splitting formula for �SWpXq proved in our earlier paper
[44, Theorem A] and the calculation of �FOpXq for the finite order
mapping tori [63, Theorem 1.1].

1.2.2. Strongly non-extendable involutions and Akbulut corks.
In [1], Akbulut constructed a smooth compact contractible 4-manifold
W1 with boundary an integral homology sphere BW1 and an involution
⌧ : BW1 Ñ BW1 which can be extended to W1 as a homeomorphism
but not as a di↵eomorphism; it was the first example of what is now
known as an Akbulut cork. We improve upon this result by constructing
the first known example of what we call a ‘strongly non-extendable
involution’. The precise statement is as follows.

Theorem D. There exists a smooth involution ⌧ : Y Ñ Y on an
integral homology 3-sphere Y which has the following two properties:
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(1) Y bounds a smooth contractible 4-manifold, and
(2) ⌧ can not be extended as a di↵eomorphism to any Z{2 homology

4-ball that Y bounds.

One example of a strongly non-extendable involution claimed by The-
orem D is the aforementioned involution ⌧ : BW1 Ñ BW1 of the orig-
inal Akbulut cork pW1, ⌧q: we show that ⌧ does not extend to a self-
di↵eomorphism not just of W1 but of any homology ball that BW1 may
bound. We accomplish this by computing the induced action of ⌧ on
the monopole Floer homology zHMpBW1;Zq with the help of Theorem A
and the calculation of Akbulut and Durusoy [3].

When the homology 4-ball bounded by Y is contractible, the involu-
tion ⌧ always extends to it as a homeomorphism. Using this idea, we
give a general construction in Section 8 that results in a large family
of new corks. It is worth mentioning that previous examples of corks
were usually detected by embedding them in a closed manifold whose
smooth structure is changed by the cork twist. (In the terminology
of [7], they have an e↵ective embedding.) On the other hand, the corks
we construct do not have an obvious e↵ective embedding and they are
detected by monopole Floer homology.

1.2.3. Knot concordance and Khovanov homology thin knots.
Recall from [32, 33] that a link L in the 3–sphere is called Khovanov

homology thin (over F2) if its reduced Khovanov homology ÅKh pL;F2q is
supported in a single �-grading. Such links are rather common: for in-
stance, according to [48], all quasi-alternating links, as well as 238 of the
250 prime knots with up to 10 crossings, are Khovanov homology thin. It
follows from the spectral sequence of Bloom [9] that HM red

p⌃pLqq “ 0
if L is a Khovanov homology thin link. Combined with Theorem A, this
leads to the following series of corollaries, the first of which confirms the
conjecture of Manolescu and Owens [47, Conjecture 1.4].

Corollary E. For any Khovanov homology thin link L with nonzero
determinant, one has the relation

⇠pLq “ 8
ÿ

sPspinp⌃pLqq
hp⌃pLq, sq

between the Murasugi signature of L and the Frøyshov invariants of the
double branched cover ⌃pLq.

Corollary F. For a knot K in S3, denote by LpKq the Lefschetz
number of the map on HM red

p⌃pKqq induced by the covering transla-
tion. Then LpKq is a non-trivial additive concordance invariant which
vanishes on Khovanov homology thin knots.

Corollary G. Let Cs be the smooth knot concordance group and Cthin

its subgroup generated by the Khovanov homology thin knots. Then the
quotient group Cs{Cthin contains a Z–summand.
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1.2.4. The choice of sign in the monopole contact invariant.
For any compact contact 3-manifold pY, ⇠q, Kronheimer and Mrowka
[36] (see also [38]) defined a contact invariant

 pY, ⇠q P ~HMp´Y ;Z{2q,

as well as a monopole homology class

 ̃pY, ⇠q P ~HMp´Y ;Zq{t˘1u.

The notation indicates that when working with integer coe�cients, this
construction only results in a class in the set ~HMp´Y ;Zq{t˘1u. In
other words, the monopole homology class at hand is only well-defined
up to sign. Technically, this happens because the Seiberg–Witten mod-
uli space involved in the construction does not carry a natural orienta-
tion. One might hope that the monopole homology class can be defined
as an element in ~HMp´Y ;Zq by further analysis. However, we show
that is not possible: with the help of Theorem A, we construct an in-
volution on the Brieskorn homology sphere ´⌃p2, 3, 7q which preserves
a certain contact structure but changes the sign of the (non-torsion)
contact invariant.

Theorem H. There exists no canonical choice of sign in the defini-
tion of  ̃pY, ⇠q, or equivalently no canonical lift of  ̃pY, ⇠q to ~HM ṕ Y ;Zq.

It is worth mentioning that similar contact invariants in Heegaard
Floer homology were defined (also with a sign ambiguity) by Ozsváth
and Szabó [55]. A version of Theorem H in context of Heegaard Floer
homology has been proved by Honda, Kazez, and Matić [26] using an
approach di↵erent from ours. As discussed in Remark 1.1, there exists
an isomorphism between Heegaard Floer homology and monopole Floer
homology which preserves the contact invariant [13, 14, 15, 68]. How-
ever, since the naturality of this isomorphism has not been established,
our result and that of Honda, Kazez, and Matić do not imply each other.

1.3. Organization of the paper. Section 2 sets up the skein theory
argument, reducing the proof of Theorem A to the key Proposition 2.2.
The proof of that proposition occupies Sections 3–6, which form the bulk
of the paper. Section 3 establishes a skein relation for the Murasugi sig-
nature ⇠pLq, and Section 4 sets up a surgery exact triangle with rational
coe�cients that will be crucial for the remainder of the argument. In
Section 5, we show that Proposition 2.2 holds up to certain univer-
sal constants C, and organize the rather complicated data necessary
to track spin and spinc structures through the skein theory argument.
Section 6 studies the skein exact sequence for a large number of exam-
ples, su�cient to show that the constants C vanish, thereby establishing
Proposition 2.2 and Theorem A.
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The remainder of the paper is devoted to applications. In Section 7
we extend the definition of the Furuta–Ohta invariant �FO and evaluate
it for the mapping torus of an involution on a rational homology sphere
with homology sphere quotient. This establishes Theorem C. We calcu-
late the e↵ect of a particular involution on a cork boundary in Section 8
proving the non-extension result Theorem D. Corollaries E, F, and G
of Theorem A concerning the knot concordance group are established
in Section 9. Finally, Section 10 proves the non-canonical nature of the
sign in the contact invariant (Theorem H).

Acknowledgments. We thank Ken Baker, John Baldwin, Marco Golla,
Olga Plamenevskaya, and Youlin Li for generously sharing their exper-
tise, Tom Mark for pointing out Tosun’s paper [69], and Christine Le-
scop for an interesting discussion on Mullins’s approach to skein theory
for the double branched cover. Finally, we thank the referee for a very
careful reading of the manuscript.

2. Skein relations and the proof of Theorem A

Let L be an unoriented link in S3 and ⌃pLq its double branched
cover. A quasi-orientation of L is an orientation on each component of
L modulo an overall orientation reversal. The set of quasi-orientations
of L will be denoted by QpLq. Turaev [70] established a natural bijective
correspondence between QpLq and spinp⌃pLqq, the set of spin structures
on ⌃pLq.

The link L will be called ramifiable if detpLq ‰ 0 or, equivalently, if
⌃pLq is a rational homology sphere. Note that all knots are ramifiable.
Given a ramifiable link L in S3, consider the quantity

�pLq “
1

2|L|´1

¨

˝
ÿ

sPspinp⌃pLqq
hp⌃pLq, sq ´

1

8

ÿ

`PQpLq
�p`q ` Lefp⌧˚q

˛

‚,

where |L| is the number of components of L, �p`q is the signature of
the link L quasi-oriented by `, hp⌃pLq, sq is the Frøyshov invariant of
the spin manifold p⌃pLq, sq, and Lefp⌧˚q is the Lefschetz number of the
map

(6) ⌧˚ : HM red
p⌃pLqq Ñ HM red

p⌃pLqq

on the reduced monopole Floer homology of ⌃pLq induced by the cov-
ering translation ⌧ : ⌃pLq Ñ ⌃pLq. That the above formula for �pLq

matches formula (4) can be seen as follows.
Write L “ K1 Y . . . Y Km as a link of m “ |L| components, and

choose a quasi-orientation ` P QpLq. Recall that the Murasugi signature
of L is defined as

⇠pLq “ �p`q `

ÿ

1§i†j§m

lkpKi,Kjq.
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Murasugi [52] proved that ⇠pLq does not depend on the choice of quasi-
orientation `, hence ⇠pLq can be defined alternatively as

(7) ⇠pLq “
1

2m´1

ÿ

`PQpLq
�p`q.

The following theorem is then equivalent to Theorem A.

Theorem 2.1. For any ramifiable link L Ä S3, one has �pLq “ 0.

Our proof of Theorem 2.1 will rely on skein theory. Given a link L in
the 3–sphere, fix its planar projection and consider two resolutions of L
at a crossing c as shown in Figure 1; we follow here the convention of
[56].

Figure 1.

The links L0 and L1 are called the 0-resolution and the 1-resolution
of L, respectively, and the triple pL,L0, L1q is called a skein triangle.
Note that a skein triangle possesses a cyclic symmetry: for any link in
pL,L0, L1q, the other two taken in the prescribed cyclic ordering are its
0- and 1-resolutions. This symmetry is best seen when the links are
drawn as in Figure 2; see also [35, Figure 6]. Denote by L̄ the link
obtained by changing the crossing c in the link L.

Figure 2.
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Proposition 2.2. Let pL,L0, L1q be a skein triangle and assume that
L is ramifiable. Then at least two of the three links L̄, L0, L1 are
ramifiable and, in addition,

(i) if both L0 and L1 are ramifiable and �pL0q “ �pL1q “ 0 then
�pLq “ 0.

(ii) if one of the links L0, L1 is not ramifiable then �pLq “ �pL̄q.

We will now prove Theorem 2.1 assuming Proposition 2.2; the proof
of the proposition will then occupy Section 3 through Section 6.

Proof of Theorem 2.1. The proof is a modification of the proof of [51,
Theorem 3.3]. We will proceed by induction on the pair pcpLq, |L|q,
where cpLq is the number of crossings in a diagram of L.

The case p0, 1q is trivial. The cases p0, nq with n • 2 are vacuous be-
cause unlinks with more than one component are not ramifiable. Next,
suppose that the statement has been proved for all ramifiable links ad-
mitting a diagram with k or fewer crossings. We want to prove it for
the case pk ` 1, nq with n • 1.

First let n “ 1 then L is a knot admitting a diagram with k ` 1
crossings. By changing m † k crossings we can unknot L, thereby
obtaining a sequence of knots

L “ L1
Ñ L2

Ñ ¨ ¨ ¨ Ñ Lm`1
“ unknot,

where La`1 is obtained from La by a single crossing change. Denote by
La
0
and La

1
the two resolutions of La. We have �pLm`1

q “ 0. To deduce
that �pLa

q “ 0 from �pLa`1
q “ 0, we will consider the following two

cases:

(i) Both La
0
and La

1
are ramifiable. Since cpLa

0
q § k and cpLa

1
q § k,

it follows from our induction hypothesis that �pLa
0
q “ �pLa

1
q “ 0.

Proposition 2.2 (i) then implies that �pLa
q “ 0.

(ii) One of the resolutions La
0
, La

1
is not ramifiable. Then Propo-

sition 2.2 (ii) implies that �pLa
q “ �pLa`1

q “ 0, and we are
finished.

Now let n • 2 so that L is a multi-component link admitting a
diagram with k ` 1 crossings. Again, change m † k crossings one by
one to obtain a sequence of links

L “ L1
Ñ L2

Ñ ¨ ¨ ¨ Ñ Lm`1
“ a split link,

where La`1 is obtained from La by a single crossing change. Since multi-
component split links are not ramifiable, we can find b § m such that
L1, ¨ ¨ ¨ , Lb are ramifiable and Lb`1 is not. Proposition 2.2 then implies
that both Lb

0
and Lb

1
are ramifiable. Since cpLb

0
q § k and cpLb

1
q § k,

we conclude that �pLb
0
q “ �pLb

1
q “ 0 from our induction hypothesis.

Proposition 2.2 (i) then implies that �pLb
q “ 0. The deduction that
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�pLa`1
q “ 0 implies �pLa

q “ 0 for all a † b is exactly the same as in
the n “ 1 case. q.e.d.

3. Skein relation for the Murasugi signature

Let pL0, L1, L2q be a skein triangle obtained by resolving a crossing
c inside a ball B. For any subscript j viewed as an element of Z{3 “

t0, 1, 2u, denote by Sj the standard cobordism surface from Lj to Lj`1

inside the 4-manifold r0, 1s ˆ S3 obtained by adding a single 1-handle
to the product surface outside of r0, 1s ˆ B. Denote by Wj the double
branched cover of r0, 1s ˆ S3 with branch set Sj . The manifold Wj is
an oriented cobordism from ⌃pLjq to ⌃pLj`1q; it will be described as a
surgery cobordism in Section 4. The signature of Wj can be either 0, 1,
or ´1.

Lemma 3.1. Let pL0, L1, L2q be a skein triangle such that |L2| “

|L0|`1 “ |L1|`1, which is to say that the resolved crossing c is between
two di↵erent components of L2. Then

(8) 2⇠pL2q “ ⇠pL0q ` ⇠pL1q ` signpW1q ´ signpW2q.

Proof. This can be derived from the Gordon–Litherland [24] formula
for the Murasugi signature but we will follow a more self-contained
approach. It will rely on the disjoint decomposition

QpL2q “ Q0pL2q Y Q1pL2q,

where Q0pL2q (resp. Q1pL2q) consists of the quasi-orientations of L2

which make L0 (resp. L1) into an oriented resolution. For any ` P

Q0pL2q, the induced quasi-orientation on L0 will be denoted by `0; this
establishes a bijective correspondence Q0pL2q “ QpL0q. Similarly, for
any ` P Q1pL2q, the induced quasi-orientation on L1 will be denoted by
`1 P QpL1q; this establishes a bijective correspondence Q1pL2q “ QpL1q.
We claim that

�p`0q “ �p`q ` signpW2q for any ` P Q0pL2q, and

�p`1q “ �p`q ´ signpW1q for any ` P Q1pL2q.

These identities, which are essentially due to Murasugi, can be verified
as follows. Let ` P Q0pL2q. Since `0 is an oriented resolution of `,
the cobordism surface S2 Ä r0, 1s ˆ S3 is naturally oriented. Choose
an (oriented) Seifert surface for ` Ä BD4 and slightly push its interior
into the interior of D4 to obtain a properly embedded surface F Ä D4.
Passing to double branched covers, we obtain

⌃pD4
Y pr0, 1s ˆ S3

q, F Y S2q “ ⌃pD4, F q Y ⌃pr0, 1s ˆ S3, S2q,

where ⌃pA,Bq stands for the double branched cover of A with branch set
B. Using additivity of the signature and the fact that ⌃pr0, 1sˆS3, S2q “
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W2, we obtain

signp⌃pD4
Y pr0, 1s ˆ S3

q, F Y S2qq “ signp⌃pD4, F qq ` signpW2q.

Observe that the surface F Y S2 in D4
Y pr0, 1s ˆ S2q is an embedded

surface with boundary `0 in t1u ˆ S2. It is a classical result (see for
instance [30]) that

signp⌃pD4, F qq“�p`q and signp⌃pD4
Ypr0, 1sˆS3

q, F YS2qq“�p`0q.

Therefore �p`0q “ �p`q ` signpW2q for any ` P Q0pL2q. The proof of the
other identity is similar. With these identities in place, the proof of the
lemma is completed as follows:

2|L2|´1
¨ ⇠pL2q “

ÿ

`PQ0pL2q
�p`q `

ÿ

`PQ1pL2q
�p`q

“

ÿ

`0PQpL0q
p�p`0q ´ signpW2qq `

ÿ

`1PQpL1q
p�p`1q ` signpW1qq

“ 2|L2|´2
¨ p⇠pL0q ` ⇠pL1q ` signpW1q ´ signpW2qq.

q.e.d.

4. An exact triangle in monopole Floer homology

In this section, we will establish an exact triangle in the monopole
Floer homology with rational coe�cients. We will also show that this
triangle possesses a certain conjugation symmetry, which will be instru-
mental in the proof of Proposition 2.2 later in the paper.

4.1. Statement of the exact triangle. Let Y be a compact con-
nected oriented 3-manifold with boundary BY “ T 2, and let �0, �1, and
�2 be oriented simple closed curves on BY such that

#p�0 X �1q “ #p�1 X �2q “ #p�2 X �0q “ ´1,

where the algebraic intersection numbers # are calculated with respect
to the boundary orientation on BY . Let F2 be the field of two ele-
ments. It follows from Poincaré duality that the kernel of the map
H1pBY ;F2q Ñ H1pY ;F2q is one-dimensional, therefore, we may assume
without loss of generality that �2 is an F2 longitude (meaning that
r�2s “ 0 P H1pY ;F2q), while �0 and �1 are not.

For any j viewed as an element of Z{3 “ t0, 1, 2u, denote by Yj
the closed manifold obtained from Y by attaching a solid torus to its
boundary with meridian �j , and byWj the respective surgery cobordism
from Yj to Yj`1. The cobordism Wj can be obtained by attaching D4

to the component S3 in the boundary of the 4-manifold

(9) W 0

j “ pr´1, 0s ˆ Yjq Yt0uˆY pr0, 1s ˆ Y q Yt1uˆY pr1, 2s ˆ Yj`1q.

Lemma 4.1. The manifolds W1 and W2 are spin, and the manifold
W0 is not.
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Proof. Notice that the inclusion Y Ñ Y2 induces an isomorphism
H1

pY2;F2q Ñ H1
pY ;F2q hence any spin structure on Y can be extended

to a spin structure on Y2. To show that W1 is spin, start with any spin
structure s on Y1 and extend s|Y to a spin structure on Y2. This gives
a spin structure on W 0

1
, which extends over D4 to a spin structure on

W1. A similar argument shows that W2 is also spin.
To show that W0 is not spin, we argue as follows. Suppose W0 has a

spin structure s. By the argument above, s|Y1 can be extended to a spin
structure on W1. Glue these two spin structures together to obtain a
spin structure on the manifold W0YY1W1. This leads to a contradiction
because the manifold

W0 YY1 W1 “ p´W2q#CP2

contains an embedded sphere with self-intersection number ´1. q.e.d.

The space of spinc structures has a natural involution which carries
a spinc structure s to its conjugate s̄. A spinc structure s is called
self-conjugate if c1psq “ s ´ s̄ vanishes. For a fixed self-conjugate spinc

structure s0 on Y , we will come up with an exact triangle involving
spinc structures on the manifolds Yj restricting to the spinc structure
s0 on Y . The usual exact triangle, involving all spinc structures, can
be obtained by taking the direct sum of these restricted exact triangles
over all possible s0.

We will set up some notation first, for use in this and the following
section. In the six lines that follow, M can be any of the manifolds Y ,
Yj or Wj , j P Z{3, and we write:

tor-spincpMq “ tequivalence classes of torsion spinc structure on Mu,

sc-spincpMq “ ts P tor-spincpMq | s is self-conjugateu,

tor-spincpM, s0q “ ts P tor-spincpMq | s|Y “ s0u,

sc-spincpM, s0q “ ts P sc-spincpMq | s|Y “ s0u,

spincpM, s0q “ ts P spincpMq | s|Y “ s0u, and

spinpM, s0q“ts P spinpMq | ps|Y q
c

“ s0u, with ps|Y q
c explained below.

Remark 4.2. Recall that each spin structure s on Y induces a self-
conjugate spinc structure, which we denote by sc, and that each self-
conjugate spinc structure on Y is obtained in this fashion. Let s1 and
s2 be two spin structures on Y then sc

1
“ sc

2
if and only if s1 “ s2 ` h

for some h in the image of the coe�cient map H1
pY ;Zq Ñ H1

pY ;Z{2q.
Therefore, each self-conjugate spinc structure on Y corresponds to 2 b1pY q

spin structures. A similar remark applies to the manifolds Yj and Wj ,
j P Z{3.
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Our exact triangle will consist of the Floer homology groups1

~HMpYj , rs0sq “

à

sPspincpYj ,s0q
~HMpYj , sq

and the maps between them induced by the cobordisms Wj . To ensure
that the composition of any two adjacent maps is zero, we need to assign
an appropriate plus or minus sign to each spinc structure on Wj . We
will accomplish this by defining an auxiliary map

(10) µ :
§

jPZ{3
spincpWj , s0q ›Ñ F2

as follows:

‚ µ is identically zero on spincpW2, s0q;
‚ Choose a base point s1 P spincpW0, s0q and let µps1q “ 0. Given
an element of spincpW0, s0q, write it in the form s1 ` h with h P

kerpH2
pW0;Zq Ñ H2

pY ;Zqq and let

µps1 ` hq “ hF2 ,

where

hF2 P kerpH2
pW0;F2q Ñ H2

pY ;F2qq “ F2

is the mod 2 reduction of h;
‚ The case of spincpW1, s0q is similar: choose a base point s2 P

spincpW1, s0q and let

µps2 ` hq “ hF2

for any h P kerpH2
pW1;Zq Ñ H2

pY ;Zqq.

Proposition 4.3. For s P spincpW1, s0q and s P spincpW2, s0q, we
have µpsq “ µps̄q. For s P spincpW0, s0q, we have µpsq “ µps̄q ` 1.

Proof. The lemma is trivial for s P spincpW2, s0q. For those s P

spincpW1, s0q, since s “ s̄ ` c1psq, the di↵erence µpsq ´ µps̄q equals the
mod 2 reduction of c1psq, which is just the Stiefel–Whitney class !2pW1q.
According to Lemma 4.1 the cobordism W1 is spin, hence !2pW1q “ 0
and µpsq “ µps̄q. The proof for s P spincpW0, s0q is similar. q.e.d.

By functoriality of monopole Floer homology, the cobordism Wj ,
equipped with a spinc structure s P spincpWj , s0q, induces a map

~HMpWj , sq : ~HMpYj , s|Yj q Ñ ~HMpYj`1, s|Yj`1q, j P Z{3.

We will combine these maps into a single map

FWj : ~HMpYj , rs0sq Ñ ~HMpYj`1, rs0sq

1As we mentioned in the introduction, the monopole Floer homology will have
the rational numbers as their coe�cient ring unless otherwise noted.
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defined by the formula

FWj “

ÿ

sPspincpWj ,s0q
p´1q

µpsq
¨ ~HMpWj , sq.

Note that, up to an overall sign, the maps FWj are independent of the
arbitrary choices of base points in the definition (10).

Proposition 4.4. We have FWj`1 ˝ FWj “ 0 for all j P Z{3.

Proof. Using the composition law for the cobordism induced maps in
monopole Floer homology, we obtain
(11)

FWj`1˝FWj “

ÿ

sPspincpWjYWj`1,s0q
p´1q

µps|Wj
q`µps|Wj`1

q
¨~HMpWj`1˝Wj , sq.

The manifold

Xj “ Wj Y Wj`1 “ p´Wj`2q# CP2

has an embedded 2–sphere Ej with self-intersection ´1. Therefore,
every s P spincpXj , s0q can be uniquely written as s1#s2 with s1 P

spincp´Wj`2, s0q and s2 P spincpCP2
q. Let us consider a di↵eomorphism

of Xj which takes rEjs P H2pXjq to ´rEjs P H2pXjq and restricts to the
identity map on ´Wj`2. Since this di↵eomorphism does not change the
homology orientation, and since the cobordism map in monopole Floer
homology is natural, we obtain the identity

~HMpWj`1 ˝ Wj , s1#s2q “ ~HMpWj`1 ˝ Wj , s1#s̄2q.

Note that s̄2 never equals s2 because CP2 is not spin. As a result, the
terms on the right hand side of (11) come in pairs. The proof of the
proposition will be complete after we prove the following lemma. q.e.d.

Lemma 4.5. For any j P Z{3, any spinc structures

s1 P spincp´Wj`2, s0q and s2 P spincpCP2
q,

we have the following relation in F2

µpps1#s2q|Wj q`µpps1#s2q|Wj`1q “ 1`µpps1#s̄2q|Wj q`µpps1#s̄2q|Wj`1q.

Proof. Let PD stand for the Poincaré duality isomorphism. Then

(12) s1#s2 “ s1#s̄2 ` p2k ` 1q ¨ PD rEjs

for some k P Z. To prove the lemma, we will compute the mod 2
reductions of PD rEjs|Wj and PD rEjs|Wj`1 , which we will denote by
pPD rEjs|Wj qF2 and pPD rEjs|Wj`1qF2 , respectively.

Recall that Wj is obtained by attaching a 2–handle Hj to I ˆ Yj .
Since �2 (treated as a knot in t1u ˆ Yj) is an F2 longitude, we can find
an immersed, possibly non-orientable surface ⌃2 Ä Y with boundary
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�2. Capping ⌃2 o↵ with the surface ⌃1 Ä Hj bounded by �2, we obtain
a closed surface ⌃1 Y�2 ⌃2 which generates the group

kerpH2
pWj ;F2q Ñ H2

pY ;F2qq
˚

“cokerpH2pY ;F2q Ñ H2pWj ;F2qq “ F2.

As a result, we have

pPD rEjs|Wj qF2 “ #pEj X p⌃1 Y�2 ⌃2qq pmod 2q.

Since ⌃1Y�2⌃2 is contained in Wj , the 2–sphere Ej in the above formula
can be replaced by Ej X Wj , which is a 2–disk Dj Ä Hj . The bound-
ary of Dj , denoted by `j`1, is the core of the solid torus Yj`1z intpY q,
therefore,

#pEj X p⌃1 Y�2 ⌃2qq “ #pDj X ⌃1q,

which is the linking number of `j`1 and �2 inside BHj . After a moment’s
thought we conclude that

lkp`j`1, �2q “ ˘#p�j X �2q

and therefore

pPD rEjs|Wj qF2 “ #p�j X �2q pmod 2q.

A similar argument shows that

pPD rEjs|Wj`1qF2 “ #p�j`2 X �2q pmod 2q.

The rest of the proof is straightforward. We assume that j “ 0; the
other cases are similar. By (12) and the definition of µ, we have

µpps1#s2q|W0q ` µpps1#s2q|W1q ´ µpps1#s̄2q|W0q ´ µpps1#s̄2q|W1q “

pPD rE0s|W0qF2`pPD rE0s|W1qF2 “ #p�0X�2q`#p�2X�2q“1 pmod 2q.

q.e.d.

We are now ready to state the main result of this section, the exact
triangle in monopole Floer homology with rational coe�cients.

Theorem 4.6. The following sequence of monopole Floer homology
groups is exact over the rationals

¨ ¨ ¨
FW0

››››Ñ ~HMpY1, rs0sq
FW1

››››Ñ ~HMpY2, rs0sq

FW2
››››Ñ ~HMpY0, rs0sq

FW0
››››Ñ ¨ ¨ ¨

4.2. Proof of the exact triangle. We already know from Proposi-
tion 4.4 that the composite of any two adjacent maps is zero. To com-
plete the proof of exactness, we will combine the universal coe�cient
theorem with the F2 coe�cient exact triangle proved in [38].

Before we go on with the proof, we need to review some basic con-
structions in monopole Floer homology; see Kronheimer–Mrowka [37]
for details. For any j P Z{3, denote by Co

pYjq (resp. Cs
pYjq and

Cu
pYjq) the free Z-modules generated by the gauge equivalence classes

of irreducible monopoles (resp. boundary stable and boundary unstable
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monopoles) whose associated spinc structure belongs to spincpYj , s0q.
By counting points in the zero-dimensional moduli spaces of monopoles
on R ˆ Yj , we obtain a linear map

B
o
opYjq : C

o
pYjq Ñ Co

pYjq

and its companions B
o
spYjq, B

u
o pYjq, B

u
s pYjq, B̄

s
upYjq, B̄

u
s pYjq, B̄

s
spYjq,

B̄
u
upYjq. Note that the last four maps count only reducible monopoles.
Set

qCpYjq “ Co
pYjq ‘ Cs

pYjq

and define the map
B̌pYjq : qCpYjq Ñ qCpYjq

by the matrix „
B
o
opYjq ´B

u
o pYjqB̄

s
upYjq

B
o
spYjq B̄

s
spYjq ´ B

u
s pYjqB̄

s
upYjq

⇢
.

One can check that B̌pYjq˝B̌pYjq “ 0. The homology of the chain com-

plex p qCpYjq, B̌pYjqq is the monopole Floer homology ~HMpYj , rs0s;Zq. To

obtain homology with rational coe�cients, we set qCpYjqQ “ qCpYjqbZQ
and use the linear map B̌pYjqQ “ B̌pYjq b id as the boundary operator.
(We will henceforth use similar notations without further explanation).
Consider the manifold with cylindrical ends

W ˚
j “ pp´8, 0s ˆ Yjq YYj Wj YYj`1 pr0,`8q ˆ Yj`1q.

(In what follows, the superscript ˚ will indicate attaching a product end
to the boundary of the manifold at hand). For any s P spincpWj , s0q,
the count of monopoles on W ˚

j defines the map

mo
opWj , sq : Co

pYjq Ñ Co
pYj`1q

and its companion maps mo
spWj , sq, mu

o pWj , sq, mu
s pWj , sq, m̄s

upWj , sq,
m̄s

spWj , sq, m̄u
s pWj , sq, and m̄u

upWj , sq. Define the map

m̌pWj , sq : qCpYjq Ñ qCpYj`1q

by the matrix
„
mo

opWj , sq ´mu
o pWj , sqB̄

s
upYjq ´ B

u
o pYj`1qm̄s

upWj , sq

mo
spWj , sq m̄s

spWj , sq ´ mu
s pWj , sqB̄

s
upYjq ´ B

u
s pYj`1qm̄s

upWj , sq

⇢

and sum over all the spinc structures with proper signs to obtain the
map

m̌pWjq :“
ÿ

sPspincpWj ,s0q
p´1q

µpsq
¨ m̌pWj , sq : qCpYjq Ñ qCpYj`1q.

This is the chain map that induces the map FWj in the exact triangle.
As our next step, we will construct an explicit null-homotopy of the

composite m̌pWj`1q ˝ m̌pWjq. To this end, recall that the composite
cobordism

Xj “ Wj YYj`1 Wj`1
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from Yj to Yj`2 contains an embedded 2–sphere Ej with self-intersection
number ´1. Denote by Sj the boundary of a normal neighborhood of
Ej . Let

Qj “ t gT | T P R u

be the family of metrics on Xj constructed as follows. Start with an
arbitrary metric g0 on Xj which is a product metric near BXj , Yj`1,
and Sj , and which has the property that the metric it induces on Sj

is close enough to the round metric to have positive scalar curvature.
For any T P R, the metric gT is then obtained from g0 by inserting the
cylinder rT,´T s ˆ Sj into a normal neighborhood of Sj if T † 0, and
by inserting the cylinder r´T, T s ˆ Yj`1 into a normal neighborhood of
Yj`1 if T ° 0.

Given a spinc structure s on Xj , we again count monopoles on the
manifold X˚

j with cylindrical ends over the whole family Qj to define
the map

Ho
o pXj , sq : Co

pYjq Ñ Co
pYj`2q

and its companion maps Ho
s pXj , sq, Hu

o pXj , sq, Hu
s pXj , sq, H̄s

upXj , sq,
H̄s

s pXj , sq, H̄u
s pXj , sq, and H̄u

u pXj , sq. Using these maps, we define the
map

qHpXj , sq : qCpYjq Ñ qCpYj`2q

by the matrix
»

——————–

Ho
o pXj , sq

´Hu
o pXj , sqB̄

s
upYjq

´mu
o pWj`1, sqm̄s

upWj , s|Wj q ´ B
u
o pYj`2qH̄s

upXj , s|Wj q

Ho
s pXj , sq

H̄s
s pXj , sq ´ Hu

s pXj , sqB̄
s
upYjq

ḿu
s pWj`1, s|Wj`1qm̄s

upWj , s|Wj q´B
u
s pYj`2qH̄s

upXj , sq

fi

������fl

Note that an F2 version of this map can be found in [38, page 491],
and the correct sign assignments for its integral version in [37, (26.12)].
By summing up over the spinc structures, we obtain the map

qHpXjq “

ÿ

sPspincpXj ,s0q
p´1q

µps|Wj
q`µps|Wj`1

q qHpXj , sq : qCpYjq Ñ qCpYj`2q.

Proposition 4.7. (1) One has the equality

(13) B̌pYj`2q ˝ qHpXjq ` qHpXjq ˝ B̌pYjq “ m̌pWj`1q ˝ m̌pWjq.

(2) The map  j : qCpYjq Ñ qCpYjq defined as

qHpXj`1q ˝ m̌pWjq ´ m̌pWj`2q ˝ qHpXjq

is an anti-chain map. Moreover, the map

p jqQ : qCpYjqQ Ñ qCpYjqQ

induces an isomorphism in homology.
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Proof. (1) We can upgrade the proof of the mod 2 version [38, Propo-
sition 5.2] of this result to the integers as follows: Let Bj be the (closed)
normal neighborhood of Ej and Zj the closure of XjzBj . The family Qj

of metrics on Xj can be completed by adding the disjoint union Z˚
j YB˚

j
at T “ ´8 and the disjoint union W ˚

j YW ˚
j`1

at T “ `8. Denote this

new family by Q̄j . Given monopoles a on Yj and b on Yj`2 and a spinc

structure s on Xj , consider the parametrized moduli space

Mpa, pX˚
j , sq, bqQ̄

on pX˚
j , sq and construct its compactification M

`
pa, pX˚

j , sq, bqQ̄ by
adding in broken trajectories. When this moduli space has dimension
one, the number of its boundary points, counted with sign, must be
zero. This gives us a boundary identity. By adding these boundary

identities over all possible s with sign p´1q
µps|Wj

q`µps|Wj`1
q, we obtain

various summed up boundary identities for di↵erent pa, bq.
We claim that the points inM

`
pa, pX˚

j , sq, bqg´8 do not contribute to
these identities: As explained in the proof of [38, Proposition 5.2], these
points always come in pairs of the form p�, �1

q and p�, �2
q, where � is a

(possibly broken) solution over Z˚
j and �1 and �2 are reducible solutions

over B˚
j . Moreover, �1 and �2 correspond to conjugate spinc structures

over B˚
j . Since b`

2
pBjq “ b1pBjq “ 0, all reducible monopoles over B˚

j

are positive. Therefore, p�, �1
q and p�, �2

q contribute to their respec-
tive boundary identities with the same sign. By Lemma 4.5, when we

take the sum with the weights p´1q
µps|Wj

q`µps|Wj`1
q these contributions

cancel.
The rest of the proof proceeds exactly as in [38, Proposition 5.2]. In

[37, Lemma 26.2.3], several similar boundary identities are obtained by
considering one-dimensional moduli spaces of monopoles for a family
of metrics parametrized by r0, 1s. As a consequence of our claim, the
summed up boundary identities we have here can be obtained from
the identities there by removing terms corresponding to T “ 0. For
example, we have

0“

ÿ

sPspincpXj ,s0q
p´1q

µps|Wj`1
q`µps|Wj

q
ṕ Ho

o pXj , sqB
o
opYjq´B

o
opYj`2qHo

o pXj , sq

` Hu
o pXj , sqB̄

s
upYjqB

o
spYjq ` B

u
o pYj`2qH̄s

upXj , sqB
o
spYjq

` B
u
o pYj`2qB̄

s
upYj`2qHo

s pXj , sq

` mo
opWj`1, s|Wj`1qmo

opWj , s|Wj q

` mu
o pWj`1, s|Wj`1qms

upWj , s|Wj qB
o
spYjq

´ mu
o pWj`1, s|Wj`1qB

s
upYj`1qmo

spWj , s|Wj q

´ B
u
o pYj`2qms

upWj`1, s|Wj`1qmo
spWj , s|Wj qq
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Using these identities, formula (13) can be proved by an elementary
(but cumbersome) calculation.

(2) The fact that  j is an anti-chain map follows easily from (1).
According to [38, Lemma 5.11], the map

 j b id : qCpYjq b F2 Ñ qCpYjq b F2

induces an isomorphism in homology. By the universal coe�cient the-
orem, the map  Q also induces an isomorphism in homology. q.e.d.

The proof of Theorem 4.6 is now completed by the following ‘triangle
detection lemma’. The mod 2 version of this lemma appears as Lemma
4.2 in [56]. The proof of the version at hand is essentially the same.2

Lemma 4.8. For any j P Z{3, let pCj , Bjq be a chain complex over the
rationals. Suppose that there are chain maps fj : Cj Ñ Cj`1 satisfying
the following two conditions:

‚ the composite fj`1 ˝ fj is null-homotopic by a chain homotopy
Hj : Cj Ñ Cj`2 with

BHj ` HjB “ fj`1 ˝ fj , and

‚ the map

 j “ Hj`1 ˝ fj ´ fj`2 ˝ Hj : Cj Ñ Cj ,

which is an anti-chain map by the first condition, induces an iso-
morphism in homology.

Then the sequence

¨ ¨ ¨ ››››Ñ H˚pCjq
pfjq˚

››››Ñ H˚pCj`1q
pfj`1q˚

›››››Ñ H˚pCj`2q ››››Ñ ¨ ¨ ¨

is exact.

5. Skein relations up to constants

Let pL0, L1, L2q be a skein triangle obtained by resolving a crossing c
of the link L “ L2 as shown in Figure 1.

Definition 5.1. The skein triangle pL0, L1, L2q will be called admis-
sible if

1) |L2| “ |L0| ` 1 “ |L1| ` 1, which is equivalent to saying that the
resolved crossing c is between two di↵erent components of L2, and

2) at least one of the links L0, L1, and L2 is ramifiable.

In Section 2 we defined a link L̄2 by changing the crossing c. Using
the cyclic symmetry as in Figure 2, we can find a link projection of L0

such that L1 and L2 are the two resolutions of L0 at a crossing c. Then

2A version of this lemma over the integers can be found as Lemma 7.1 in [35].
Our sign conventions here are slightly di↵erent.
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we define L̄0 as the crossing change of L0 at c. The link L̄1 is defined
similarly.

Lemma 5.2. If pL0, L1, L2q is an admissible skein triangle then at
most one of the six links L0, L1, L2, L̄0, L̄1, L̄2 is not ramifiable. In
particular, we have three more admissible skein triangles, pL̄1, L0, L2q,
pL1, L̄0, L2q, and pL1, L0, L̄2q.

Proof. By our definition of L̄, all of the triples pL̄1, L0, L2q, pL1, L̄0,
L2q, and pL1, L0, L̄2q are skein triangles. Now suppose that two of the
links L0, L1, L2, L̄0, L̄1, and L̄2 are not ramifiable. By [51, Claim
3.2], these two links have to be L̄j and L̄j`1 for some j P Z{3. Recall
that after putting suitable signs, the determinants of the three links
in a skein triangle add up to zero. Therefore, from the skein trian-
gles pLj´1, Lj`1, L̄jq and pLj , Lj´1, L̄j`1q we deduce that detpL0q “

detpL1q “ detpL2q. Since pL0, L1, L2q is a skein triangle, this implies
that detpL0q “ detpL1q “ detpL2q “ 0. This contradicts Condition (2)
of Definition 5.1. q.e.d.

Let pL0, L1, L2q be an admissible skein triangle and B Ä S3 a small
ball containing the resolved crossing c. Denote by Y the double branched
cover of S3

zB with branch set pS3
zBq X L2 then Y is a manifold with

torus boundary BY .

Definition 5.3. A boundary framing is a pair of oriented simple
closed curves pm, lq on BY such that

(1) #pm X lq “ ´1,
(2) rls “ 0 P H1pY ;Qq, and
(3) either m or l represents the zero element in H1pY ;F2q.

One can easily check that a boundary framing always exists. Once a
boundary framing pm, lq is fixed, we will define the following numbers:

‚ The divisibility of the longitude

tpY q “ min t a P Z | a ° 0 and a ¨ rls “ 0 P H1pY ;Zq u;

‚ Set spY q “ 0 if l represents the zero element in H1pY ;F2q and set
spY q “ 1 otherwise;

‚ The double branched cover Yj “ ⌃pLjq, j P Z{3, is obtained from
Y by attaching a solid torus along BY , matching the meridian with
a simple closed curve �j on BY . We will orient the curves �j by
the following two conditions:
(a) #p�0 X �1q “ #p�1 X �2q “ #p�2 X �0q “ ´1, where the alge-

braic intersection numbers # are calculated with respect to the
boundary orientation on BY (see Ozsváth–Szabó [56, Section
2]), and
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(b) #p�2Xmq ° 0 when spY q “ 0 and #p�2Xlq ° 0 when spY q “ 1
(this makes sense because �2 represents zero in H1pY ;F2q by
Definition 5.1 (1)).

Having oriented the curves �j this way, we define the integers
ppj , qjq by the equality r�js “ pj ¨ rms ` qj ¨ rls, which holds in
H1pBY ;Zq.

Definition 5.4. Given a boundary framing pm, lq, we define the reso-
lution data for the admissible skein triangle pL0, L1, L2q as the six-tuple

ptpY q, spY q, pp0, q0q, pp1, q1qq

(we should note that pp2, q2q “ p´p0 ´ p1,´q0 ´ q1q since r�0s ` r�1s `

r�2s “ 0 P H1pBY ;Zq).

The main goal of this section is to establish the following ‘skein re-
lations up to universal constants’. We will show later in Section 6 that
these universal constants actually vanish.

Theorem 5.5. Let pL0, L1, L2q be an admissible skein triangle, and
fix a boundary framing pm, lq on the boundary BY of the manifold Y as
above. Then

1) if all of the links L0, L1, L2 are ramifiable,

(14) 2�pL2q “ �pL0q ` �pL1q ` CptpY q, spY q, pp0, q0q, pp1, q1qq;

2) if Lj is not ramifiable for some j P Z{3 then Lj˘1 and L̄j˘1 are
all ramifiable and, in addition,

�pL̄j´1q “ �pLj´1q ` C´
j ptpY q, spY q, pp0, q0q, pp1, q1qq and(15)

�pL̄j`1q “ �pLj`1q ` C`
j ptpY q, spY q, pp0, q0q, pp1, q1qq,(16)

where CptpY q, spY q, pp0, q0q, pp1, q1qq and C˘
j ptpY q, spY q, pp0, q0q,

pp1, q1qq are certain universal constants depending only on the resolution
data.

5.1. The action of covering translations. We will use ⌧M to denote
covering translations on various double branched covers M such as M “

Yj or M “ Wj .

Lemma 5.6. Let pL0, L1, L2q be an admissible skein triangle. Then
exactly one of the following two options is realized:

1) if all Lj are ramifiable, there exists a unique n P Z{3 such that
|pn| ° |pn˘1| and, in addition,
‚ b1pYjq “ b1pWjq “ 0 for all j P Z{3,
‚ b`

2
pWn`1q “ 1, b`

2
pWn´1q “ b`

2
pWnq “ 0, and

‚ b´
2

pWn`1q “ 0, b´
2

pWn´1q “ b´
2

pWnq “ 1.
2) if Ln is not ramifiable for some n P Z{3 then

‚ b1pYnq “ 1 and b1pYn´1q “ b1pYn`1q “ 0,
‚ b1pWjq “ b`

2
pWjq “ 0 for all j P Z{3, and
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‚ b´
2

pWn`1q “ 1 and b´
2

pWn´1q “ b´
2

pWnq “ 0.

Proof. The claims about b1 follow easily from the Mayer–Vietoris
sequence. As for the b˘

2
claims, note that the inequality |pn| ° |pn˘1|

is equivalent to pn having an opposite sign to both pn´1 and pn`1.
The result then follows from the explicit calculation of the cup-product
structure on H2

pWjq in Lemma 5.12. q.e.d.

Lemma 5.7. The covering translations act as follows:

1) ⌧˚
Y paq “ ´a for any a P H2

pY ;Zq;
2) ⌧˚

Yj
pbq “ ´b for any b P H2

pYj ;Zq;

3) ⌧˚
Wj

pcq “ ´c for any c P H2
pWj ;Zq;

4) ⌧˚
Yj

pdq “ ´d for any d P H1pYj ;Zq;

5) ⌧˚
Wj

peq “ ´e for any e P H1pWj ;Zq;

6) ⌧˚
Y psq “ s̄ for any s P spincpY q;

7) ⌧˚
Yj

psq “ s̄ for any s P spincpYjq;

8) ⌧˚
Xj

psq “ s̄ for any s P spincpXjq.

Proof. Since H2pY ;Zq “ 0, the universal coe�cient theorem provides
a natural identification of H2

pY ;Zq with the torsion part of H1pY ;Zq.
Therefore, to prove (1), we only need to show that ⌧ acts on H1pY ;Zq

as ´1. To see this, let ↵̃ be a loop in Y which does not intersect the
branch locus. The image of ↵̃ under the covering map Y Ñ S3

zB
will be called ↵. Since S3

zB is contractible, there is a continuous map
f : D2

Ñ S3
zB with fpBD2

q “ ↵. Lift f to a map f̃ : F Ñ Y , where F
is a double branched cover of D2. If f̃pBF q equals ↵̃ or ⌧p↵̃q, then ↵̃ is
null-homologous. Otherwise, we have f̃pBF q “ ↵̃ ` ⌧p↵̃q, which implies
r↵̃s “ ´r⌧p↵̃qs and proves (1). Claim (4) can be proved similarly, while
(2) is just the Poincaré dual of (4), and (5) follows from (4) and the fact
that H1pBWj ;Zq Ñ H1pWj ;Zq is onto.

We will next prove (3) under the assumption that b1pYjq “ 0 (oth-
erwise, b1pYj`1q “ 0, and the argument is similar). Using the Mayer–
Vietoris sequence for the decomposition of Wj into I ˆ Yj and the 2-
handle, we obtain an exact sequence

0 ››››Ñ H1
pS1

ˆ D2;Zq
B

››››Ñ H2
pWj ;Zq

i˚
››››Ñ H2

pI ˆ Yj ;Zq ››››Ñ ¨ ¨ ¨

The maps induced by ⌧ on the cohomology groups in this sequence are
compatible with B and i˚. For any element ↵ P H2

pWj ;Zq, it follows
from Claim (2) that i˚p⌧˚

Wj
p↵q`↵q “ ⌧˚

Yj
pi˚p↵qq` i˚p↵q “ 0. Therefore,

there exists � P H1
pS1

ˆD2;Zq such that B� “ ⌧˚
Wj

p↵q `↵. Notice that

Bp´�q “ Bp⌧˚
S1ˆD2p�qq “ ⌧˚

Wj
p⌧˚

Wj
p↵q ` ↵q “ ⌧˚

Wj
p↵q ` ↵ “ B�.
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Since B is injective, � must vanish and therefore ⌧˚
Wj

p↵q ` ↵ “ 0 as

claimed in (3).
Let us now turn our attention to the action of ⌧˚ on spinc struc-

tures, starting with (7). Turaev [70, Section 2.2] established a natural
one-to-one correspondence between spin structures on Yj and quasi-
orientations on Lj . Using this correspondence, one can easily see that
all the spin structures on Yj are invariant under ⌧Yj . This proves (7) for
self-conjugate spinc structures. Since any spinc structure can be written
as s` h, with s self-conjugate and h P H2

pY ;Zq, claim (7) follows from
(2). To prove (6), consider s0 “ s1|Y with s1 a spinc structure on Y1.
By (7) we have ⌧˚

Y ps0q “ s̄0. Then we express a general spinc structure
as s0 `h with h P H2

pY ;Zq and use (1). We are left with (8). Take any
s P spincpWjq. It follows from (7) that

⌧˚
Wj

psq|Yj “ ⌧˚
Yj

ps|Yj q “ s̄|Yj .

Therefore, ⌧˚
Wj

psq “ s̄ ` h for some h P kerpH2
pWj ;Zq Ñ H2

pYj ;Zqq.

Using (3), we conclude that c1p⌧˚
Wj

sq “ ´c1psq “ c1ps̄q and therefore
2h “ 0. However, it follows from the Mayer–Vietoris exact sequence
that kerpH2

pWj ;Zq Ñ H2
pYj ;Zqq is torsion free. Therefore, h “ 0, and

claim (8) is proved. q.e.d.

5.2. Spinc systems and their equivalence. In this section we intro-
duce the concept of a spinc system on a skein triangle and relate the
spinc systems corresponding to admissible skein triangles with the same
resolution data.

Definition 5.8. Let pL0, L1, L2q be a skein triangle and s0 a fixed
self-conjugate spinc structure on Y . A spinc system SppL0, L1, L2q, s0q

is the set §

jPZ{3
pspincpWj , s0q Y spincpYj , s0qq

endowed with the following additional structure:

1) the restriction map

rj,j`1 : spin
c
pWj , s0q ›Ñ spincpYj , s0q ˆ spincpYj`1, s0q

for every j P Z{3,
2) for every s P spincpWj , s0q with rj,j`1psq torsion, the Chern num-

ber c1psq
2

P Q (see (19)), and
3) the involution ⌧˚

Wj
on spincpWj , s0q and the involution ⌧˚

Yj
on

spincpYj , s0q. By Lemma 5.7, these act by conjugation on the
set of spinc structures.

Definition 5.9. Two spinc systems

SppL0, L1, L2q, s0q and SppL1
0, L

1
1, L

1
2q, s1

0q
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are called equivalent if signpWjq “ signpW 1
jq for all j P Z{3 and there

exist bijections

✓̂j : spin
c
pWj , s0qÑspincpW 1

j , s
1
0q and ✓j : spin

c
pYj , s0qÑspincpY 1

j , s
1
0q

which are compatible with the additional structures (1), (2), and (3) in
the obvious way. We use „ to denote this equivalence relation.

Theorem 5.10. Let pL0, L1, L2q and pL1
0
, L1

1
, L1

2
q be admissible skein

triangles. Suppose that, for a suitable choice of boundary framings, the
resolution data of pL0, L1, L2q matches that of pL1

0
, L1

1
, L1

2
q. Then there

exist disjoint decompositions

sc-spincpY q “ A0 Y A1 and sc-spincpY 1
q “ A1

0 Y A1
1

with the following properties:

‚ |A0| “ |A1| and |A1
0
| “ |A1

1
| (the vertical bars stand for the cardi-

nality of a set), and
‚ for i “ 0, 1 and any s0 P Ai and s1

0
P A1

i, we have

SppL0, L1, L2q, s0q „ SppL1
0, L

1
1, L

1
2q, s1

0q.

The proof of Theorem 5.10 will take up the rest of this subsection.
The idea of the proof is straightforward: we give an explicit description
of the topology and the spinc structures on Yj and Wj in terms of the
resolution data.

We begin by studying the algebraic topology of cobordisms Wj . Let
us consider the decompositions

Wj “ pI ˆ Y q YIˆBY D4 and Yj “ Y YBY pS1
ˆ D2

q.

The gluing map in the first decomposition (which matches the decompo-
sition (9)) identifies BY with the standard torus in S3

“ BD4 by sending
�j and �j`1 to the standard meridian m and longitude l, respectively.
The corresponding Mayer–Vietoris exact sequences are of the form

(17)
. . . ››››Ñ H1

pY q ››››Ñ H1
pBY q

BWj
››››Ñ

H2
pWjq

iWj
››››Ñ H2

pY q ››››Ñ . . .

and

(18)
. . . ››››Ñ H1

pY q ‘ H1
pS1

ˆ D2
q ››››Ñ H1

pBY q

BYj
››››Ñ

H2
pYjq

iYj
››››Ñ H2

pY q ››››Ñ . . .

Let �̂j , m̂, and l̂ P H1
pBY q be the Poincaré duals of r�js, rms, and

rls P H1pBY q, respectively. The following lemma is a direct consequence
of (17) and (18).
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Lemma 5.11. There are isomorphisms

ker iWj “ Z ‘ Z{xp0, tpY qqy with generators BWj pm̂q, BWj pl̂q, and

ker iYj “ Z ‘ Z{xp0, tpY qq, ppj , qjqy with generators BYj pm̂q, BYj pl̂q,

under which the map ker iWj Ñ ker iYj ‘ ker iYj`1 induced by the bound-
ary inclusions is the natural projection map.

Recall that, for a cohomology class ↵ P H2
pWjq with ↵|BWj torsion,

the number ↵2
P Q is defined as follows. Let uj : H2

pWj , BWjq Ñ

H2
pWjq be the map induced by the inclusion. Then there exists a

non-zero integer k and a cohomology class � P H2
pWj , BWjq such that

k↵ “ ujp�q. We define

(19) ↵2
“

1

k2
x� ! �, rWj , BWjs y.

Lemma 5.12. (1) Suppose that pj ‰ 0 and pj`1 ‰ 0. Then

(20) pBWj pam̂ ` bl̂qq
2

“
a2

pj ¨ pj`1

.

(2) Suppose that either pj “ 0 or pj`1 “ 0. Then ↵2
“ 0 for any

↵ P H2
pWjq with ↵|BWj torsion.

Proof. Associated with the decomposition Wj “ pI ˆY q YIˆBY D4 is
the Mayer–Vietoris exact sequence in homology,

. . . ››››Ñ H2pY q
0

››››Ñ H2pWjq
B

››››Ñ

H1pBY q ››››Ñ H1pY q ››››Ñ . . .

from which we conclude that H2pWjq is a copy of Z generated by the
homology class r⌃s of a surface ⌃ with Br⌃s “ tpY qrls. The surface ⌃
splits as F1 Y F2, where F1 is an embedded surface in I ˆ Y bounded
by tpY q copies of l, and F2 is the Seifert Surface for the right handed
ptpY q ¨ pj , tpY q ¨ pj`1q torus link in BD4. From this description, we see
that the homological self-intersection number of ⌃ equals the linking
number between two parallel copies of the ptpY q ¨ pj , tpY q ¨ pj`1q torus
link, which equals tpY q

2
¨ pj ¨ pj`1. Therefore,

xPD r⌃s ! PD r⌃s, rWj , BWjs y “ xujpPD r⌃sq, r⌃s y “ tpY q
2

¨ pj ¨ pj`1.

Comparing this to

x BWjm̂, r⌃s y “ xm̂, Br⌃s y “ xm̂, tpY qrls y “ tpY q

we obtain

ujpPD r⌃sq “ BWj p tY ¨ pj ¨ pj`1 m̂ ` kl̂ q
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for some integer k, whose value is of no importance to us because BWj pl̂q
is torsion. From this we deduce that

pBWj pam̂ ` bl̂qq
2

“
a2

ptpY q ¨ pj ¨ pj`1q2
¨ xPD r⌃s ! PD r⌃s, rWj , BWjs y

“
a2

pj ¨ pj`1

.

This completes the proof of (1). To prove (2), observe that the map
H2

pWj ;Qq Ñ H2
pYj`1;Qq is injective when pj “ 0, and that the map

H2
pWj ;Qq Ñ H2

pYj ;Qq is injective when pj`1 “ 0. Therefore, any
element ↵ with ↵|BW torsion is a torsion itself. q.e.d.

Let Xj “ Wj Y Wj`1 be the composite cobordism from Yj to Yj`2.
As we mentioned in the proof of the exact triangle in Section 4.2, there
exists an embedded 2–sphere Ej Ä Xj with homological self-intersection
´1. It is obtained by gluing a disk D1 Ä Wj to a disk D2 Ä Wj`1 along
´BD1 “ BD2 “ lj`1, where lj`1 is the core of the solid torus Yj`1z intY .
Orient Ej so that lj`1 is homotopic to �j`2 in Yj`1z intY . Also recall
a decomposition Xj “ p´Wj`2q#CP2, which induces an isomorphism

(21) ⇢j,j`1 : H
2
pWj`2q ‘ H2

pCP2
q ›Ñ H2

pXjq.

Lemma 5.13. For any integers a, b, c, denote by ⇠ the image of
pBWj`2pam̂ ` bl̂q, c ¨ PD rEjsq under the map ⇢j,j`1. Then

⇠|Wj “ BWj pam̂ ` bl̂ ` c�̂jq and ⇠|Wj`1 “ BWj`1pam̂ ` bl̂ ` c�̂j`2q.

Proof. It is a direct consequence of the naturality of the boundary
map in the Mayer–Vietoris exact sequence that

⇢j,j`1pBWj`2pam̂ ` bl̂q, 0q|Wn “ BWnpam̂ ` bl̂q for n “ j, j ` 1.

We still need to show that

⇢j,j`1p0,PD rEjsq|Wj “ BWj p�̂jq

and
⇢j,j`1p0,PD rEjsq|Wj`1 “ BWj`1p�̂j`2q.

The Poincare dual of ⇢j,j`1p0,PD rEjsq is realized by the sphere Ej .
Therefore, the restriction of ⇢j,j`1p0,PD rEjsq toWj equals the Poincare
dual of rEj XWjs P H2pWj , BWjq. Using the fact that Ej XWj is a disk
contained in the two-handle D4

Ä Wj with the boundary lj`1, one can
easily verify that rEj X Wjs equals the Poincare dual of BWj p�̂jq. This
finishes the proof of the first formula. The proof of the second formula
is similar. q.e.d.

We will next study the spin and spinc structures on the manifolds Yj
and Wj . First, define a map

� : spinpY q Ñ H1
pBY ;F2q
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as follows (compare with Turaev [71]). Fix a di↵eomorphism ' : BY Ñ

R2
{Z2 and let x1, x2 be the standard coordinates on R2. Pull back the

vector fields B{Bx1, B{Bx2 via ' to obtain vector fields ~v1, ~v2 on BY .
Any loop � in BY gives rise to the loop

�̃pxq “ p~npxq,~v1pxq,~v2pxqq

in the frame bundle of Y , where ~npxq is the outward normal vector at
x P BY . We define �psq to be the unique cohomology class in H1

pBY,F2q

with the property that x�psq, r�sy “ 0 if and only if �̃ can be lifted to a
loop in the spin bundle for s.

Lemma 5.14. The map � : spinpY q Ñ H1
pBY ;F2q has the following

properties:

(1) � does not depend on the choice of di↵eomorphism ',
(2) �ps ` !q “ s ` !|BY for any s P spinpY q and ! P H1

pY ;F2q, and
(3) for any j P Z{3, a spin structure s can be extended to Yj if and

only if x�psq, �jy “ 1 P F2. The extension is unique if it exists.

Proof. This is immediate from the definition of the map �. q.e.d.

Lemma 5.15. Any s P spinpY q extends to a spin structure on Y2,
and to a spin structure on one of the manifolds Y0 and Y1 but not the
other. For any s0 P sc-spincpY q, we have the following identity for the
counts of self-conjugate spinc structures:

2b1pY0q
¨ | sc-spincpY0, s0q| ` 2b1pY1q

¨ | sc-spincpY1, s0q|

“ 2b1pY2q
¨ | sc-spincpY2, s0q|.(22)

Proof. Since the map H1
pY2;F2q Ñ H1

pY ;F2q is an isomorphism,
any spin structure s on Y can be extended to a spin structure on Y2.
This implies that

(23) x�psq, r�0sy ` x�psq, r�1sy “ x�psq, r�2sy “ 1.

It now follows from Lemma 5.14 (3) that s can be extended a spin struc-
ture on exactly one of the manifolds Y0 and Y1. This finishes the proof
of the first statement.

According to Remark 4.2, a self-conjugate spinc structure on Yj cor-
responds to 2b1pYjq spin structures. Therefore,

2b1pYjq
¨ | sc-spincpYj , s0q| “ | spinpYj , s0q|,

and (22) is equivalent to

| spinpY2, s0q| “ | spinpY0, s0q| ` | spinpY1, s0q|,

which follows easily from the first statement. q.e.d.

Lemma 5.16. A self-conjugate spinc structure s0 P sc-spincpY q has
the following extension properties to the cobordisms Wj:

1) sc-spincpW0, s0q “ H;
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2) If tpY q is odd, then sc-spincpW1, s0q ‰ H and sc-spincpW2, s0q ‰

H;
3) If tpY q is even, there is a disjoint decomposition

(24) sc-spincpY q “ A0 Y A1

such that |A0| “ |A1| and, in addition,

s0 PA0 if and only if sc-spincpW1, s0q“H and sc-spincpW2, s0q‰H,

s0 PA1 if and only if sc-spincpW1, s0q‰H and sc-spincpW2, s0q“H.

(25)

Proof. Denote by s1
0
and s2

0
the two spin structures on Y correspond-

ing to the self-conjugate spinc structure s0 on Y . Then
(26)
sc-spincpWj , s0q ‰ H ñ spinpWj , s

1

0q ‰ H or spinpWj , s
2

0q ‰ H.

Since the cobordism Wj is obtained by attaching D4 to the manifold
W 0

j along S3, see (9), we conclude that, for both k “ 1 and k “ 2,

spinpWj , s
k
0q ‰ H ñ spinpYj , s

k
0q ‰ H and spinpYj`1, s

k
0q ‰ H

ñ x�psk0q, r�jsy “ x�psk0q, r�j`1sy “ 1.

With this understood, (1) follows from Lemma 5.15. Since s1
0
and s2

0

correspond to the same spinc structure, we can write s1
0

“ s2
0

`p!F2q|BY ,
where !F2 is the mod 2 reduction of the generator ! P H1

pY ;Zq. This
implies that

�ps10q “ �ps20q ` p!F2q|BY .

It is not di�cult to see that p!F2q|BY ‰ 0 if and only if tpY q is odd.
Therefore, if tpY q is odd, �ps1

0
q ‰ �ps2

0
q. By Lemma 5.15, one of sk

0

pk “ 1, 2q can be extended over Y0 (and hence W2), while the other one
can be extended over Y1 (and hence W1). Claim (2) now follows from
(26). If tpY q is even, �ps1

0
q “ �ps2

0
q. Define the sets

Aj “ ts0 | x�psk0q, r�jsy “ 0 for k “ 1, 2u, j “ 0, 1,

then (24) and (25) follow directly from (23), and the equality |A0| “ |A1|

can be verified as follows:

|A0| “
1

2
| spinpY0q| “

1

4
| spinpY q| “

1

2
| spinpY1q| “ |A1|.

q.e.d.

Remark 5.17. The disjoint decomposition sc-spincpY q “ A0 YA1 of
(24) with the additional properties (25) holds only for even tpY q. We
will extend it to the case of odd tpY q by choosing an arbitrary disjoint
decomposition such that |A0| “ |A1|.
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In our next step toward the proof of Theorem 5.10, we will study the
set of ‘relative characteristic vectors’ defined as

CharpWj , s0q “ tc1psq | s P spincpWj , s0qu.

To state the following set of results about this set, we need to recall
the maps iWj : H2

pWjq Ñ H2
pY q and BWj : H1

pBY q Ñ H2
pWjq from

the Mayer–Vietoris exact sequence (17).

Lemma 5.18. The set CharpWj , s0q is a coset of 2 ker iWj inside of
ker iWj which can be described precisely as follows:

1) Suppose tpY q is odd. Then, for any s0 P sc-spincpY q,
a) CharpWj , s0q “ 2 ker iWj for j “ 1, 2,
b) CharpW0, s0q “ BW0pm̂q ` 2 ker iW0.

2) Suppose tpY q is even and s0 P A0. Then
a) CharpW2, s0q “ 2 ker iW2,
b) CharpW1, s0q “ BW1p�̂2q ` 2 ker iW1,
c) CharpW0, s0q “ BW0p�̂0q ` 2 ker iW0.

3) Suppose tpY q is even and s0 P A1. Then
a) CharpW1, s0q “ 2 ker iW2,
b) CharpW2, s0q “ BW2p�̂2q ` 2 ker iW2,
c) CharpW0, s0q “ BW0p�̂1q ` 2 ker iW0.

Proof. We will only prove case (2) because cases (1) and (3) are simi-
lar. In case (2), we have even tpY q and s0 P A0. Since sc-spincpW2, s0q ‰

H, the coset CharpW2, s0q must contain zero. This proves (a). To
prove (b), note that the image of CharpW1, s0q under the restriction map
ker iW1 Ñ ker iY1 does not contain zero because sc-spincpY1, s0q “ H,
while the image of CharpW1, s0q under the map ker iW1 Ñ ker iY2 con-
tains zero because sc-spincpY2, s0q ‰ H. It is now not di�cult to check
that BW2p�̂2q ` 2 ker iW2 is the only one coset (of the four) satisfying
these requirements. This proves (b). Case (c) is similar. q.e.d.

Let pL0, L1, L2q and pL1
0
, L1

1
, L1

2
q be two admissible skein triangles

with the same resolution data, and let us fix decompositions

sc-spincpY q “ A0 Y A1 and sc-spincpY 1
q “ A1

0 Y A1
1

as in Lemma 5.16 and Remark 5.17. Combining all of the above lemmas,
we obtain the following result.

Proposition 5.19. Let s0 P An and s1
0

P A1
n with n “ 0 or n “ 1.

Then there exist isomorphisms ⇠̂j : ker iWj Ñ ker iW 1
j
and ⇠j : ker iYj Ñ

ker iY 1
j
with the following properties:

1) ⇠̂jp↵q|Y 1
j

“ ⇠jp↵|Yj q and ⇠̂j`1p↵q|Y 1
j`1

“ ⇠j`1p↵|Yj`1q;

2) For any ↵ P ker iWj with ↵|BWj torsion, we have ↵2
“ p⇠̂jp↵qq

2;

3) ⇠̂jpCharpWj , s0qq “ CharpW 1
j , s

1
0
q,
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4) Let ⇢j,j`1 be the isomorphism (21) and ⇢1
j,j`1

the corresponding
isomorphism for the skein triangle pL1

0
, L1

1
, L1

2
q. Then, for any

� P ker iWj`2 and any integer k we have

⇠̂jp⇢j,j`1p�, k ¨ PD rEjsq|Wj q “ ⇢1
j,j`1p⇠̂j`2p�q, k ¨ PD rE1

jsq|W 1
j

and

⇠̂j`1p⇢j,j`1p�, k ¨ PD rEjsq|Wj`1q “ ⇢1
j,j`1p⇠̂j`2p�q, k ¨ PD rE1

jsq|W 1
j`1

.

With all the necessary preparations now in place, we are finally ready
to prove the main result of this subsection, Theorem 5.10.

Proof of Theorem 5.10. LetA0, A1, A1
0
, andA1

1
be as above, and s0 P An

and s1
0

P A1
n for n “ 0 or n “ 1. We first pick any sW0 P spincpW0, s0q.

It follows from Proposition 5.19 (3) that ⇠̂0pc1psW0qq P CharpW 1
0
, s1

0
q and

there exists sW 1
0
such that c1psW 1

0
q “ ⇠̂0pc1psW0qq. Denote by s̃ the spinc

structure on CP2 with c1ps̃q “ PD rEjs “ PD rE1
js and let

sWj “ psW0# s̃q|Wj and sW 1
j

“ psW 1
0
# s̃q|W 1

j
for j “ 1, 2, and

sYj “ sWj |Yj and sY 1
j

“ sW 1
j
|Y 1

j
for j “ 0, 1, 2.

Using Proposition 5.19 (4) one can show that

⇠̂jpc1psWj qq “ c1psW 1
j
q and ⇠jpc1psYj qq “ c1psY 1

j
q.

We now define the map ✓̂j : spincpWj , s0q Ñ spincpW 1
j , s

1
0
q by the for-

mula
✓̂jpsWj ` hq “ sW 1

j
` ⇠̂jphq for h P ker iWj

and the map ✓j : spincpYj , s0q Ñ spincpY 1
j , s

1
0
q by the formula

✓jpsYj ` hq “ sY 1
j

` ⇠jphq for h P ker iYj .

It is not di�cult to verify that ✓̂j and ✓j are compatible with the ad-
ditional structures in Definition 5.8 and that they provide the desired
equivalence SppL0, L1, L2q, s0q „ SppL1

0
, L1

1
, L1

2
q, s1

0
q. q.e.d.

5.3. Truncated Floer homology. Recall that, according to Theo-
rem 4.6, we have the following Floer exact triangle over the rationals

(27)
. . .

FW0
››››Ñ ~HMpY1, rs0sq

FW1
››››Ñ ~HMpY2, rs0sq

FW2
››››Ñ ~HMpY0, rs0sq

FW0
››››Ñ . . .

Let us introduce the constants

c0 “ b`
2

pW2q ` b1pY0q, c1 “ b`
2

pW1q ` b1pY2q, and c2 “ 0,

and use them to define ‘twisted’ versions of the maps ⌧̌ j˚ induced by the
covering translations on ~HMpYj , rs0sq by the formula

fj “ p´1q
cj ¨ ⌧̌ j˚ : ~HMpYj , rs0sq Ñ ~HMpYj , rs0sq.
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Lemma 5.20. The maps fj are compatible with the maps FWj in the
sense that

(28) fj`1 ˝ FWj “ FWj ˝ fj for j P Z{3.

Proof. Since the covering translation ⌧Wj on Wj extends the covering
translations ⌧Yj and ⌧Yj`1 on its boundary components, the functoriality
of the monopole Floer homology and Lemma 5.7 imply that

⌧̌ j`1

˚ ˝ ~HMpWj , sq “ p´1q
b`
2 pWjq`b1pYj`1q

¨ ~HMpWj , ⌧
˚
Wj

sq ˝ ⌧̌ j˚

“ p´1q
b`
2 pWjq`b1pYj`1q

¨ ~HMpWj , s̄q ˝ ⌧̌ j˚,
(29)

for any sPspincpWj , rs0sq. To explain the extra factor ṕ 1q
b`
2 pWjq`b1pYj`1q,

we recall that the homology orientation, that is, an orientation of the
vector space

©max `
H1

pWj ;Rq ‘ I`
pWj ;Rq ‘ H1

pYj`1;Rq
˘
,

is involved in the definition of the map ~HMpW q; see [37, Definition
3.4.1]. Here, I`

pWjq stands for a maximum positive subspace for the
intersection form on impH2

pWj , BWjq Ñ H2
pWjqq. By Lemma 5.7, the

covering translation ⌧Wj acts as the negative identity on the space

H1
pWj ;Rq ‘ I`

pWj ;Rq ‘ H1
pYj`1;Rq,

thereby changing the homology orientation by the factor of

p´1q
b`
2 pWjq`b1pWjq`b1pYj`1q

Recall that the map FWj was defined in Section 4 by the formula

FWj “

ÿ

sPspincpWj ,s0q
p´1q

µpsq
¨ ~HMpWj , sq,

where µpsq is the F2-valued function defined in (10). Therefore, in order
to deduce (28) from (29), we just need to check the relation

b`
2

pWjq ` b1pYj`1q ` cj`1 ` cj “ µpsq ´ µps̄q pmod 2q

for any s P spincpWj , s0q. For j “ 1 and j “ 2, this is immediate from
Proposition 4.3. For j “ 0, this follows from Proposition 4.3 and the
identity

(30) b1pY0q ` b1pY1q ` b1pY2q ` b`
2

pW0q ` b`
2

pW1q ` b`
2

pW2q “ 1,

which is a consequence of Lemma 5.6. q.e.d.

Since ~HMpYj , rs0sq usually has infinite rank as a Z–module, we will
truncate it before discussing Lefschetz numbers.
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Definition 5.21. For any rational number q and j P Z{3, define the
truncated monopole Floer homology as

~HM§qpYj , rs0sq “

´ à

s|Y “s0
c1psq torsion

à

a§q

~HMapYj , sq

¯

à ´ à

s|Y “s0
c1psq non-torsion

~HMpYj , sq

¯
.

Also define

~HM°qpYj , rs0sq “ ~HMpYj , rs0sq

M
~HM§qpYj , rs0sq.

We wish to find truncations of ~HMpYj , rs0sq for all j P Z{3 which are
preserved by the maps FWj . To this end, recall the map

⇢ : tor-spincpYjq Ñ r0, 2q

defined by the formula

⇢psq ”
1

4
pc1pŝq

2
´ signpXqq pmod 2q

for any choice of smooth compact spinc manifold pX, ŝq with the spinc

boundary pYj , sq (see [6]).

Definition 5.22. Let s̃ P sc-spincpY2, s0q and choose an even inte-
ger N ° 0 large enough so that, for each j P Z{3, the following two
conditions are satisfied:

1) the natural map ~HM§qpYj , rs0sq Ñ HM red
pYj , rs0sq is surjective,

and
2) for any s P spincpYj , s0q, there exists a finite set

ta1, a2, ..., anu Ä ~HMpYj , sq

representing a set of generators for HM redpYj , sq as a quotient
QrU s-module, such that

FWj paiq Ä ~HM§N pYj`1, rs0sq.

(That this can be achieved follows from [37, Lemma 25.3.1]).

The truncated triangle with parameter pN, s̃q is then defined as the 3-
periodic chain complex

. . .
FW0 pN,̃sq
››››››Ñ ~HM§N`⇢ps̃q`op1qpY1, rs0sq

FW1 pN,̃sq
››››››Ñ ~HM§N`⇢ps̃q`op2qpY2, rs0sq

FW2 pN,s̃q
››››››Ñ ~HM§N`⇢ps̃q`op0qpY0, rs0sq

FW0 pN,̃sq
››››››Ñ . . .

where FWj pN, s̃q is the restriction of FWj and opjq is defined as follows:
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1) if b1pYnq “ 1 for some n P Z{3 then opnq “ opn´1q “ opn`1q “ 0;
2) if b`

2
pWnq “ 1 for some n P Z{3 then opn ` 1q “ 0, opnq “ 1{2,

and opn ´ 1q “ 1{4.

(Note that by Lemma 5.6, exactly one of these two cases occurs). We
denote this truncated triangle by C§

pN, s̃q. It is a subcomplex of the
exact triangle (27), and we denote by C°

pN, s̃q the quotient complex.

Lemma 5.23. The image FWj p~HM§N`⇢ps̃q`opjqpYj , rs0sqqis contained
in

~HM§N`⇢ps̃q`opj`1qpYj`1, rs0sq,

and therefore the map FWj pN, s̃q is well defined.

Proof. We will only give the proof in the case when b1pYnq “ 1 for
some n P Z{3 since the other case is similar.

We will start with the map FWn`1 . Since b1pYnq “ 1, we have �n “ l,
which implies that |pn˘1| “ 1 and pn´1 ` pn`1 “ ´pn “ 0. Using (20)
and Lemma 5.6, we obtain

1

4
pc21psq ´ 2�pWn`1q ´ 3�pWn`1qq §

1

4
p´1 ´ 2 ` 3q “ 0

for any s P spincpWn`1, rs0sq. Therefore, FWn`1 decreases the absolute
grading, and the statement follows from the fact that opn`1q “ opn´1q.

Let us now consider the map FWn´1 . For a given s P spincpWn´1, s0q,
there are two possibilities:

‚ s|Yn is non-torsion. There is nothing to prove in this case because

no truncation is done on ~HMpYn, s|Ynq.
‚ s|Yn is torsion. Since b1pYn´1q “ 0, the restriction s|BWn is torsion

and the map ~HMpWn, sq has Q–degree

1

4
pc1psq

2
´ 2�pWnq ´ 3�pWnqq “

1

4
p0 ´ 2 ´ 0q “ ´

1

2
.

The statement follows from the fact that opnq ° opn ´ 1q ´ 1{2.

Finally, consider the map FWn . For a given s P spincpWn, s0q, there
are again two possibilities:

‚ s|Yn is non-torsion. Then ~HMpYn, s|Ynq “ HM red
pYn, s|Ynq and

the statement follows from Part (2) of Definition 5.22.
‚ s|Yn is torsion. As in the corresponding case for FWn´1 , the map

~HMpWn, sq has Q–degree ´1{2, and the statement follows from
the fact that opn ` 1q ° opnq ´ 1{2.

q.e.d.

Note that, in general, neither C§
pN, s̃q nor C°

pN, s̃q is exact. We
denote their homology groups by tH§

j pN, s̃qu and tH°
j pN, s̃qu, respec-

tively. The absolute Z{2 grading on ~HMpYj , rs0sq induces an absolute
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Z{2 grading on these homology groups. The maps fj give rise to invo-
lutions on both C§

pN, s̃q and C°
pN, s̃q. We denote the corresponding

chain maps by f§
j pN, s̃q and f°

j pN, s̃q. We also denote the induced maps

on H§
j pN, s̃q and H°

j pN, s̃q by, respectively, f§
j pN, s̃q˚ and f°

j pN, s̃q˚.
With a slight abuse of language, we will call all of these involutions
covering involutions.

Lemma 5.24. For any j P Z{3, there is an isomorphism

⇠j : H
§
j pN, s̃q ›Ñ H°

j`1pN, s̃q

compatible with the covering involution. The map ⇠j shifts the absolute
Z{2 grading by the same amount as the map FWj .

Proof. Treat the exact triangle (27) as a chain complex with trivial
homology. Call this chain complex C. Then we have a short exact
sequence

0 ››››Ñ C§
˚ pN, s̃q ››››Ñ C ››››Ñ C°

˚ pN, s̃q ››››Ñ 0,

and the statement follows from the long exact sequence it generates in
homology. q.e.d.

Next, we will show that the chain complex C°
pN, s̃q only depends

on the equivalence class of the spinc system SppL0, L1, L2q, s0q. To
make this statement precise, consider another admissible skein triple
pL1

0
, L1

1
, L1

2
q, and let s1

0
be a self-conjugate spinc structure on Y 1

“

⌃pS3
zB1

q, where B1 is a small ball containing the resolved crossing.
We suppose that there exists an equivalence

SppL0, L1, L2q, s0q „ SppL1
0, L

1
1, L

1
2q, s1

0q

provided by the maps t✓ju and t✓̂ju as in Definition 5.9. We write
s̃1

“ ✓jps̃q and choose N 1 large enough as to satisfy the conditions of
Definition 5.22. All of the above constructions can be repeated with
pL1

0
, L1

1
, L1

2
q in place of pL0, L1, L2q and pN 1, s̃1

q in place of pN, s̃q.

Lemma 5.25. There is an isomorphism between the chain complexes
C°

pN, s̃q and C°
pN 1, s̃1

q. This isomorphism preserves the covering in-
volution, absolute Z{2 grading and the relative Q-grading.

Proof. The chain complex C°
pN, s̃q can be explicitly described in

terms of the spinc structures and their Chern classes. For example,
when b1pYjq “ 0, each s P tor-spincpYj , s0q contributes a summand

T psq “ ZrU,U´1
s{ZrU s to ~HM

°
j pN, s̃q, supported in even Z{2 grading.

The smallest Q–degree in this summand is given by

minta | a P 2Z ` ⇢psq, a ° N ` ⇢ps̃q ` opjqu.

The covering involution interchanges T psq and T ps̄q. We have a similar
description for the chain maps in C°

pN, s̃q. The lemma can now be
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checked using this description and the corresponding description for
C°

pN 1, s̃1
q. q.e.d.

Corollary 5.26. For each j P Z{3, there exists an isomorphism
H§

j pN 1, s̃1
q Ñ H§

j pN, s̃q that is compatible with the covering involution
and preserves the absolute Z{2 grading.

Proof. This follows by combining Lemma 5.25 with Lemma 5.24.
q.e.d.

Lemma 5.27. The following identity holds for the Lefschetz numbers
on the truncated monopole Floer homology:

Lefp⌧̌§
Y0,rs0spN, s̃qq ` Lefp⌧̌§

Y1,rs0spN, s̃qq ´ Lefp⌧̌§
Y2,rs0spN, s̃qq

“p´1q
b`
2 pW2q`b1pY0q Lefpf§

0
pN, s̃qq

` p´1q
b`
2 pW1q`b1pY2q Lefpf§

1
pN, s̃qq ´ Lefpf§

2
pN, s̃qq

“p´1q
b`
2 pW2q`b1pY0q Lefpf§

0
pN, s̃q˚q

` p´1q
b`
1 pW1q`b1pY2q Lefpf§

1
pN, s̃q˚q ´ Lefpf§

2
pN, s̃q˚q.

A similar equality holds for pL1
0
, L1

1
, L1

2
q.

Proof. The first equality should be clear from the definition of fj . The
second equality is based on the following observation: by [38, Proposi-
tion 2.5], the map F§

Wj
pN, s̃q preserves the absolute Z{2 grading if and

only if

1

2
p�pWjq ` �pWjq ´ b1pYjq ` b1pYj`1qq “ 0 pmod 2q.

Using Lemma 5.6, it is not di�cult to check that this is equivalent to
the condition

b`
2

pWjq ` b1pYj`1q “ 0 pmod 2q.

This is exactly when the sign before Lefpf§
j pN, s̃qq di↵ers from the sign

before Lefpf§
j`1

pN, s̃qq (see (30)). As a result, this kind of alternating
sum of the Lefschetz numbers for the chain map equals the correspond-
ing sum for the induced map on homology. q.e.d.

Corollary 5.28. We have the following equality of Lefschetz numbers

Lefp⌧̌§
Y0,rs0spN, s̃qq ` Lefp⌧̌§

Y1,rs0spN, s̃qq ´ Lefp⌧̌§
Y2,rs0spN, s̃qq

“ Lefp⌧̌§
Y 1
0 ,rs1

0spN
1, s̃1

qq ` Lefp⌧̌§
Y 1
1 ,rs1

0spN
1, s̃1

qq ´ Lefp⌧̌§
Y 1
2 ,rs1

0spN
1, s̃1

qq.

Proof. This follows from Corollary 5.26 and Lemma 5.27. q.e.d.

As our next step, we will study relations between the Lefschetz num-
bers Lefp⌧̌§

Yj ,rs0spN, s̃qq and the corresponding Lefschetz numbers on the

reduced Floer homology.
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Definition 5.29. For any s P sc-spincpYjq, define the normalized
Lefschetz number Lef˝

pYj , sq of the map

⌧ redYj ,s : HM red
pYj , sq Ñ HM red

pYj , sq

as follows:

‚ if b1pYjq “ 0, we let

Lef˝
pYj , sq “ Lefp⌧ redYj ,sq ` hpYj , sq.

‚ if b1pYjq “ 1, recall that (as in Heegaard Floer theory [54, §4.2])
there are two Frøyshov invariants h0pYj , sq and h1pYj , sq (see the
proof of Lemma 5.30 below). We let

Lef˝
pYj , sq “ Lefp⌧ redYj ,sq ` h0pYj , sq ` h1pYj , sq.

Lemma 5.30. For any s P sc-spincpYjq and any rational number q,
consider the map

⌧̌§q
Yj ,s

:
à

a§q

~HMapYj , sq ›Ñ

à

a§q

~HMapYj , sq.

For all su�ciently large q, its Lefschetz number satisfies the equality

(31) Lefp⌧̌§q
Yj ,s

q ´ 2b1pYjq´1q “ Lef˝
pYj , sq ` Cpb1pYjq, q ´ ⇢psqq,

where Cpb1pYjq, q ´ ⇢psqq is constant depending only on b1pYjq and the
mod 2 reduction of q ´ ⇢psq in Q{2Z.

Proof. Let us assume that b1pYjq “ 1; the case of b1pYjq “ 0 is similar
(and easier). We have the following (non-canonical) decomposition for
~HMpY, sq:

pQrU,U´1
s{QrU sq´2h0pY,sq ‘ pQrU,U´1

s{QrU sq´2h1pY,sq ‘HM red
pYj , sq,

with the lower indices indicating the absolute grading of the bottom of
the U–tail. Regarding the absolute Z{2 grading, the first summand is
supported in the even grading while the second summand is supported
in the odd grading. With respect to this decomposition, the map ⌧̌Yj ,s

is given by the matrix »

–
1 0 ˚

0 ´1 ˚

0 0 ⌧ redYj ,s

fi

fl

(the action on the second summand is ´1 because ⌧˚
Yj

acts as negative

identity on H1
pYj ;Rq; see [37, Theorem 35.1.1]). Therefore, if q is large

enough so that HM red
pYj , sq is supported in degree less than q, we

obtain

Lefp⌧̌§q
Yj ,s

q´q´Lef˝
pYj , sq “

ˇ̌
tk P Z•0

| ´2h0pY, sq ` 2k § qu

ˇ̌
´q{2 `

ˇ̌
tk P Z•0

| ´2h1pY, sq ` 2k § qu

ˇ̌
´ q{2.
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Clearly, this number only depends on the mod 2 reduction of q `

2h0pY, sq and q ` 2h1pY, sq. To complete the proof, we observe that
⇢psq ` 2h0pY, sq P 2Z and ⇢psq ` 2h1pY, sq P 2Z ` 1, which follows di-
rectly from the definition of the absolute grading in monopole Floer
homology. q.e.d.

By setting q “ N ` opjq ` ⇢ps̃q and taking the sum of the equalities
(31) over all spinc-structures s P sc-spincpYj , s0q, we obtain the equality

Lefp⌧̌§
Yj ,rs0spN, s̃qq´

ÿ

sPsc-spincpYj ,s0q
Lef˝

pYj , sq

“ 2b1pYjq´1
¨ |sc-spincpYj , s0q| ¨ pN ` ⇢ps̃qq ` C,

(32)

where C is a constant depending on b1pYjq, opjq, |sc-spincpYj , s0q|, and
the mod 2 reduction of ⇢psq ´ ⇢ps̃q for s P sc-spincpYj , s0q.

Corollary 5.31. If SppL0, L1, L2q, s0q „ SppL1
0
, L1

1
, L1

2
q, s1

0
q then

ÿ

sPsc-spincpY0,s0q
Lef˝

pY0, sq `

ÿ

sPsc-spincpY1,s0q
Lef˝

pY1, sq ´

ÿ

sPsc-spincpY2,s0q
Lef˝

pY2, sq

“

ÿ

sPsc-spincpY 1
0 ,s

1
0q
Lef˝

pY 1
0 , sq `

ÿ

sPsc-spincpY 1
1 ,s

1
0q
Lef˝

pY 1
1 , sq

´

ÿ

sPsc-spincpY 1
2 ,s

1
0q
Lef˝

pY 1
2 , sq

In addition,

1

2|L2|´2

´ ÿ

sPsc-spincpY0q
Lef˝

pY0, sq `

ÿ

sPsc-spincpY1q
Lef˝

pY1, sq ´

ÿ

sPsc-spincpY2q
Lef˝

pY2, sq

¯
(33)

“ CptpY q, spY q, pp0, q0q, pp1, q1qq.

Proof. Since b1pYjq “ b1pY 1
j q, opjq “ o1

pjq, | sc-spincpYj , s0q| “

| sc-spincpY 1
j , s

1
0
q|, and

⇢psq ´ ⇢ps̃q “ ⇢p✓psqq ´ ⇢ps̃1
q pmod 2q,

the constant C in (32) equals the corresponding constant for Y 1. Now
we add the equalities (32) for Y0, Y1 and subtract the one for Y2. By
comparing the result with the corresponding result for Y 1

j and applying
(22) and Corollary 5.28, we finish the proof of the first claim. The
second claim follows easily from (1) and Theorem 5.10. q.e.d.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 5.5. For any ramifiable link Lj , it follows from for-
mula (7) for the Murasugi signature that

(34)
1

2|Lj |´1

ÿ

sPsc-spincpYjq
Lef˝

pYj , sq ´
1

8
⇠pLjq “ �pLjq.

Therefore, (14) follows from (33) and Lemma 3.1. This proves statement
(1) of Theorem 5.5.

The first assertion of statement (2) follows from Lemma 5.2. To
prove the second assertion, suppose that L2 is not ramifiable. Then
�2 represents zero elements in both H1pY ;F2q and H1pY ;Qq. We de-
note the resolution data for pL0, L1, L2q by ptpY q, spY q, pp0, q0q, pp1, q1qq.
Then spY q “ 0 and pp2, q2q “ p0, 1q, which implies that pp1, q1q “

p´p0,´q0 ´ 1q. It follows from Lemma 5.2 that pL̄1, L0, L2q forms an
admissible skein triangle, and one can check that its resolution data is
ptpY q, spY q, pp0, q0 ´ 1q, p´p0,´q0qq. The equality (33) now reads

ÿ

sPsc-spincpY0q
Lef˝

pY0, sq `

ÿ

sPsc-spincpȲ1q
Lef˝

pY 1, sq ´

ÿ

sPsc-spincpY2q
Lef˝

pY2, sq

(35)

“ 2|L2|´2
¨ CptpY q, spY q, pp0, q0 ´ 1q, p´p0,´q0qq,

where Y 1 stands for the double branched cover of S3 with branch set
L̄1. Subtracting (33) from (35), we obtain

1

2|L1|´1

´ ÿ

sPsc-spincpȲ1q
Lef˝

pȲ1, sq ´

ÿ

sPsc-spincpY1q
Lef˝

pY1, sq

¯

“CptpY q, spY q, pp0, q0´1q, p´p0,´q0qq´CptpY q, spY q, pp0, q0q, pp1, q1qq.

Combining this with Lemma 3.1 and (34), we finish the proof of (15)
in the case of n “ 2. The proofs of (16) for n “ 2, and of both (15)
and (16) for n “ 0 and n “ 1 are similar. q.e.d.

6. Vanishing of the universal constants

In this section, we will prove that the constants

CptpY q, spY q, pp0, q0q, pp1, q1qq and C˘
j ptpY q, spY q, pp0, q0q, pp1, q1qq

in Theorem 5.5 vanish for all resolution data. The cyclic symmetry of
skein triangles will then imply Proposition 2.2 and therefore finish the
proof of Theorem 2.1.

Definition 6.1. A six-tuple pt, s, pp0, q0q, pp1, q1qq, where t is a posi-
tive integer, s P Z{2, and pj , qj P Z, j “ 0, 1, is called admissible is the
following four conditions are satisfied:

1) p0q1 ´ p1q0 “ 1,
2) s “ 0 if t is odd,
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3) p2 “ ´p0 ´ p1 is even when s “ 0, and q2 “ ´q0 ´ q1 is even when
s “ 1.

Lemma 6.2. The resolution data ptpY q, spY q, pp0, q0q, pp1, q1qq asso-
ciated with an admissible skein triangle pL0, L1, L2q as in Definition 5.4
is an admissible six-tuple.

Proof. This can be easily verified: (1) corresponds to the requirement
that #p�0 X�1q “ ´1, (2) follows from the fact that l is an F2 longitude
when tpY q is odd, and (3) is true because �2 is an F2 longitude by part
(1) of Definition 5.1. q.e.d.

Theorem 6.3. Every admissible six-tuple pt, s, pp0, q0q, pp1, q1qq is the
resolution data of an admissible skein triangle. Furthermore,

1) if ppj , qjq ‰ p0, 1q for all j P Z{3 then Cpt, s, pp0, q0q, pp1, q1qq “ 0,
and

2) if ppj , qjq “ p0, 1q for some j P Z{3 then C˘
j pt, s, pp0, q0q, pp1, q1qq“

0.

Our proof of Theorem 6.3 is inspired by the proof of [57, Theorem
7.5]. The idea is roughly as follows: starting with two-bridge links,
which are alternating and hence have vanishing �, we will generate
su�ciently many examples of Montesinos links with vanishing � to cover
all possible admissible six-tuples. We will then apply Theorem 5.5 to
conclude that the constants in question are all zero.

Proposition 6.4. Theorem 6.3 holds for all admissible six-tuples
with t “ 1.

Proof. Observe that since t “ 1 is odd, we automatically have s “ 0
by Definition 6.1, so the admissible six-tuples at hand are of the form
p1, 0, pp0, q0q, pp1, q1qq with p0q1 ´ p1q0 “ 1 and even p2 “ ´p0 ´ p1.
Let us consider an unknot in S3 with Y “ S1

ˆ D2 and the standard
boundary framing pm, lq on BY , which has t “ 1 and s “ 0. For
every j P Z{3, the manifold Yj obtained by the pj{qj surgery on the
unknot is a lens space of the form Yj “ ⌃pLjq, where Lj is a two-bridge
link. The links L̄j are also two-bridge, and hence alternating. It then
follows from [47, Theorem 1.2] and [17, Lemma 3.4], combined with the
relation cited in Remark 1.1 between the Heegaard Floer and monopole
correction terms that �pLjq “ �pL̄jq “ 0. The result will now follow
from Theorem 5.5 as soon as we show that pL0, L1, L2q is an admissible
skein triangle. But the latter is a special case of the more general result
proved below in Lemma 6.6. q.e.d.

To continue, we will introduce some notation. Choose three distinct
circle fibers in S2

ˆS1 and remove their disjoint open tubular neighbor-
hoods. The resulting manifold will be called N . The tori Tj , j “ 1, 2, 3,
on the boundary of N have natural framings pxj , hq, where h is the circle
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fiber and the curves x1, x2, and x3 co-bound a section of the product
circle bundle.

Denote by Q`
“ Q Y t8u the extended set of rational numbers,

with the convention that 8 “ 1{0. Given three numbers aj{bj P Q`

with co-prime paj , bjq, j “ 1, 2, 3, denote by Y pa1{b1, a2{b2, a3{b3q the
closed manifold obtained by attaching to N three solid tori along their
boundaries so that their meridians match the curves ajxj`bjh. A direct
calculation shows that the first homology group of Y pa1{b1, a2{b2, a3{b3q

is finite if and only if b1a2a3 ` a1b2a3 ` a1a2b3 ‰ 0, in which case

(36) |H1pY pa1{b1, a2{b2, a3{b3q;Zq| “ |b1a2a3 ` a1b2a3 ` a1a2b3|.

A surgery description of Y pa1{b1, a2{b2, a3{b3q is shown in Figure 3.
Denote by Y pa1{b1, a2{b2, ‚q the manifold with a single boundary com-
ponent obtained by attaching to N just the first two solid tori.

Figure 3. The manifold Y pa1{b1, a2{b2, a3{b3q.

The 180˝ rotation with respect to the dotted line in Figure 3 makes
Y pa1{b1, a2{b2, a3{b3q into a double branched cover over S3 with branch
set the Montesinos link Kpa1{b1, a2{b2, a3{b3q pictured in Figure 4.

Each of the boxes marked aj{bj in the figure stands for the rational
tangle T paj{bjq obtained from a continued fraction decomposition

(37) aj{bj “ rt1, . . . , tkj s “ t1 ´
1

t2 ´
1

¨ ¨ ¨ ´
1

tkj

by applying consecutive twists to neighboring endpoints starting from
two unknotted and unlinked arcs. Our conventions for rational tangles
should be clear from the examples in Figure 5.

We will study skein triangles formed by these Montesinos links. Given
p0{q0 and p1{q1 P Q` with co-prime pp0, q0q and pp1, q1q, define the
distance between them by the formula

(38) �pp0{q0, p1{q1q “ |p0q1 ´ p1q0|.
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Figure 4. The Montesinos link Kpa1{b1, a2{b2, a3{b3q.

Figure 5. Examples of rational tangles.

We will say that three points in Q` form a triangle if the distance
between any two of them is equal to 1. Two triangles T1 and T2 are
called adjacent if the intersection T1 XT2 consists of exactly two points.

Lemma 6.5. For any r, s, t P Q` with �pr, sq “ 1, there exists a
chain of triangles S0, S1, . . . , Sn such that r, s P S0, t P Sn, and Si is
adjacent to Si`1 for all i “ 0, . . . , n.

Proof. The modular group PSLp2,Zq acts on the set Q` by linear
fractional transformationsˆ

a b
c d

˙
¨

ˆ
p

q

˙
“

ap ` bq

cp ` dq
.

This action preserves the distance (38) and hence sends triangles to
triangles. It follows from the general properties of the modular group
(and can also be checked directly) that, for any pair r, s P Q` of distance
1, there exists A P PSLp2,Zq such that A ¨ r “ 0 and A ¨ s “ 8.
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Therefore, we may assume without loss of generality that r “ 0 and
s “ 8.

Observe that there are exactly two choices for the triangle S0 with
vertices 0 and 8: in one of these triangles, the third vertex is 1, and in
the other ´1. Therefore, we will find a chain of triangles S0, S1, . . . , Sn

connecting 0 and 8 to t “ p{q as soon as we find a chain of triangles
S1, . . . , Sn connecting 0 and ˘1 to t “ p{q. First suppose that the
triangle S0 has vertices 0, 1, and 8. The matrix

ˆ
1 ´1
1 0

˙

sends 0, 1, and p{q into 8, 0, and pp ´ qq{p, respectively, and turns the
problem at hand into the problem of finding a chain of triangles S1,. . . ,
Sn connecting 0 and 8 to pp ´ qq{p. This is, of course, the original
problem with t “ p{q replaced by t “ pp ´ qq{p. Similarly, the matrix

ˆ
1 0

´1 1

˙

sends 0, 1, and p{q into 0, 8, and p{pq ´ pq, respectively, thereby re-
placing t “ p{q by t “ p{pq ´ pq. If the triangle S0 has vertices 0, ´1,
and 8, the matrices

ˆ
1 1
1 0

˙
and

ˆ
1 0
1 1

˙

can be used to replace t “ p{q with t “ pp ` qq{p and t “ p{pp ` qq,
respectively. In summary, t “ p{q can be replaced with any one of
the four fractions pp ˘ qq{q and p{pq ˘ pq. One can find a sequence of
such replacements making any t “ p{q into t “ 1, for which there is an
obvious solution. q.e.d.

Lemma 6.6. For any p, q P Q` and any adjacent triangles tr, s, tu
and tr, s, t1

u, one can find a planar projection of the link Kpp, q, tq and
a crossing c such that

‚ the two resolutions of Kpp, q, tq at the crossing c are Kpp, q, rq and
Kpp, q, sq, and

‚ the link Kpp, q, tq with the crossing c changed is Kpp, q, t1
q.

In particular, each of the sets

tKpp, q, rq,Kpp, q, sq,Kpp, q, tqu and tKpp, q, rq,Kpp, q, sq,Kpp, q, t1
qu

forms an admissible skein triangle, possibly after a permutation. For
both skein triangles, the manifold Y with torus boundary is just Ypp, q, ‚q.

Proof. Let B3 be a 3-ball in S3 which contains the third rational
tangle in all of the Montesinos links at hand. Identify its boundary BB3

with the quotient pR2
{Z2

q{ ˘ 1 of the torus R2
{Z2 by the hyperelliptic

involution. The standard action of SLp2,Zq on the plane R2 induces an
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action of PSLp2,Zq on BB3 which permutes the points p0, 0q, p0, 1{2q,
p1{2, 0q, and p1{2, 1{2q. Every A P PSLp2,Zq gives a homeomorphism
A : BB3

Ñ BB3 which extends to a homeomorphism fA : B3
Ñ B3 by

the coning construction, fA pt ¨ xq “ t ¨ Apxq. The homeomorphism fA
sends a rational tangle T p`q to a rational tangle T pA ¨ ` q, which can be
seen by factoring A into a product of Dehn twists

A “

ˆ
q s
p r

˙

“

ˆ
1 0
t1 1

˙ ˆ
0 1

´1 0

˙ ˆ
1 0
t2 1

˙ ˆ
0 1

´1 0

˙
¨ ¨ ¨

ˆ
0 1

´1 0

˙ ˆ
1 0
tk 0

˙

using a continued fraction p{q “ rt1, . . . , tks as in (37). Now, given
r, s P Q`, there exists A P PSLp2,Zq such that A ¨ r “ 0, A ¨ s “ 8,
and then necessarily tA ¨ t, A ¨ t1

u “ t˘1u. By the coning construction,
fA extends to the exterior of B3, resulting in a homeomorphism of
S3. This homeomorphism turns the original tangle decompositions into
tangle decompositions of the form

Kpp, q, rq “ T 1
Y T p0q, Kpp, q, sq “ T 1

Y T p8q, and

tKpp, q, tq, Kpp, q, t1
qu “ tT 1

Y T p1q, T 1
Y T p´1qu,

where T 1 is a certain tangle in the exterior of B3. The conclusion of the
lemma is now clear. q.e.d.

Proposition 6.7. Suppose the link Kpr1, r2, r3q is ramifiable and
1{rj is an integer or infinity for some j. Then �pKpr1, r2, r3qq “ 0.

Proof. In this case,Kpr1, r2, r3q is a two-bridge link and, in particular,
it is alternating. The result now follows from [47] and [17] as in the
proof of Proposition 6.4. q.e.d.

Proposition 6.8. For any p, q, r P Q`, suppose that Kpp, q, rq is
ramifiable and Theorem 6.3 holds for all admissible six-tuples with t “

tpY pp, q, ‚qq. Then �pKpp, q, rqq “ 0.

Proof. Use formula (36) to find a positive integer k such that both
Kpp, q, 1{kq and Kpp, q, 1{pk`1qq are ramifiable. It follows from Propo-
sition 6.7 that

�pKpp, q, 1{kqq “ �pKpp, q, 1{pk ` 1qqq “ 0.

Since �p1{k, 1{pk ` 1qq “ 1, Lemma 6.5 supplies us with a chain of
triangles S0, S1, . . . , Sn such that 1{k, 1{pk ` 1q P S0, r P Sn, and Si is
adjacent to Si`1 for all i “ 0, . . . , n. We claim that for any m “ 0, . . . , n
and s P Sm such that Kpp, q, sq is ramifiable,

�pKpp, q, sqq “ 0.

We will proceed by induction on m. First, suppose that m “ 0. If
s “ 1{k or 1{pk ` 1q, the claim follows from Proposition 6.7; otherwise,
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it follows from Theorem 5.5 (1). Next, suppose that the claim holds for
m and prove it for m ` 1. Write Sm`1 “ ts, u, vu and suppose that
Kpp, q, sq is ramifiable. If s P Sm then the claim follows from the in-
duction hypothesis. Otherwise, write Sm “ tu, v, wu and consider two
possibilities. One possibility is that both Kpp, q, uq and Kpp, q, vq are
ramifiable. Then �pKpp, q, uqq “ �pKpp, q, vqq “ 0 by the induction hy-
pothesis and the vanishing of �pKpp, q, sqq follows from Theorem 5.5 (1).
The other possibility is that one of Kpp, q, uq and Kpp, q, vq is not ram-
ifiable. Then by Theorem 5.5 (2), the link Kpp, q, wq is ramifiable and
�pKpp, q, sqq “ �pKpp, q, wqq “ 0 by the induction hypothesis. q.e.d.

The following lemma will be helpful in computing tpY pn, a{b, ‚qq. It
uses the notation div2pmq “ max tc P N | 2c divides mu.

Lemma 6.9. For any integer n and co-prime integers a and b with
b1pY pn, a{b, ‚qq “ 1, the integer tpY pn, a{b, ‚qq is a divisor of n. In par-
ticular, tpY pn, a{b, ‚qq § |n|, with tpY pn, a{b, ‚qq “ |n| if and only there
exists an integer k such that a “ kn and n divides k ` b. Furthermore,
if div2pnq ‰ div2paq then the integer tpY pn, a{b, ‚qq is odd.

Proof. We will use the notation Y “ Y pn, a{b, ‚q. The homology
group H1pY ;Zq is generated by the homology classes rx1s, rx2s, rx3s,
and rhs subject to the relations

n ¨ rx1s ` rhs “ 0, a ¨ rx2s ` b ¨ rhs “ 0, rx1s ` rx2s ` rx3s “ 0.

One can easily see that the kernel of the map H1pBY ;Zq Ñ H1pY ;Zq is
generated by the homology class

a ` bn

gcdpn, aq
¨ rhs ´

na

gcdpn, aq
¨ rx3s,

and therefore

tpY q “ gcd

ˆ
a ` bn

gcdpn, aq
,

na

gcdpn, aq

˙
.

To prove the first statement of the lemma, write n “ gcdpn, aq ¨ n1

and a “ gcdpn, aq ¨ a1 with the relatively prime n1 and a1. Then

tpY q “ gcd pa1
` bn1, gcdpn, aq ¨ n1a1

q.

Note that any prime p that divides the product n1a1 must divide either
n1 or a1 but not both. In either case, p cannot divide a1

` bn1 because a1

and b are relatively prime. Therefore, all the common divisors of a1
`bn1

and gcdpn, aq ¨n1a1 must also be divisors of gcdpn, aq, which implies that
tpY q is a divisor of gcdpn, aq and hence of n.

If tpY q “ |n|, the integer n must divide gcdpn, aq implying that n “

gcdpn, aq and a “ kn for some integer k. Since n1
“ 1 and a1

“ k, the
fact that n divides a1

` bn1 is equivalent to saying that n divides k ` b.
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Finally, suppose div2pnq ‰ div2paq, then n1a1 must be even. If n1 is
even then a1 is odd hence a1

` bn1 must be odd. On the other hand, if
a1 is even then both n1 and b are odd hence a1

` bn1 must still be odd.
In both cases, tpY q is odd because it divides a1

` bn1. q.e.d.

Proposition 6.10. Theorem 6.3 holds for all admissible six-tuples
with t odd.

Proof. Observe that since t is odd, s must be zero by Definition 6.1.
We will proceed by induction on t. The case t “ 1 was proved in
Proposition 6.4. Suppose the statement holds for all odd t “ 1, . . . , 2n´

1 and consider links of the form Kp2n ` 1,´p2n ` 1q, a{bq. An easy
calculation with formula (36) shows that such a link is ramifiable if and
only if a{b ‰ 8.

It follows from Lemma 6.9 that tpY p2n`1, ‚, a{bqq and tpY p‚,´p2n`

1q, a{bqq are divisors of 2n`1. We claim that they can not be both 2n`1:
otherwise, by Lemma 6.9 again, there would exist an integer k such that
a “ p2n ` 1qk and 2n ` 1 divides both b ` k and b ´ k, which would
contradict the assumption that a and b are co-prime. Together with
Proposition 6.8 and the induction hypothesis, this claim implies that

�pKp2n ` 1,´p2n ` 1q, a{bqq “ 0

for any a{b ‰ 8. Since tpY p2n`1,´p2n`1q, ‚qq “ 2n`1 by Lemma 6.9,
all the constants

Cp2n ` 1, 0, pp0, q0q, pp1, q1qq and C˘
j p2n ` 1, 0, pp0, q0q, pp1, q1qq

must vanish by Theorem 5.5. This completes the inductive step and
hence the proof of the proposition. q.e.d.

Proposition 6.11. Suppose that Kpn, a2{b2, a3{b3q is ramifiable and
div2pnq ‰ div2pa2q. Then �pKpn, a2{b2, a3{b3qq “ 0.

Proof. When div2pnq ‰ div2pa2q, the integer tpKpn, a2{b2, ‚qq must
be odd by Lemma 6.9. The result now follows from Proposition 6.10
and Proposition 6.8. q.e.d.

The following simple lemma will be instrumental in completing the
proof of Theorem 6.3.

Lemma 6.12. For any admissible six-tuple pt, s, pp0, q0q, pp1, q1qq,

Cpt, s, pp0, q0q, pp1, q1qq “ Cpt, s, pp0, q0 ` kp0q, pp1, q1 ` kp1qq and

C˘
j pt, s, pp0, q0q, pp1, q1qq “ C˘

j pt, s, pp0, q0 ` kp0q, pp1, q1 ` kp1qq,

assuming the constants are defined. Here, k can be any integer when
s “ 0, and k can be any even integer when s “ 1.

Proof. The right hand sides of the equalities in Theorem 5.5 do not
depend on the choice of framing. Therefore, we can replace the framing
pm, lq by pm ´ kl, lq without changing the corresponding constants (for
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this to be true, k needs to be even when s “ 1 so that m ´ kl is still an
F2 longitude). This proves the statement of the lemma. q.e.d.

Proposition 6.13. Theorem 6.3 (1) holds for any t.

Proof. The case of odd t was dealt with in Proposition 6.10 hence we
will focus on the case of t “ 2n with positive n. We will consider two
separate cases, those of s “ 0 and s “ 1.

Let us first suppose that s “ 1. It follows from the homological calcu-
lation in the proof of Lemma 6.9 that the Q–longitude l of the manifold
Y p2n,´2n, ‚q is x3 with divisibility 2n, while its F2 longitude m can
be chosen to be h. We wish to show that Cp2n, 1, pp0, q0q, pp1, q1qq “ 0
for any admissible six-tuple p2n, 1, pp0, q0q, pp1, q1qq with non-zero p0, p1,
and p2 (recall that q2 “ ´q0´q1 and p2 “ ´p0´p1). By Lemma 6.12, it
su�ces to show that Cp2n, 1, pp0, q0 ` kp0q, pp1, q1 ` kp1qq “ 0 for some
even integer k.

Since m “ h and l “ x3, the constant Cp2n, 1, pp0, q0 ` kp0q, pp1, q1 `

kq1qq arises in the admissible skein triangle comprising the links

Lj “ Kp2n,´2n, pqj ` kpjq{pjq, j “ 0, 1, 2.

Since q2 is even by Definition 6.1 (3), the integers q0, q1, and p2 must
be odd. Therefore,

div2pqj ` kpjq “ 0 ‰ div2p2nq

for j “ 0, 1 and any even k. Using Proposition 6.11, we conclude that
�pL0q “ �pL1q “ 0. To show that �pL2q “ 0, we just need to find an
even integer k such that

div2pq2 ` kp2q ‰ div2p2nq.

This can be done as follows: since p2 and 2div2p2nq`1 are co-prime, there
exists an (obviously even) k such that 2div2p2nq`1 divides q2`kp2, which
implies that div2pq2`kp2q ° div2p2nq. Now that we know that �pLjq “

0 for j “ 0, 1, 2, we use Theorem 5.5 and Lemma 6.12 to conclude that
Cp2n, 1, pp0, q0q, pp1, q1qq “ 0.

Let us now suppose that s “ 0. Our argument will be similar to that
in the s “ 1 case but with the manifold Y p4n, 4n{p2n ´ 1q, ‚q. The
Q–longitude l of this manifold is ´2x3 ` h with divisibility 2n, and it
also happens to be its F2 longitude. We set m “ x3. As before, for any
admissible six-tuple p2n, 0, pp0, q0q, pp1, q1qq with non-zero p0, p1, and
p2, we want to show that

Cp2n, 0, pp0, q0 ` kp0q, pp1, q1 ` kp1qq “ 0

for some integer k. This constant arises in the admissible skein exact
triangle with the links

Lj “ Kp4n, 4n{p2n ´ 1q, ppj ´ 2qj ´ 2kpjq{pqj ` kpjqq, j “ 0, 1, 2.
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Since p2n, 0, pp0, q0q, pp1, q1qq is an admissible six-tuple, p2 is even and
q2, p0, and p1 are odd. Therefore,

div2ppj ´ 2qj ´ 2kpjq “ 0 ‰ div2p4nq

for j “ 0, 1 and any k. Using Proposition 6.11, we conclude that �pL0q “

�pL1q “ 0. Now, we wish to find an integer k such that

div2pp2 ´ 2q2 ´ 2kp2q ‰ div2p4nq.

If p2 “ 0 pmod 4q this is true for any k because div2pp2´2q2´2kp2q “ 1.
Let us now assume that p2 “ 4`` 2. Then p2 ´ 2q2 ´ 2kp2 “ 4p`` p1´

q2q{2´ kp2`` 1qq. Since 2`` 1 is odd, we can choose k so that 2div2p4nq

divides p`` p1 ´ q2q{2 ´ kp2`` 1qq and therefore

div2pp2 ´ 2q2 ´ 2kp2q ° div2p4nq.

In either case, Proposition 6.11 implies that �pL2q “ 0 for a properly
chosen k. Theorem 5.5 now completes the proof. q.e.d.

Lemma 6.14. Suppose that n is even and the link Kpn, a2{b2, a3{b3q

is ramifiable. Then

�pKpn, a2{b2, a3{b3qq “ 0.

Proof. If either a2 or a3 is odd, this follows from Proposition 6.11,
hence we will focus on the case of even a2 and a3. Since a3 and b3 are
co-prime, there exist integers c3 and d3 such that a3d3 ´ c3b3 “ 1. By
replacing pc3, d3q by pc3 ` ka3, d3 ` kb3q if necessary and using (36), we
may assume that the links

L “ Kpn, a2{b2, c3{d3q and L1
“ Kpn, a2{b2, pa3 ` c3q{pb3 ` d3qq

are both ramifiable. Since c3 is odd and a3 is even, we have �pLq “

�pL1
q “ 0 by Proposition 6.11. After a cyclic permutation if necessary,

the triple pKpn, a2{b2, b3{a3q, L, L1
q forms an admissible skein triangle

consisting of three ramifiable links. By Proposition 6.13,

�pKpn, a2{b2, a3{b3qq “ 0.

q.e.d.

Proposition 6.15. Theorem 6.3 (2) holds for any t.

Proof. The case that t is odd has been dealt with in Proposition 6.10
so we will assume that t “ 2m. By Lemma 6.14, all ramifiable links of
the form Kp2m,´2m, p{qq and Kp4m, 4m{p2m´1q, p{qq have vanishing
�. These links cover all possible admissible skein triangles with t “ 2m.
Therefore, we can use Theorem 5.5 to conclude that C˘

n p2m, s, pp0, q0q,
pp1, q1qq equals zero, as long as it is defined. q.e.d.

Proposition 6.13 together with Proposition 6.15 finishes the proof of
Theorem 6.3.
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7. The Seiberg–Witten and Furuta–Ohta invariants of
mapping tori

Let Y be the double branched cover of a knot K in an integral ho-
mology sphere Y 1. The manifold Y is a rational homology sphere, which
comes equipped with the covering translation ⌧ : Y Ñ Y . The mapping
torus of ⌧ is the smooth 4-manifold X “ pr0, 1s ˆ Y q { p0, xq „ p1, ⌧pxqq

with the product orientation. We will show in Section 7.1 that X has
the integral homology of S1

ˆ S3 and that it has a well defined invari-
ant �FOpXq of the type introduced by Furuta–Ohta [20]. The following
theorem is the main result of this section.

Theorem 7.1. Let �pY 1
q be the Casson invariant of Y 1, and sign pKq

the signature of the knot K. Then

�FOpXq “ 2 ¨ �pY 1
q `

1

8
sign pKq.

Proof of Theorem C. Applying Theorem 7.1 to the homology sphere
Y 1

“ S3, we obtain

�FOpXq “
1

8
sign pKq.

On the other hand, using the splitting theorem [44, Theorem A] to-
gether with Theorem A of this paper, we have

�SWpXq “ ´Lefp⌧˚q ´ hpY, sq “ ´
1

8
sign pKq

for the unique spin structure on Y . This completes the proof. q.e.d.

Theorem 7.1 was proved in [16] and [63] under the assumption that Y
is an integral homology sphere. Our proof here will rely on the extension
of those techniques to the general case at hand.

7.1. Preliminaries. We begin in this section with some topological
preliminaries, including an extension of the Furuta–Ohta invariant
�FOpXq to a wider class of manifolds than that in the original paper
[20].

The Furuta–Ohta invariant was originally defined in [20] for smooth
4-manifolds X satisfying two conditions, H˚pX;Zq “ H˚pS1

ˆ S3;Zq

and H˚pX̃;Zq “ H˚pS3;Zq, where X̃ is the universal abelian cover of
X. To fix the signs, one needs to fix an orientation on X as well as
a homology orientation, i.e. a choice of generator of H1

pX;Zq. The
mapping tori we consider in this section provide examples of manifolds
X which satisfy the first condition but not the second (which can only
be guaranteed if we use rational coe�cients). Therefore, we need an
extension of the Furuta–Ohta work to define �FOpXq in this case.

Let X be an arbitrary smooth oriented 4-manifold such that
H˚pX;Zq “ H˚pS1

ˆ S3;Zq and H˚pX̃;Qq “ H˚pS3;Qq. Let M
˚
pXq
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be the moduli space of irreducible ASD connections in a trivial SUp2q–
bundle E Ñ X. All such connections are necessarily flat hence we can
identifyM

˚
pXq with the irreducible part of the SUp2q–character variety

of ⇡1pXq.

Lemma 7.2. The moduli space M
˚
pXq is compact.

Proof. The spectral sequence argument of Furuta–Ohta [20, Section
4.1] works in our situation with little change to show that the SUp2q

character variety of ⇡1X has the right Zariski dimension at the reducible
representations, and hence the set of reducibles is a single isolated com-
ponent of the character variety, which is obviously compact. q.e.d.

Given the compactness of M˚
pXq, the definition of the Furuta–Ohta

invariant proceeds exactly as in [20] and [63] giving a well-defined in-
variant

(39) �FOpXq “
1

4
#M

˚
pXq P Q,

where #M
˚
pXq stands for the count of points in the (possibly per-

turbed) moduli space M
˚
pXq with the signs determined by a choice of

orientation and homology orientation on X.

Remark 7.3. The original definition of �FO in [20] had a denomi-
nator of 1{2, which was replaced by the 1{4 in equation (39) in [63] to
match the conjectured mod 2 equality with the Rohlin invariant [20,
Conjecture 4.5]. It is not obvious from the definition that the origi-
nal �FO should even be an integer, although this turns out to be true
[60, Section 5]. On the other hand, Theorem 7.1 makes it clear that
the generalized �FO invariant defined herein is not an integer, since the
signature of a knot can be an arbitrary even integer. We conjecture
that with the normalization used in this paper, �FOpXq reduces mod
2 to the Rohlin invariant of X, defined as an element of Q{2Z. This
conjecture was confirmed in [63] for the mapping tori of finite order
di↵eomorphisms of integral homology spheres, and now the formula of
Theorem 7.1 reduced mod 2 implies that the conjecture is also true for
all of the mapping tori X in Theorem 7.1.

Remark 7.4. A closer examination of the argument in [20, Section
4.1] shows that the following hypotheses would allow for a well-defined
�FO invariant: X has the integral homology of S1

ˆ S3 and, for every
non-trivial Up1q representation ↵, the cohomology H1

pX;C↵q vanishes.
Examples of such manifolds X may be obtained by surgery on a knot in
S4 whose Alexander polynomial has no roots on the unit circle. For in-
stance, the spin of the figure-eight knot in the 3-sphere has this property,
as do the Cappell–Shaneson knots [10]. The latter knots are fibered with
fiber T 3, and hence it is not di�cult to count the irreducible SUp2q rep-
resentations of ⇡1pXq. For example, one of the Cappell–Shaneson knots
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gives rise to a 3–torus fibration X over the circle with the monodromy
¨

˝
0 1 0
0 1 1
1 0 0

˛

‚

and hence has fundamental group with presentation

⇡1pXq “ xt, x, y, z | rx, ys “ 1, ry, zs “ 1, rx, zs “ 1,

txt´1
“ y, tyt´1

“ yz, tzt´1
“ xy.

A direct calculation shows that, up to conjugation, ⇡1pXq admits a
unique irreducible SUp2q representation given by

t “ j, x “ e2⇡i{3, y “ z “ e´2⇡i{3,

and that this representation gives a non-degenerate point in the instan-
ton moduli space on X. Therefore, the generalized �FO invariant of
X equals ˘ 1{4. On the other hand, the spin structure on the torus
fiber induced from its embedding in X is the group-invariant one [11].
Since the Rohlin invariant of this spin structure equals 1, the generalized
�FOpXq does not reduce mod 2 to the Rohlin invariant of X.

For the rest of Section 7, we will assume that X is the mapping torus
of ⌧ : Y Ñ Y , an involution which exhibits Y as the double branched
cover of an integral homology sphere Y 1 with branch set a knot K.

Lemma 7.5. The manifold X has the integral homology of S1
ˆ S3.

Proof. Let �Kptq be the Alexander polynomial of the knot K nor-
malized so that �Kp1q “ 1 and �Kpt´1

q “ �Kptq. Then H1pY q is a
finite group of order |�Kp´1q| on which ⌧˚ acts as minus identity, see
Lemma 5.7 or [31, Theorem 5.5.1]. Since |�Kp´1q| is odd, the fixed
point set of ⌧˚ : H1pY q Ñ H1pY q must be zero. Now, the natural pro-
jection X Ñ S1 gives rise to a locally trivial bundle with fiber Y . The
E2 page of its Leray–Serre spectral sequence is

E2

pq “ HppS1,HqpY qq,

where HqpY q is the local coe�cient system associated with the fiber
bundle. The groups E2

pq vanish for all p • 2 hence the spectral sequence
collapses at its E2 page. This implies that

H1pXq “ H1pS1,H0pY qq ‘ H0pS1,H1pY qq “ Z ‘ H0pS1,H1pY qq.

The generator of ⇡1pS1
q acts on H1pY q as ⌧˚ : H1pY q Ñ H1pY q, there-

fore, H0pS1,H1pY qq “ Fixp⌧˚q “ 0 and hence H1pXq “ Z. Similarly,

H2pXq “ H1pS1,H1pY qq ‘ H0pS1,H2pY qq “ 0

because Fixp⌧˚q “ 0 and H2pY q “ H1
pY q “ 0. This completes the

proof. q.e.d.
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Since X̃ “ R ˆ Y , where Y is a rational homology sphere, both
conditions H˚pX;Zq “ H˚pS1

ˆ S3;Zq and H˚pX̃;Zq “ H˚pS3;Zq are
satisfied, and the invariant �FOpXq is well defined by the formula (39).
To prove that �FOpXq is given by the formula of Theorem 7.1, we need
to analyze the moduli spaces M˚

pXq that go into its definition.

7.2. Equivariant theory. We will first describe M
˚
pXq in terms of

RpY q, the SUp2q character variety of ⇡1pY q. To this end, consider the
splitting

RpY q “ t✓u \ RabpY q \ RirrpY q,

whose three components consist of the trivial representation and the
conjugacy classes of abelian (that is, non-trivial reducible) and irre-
ducible representations, respectively. Note that ✓ is the only central
representation ⇡1pY q Ñ SUp2q because Y is a Z{2 homology sphere;
see the proof of Lemma 7.5. This decomposition is preserved by the
map ⌧˚ : RpY q Ñ RpY q.

Lemma 7.6. The involution ⌧˚ acts as the identity on RabpY q.

Proof. Up to conjugation, any abelian representation ⇡1pY q Ñ SUp2q

can be factored through a representation ↵ : H1pY q Ñ Up1q, where
Up1q stands for the group of unit complex numbers in SUp2q. Since
the involution ⌧˚ acts as minus identity on H1pY q, we have ⌧˚↵ “ ↵´1,
which is obviously a conjugate of ↵. Moreover, any unit quaternion u
which conjugates ↵´1 to ↵ must belong to j ¨ Up1q because ↵ is not a
central representation. q.e.d.

Let R
⌧
pY q be the fixed point set of the involution ⌧˚ acting on

RpY qzt✓u “ RabpY q \ RirrpY q. It follows from the above lemma that

R
⌧
pY q “ RabpY q \ R

⌧
irrpY q.

Proposition 7.7. Let i : Y Ñ X be the inclusion map given by the
formula ipxq “ r0, xs. Then the induced map

(40) i˚ : M˚
pXq Ñ R

⌧
pY q

is well defined, and is a one-to-one correspondence over RabpY q and a
two-to-one correspondence over R

⌧
irr

pY q.

Proof. The natural projection X Ñ S1 is a locally trivial bundle
whose homotopy exact sequence

0 ››››Ñ ⇡1pY q ››››Ñ ⇡1pXq ››››Ñ Z ››››Ñ 0

splits, making ⇡1pXq into a semi-direct product of ⇡1pY q and Z. Let
t be a generator of Z then every representation A : ⇡1pXq Ñ SUp2q

determines and is uniquely determined by the pair p↵, uq where u “

Aptq and ↵ “ i˚A : ⇡1pY q Ñ SUp2q is a representation such that
⌧˚↵ “ u↵u´1. In particular, the conjugacy class of ↵ is fixed by ⌧˚.
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If ↵ “ ✓ then A must be reducible, hence ↵ is not in the image of
i˚. If ↵ is non-trivial abelian, we can conjugate it to a representation
whose image is in the group of unit complex numbers in SUp2q. Then
↵ is of the form ↵ “ i˚A with u “ Aptq in the circle j ¨ Up1q, as
in the proof of Lemma 7.6. In particular, A is irreducible and u2 “

´1. Since any two quaternions in j ¨ Up1q are conjugate to each other
by a unit complex number, the map i˚ is a one-to-one correspondence
over RabpY q. Finally, let ↵ be an irreducible representation with the
character in R

⌧
pY q. Then there is a unit quaternion u such that ⌧˚↵ “

u↵u´1, and therefore ↵ is in the image of i˚. Moreover, there are exactly
two di↵erent choices of u such that ⌧˚↵ “ u↵u´1 because if u1↵u

´1

1
“

u2↵u
´1

2
then u1 “ ˘u2 since ↵ is irreducible. The irreducibility of ↵

also implies that u2 “ ˘1. In this case, the map i˚ is a two-to-one
correspondence. q.e.d.

Remark 7.8. It follows from the above proof that the characters in
M

˚
pXq that are mapped by i˚ to RabpY q are binary dihedral, while

those mapped to R
⌧
irr

pY q are not.

The Zariski tangent space to R
⌧
pY q at a point r↵s P R

⌧
pY q is the

fixed point set of the map ⌧˚ : Tr↵sRpY q Ñ Tr↵sRpY q. Using an iden-
tification Tr↵sRpY q “ H1

pY, ad↵q and the fact that ⌧˚↵ “ u↵u´1, this
set can be described in cohomological terms as the fixed point set of the
map

Adu ˝ ⌧˚ : H1
pY, ad↵q Ñ H1

pY, ad↵q.

We will callR⌧
pY q non-degenerate if the equivariant cohomology groups

H1

⌧ pY, ad↵q “ Fix pAdu ˝ ⌧˚ : H1
pY, ad↵q Ñ H1

pY, ad↵qq

vanish for all r↵s P R
⌧
pY q. The moduli space M

˚
pXq is called non-

degenerate if cokerpd˚
A ‘ d`

Aq “ 0 for all rAs P M
˚
pXq. Since indpd˚

‘

d`
Aq “ dimM

˚
pXq “ 0, this is equivalent to kerpd˚

A ‘ d`
Aq “ 0 and,

since A is flat and irreducible, to simply H1
pX; adAq “ 0.

Proposition 7.9. The moduli space M˚
pXq is non-degenerate if and

only if R⌧
pY q is non-degenerate.

Proof. The group H1
pX, adAq can be computed with the help of the

Leray–Serre spectral sequence of the fibration X Ñ S1 with fiber Y .
The E2–page of this spectral sequence is

Epq
2

“ Hp
pS1,Hq

pY, ad↵qq,

where ↵ “ i˚A and H
q
pY, ad↵q is the local coe�cient system associated

with the fibration. The groups Epq
2

vanish for all p • 2, so the spectral
collapses at the E2–page, and

(41) H1
pX, adAq “ H1

pS1,H0
pY, ad↵qq ‘ H0

pS1,H1
pY, ad↵qq.
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The generator of ⇡1pS1
q acts on the cohomology groups H˚

pY, ad↵q as

Adu ˝ ⌧˚ : H˚
pY, ad↵q Ñ H˚

pY, ad↵q,

where u is such that ⌧˚↵ “ u↵u´1. If ↵ is irreducible, H0
pY, ad↵q “ 0

and the first summand in (41) vanishes. If ↵ is non-trivial abelian, we
may assume without loss of generality that it takes values in the group
Up1q of unit complex numbers. Then ⌧˚↵ “ u↵u´1 for some u P j ¨Up1q

and H0
pY, ad↵q “ i ¨ R as a subspace of sup2q, with ⌧˚

“ id. One can
easily check that Adu acts as minus identity on i ¨R hence the first sum-
mand in (41) again vanishes. The second summand in (41) is the fixed
point set of ⌧˚ acting on H1

pY, ad↵q, which is the equivariant cohomol-
ogy H1

⌧ pY, ad↵q. Thus we conclude that H1
pX, adAq “ H1

⌧ pY, ad↵q,
which completes the proof. q.e.d.

Let us assume that R⌧
pY q is non-degenerate. For any r↵s P R

⌧
pY q,

its orientation will be given by

p´1q
sf

⌧ p✓,↵q

where sf⌧ p✓,↵q is the mod 2 equivariant spectral flow defined in [63,
Section 3.4] for irreducible ↵. That definition extends word for word
to abelian ↵ after one resolves the technical issue of the existence of a
constant lift, which we will do next.

Let P be an SUp2q bundle over Y with a fixed trivialization and ↵ an
abelian flat connection in P ; we are abusing notations by using the same
symbol for the connection and its holonomy. It follows from Lemma 7.6
that ⌧ admits a lift ⌧̃ : P Ñ P such that ⌧̃˚↵ “ ↵. Since ↵ is abelian,
this lift is defined uniquely up to the stabilizer of ↵, which is a copy of
Up1q in SUp2q. The lift ⌧̃ can be written in the base-fiber coordinates
as ⌧̃px, yq “ p⌧pxq, ⇢pxq ¨ yq for some function ⇢ : Y Ñ SUp2q. We call it
constant if there exists u P SUp2q such that ⇢pxq “ u for all x P SUp2q.

Lemma 7.10. By changing ↵ within its gauge equivalence class, one
may assume that ⌧̃ is a constant lift with u2 “ ´1.

Proof. The equation ⌧̃˚↵ “ ↵ implies that p⌧̃2q
˚↵ “ ↵ hence the

gauge transformation ⌧̃2 belongs to the stabilizer of the connection ↵.
If x P Fixp⌧q then ⌧̃2px, yq “ px, ⇢pxq

2
¨ yq hence ⇢pxq

2 is a unit com-
plex number independent of x. This implies that ⇢pxq itself is a unit
complex number unless ⇢pxq

2
“ ´1. It is this last case that must be

realized because, at the level of holonomy representations, ⌧˚↵ “ ↵´1

is conjugate to ↵ by an element u P SUp2q with u2 “ ´1; see the proof
of Lemma 7.6. Since ⇢pxq

2
“ ´1 describes a single conjugacy class

tr ⇢pxq “ 0 in SUp2q, we may assume that ⇢pxq “ u for all x P Fixp⌧q.
To finish the proof, we will follow the argument of [63, Section 2.2].

Let u : P Ñ P be the constant lift upx, yq “ p⌧pxq, u¨yq and consider the
SOp3q orbifold bundles P {⌧̃ and P {u over the integral homology sphere
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Y 1. All such bundles are classified by the holonomy around the singular
set in Y 1. Since this holonomy equals adpuq in both cases, the bundles
P {⌧̃ and P {u must be isomorphic, with any isomorphism pulling back
to a gauge transformation g : P Ñ P that relates the lifts ⌧̃ and u.
q.e.d.

Proposition 7.11. Assuming that the moduli space R
⌧
pY q is non-

degenerate, the map (40) is orientation preserving.

Proof. The proof from [63, Section 3] extends to the current situation
with no change. q.e.d.

7.3. Orbifold theory. Under the continued non-degeneracy assump-
tion, we will now describe R

⌧
pY q in terms of orbifold representations.

Let us consider the orbifold fundamental group ⇡V
1

pY 1,Kq “ ⇡1pY 1
´

NpKqq{xµ2
y, where µ is a meridian of K. This group can be included

into the split orbifold exact sequence

1 ⇡1Y ⇡V
1

pY 1,Kq Z{2 1.
⇡˚ j

Denote by R
V

pY 1,K;SOp3qq the character variety of irreducible SOp3q

representations of the group ⇡V
1

pY 1,Kq, and also introduce the character
variety R

⌧
pY ;SOp3qq of irreducible representations ⇡1Y Ñ SOp3q.

Proposition 7.12. The pull back of representations via the map ⇡˚
in the orbifold exact sequence gives rise to a one-to-one correspondence

⇡˚ : RV
pY 1,K;SOp3qq ›Ñ R

⌧
pY ;SOp3qq.

Proof. One can easily see that a representation ↵1 : ⇡V
1

pY 1,Kq Ñ

SOp3q pulls back to a trivial representation ✓ : ⇡1Y Ñ SOp3q if and
only if ↵1 is reducible. The same argument as in [16, Proposition 3.3]
shows that all pull-back representations belong to R

⌧
pY, SOp3qq. The

inverse map for ⇡˚ is constructed as follows: given r↵s P R
⌧
pY, SOp3qq

choose v P SOp3q such that ⌧˚↵ “ v↵v´1, and define a representation
↵1 of ⇡V

1
pY 1,Kq “ ⇡1Y ¸ Z{2 by the formula

(42) ↵1
pg ¨ µk

q “ ↵pgq ¨ vk.

If ↵ is irreducible, the element v is unique hence formula (42) gives an
inverse map. If ↵ is non-trivial abelian, lift it to a Up1q representation
using the fact that Y is a Z{2 homology sphere. The proof of Lemma 7.6
then tells us that v “ Adu for some u P j ¨ Up1q. Since any two
elements of j ¨ Up1q are conjugate to each other by a unit complex
number, formula (42) again gives an inverse map. q.e.d.

The representations ⇡V
1

pY 1,Kq Ñ SOp3q need not lift to SUp2q repre-
sentations. However, they lift to projective representations ⇡V

1
pY 1,Kq Ñ
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SUp2q sending µ2 to ˘1. The character variety of such projective rep-
resentations will be denoted by R

V
pY 1,Kq, and it will be oriented using

the orbifold spectral flow.

Proposition 7.13. The correspondence of Proposition 7.12 gives rise
to an orientation preserving correspondence RV

pY 1,Kq Ñ R
⌧
pY q which

is one-to-one over RabpY q and two-to-one over R
⌧
irr

pY q.

Proof. Let us consider the adjoint representation Ad : SUp2q Ñ

SOp3q and the induced maps

R
⌧
pY q Ñ R

⌧
pY ;SOp3qq and R

V
pY 1,Kq Ñ R

V
pY 1,K;SOp3qq.

The first map is a one-to-one correspondence because Y is a Z{2 ho-
mology sphere. The second map is the quotient map by the action of
Z{2 sending the image of the meridian µ to its negative. The fixed
points of this action are precisely the binary dihedral projective rep-
resentations ↵1 : ⇡V

1
pY 1,Kq Ñ SUp2q. Now, the proof will be fin-

ished as soon as we show that an irreducible projective representation
↵1 : ⇡V

1
pY 1,Kq Ñ SUp2q is binary dihedral if and only if its pull back

representation ⇡˚↵1 : ⇡1pY q Ñ SUp2q is abelian.
If ⇡˚↵1 is abelian, its image belongs to Up1q Ä SUp2q and the image

of ↵1 to its Z{2 extension. This extension is the binary dihedral group
Up1q Y j ¨Up1q. Conversely, it follows from the orbifold exact sequence
that ⇡1Y is the commutator subgroup of ⇡V

1
pY 1,Kq therefore, if ↵1 is

binary dihedral, the image of ⇡˚↵1 must belong to the commutator
subgroup of Up1q Y j ¨ Up1q, which is of course the group Up1q.

Since the orbifold spectral flow matches the equivariant spectral flow
used to orient R⌧

pY q, the above correspondence is orientation preserv-
ing. q.e.d.

7.4. Perturbations. In this section, we will remove the assumption
that R⌧

pY q is non-degenerate which we used until now. To accomplish
that, we will switch from the language of representations to the lan-
guage of connections. Let P a trivialized SUp2q bundle over Y . Any
endomorphism ⌧̃ : P Ñ P which lifts the involution ⌧ induces an action
on the space of connections ApY q by pull back. Since any two such lifts
are related by a gauge transformation, this action defines a well defined
action on the configuration space BpY q “ ApY q{GpY q. The fixed point
set of this action will be denoted by B

⌧
pY q.

The irreducible part of B⌧
pY q was studied in [63] hence we will only

deal with reducible connections. In fact, we will further restrict our-
selves to constant lifts u with u2 “ ´1 because any flat abelian connec-
tion ↵ admits such a lift; see Lemma 7.10.

Let Au
pY q Ä ApY q consist of all non-trivial connections A such that

u˚A “ A, and G
u
pY q Ä GpY q of all gauge transformations g such that

gu “ ug. The quotient space A
u
pY q{G

u
pY q will be denoted by B

u
pY q.
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The following lemma is a key to making the arguments of [63] work in
the case of abelian connections.

Lemma 7.14. The group G
u
pY q acts on A

u
pY q with the stabilizer

t˘1u. Moreover, the natural map B
u
pY q Ñ B

⌧
pY q is a two-to-one

correspondence to its image on the irreducible part of B
u
pY q, and a

one-to-one correspondence on the reducible part.

Proof. For the sake of simplicity, we will assume that reducible con-
nections have their holonomy in the subgroup Up1q of unit complex
numbers in SUp2q, and that u P j ¨ Up1q. Let us suppose that g˚A “ A
for a connection A P A

u
pY q and a gauge transformation g P G

u
pY q.

If A is irreducible, we automatically have g “ ˘1. If A is non-trivial
abelian, then g is a complex number, and the condition ug “ gu implies
that g “ ˘1.

To prove the second statement, consider a connection A such that
u˚A “ A and consider its gauge equivalence class in B

⌧
pY q. It consists

of all connections g˚A such that u˚g˚A “ g˚A. Since A “ u˚A, we
immediately conclude that u˚g˚A “ g˚u˚A so that ug and gu di↵er by
an element in the stabilizer of A. If A is irreducible, its stabilizer consists
of ˘1 hence ug “ ˘gu. The group of gauge transformations satisfying
this condition contains G

u
pY q as a subgroup of index two, which leads

to the desired two-to-one correspondence. If A is non-trivial abelian,
its stabilizer consists of unit complex numbers. Therefore, we can write
ug “ c2gu with c P Up1q or, equivalently, ucg “ cgu. This provides us
with a gauge transformation cg P G

u
pY q such that pcgq

˚A “ A, yielding
the one-to-one correspondence on the reducible part. q.e.d.

With this lemma in place, the proof of Proposition 7.7 can be re-
stated in gauge-theoretic terms as in [63, Proposition 3.1]. The treat-
ment of perturbations in our case is then essentially identical to that
in [16] and [63], one important observation being that the orbifold rep-
resentations ↵1 that pull back to abelian representations of ⇡1pY q are
in fact irreducible. This fact is used in the proof of [16, Lemma 3.8],
which supplies us with su�ciently many admissible perturbations.

7.5. Proof of Theorem 7.1. The outcome of Section 7.2 and Sec-
tion 7.3 is that, perhaps after perturbing as in Section 7.4, we have two
orientation preserving correspondences,

M
˚
pXq ›Ñ R

⌧
pY q –› R

V
pY 1,Kq,

both of which are one-to-one over RabpY q and two-to-one over R⌧
irr

pY q

(we omit perturbations in our notations). These correspondences give
rise to an orientation preserving one-to-one correspondence between
M

˚
pXq and R

V
pY 1,Kq. The proof of Theorem A will be complete

after we express the signed count of points in R
V

pY 1,Kq in terms of the
Casson invariant of Y 1 and the knot signature of K.
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The character varietyR
V

pY 1,Kq of projective representations ↵1 splits
into two components corresponding to whether the square of ↵1

pµq

equals `1 or ´1. Let E be the exterior of the knot K then this splitting
corresponds to the splitting

R
V

pY 1,Kq “ S0pE,SUp2qq Y S1{2pE,SUp2qq Y S1pE,SUp2qq

of [16, Proposition 3.4], where SapE,SUp2qq comprises the conjugacy
classes of representations � : ⇡1X ÑSUp2q such that tr �pµq“2 cosp2⇡aq.
According to Herald [25], the signed count of points in

S0pE,SUp2qq Y S1pE,SUp2qq

equals 4¨�pY 1
q, while the signed count of points in S1{2pE,SUp2qq equals

4 ¨�pY 1
q `1{2 sign pKq. Adding up the two counts and dividing by four

we obtain the desired formula

�FOpXq “ 2 ¨ �pY 1
q `

1

8
sign pKq.

8. Strongly non-extendable involutions and Akbulut corks

A cork is a pair pW, ⌧q which consists of a smooth compact con-
tractible 4–manifold W and an involution ⌧ on its boundary that does
not extend to a self-di↵eomorphism of W . Sometimes the definition of
a cork includes the hypothesis that W have a Stein structure (see for
instance [2, Definition 10.3]) but we do not require this.

8.1. Strongly non-extendable involutions. Figure 6 (a) shows the
cork constructed by Akbulut [1], and Figure 6 (b) shows the involution
⌧ on its boundary. This cork will be called W1, and its boundary Y1.

Figure 6. Akbulut cork W1 and the involution on Y1 “ BW1.
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Theorem 8.1. The involution ⌧ : Y1 Ñ Y1 does not extend to a
di↵eomorphism of any smooth Z{2 homology 4-ball bounded by Y1.

The proof of Theorem 8.1 makes use of a gluing theorem for Seiberg–
Witten invariants, which we briefly summarize. Let pX, sq be a smooth
closed oriented 4-manifold with a spinc structure s and b`

2
pXq ° 1.

Suppose that X is decomposed as X “ X1 Y X2 with b`
2

pX2q ° 1. Let
Y be the oriented boundary of X1 and consider two cobordisms, M1

from S3 to Y and M2 from Y to S3, obtained by removing open 4-balls
from X1 and X2, respectively. Let si be the induced spinc structures on
Mi, i “ 1, 2, and s0 the induced spinc structure on Y . Then we have
two maps in monopole homology,

zHM˚pM1, s1q : zHM˚pS3
q Ñ zHM˚pY, s0q and

››Ñ
HM

˚
pM2, s2q : ~HM

˚
pS3

q Ñ zHM
˚
pY, s0q.

Denote by 1̌ and 1̂ the canonical generators of ~HM
˚
pS3

q and zHM˚pS3
q.

The gluing theorem expresses the Seiberg–Witten invariant of pX, sq as
follows.

Proposition 8.2. Suppose that Y is a rational homology sphere.
Then

(43) SW pX, sq “ x zHM˚pM1, s1qp1̂q,
››Ñ
HM

˚
pM2, s2qp1̌q y.

Formula (43) is a slight strengthening of the formula that appears just
before [37, Definition 3.6.3], in that (43) holds for each spinc structure
separately, rather than for the sum over the spinc structures on X, as
would be the case for b1pY q ° 0. Our strengthened formula follows
from the remark on [37, page 569] following the proof of Proposition
27.4.1. (Separating the spinc structures can also be achieved using local
coe�cients as in [37, Section 3.7–3.8], but we do not need this in our
situation.)

The following simple algebraic lemma is presumably well-known.

Lemma 8.3. Let A be a 2 ˆ 2 matrix with A2
“ I and trpAq “ ´2.

Then A “ ´I, where I stands for the identity matrix.

Proof. By the Cayley–Hamilton theorem, we have that A2
´ trpAq ¨

A ` detpAq ¨ I “ 0, where detpAq “ ˘1. If detpAq “ ´1, we obtain
trpAq¨A “ 0, which contradicts the invertibility of A. Hence detpAq “ 1,
which implies that A “ ´I. q.e.d.

Proof of Theorem 8.1. We will omit the spinc structure s0 from our no-
tations. We claim first that the action of ⌧˚ on HM red

pY1q is minus the
identity. To prove this, we will combine our Theorem A with a Hee-
gaard Floer homology calculation by Akbulut and Durusoy [3]. They
work with a picture that is the mirror image of Figure 6 (a) and show
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that HF`
p´Y1q – Tp0q ‘ Zp0q ‘ Zp0q, where the first summand is a

tower ZrU,U´1
s{U ¨ZrU s with the lowest degree in grading 0. It follows

that HF red
p´Y1q – Zp0q ‘ Zp0q and HF red

pY1q – Z ‘ Z, with both
summands of odd grading (with respect to the absolute Z{2 grading).
The parity can be checked using the formula

�pY q “ �pHF red
pY qq ´ 1{2 ¨ dpY q

of [54, Theorem 1.3], where �pY q is the Casson invariant of Y . Since
�pY1q “ ´2, see for instance [65], and dpY1q “ 0, both summands in
HF red

pY1q must have odd grading. We translate this computation into
the monopole homology, keeping in mind the isomorphisms

(44) zHMapY q – p~HM´1´ap´Y qq
˚

– pHF`
´1´ap´Y qq

˚.

The grading shift for the first ‘duality’ isomorphism is [37, Proposition
28.3.4], while the second equality of the absolute Q-gradings is deduced
from [59, 27, 21].

Now, the involution ⌧ makes Y1 into a double branched cover of the 3-
sphere with branch set a knot K1 Ä S3. As described in [60] and drawn
in Figure 7, the knot K1 is obtained from the left-handed p5, 6q-torus
knot on six strings by adding one full left-handed twist on two adjacent
strings. In particular, the signature of K1 is 16. Using Theorem A, we
compute

trp⌧˚q “ ´Lefp⌧˚q “ ´
1

8
signpK1q “ ´2

and, using Lemma 8.3, conclude that

(45) ⌧˚ “ ´I : HF redpY1q Ñ HF redpY1q.

In order to compute the action of ⌧˚ on zHMpY1q, consider the short
exact sequence in monopole homology

0 ››››Ñ HM red
pY1q ››››Ñ zHM´1pY1q

f
››››Ñ HM´2pY1q ››››Ñ 0.

SinceHM red
pY1q – Z ‘ Z andHM´2pY1q – Z, the group zHM´1pY1q

must be free of rank 3. We define a splitting HM´2pY1q Ñ zHM´1pY1q

of this short exact sequence by sending the canonical generator 1 P

HM´2pY1q to the element eW “ zHM˚pM1, s1qp1̂q P zHM´1pY1q as
above, whereM1 is obtained fromW1 by removing an open 4-ball. Using
the fact that HM˚pM1, s1q maps the canonical generator of HM´2pS3

q

to that of HM´2pY1q, we see that fpeW q “ 1.
For any choice of free generators te0, e1u of HM red

pY1q we have a

set of free generators te0, e1, eW u of zHM´1pY1q. The action of ⌧˚ on
zHM´1pY1q is then given by a matrix of the form

(46)

¨

˝
´1 0 p
0 ´1 q
0 0 1

˛

‚
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Figure 7.

with some unknown integers p and q. In what follows, we will extract
some information about p and q from the fact that a cork twist on W1

changes the Seiberg–Witten invariant of a certain closed 4-manifold.
There is an embedding [22, Figure 9.5] (see also [1]) of W1 into the

blown up K3–surface, X “ K3#CP2, such that the cork twist results
in the manifold

X⌧
“ W1 Y⌧ pX ´ intpW1qq

with the trivial Seiberg–Witten invariant. On the other hand, the
blowup formula for Seiberg–Witten invariants [19] implies that the
Seiberg–Witten invariant of X equals 1 for the spinc structure s whose
first Chern class is the generator of H2

pCP2
q. Since Y1 is an integral

homology sphere, there is an obvious correspondence, s Ø s⌧ , between
spinc structures on X and X⌧ . Using the gluing formula (43) with
X1 “ W1 and X2 “ X ´ intpW1q, we obtain

SWpX, sq “ xzHM˚pM1, s1qp1̂q,
››Ñ
HM

˚
pM2, s2qp1̌qy “ 1 and

SWpX⌧ , s⌧ q “ x⌧˚pzHM˚pM1, s1qp1̂qq,
››Ñ
HM

˚
pM2, s2qp1̌qy “ 0.

If we write
››Ñ
HM

˚
pM2, s2qp1̌q “ ae˚

0
` be˚

1
` ce˚

W with respect to the dual

basis of zHM
´1

pY1q, the above formulas reduce to

SWpX, sq “ c “ 1 and SWpX⌧ , s⌧ q “ ap ` bq ` c “ 0,
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implying that ap` bq`1 “ 0 and, in particular, that the integers p and
q are co-prime. Therefore, by a change of basis te0, e1u, we can turn the
matrix (46) of the involution ⌧˚ into

A “

¨

˝
´1 0 0
0 ´1 1
0 0 1

˛

‚.

Now, suppose that Y1 bounds another smooth Z{2-homology 4-ball
W 1. W 1 has a unique spin structure sW 1 , which must be preserved
by any di↵eomorphism. By studying the spin manifold pW 1, sW 1q, one

defines the element eW 1 P zHM´1pY1q by the same procedure as eW . As
before, fpeW 1q “ 1. Suppose that ⌧ extends to a di↵eomorphism on W 1.
Then, by naturality of monopole Floer homology, one must have

⌧˚
peW 1q “ eW 1 .

But since the kernel of A´I is generated by the vector p0, 1, 2q, we have
eW 1 “ p0, c, 2cq for some integer c. In particular, fpeW 1q “ 2c is an even
integer, which contradicts fpeW 1q “ 1. q.e.d.

Remark 8.4. We can prove the same non-extension result for other
involutions on homology spheres, even those that are not the boundaries
of contractible manifolds. For example, an extension [53] of Taubes’ re-
sult [67] (plus the fact [18] that ⌃p2, 3, 7q bounds a spin manifold with
intersection form E8‘H) implies that the homology sphere ⌃p2, 3, 7q#´

⌃p2, 3, 7q does not bound a smooth contractible manifold. On the other
hand, we can construct an involution on this manifold as follows. View
⌃p2, 3, 7q as the link of a singularity,

⌃p2, 3, 7q “ tpx, y, zq P C3
| x2 ` y3 ` z7 “ 0, |x|

2
` |y|

2
` |z|

2
“ 1u,

and consider the involutions ⌧0 and ⌧1 acting on ⌃p2, 3, 7q by the formula

(47) ⌧0px, y, zq “ p´x, y, zq and ⌧1px, y, zq “ px̄, ȳ, z̄q.

Let ⌧˚
i denote the map on HM red

p⌃p2, 3, 7q;Qq “ Q induced by ⌧i,
i “ 0, 1. The involution ⌧0 is isotopic to the identity hence ⌧˚

0
is the

identity; the action of ⌧˚
1
is computed in Section 10 below as negative

one. Suppose ⌧ “ ⌧0#⌧1 extends as a di↵eomorphism on some Z{2
homology ball with boundary ⌃p2, 3, 7q#´⌃p2, 3, 7q. Adding a 3-handle
results in a Z{2 homology cobordism W from ⌃p2, 3, 7q to itself that
admits a self-di↵eomorphism restricting to ⌧0 and ⌧1 on its two boundary
components. By functoriality of monopole Floer homology, W induces
trivial map on HM red

p⌃p2, 3, 7qq. This contradicts the splitting formula
for �SW [44, Theorem A] and the fact that it reduces mod 2 to the
Rohlin invariant [50, Theorem A].
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8.2. Constructing corks. Starting with the cork W1, one can con-
struct a number of other corks by the method we describe in this sub-
section. Recall that the involution ⌧ : BW1 Ñ BW1 makes BW1 into a
double branched cover ⌃pK1q of the 3–sphere with branch set the knot
K1 Ä S3 shown in Figure 7. Let K be an arbitrary knot in S3 smoothly
concordant to K1. The double branched cover of I ˆS3 with branch set
the concordance is a Z{2 homology cobordism UK from BW1 “ ⌃pK1q

to ⌃pKq. The manifold

WK “ W1 YBW1 UK

is a smooth Z{2 homology 4-ball with the natural involution ⌧K : BWK Ñ

BWK on its boundary given by the covering translation.

Corollary 8.5. The involution ⌧K can be extended to WK as a home-
omorphism but not as a di↵eomorphism. Moreover, if ⇡1pUKq is nor-
mally generated by the image of ⇡1pBW1q then the manifold WK is con-
tractible and therefore pWK , ⌧Kq is a cork.

Proof. The involution ⌧K extends as a homeomorphism because ⌧
does. To prove that ⌧K does not extend as a di↵eomorphism, consider
the Z{2 homology ball

W “ WK Y⌃pKq p´UKq

with boundary Y1, where ´UK denotes UK with reversed orientation.
Suppose ⌧K extends as a di↵eomorphism on WK . By gluing this dif-
feomorphism with the covering translation on ´UK , we obtain a di↵eo-
morphism on W that extends the involution ⌧ on its boundary. This
contradicts Theorem 8.1. q.e.d.

Examples of knots K which are concordant to K1 and, at the same
time, satisfy the condition of Corollary 8.5 can be constructed using
the technique of infection [12]. Choose a knot ⌘ in the complement
of K1 that is unknotted in S3 and has even linking number with K1.
Let J be any slice knot in S3. Denote by ⌫p⌘q and ⌫pJq open tubular
neighborhoods of the two knots. Then

pS3
´ ⌫p⌘qq Y pS3

´ ⌫pJqq

is di↵eomorphic to S3, provided we glue the meridian of J to the lon-
gitude of ⌘, and vice versa. Under this di↵eomorphism, the knot K1

becomes a new knot, KpJ, ⌘q.
One can similarly ‘infect’ the product concordance from K1 to itself

by removing I ˆ⌫p⌘q from I ˆS3 and gluing in the exterior of a concor-
dance C Ä I ˆ S3 from the unknot to J ; see Gordon [23]. This gives a
concordance CpJ, ⌘q from K1 to KpJ, ⌘q. Writing UKpJ,⌘q for the double
branched cover of I ˆS3 with branch set CpJ, ⌘q, we claim that UKpJ,⌘q
is a Z{2 homology cobordism from BW1 “ ⌃pK1q to ⌃pKpJ, ⌘qq whose
fundamental group is normally generated by ⇡1p⌃pK1qq.
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To see this, note that by the assumption on the linking number, the
preimage of the cylinder I ˆ ⌘ in I ˆ ⌃pK1q consists of two cylinders,
I ˆ ⌘1 and I ˆ ⌘2. Therefore,

UKpJ,⌘q “ppI ˆ ⌃pK1qq ´ pI ˆ ⌫p⌘1qq ´ pI ˆ ⌫p⌘2qqq

Y
`
pI ˆ S3

q ´ ⌫pCq
˘

Y
`
pI ˆ S3

q ´ ⌫pCq
˘
.

In this identification, the longitude for each copy of C is glued to the
corresponding meridian of ⌘1 or ⌘2. Since the bottom of C is an unknot,
this means that the group ⇡1pUKpJ,⌘qq, computed via van Kampen’s
theorem, is normally generated by ⇡1p⌃pK1qq and two copies of ⇡1ppI ˆ

S3
q ´ ⌫pCqq. But the meridians of the two copies of C, which normally

generate ⇡1ppIˆS3
q´⌫pCqq, are the longitudes of Iˆ⌘1 and Iˆ⌘2. Since

these are in ⇡1p⌃pK1qq, it follows that ⇡1p⌃pK1qq normally generates
⇡1pUKpJ,⌘qq.

One can also construct concordances to which Corollary 8.5 would
apply by replacing a tangle in K1 with one that is concordant to it;
see Kirby–Lickorish [34] and Bleiler [8]. As we mentioned in the in-
troduction, the corks are usually detected with the help of an e↵ective
embedding. A good example illustrating this point would be the corks
constructed in [5] using a similar trick with invertible homology cobor-
disms. However, this is not how the corks in Corollary 8.5 are detected:
there does not seem to exist an obvious e↵ective embedding that would
help detect them.

8.3. A re-gluing formula. The above calculation of the induced ac-
tion of ⌧ on monopole Floer homology allows us to determine the e↵ect
of cutting and gluing along the homology sphere Y1 via ⌧ in a more
general situation.

Theorem 8.6. Let Y1 be the manifold with involution ⌧ shown in
Figure 6 (b), and X a smooth closed oriented 4-manifold with b`

2
pXq ° 1

decomposed as X “ X1 Y X2 with b`
2

pX2q • 1 and BX2 “ Y1. Let X⌧

be the manifold obtained by cutting X open along Y1 and regluing using
⌧ . Then

SW pX, sq “ p´1q
b1pX1q`b`

2 pX1qSW pX⌧ , s⌧ q.

Proof of Theorem 8.6. We wish to apply the gluing formula of Sec-
tion 8.1 to Y “ ´Y1 (note that the orientation convention for Y1 in
the above theorem is opposite of that in Section 8.1). The key to doing
that are the following two observations:

(1) Write Mi “ Xi ´ intpB4
q then the absolute Z{2 grading of zHM

˚

pM1, s1qp1̂q is equal to b1pX1q ` b`
2

pX1q ` 1 pmod 2q.
(2) The isomorphisms (44) and the formula (45) imply that ⌧˚ acts as

identity on zHModdp´Y1q and minus identity on zHM evenp´Y1q “

HM redp´Y1q.
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Now, if b`
2

pX2q ° 1, the result follows from Proposition 8.2. If b`
2

pX2q “

1 then both manifolds X1 and X2 in the splitting X “ X1 Y X2 have
positive b`

2
and the result follows from the pairing formula [37, Equation

3.22]. q.e.d.

Corollary 8.7. In the situation of Theorem 8.6, twisting the man-
ifold X along Y1 via the involution ⌧ can only kill the Seiberg–Witten
invariant of X when the piece bounded by Y1 is negative definite.

In particular, ifX1 “ ´W1, the cork twist cannot change the Seiberg–
Witten invariant of X. This is perhaps more readily seen via the blow-
up formula for the Seiberg–Witten invariants, using the fact (which is
implicit in [4]) that the cork twist extends over W1#CP2.

9. Knot concordance and Khovanov homology thin knots

In this section, we prove the results in Section 1.2.3 from the intro-
duction. We start with the following lemma, which is presumably well
known.

Lemma 9.1. Let L be a ramifiable link in the 3-sphere that is Kho-
vanov homology thin over F2. Then ⌃pLq is a monopole L-space over
the rationals, that is,

HM red
p⌃pLq;Qq “ 0.

Proof. Let us fix an orientation on the link L. According to Bloom
[9], there is a spectral sequence whose E2 page is ÅKh pL;F2q and which

converges to ÇHMp´⌃pLq;F2q (we refer to [9, Section 8] for the definition
of this tilde-version of monopole Floer homology). In particular, this
implies that

(48) dimF2pÅKh pL;F2qq • dimF2pÇHMp´⌃pLq;F2qq.

Recall from [32] that the reduced Khovanov cohomology categorifies
the Jones polynomial JL. Together with the Khovanov homology thin
condition, this implies that

(49) dimF2pÅKh pL;F2qq “ |JLp´1q| “ |H1p⌃pLq;Zq|.

Combining (48) and (49) with the universal coe�cient theorem, we ob-
tain
(50)

|H1p⌃pLq;Zq| • dimF2pÇHMp´⌃pLq;F2qq • dimQpÇHMp´⌃pLq;Qqq.

By the definition of ÇHM , one has

dimQpÇHMp´⌃pLq, s;Qqq • 1

for any spinc structure s, with equality holding if and only if

HM red
p´⌃pLq, s;Qq “ 0.
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Therefore, (50) implies that ´⌃pLq is a monopole L–space over the
rationals. By the duality in the reduced monopole homology, ⌃pLq is a
monopole L–space over the rationals as well. q.e.d.

Proof of Corollary E. This is a direct consequence of Lemma 9.1 and
Theorem A. q.e.d.

Proof of Corollary F. In the case of a knot K, the Murasugi signature
of K equals its usual signature, and the double branch cover ⌃pKq has a
unique spin structure. Therefore, Theorem A reduces to the statement
that

LpKq “
1

8
�pKq ´ hp⌃pKqq,

where �pKq and hp⌃pKqq are additive concordance invariants. This
makes LpKq into an additive concordance invariant. This invariant is
non-trivial: for example, if K is the right handed p3, 7q-torus knot,
�pKq “ ´8 and hp⌃pKqq “ hp⌃p2, 3, 7qq “ 0, hence LpKq “ ´1. q.e.d.

Proof of Corollary G. This is immediate from Corollary F. q.e.d.

10. Monopole contact invariant

In this section we will prove Theorem H. Consider the Brieskorn ho-
mology sphere Y “ ⌃p2, 3, 7q, along with the involution ⌧1px, y, zq “

px̄, ȳ, z̄q described in Remark 8.4. We give Y the canonical orientation
as a link of singularity. By combining the calculation of Heegaard Floer
homology in [58] with the identification between Heegaard Floer and
monopole Floer homology, we obtain

~HMpY ;Zq “ HF`
pY ;Zq “ Tp0q ‘ Zp´1q

and
HM red

pY q “ ~HM p´1qpY ;Zq “ Zp´1q.

To determine the induced action of ⌧ on HM red
pY q we will use the

fact that ⌧ makes Y into a double branched cover of the 3-sphere with
branch set the p2,´3,´7q pretzel knot K, pictured as the Montesinos
knot Kp2,´3,´7q in Figure 4. Either by a direct calculation, or by
using the formula of [66, Section 7] for the knot signature in terms of
the µ̄–invariant, we obtain

�pKq “ 8 µ̄p⌃p2, 3, 7qq “ 8.

Theorem A then tells us that

Lefp⌧˚q “
1

8
�pKq ´ hpY q “ 1

and therefore ⌧˚ : HM red
pY q Ñ HM red

pY q is negative identity.
According to [69] (see also [49, Theorem 1.6]), the manifold ´Y

admits a unique (up to isotopy) tight contact structure ⇠, which is Stein
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fillable and has Gompf invariant ✓ “ 2. By applying the involution ⌧ ,
we obtain another contact structure ⌧˚

p⇠q. Since ⌧˚
p⇠q is also tight, it

must be isotopic to ⇠.
Now, suppose there is a canonical choice of the contact element

 ̃p´Y, ⇠q P ~HMpY ;Zq. This element is non-zero and it is supported
in degree ´p✓ ` 2q{4 “ ´1. Since ⌧˚ acts as negative identity on

HM red
pY q “ ~HM p´1qpY ;Zq, we have

 ̃p´Y, ⇠q ‰ ´ ̃p´Y, ⇠q “ ⌧˚p ̃p´Y, ⇠qq “  ̃p´Y, ⌧˚p⇠qq.

However, this contradicts the naturality of the contact invariant because
⌧˚p⇠q and ⇠ are isotopic.
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