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ON THE FROYSHOV INVARIANT AND MONOPOLE
LEFSCHETZ NUMBER

JIANFENG LIN, DANIEL RUBERMAN & NIKOLAI SAVELIEV

Abstract

Given an involution on a rational homology 3-sphere Y with
quotient the 3-sphere, we prove a formula for the Lefschetz num-
ber of the map induced by this involution in the reduced mono-
pole Floer homology. This formula is motivated by a variant of
Witten’s conjecture relating the Donaldson and Seiberg—Witten
invariants of 4-manifolds. A key ingredient is a skein-theoretic ar-
gument, making use of an exact triangle in monopole Floer homol-
ogy, that computes the Lefschetz number in terms of the Murasugi
signature of the branch set and the sum of Frgyshov invariants as-
sociated to spin structures on Y. We discuss various applications
of our formula in gauge theory, knot theory, contact geometry, and
4-dimensional topology.

1. Introduction

The monopole Floer homology defined by Kronheimer and Mrowka
[37] using Seiberg—Witten gauge theory is a powerful invariant of 3—
manifolds which has had many important applications in low-dimen-
sional topology. Because of its functoriality [37, Theorem 3.4.3], the
monopole Floer homology of a 3—manifold is acted upon by its mapping
class group. However, the information contained in this action is not
easy to extract due to the gauge theoretic nature of the theory. In
this paper, we make some first steps towards understanding this action
by calculating the Lefschetz numbers of certain involutions making the
3—manifold into a double branched cover over a link in the 3—sphere.
Our study is motivated by the calculation of Lefschetz numbers in the
instanton Floer homology [63] and by a variant [61, Conjecture B] of
Witten’s conjecture [72] relating the Donaldson and Seiberg—Witten
invariants. The following theorem is the main result of the paper, and
it comes with many interesting applications.

The first author was partially supported by the NSF Grant DMS-1707857, the
second author was partially supported by NSF grant DMS-1506328 and a Simons
Fellowship, and the third author was partially supported by a Collaboration Grant
from the Simons Foundation.

Received September 21, 2018.

523



524 J. LIN, D. RUBERMAN & N. SAVELIEV

Theorem A. Let Y be an oriented rational homology 3—-sphere with
an involution 7 : 'Y — Y making it into a double branched cover of
S% with branch set a non-empty link L. Denote by 7, : HM™(Y) —
HMred(Y) the induced map in the reduced monopole Floer homology,
and by Lef(7y) its Lefschetz number. Then

ILI

(1) Lef (15) = Z h(Y,s),

where |L| is the number of components of the link L and &(L) is its
Murasugi signature [52], and the last term is the sum over all the spin
structures on'Y of the Froyshov invariants h(Y,s) of the spin manifold
(Y,s). In particular, if the link L is a knot K in S3,

) Lef(r) — ésign (K) — h(Y),

where sign(K) is the classical knot signature and h(Y') is the Froyshov
invariant for the unique spin structure on Y .

We are using here the rational numbers as the coefficient ring of the
monopole Floer homology, and we will continue doing so throughout
the paper unless otherwise noted. We expect that a formula similar to
(1) will hold for any rational homology sphere Y and a diffeomorphism
7:Y — Y of order n = 2. In the special case when the quotient Y /7
is an integral homology sphere Y’ and the branch set is a knot K < Y”,
we make this expectation precise and conjecture that

(3)  Lef(rs) = n-ANY') + = Z sign™/™ (K Z h(Y,s),

where \(Y”) is the Casson invariant of Y, sign™/™(K) is the Tristram-—
Levine signature of K (see [63, Section 6]), and the last summation
extends to the spin® structures s on Y such that 7, (s) = s. The origins of
this conjecture will be discussed in Section 1.2.1. In a recent paper [45],
the authors have proved this conjecture.

Remark 1.1. We will be working throughout with the Frgyshov
invariants h(Y,s), which are defined via monopole homology. However,
it is important to note that these are now known to be equivalent to
the Heegaard Floer theory correction terms d(Y,s), for which many
more calculations are available. In particular, the work of Kutluhan,
Lee, and Taubes [39, 40, 41, 42, 43], or alternatively, the work of
Colin, Ghiggini, and Honda [13, 14, 15] and Taubes [68], identifies the
monopole homology and the Heegaard Floer homology. Furthermore,
by combining the main results of [59, 28, 21], the absolute Q-gradings
in the two theories coincide. Therefore, the relation d(Y,s) = —2h(Y,s)
between the Frgyshov invariant and the Heegaard Floer correction term
holds for any rational homology spheres. This relation plays a role in
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our proof of Theorem A (see Proposition 6.4) as well in several of the
corollaries.

We conjecture that a version of Theorem A holds for Heegaard Floer
homology. This would be established by showing that the isomorphisms
cited above between the reduced Floer theories are natural with respect
to cobordisms, so that the Lefschetz numbers computed in the two the-
ories are the same.

Remark 1.2. To the best of our knowledge, Theorem A gives the
first interpretation of the classical knot signature (and more generally,
Murasugi’s link signature) in terms of the Seiberg—Witten gauge theory.
It can be viewed as a categorification result, with the Lefschetz number
substituted for the Euler characteristic. This result should be compared
with X.-S. Lin’s theorem [46] which expresses the signature of a knot
in $3 as (roughly) a signed count of the gauge equivalence classes of
certain flat SU(2) connections over the knot exterior.

1.1. An outline of the proof. Since Y is the double branched cover
of $3 with branch set L, we will also use the notation Y = (L) and
assume that the orientation on Y is pulled back from the standard
orientation of S3. We need to show the vanishing of the link invariant

W (D) = gp (Lef (r)+ Y. h<z<L>,s>) - &)

for all links L with non-zero determinant. This is done by an inductive
argument involving a skein relation between x (L), x(Lo), and x(L1),
where Lo, L; are resolutions of L at a certain crossing. The skein
relation for (L) can be proved directly, and the skein relations for the
other two terms are a consequence of an exact triangle relating the
monopole Floer homology of ¥(L), X(Ly), and X(Lq).

While the idea is straightforward, there are several technical obstacles
one needs to overcome. First of all, to understand the skein-theoretic
behavior of the monopole Lefschetz number (as a rational number), one
needs an exact triangle with Q—coefficients; however, the original exact
triangle [38] has coefficients in Z/2. While one may be able to adapt
the proof there by putting suitable plus and minus signs before various
terms appearing in the proof, keeping the signs straight is complicated
and would require a significant amount of work. Here, we follow an al-
ternative route: we show that, with some extra input from homological
algebra, one can deduce a Q—coefficient exact triangle from the corre-
sponding Z/2 exact triangle using the universal coefficient theorem. It
is a delicate matter to define the signs involved in the maps of this new
exact triangle so that they are compatible with the induced action of
7; we need this compatibility to deduce a vanishing result for the total
Lefschetz number.
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The second difficulty comes from the fact that the version of monopole
Floer homology that appears in the exact triangle is HM (Y), and it is
always inﬁrite/ dimensional. To discuss the Lefschetz number, one needs
to modify HM (Y) to a finite dimensional vector space by ignoring all
generators of sufficiently high degree. However, we lose the exactness of
the triangle by such a truncating operation. As a consequence, the skein
relation for x(L) only holds up to a universal constant C' depending
on certain combinatorial data including the surgery coefficients. To
prove that C' always equals zero, we start from the example of two-
bridge links. Since such links are known to have vanishing x(L), we
can use them to show that in some cases, the constant C' vanishes and
the actual skein relation holds. With the help of this special skein
relation, we can produce more examples of links L with yx(L) = 0 and
prove the vanishing result for C' in a more general situation. Repeating
this procedure several times, we eventually produce enough examples to
prove that C' = 0 in all possible cases.

After establishing the skein relation, one might hope to prove x(L) =
0 by an inductive argument. However, such an argument would need
to avoid links with zero determinant because double branched covers
of such links, not being rational homology 3-spheres, may have more
complicated monopole Floer homology. Unfortunately, it is not clear
how to reduce a general non-zero determinant link to the unknot solely
by resolving crossings without involving any zero determinant links. To
overcome this obstacle, we make use of Mullins’s skein theory for non-
zero determinant links [51]. Following his idea, we extend the inductive
statement by adding another skein relation relating x (L) with (L),
where L is obtained from L by a crossing change. The relation is then
established by comparing the two exact triangles arising from the triples
(L, Lo,L1) and (L, Ly, Lg). Further development of these ideas can be
found in Karan [29].

1.2. Calculations and applications. Theorem A can be used in sev-
eral different ways. In some cases (for instance, when Y is an L-space),
the monopole Lefschetz number automatically vanishes and we obtain a
direct relation between the Frgyshov invariant and the Murasugi signa-
ture. In other cases, one can use formula (1) to compute the monopole
Lefschetz number. This Lefschetz number contains important informa-
tion about the action and can be used to explicitly describe the action
in some cases, leading to non-trivial conclusions. The applications we
present in this paper fall into four different categories: gauge theory,
knot theory, contact geometry, and 4-dimensional topology.

1.2.1. An application to gauge theory. Let X be a closed smooth
oriented 4-manifold such that

(5)  Hu(X;Z)= Ho(S' x §%,Z) and H,(X;Q) = H,(S%Q),
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where X is the universal abelian cover of X associated with a choice
of generator for H'(X;Z) = Z, called a homology orientation on X.
Associated with X are two gauge-theoretic invariants whose definition
depends on a choice of Riemannian metric on X but which end up being
metric independent. The invariant Apo(X) is roughly one quarter times
a signed count of anti-self-dual connections on the trivial SU(2) bun-
dle over X; and the invariant Agw(X) is roughly a signed count of the
Seiberg-Witten monopoles over X plus an index theoretic correction
term. The invariant Apo(X) was originally defined by Furuta and Ohta
[20] under the more restrictive hypothesis that H,(X;Z) = H,(S%;7Z),
and the invariant Agw(X) was defined by Mrowka, Ruberman, and
Saveliev [50] without any further assumptions on X.

Conjecture B. For any closed oriented homology oriented smooth
4-manifold X satisfying condition (5), one has

Aro(X) = —Asw(X).

This conjecture is a slight generalization of [50, Conjecture BJ. It
relates the Donaldson and Seiberg—Witten invariants of certain smooth
4-manifolds and therefore can be thought of as a variant of the Witten
conjecture [72] for manifolds with vanishing second Betti number. The
conjecture has been verified in a number of examples [61]. The follow-
ing theorem, which we prove in this paper, provides further evidence
towards it.

Theorem C. Let 7:Y — Y be an involution on a rational homology
sphere Y making Y into a double branched cover of S® with branch set
a knot K, and let X be the mapping torus of 7. Then

Aro(X) = “Asw(X) =  sign (K).

Note that our conjectural formula (3) can be interpreted as a special
case of Conjecture B for the mapping torus of a diffeomorphism of order
n, by using the splitting formula for Agw (X) proved in our earlier paper
[44, Theorem A] and the calculation of Apo(X) for the finite order
mapping tori [63, Theorem 1.1].

1.2.2. Strongly non-extendable involutions and Akbulut corks.
In [1], Akbulut constructed a smooth compact contractible 4-manifold
W1 with boundary an integral homology sphere 0W; and an involution
7 : 0W1 — 0Wj which can be extended to W7 as a homeomorphism
but not as a diffeomorphism; it was the first example of what is now
known as an Akbulut cork. We improve upon this result by constructing
the first known example of what we call a ‘strongly non-extendable
involution’. The precise statement is as follows.

Theorem D. There exists a smooth involution 7 : Y — Y on an
integral homology 3-sphere Y which has the following two properties:
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(1) Y bounds a smooth contractible 4-manifold, and
(2) T can not be extended as a diffeomorphism to any 7Z/2 homology
4-ball that Y bounds.

One example of a strongly non-extendable involution claimed by The-
orem D is the aforementioned involution 7 : 0W; — 0Wj of the orig-
inal Akbulut cork (W7, 7): we show that 7 does not extend to a self-
diffeomorphism not just of Wi but of any homology ball that 0W; may
bound. We accomplish this by/g)mputing the induced action of 7 on
the monopole Floer homology H M (0W7;Z) with the help of Theorem A
and the calculation of Akbulut and Durusoy [3].

When the homology 4-ball bounded by Y is contractible, the involu-
tion 7 always extends to it as a homeomorphism. Using this idea, we
give a general construction in Section 8 that results in a large family
of new corks. It is worth mentioning that previous examples of corks
were usually detected by embedding them in a closed manifold whose
smooth structure is changed by the cork twist. (In the terminology
of [7], they have an effective embedding.) On the other hand, the corks
we construct do not have an obvious effective embedding and they are
detected by monopole Floer homology.

1.2.3. Knot concordance and Khovanov homology thin knots.
Recall from [32, 33] that a link L in the 3-sphere is called Khovanov

homology thin (over Fy) if its reduced Khovanov homology Kh (L;TFy) is
supported in a single d-grading. Such links are rather common: for in-
stance, according to [48], all quasi-alternating links, as well as 238 of the
250 prime knots with up to 10 crossings, are Khovanov homology thin. It
follows from the spectral sequence of Bloom [9] that HM™(X(L)) =0
if L is a Khovanov homology thin link. Combined with Theorem A, this
leads to the following series of corollaries, the first of which confirms the
conjecture of Manolescu and Owens [47, Conjecture 1.4].

Corollary E. For any Khovanov homology thin link L with nonzero
determinant, one has the relation

§L) =8 ) AS(L)s)
sespin(3(L))

between the Murasugi signature of L and the Froyshov invariants of the
double branched cover ¥(L).

Corollary F. For a knot K in S, denote by L(K) the Lefschetz
number of the map on HM™(X(K)) induced by the covering transla-
tion. Then L(K) is a non-trivial additive concordance invariant which
vanishes on Khovanov homology thin knots.

Corollary G. Let Cg be the smooth knot concordance group and Cipin
its subgroup generated by the Khovanov homology thin knots. Then the
quotient group Cs/Cinin contains a Z-summand.
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1.2.4. The choice of sign in the monopole contact invariant.
For any compact contact 3-manifold (Y,¢), Kronheimer and Mrowka
[36] (see also [38]) defined a contact invariant

W(Y,€) € HM (Y3 Z/2),
as well as a monopole homology class
O(Y,€) € HM(-Y3Z)/{+1}.

The notation indicates that when working with in\te/ger coefficients, this
construction only results in a class in the set HM(-Y;Z)/{+1}. In
other words, the monopole homology class at hand is only well-defined
up to sign. Technically, this happens because the Seiberg—Witten mod-
uli space involved in the construction does not carry a natural orienta-
tion. One might h@ﬁ that the monopole homology class can be defined
as an element in HM(—Y;7Z) by further analysis. However, we show
that is not possible: with the help of Theorem A, we construct an in-
volution on the Brieskorn homology sphere —(2,3,7) which preserves
a certain contact structure but changes the sign of the (non-torsion)
contact invariant.

Theorem H. There exists no canonical choice of sign in the defini-
tion of Y(Y, ), or equivalently no canonical lift of (Y, &) to HM (Y, Z).

It is worth mentioning that similar contact invariants in Heegaard
Floer homology were defined (also with a sign ambiguity) by Ozsvath
and Szabé [55]. A version of Theorem H in context of Heegaard Floer
homology has been proved by Honda, Kazez, and Mati¢ [26] using an
approach different from ours. As discussed in Remark 1.1, there exists
an isomorphism between Heegaard Floer homology and monopole Floer
homology which preserves the contact invariant [13, 14, 15, 68]. How-
ever, since the naturality of this isomorphism has not been established,
our result and that of Honda, Kazez, and Matié¢ do not imply each other.

1.3. Organization of the paper. Section 2 sets up the skein theory
argument, reducing the proof of Theorem A to the key Proposition 2.2.
The proof of that proposition occupies Sections 3—-6, which form the bulk
of the paper. Section 3 establishes a skein relation for the Murasugi sig-
nature (L), and Section 4 sets up a surgery exact triangle with rational
coefficients that will be crucial for the remainder of the argument. In
Section 5, we show that Proposition 2.2 holds up to certain univer-
sal constants C, and organize the rather complicated data necessary
to track spin and spin® structures through the skein theory argument.
Section 6 studies the skein exact sequence for a large number of exam-
ples, sufficient to show that the constants C' vanish, thereby establishing
Proposition 2.2 and Theorem A.
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The remainder of the paper is devoted to applications. In Section 7
we extend the definition of the Furuta—Ohta invariant Apg and evaluate
it for the mapping torus of an involution on a rational homology sphere
with homology sphere quotient. This establishes Theorem C. We calcu-
late the effect of a particular involution on a cork boundary in Section 8
proving the non-extension result Theorem D. Corollaries E, F, and G
of Theorem A concerning the knot concordance group are established
in Section 9. Finally, Section 10 proves the non-canonical nature of the
sign in the contact invariant (Theorem H).

Acknowledgments. We thank Ken Baker, John Baldwin, Marco Golla,
Olga Plamenevskaya, and Youlin Li for generously sharing their exper-
tise, Tom Mark for pointing out Tosun’s paper [69], and Christine Le-
scop for an interesting discussion on Mullins’s approach to skein theory
for the double branched cover. Finally, we thank the referee for a very
careful reading of the manuscript.

2. Skein relations and the proof of Theorem A

Let L be an unoriented link in S% and (L) its double branched
cover. A quasi-orientation of L is an orientation on each component of
L modulo an overall orientation reversal. The set of quasi-orientations
of L will be denoted by Q(L). Turaev [70] established a natural bijective
correspondence between (L) and spin(X(L)), the set of spin structures
on X(L).

The link L will be called ramifiable if det(L) # 0 or, equivalently, if
Y (L) is a rational homology sphere. Note that all knots are ramifiable.
Given a ramifiable link L in S3, consider the quantity

1 1
X(L) = gy Z ME(L)5) — 2 D1 o) + Lef(n) |,
sespin(3(L)) LeQ(L)

where |L| is the number of components of L, o(¢) is the signature of
the link L quasi-oriented by ¢, h(X(L),s) is the Frgyshov invariant of
the spin manifold (3(L),s), and Lef(7) is the Lefschetz number of the
map
(6) 7o : HM™Y(X(L)) —» HM™Y(2(L))
on the reduced monopole Floer homology of ¥(L) induced by the cov-
ering translation 7 : ¥(L) — ¥X(L). That the above formula for x(L)
matches formula (4) can be seen as follows.

Write L = K; U ... u K, as a link of m = |L| components, and

choose a quasi-orientation ¢ € Q(L). Recall that the Murasugi signature
of L is defined as

L) =o)+ >, kK, K)).

1<i<j<m
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Murasugi [52] proved that {(L) does not depend on the choice of quasi-
orientation ¢, hence {(L) can be defined alternatively as

7) D) = gy ) 0l0)

€Q(L)

The following theorem is then equivalent to Theorem A.
Theorem 2.1. For any ramifiable link L = S3, one has x(L) = 0.

Our proof of Theorem 2.1 will rely on skein theory. Given a link L in
the 3—sphere, fix its planar projection and consider two resolutions of L
at a crossing c¢ as shown in Figure 1; we follow here the convention of
[56].

X0

L Lo Ly
Figure 1.

The links Ly and L; are called the 0-resolution and the 1-resolution
of L, respectively, and the triple (L, Lo, L1) is called a skein triangle.
Note that a skein triangle possesses a cyclic symmetry: for any link in
(L, Lo, Ly ), the other two taken in the prescribed cyclic ordering are its
0- and 1-resolutions. This symmetry is best seen when the links are
drawn as in Figure 2; see also [35, Figure 6]. Denote by L the link
obtained by changing the crossing c in the link L.

Ly L &

L Ly Ly

Figure 2.
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Proposition 2.2. Let (L, Lo, L1) be a skein triangle and assume that
L is ramifiable. Then at least two of the three links L, Lo, L1 are
ramifiable and, in addition,

(i) if both Lo and Ly are ramifiable and x(Lo) = x(L1) = 0 then

Xx(L) = 0. _
(ii) if one of the links Lo, Ly is not ramifiable then x(L) = x(L).

We will now prove Theorem 2.1 assuming Proposition 2.2; the proof
of the proposition will then occupy Section 3 through Section 6.

Proof of Theorem 2.1. The proof is a modification of the proof of [51,
Theorem 3.3]. We will proceed by induction on the pair (c¢(L),|L|),
where ¢(L) is the number of crossings in a diagram of L.

The case (0,1) is trivial. The cases (0,n) with n > 2 are vacuous be-
cause unlinks with more than one component are not ramifiable. Next,
suppose that the statement has been proved for all ramifiable links ad-
mitting a diagram with k or fewer crossings. We want to prove it for
the case (k + 1,n) with n > 1.

First let n = 1 then L is a knot admitting a diagram with k£ + 1
crossings. By changing m < k crossings we can unknot L, thereby
obtaining a sequence of knots

L=L'-IL?> ... L™ = unknot,

where L%*! is obtained from L by a single crossing change. Denote by
L& and L§ the two resolutions of L% We have y(L™*1) = 0. To deduce
that x(L%) = 0 from x(L**!) = 0, we will consider the following two
cases:

(i) Both L§ and L{ are ramifiable. Since ¢(L§) < k and ¢(L{)
it follows from our induction hypothesis that x(L§) = x(L{)
Proposition 2.2 (i) then implies that x(L%) = 0.

(ii) One of the resolutions L§, L§ is not ramifiable. Then Propo-
sition 2.2 (ii) implies that x(L%) = x(L**') = 0, and we are
finished.

Now let n > 2 so that L is a multi-component link admitting a

diagram with k& + 1 crossings. Again, change m < k crossings one by
one to obtain a sequence of links

A

k,
0.

L=L'"-1?— ... L™ — agplit link,

where L%t is obtained from L® by a single crossing change. Since multi-
component split links are not ramifiable, we can find b < m such that
L',.-. L? are ramifiable and L**! is not. Proposition 2.2 then implies
that both L and L} are ramifiable. Since c¢(L}) < k and ¢(L8) < k,
we conclude that y(L}) = x(L%) = 0 from our induction hypothesis.
Proposition 2.2 (i) then implies that x(L?) = 0. The deduction that
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(L) = 0 implies x(L?%) = 0 for all a < b is exactly the same as in
the n =1 case. q.e.d.

3. Skein relation for the Murasugi signature

Let (Lo, L1, L2) be a skein triangle obtained by resolving a crossing
¢ inside a ball B. For any subscript j viewed as an element of Z/3 =
{0,1,2}, denote by S; the standard cobordism surface from L; to L;iq
inside the 4-manifold [0,1] x S® obtained by adding a single 1-handle
to the product surface outside of [0,1] x B. Denote by W; the double
branched cover of [0,1] x S® with branch set S;. The manifold W; is
an oriented cobordism from ¥(L;) to X(L;+1); it will be described as a
surgery cobordism in Section 4. The signature of W} can be either 0, 1,
or —1.

Lemma 3.1. Let (Lo, L1, L2) be a skein triangle such that |Lo| =
|Lo|+1 = |L1|+ 1, which is to say that the resolved crossing c is between
two different components of Lo. Then

(8) 2§(L2) = &§(Lo) + &(L1) + sign(W7) — sign(Wa).

Proof. This can be derived from the Gordon—Litherland [24] formula
for the Murasugi signature but we will follow a more self-contained
approach. It will rely on the disjoint decomposition

Q(L2) = Qo(L2) U Q1(La2),

where Qo(L2) (resp. @Q1(L2)) consists of the quasi-orientations of Lo
which make Ly (resp. Li) into an oriented resolution. For any ¢ €
Qo(L2), the induced quasi-orientation on Lo will be denoted by £y; this
establishes a bijective correspondence Qo(L2) = Q(Lg). Similarly, for
any ¢ € Q1(L2), the induced quasi-orientation on L; will be denoted by
01 € Q(L1); this establishes a bijective correspondence Q1(L2) = Q(L1).
We claim that

o(ly) = o(€) + sign(Wy) for any ¢e€ Qo(L2), and

o(ly) = o(l) —sign(Wy) for any £e€ Q1(Ls).
These identities, which are essentially due to Murasugi, can be verified
as follows. Let ¢ € Qo(L2). Since ¢y is an oriented resolution of ¢,
the cobordism surface Sy = [0,1] x S% is naturally oriented. Choose
an (oriented) Seifert surface for £ = 0D* and slightly push its interior

into the interior of D* to obtain a properly embedded surface F — D*.
Passing to double branched covers, we obtain

Y(D* U ([0,1] x §3), F U Sy) = (D F) U 2([0,1] x S3,85),

where 3 (A, B) stands for the double branched cover of A with branch set
B. Using additivity of the signature and the fact that 3([0,1]x 53, S3) =
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W5, we obtain
sign(2(D* U ([0,1] x §3), F U S9)) = sign(X(D?, F)) + sign(Ws).

Observe that the surface F''U Sy in D* U ([0, 1] x Sa) is an embedded
surface with boundary ¢y in {1} x Sy. It is a classical result (see for
instance [30]) that

sign(2(D*, F))=0(¢) and sign((D*U([0,1]xS3), FUSy)) =0({).

Therefore o(¢y) = o(£) + sign(Ws) for any ¢ € Qo(Lz2). The proof of the
other identity is similar. With these identities in place, the proof of the
lemma is completed as follows:

elTg(Lo) = 3, o+ ), o)

fGQo(LQ) ZEQl(Lz)
= D (o(to) —sign(W2)) + > (o(f) + sign(W7))
LoeQ(Lo) £1€Q(L1)

= 21P2172 (¢(Lg) + €(L1) + sign(W1) — sign(W)).

q.e.d.

4. An exact triangle in monopole Floer homology

In this section, we will establish an exact triangle in the monopole
Floer homology with rational coefficients. We will also show that this
triangle possesses a certain conjugation symmetry, which will be instru-
mental in the proof of Proposition 2.2 later in the paper.

4.1. Statement of the exact triangle. Let Y be a compact con-
nected oriented 3-manifold with boundary Y = T2, and let g, v, and
~9 be oriented simple closed curves on dY such that

#(0 N m) =#(n ) =#020) = -1,
where the algebraic intersection numbers # are calculated with respect
to the boundary orientation on Y. Let Fy be the field of two ele-
ments. It follows from Poincaré duality that the kernel of the map
H,(0Y;F2) — H1(Y;F3) is one-dimensional, therefore, we may assume
without loss of generality that 7, is an Fy longitude (meaning that
[v2] = 0 € H1(Y;Fs)), while vy and ~; are not.

For any j viewed as an element of Z/3 = {0,1,2}, denote by Y;
the closed manifold obtained from Y by attaching a solid torus to its
boundary with meridian «;, and by W} the respective surgery cobordism
from Y to Yj;1. The cobordism W; can be obtained by attaching D4
to the component S? in the boundary of the 4-manifold

9) W]Q = ([-1,0] x YJ) Yi0}xY ([0,1] x Y) Y1} xY ([1,2] x Yj+1>'

Lemma 4.1. The manifolds W1 and Ws are spin, and the manifold
Wy is not.
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Proof. Notice that the inclusion ¥ — Y5 induces an isomorphism
H'(Y5;Fy) — H'(Y;Fs) hence any spin structure on Y can be extended
to a spin structure on Y. To show that W is spin, start with any spin
structure s on Y; and extend s|y to a spin structure on Y;. This gives
a spin structure on WY, which extends over D* to a spin structure on
Wi. A similar argument shows that Wy is also spin.

To show that W is not spin, we argue as follows. Suppose Wy has a
spin structure s. By the argument above, s|y, can be extended to a spin
structure on Wi. Glue these two spin structures together to obtain a
spin structure on the manifold Wy uy, Wi. This leads to a contradiction
because the manifold

Wo uy, Wy = (—Wa) # CP?

contains an embedded sphere with self-intersection number —1. q.e.d.

The space of spin® structures has a natural involution which carries
a spin® structure s to its conjugate 5. A spin® structure s is called
self-conjugate if ¢;(s) = s — § vanishes. For a fixed self-conjugate spin®
structure sgp on Y, we will come up with an exact triangle involving
spin® structures on the manifolds Y restricting to the spin® structure
50 on Y. The usual exact triangle, involving all spin® structures, can
be obtained by taking the direct sum of these restricted exact triangles
over all possible sg.

We will set up some notation first, for use in this and the following
section. In the six lines that follow, M can be any of the manifolds Y,
Y; or Wj, j € Z/3, and we write:

tor-spin®(M) = {equivalence classes of torsion spin® structure on M},
sc-spin®(M) = {s € tor-spin®(M) | s is self-conjugate},

tor-spin®(M, s¢) = {s € tor-spin®(M) | s|y = so},

sc-spin®(M, so) = {s € sc-spin®(M) | s|y = so},

spin®(M, sg) = {s € spin(M) | s|y = 8o}, and

spin(M,sp)={s € spin(M) | (s|y)¢ = so}, with (s|y )¢ explained below.

Remark 4.2. Recall that each spin structure s on Y induces a self-
conjugate spin® structure, which we denote by s¢, and that each self-
conjugate spin® structure on Y is obtained in this fashion. Let s; and
s2 be two spin structures on Y then s§ = s§ if and only if §; = 55 + h
for some h in the image of the coefficient map H'(Y;Z) — H*(Y;Z/2).
Therefore, each self-conjugate spin® structure on Y corresponds to 221(Y)
spin structures. A similar remark applies to the manifolds Y; and W,
JjEZ/3.
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Our exact triangle will consist of the Floer homology groups’
HM(Y;[sol) = @  HM(Y.s)
sespin®(Yj,s0)
and the maps between them induced by the cobordisms W;. To ensure
that the composition of any two adjacent maps is zero, we need to assign

an appropriate plus or minus sign to each spin® structure on W;. We
will accomplish this by defining an auxiliary map

(10) e U spin®(W;, s9) — Fo
JEL/3
as follows:

e 1 is identically zero on spin®(Ws, s¢);

e Choose a base point s; € spin®(Wy, s9) and let p(s1) = 0. Given
an element of spin®(Wp, sg), write it in the form s; + h with h €
ker(H?(Wy; Z) — H?(Y;7Z)) and let

M(51 + h) = hFQ,
where

hi, € ker(H?(Wy; Fo) — H*(Y;F2)) = Fy

is the mod 2 reduction of h;
e The case of spin®(W7,s0) is similar: choose a base point sy €

spin®(W1,s0) and let

,u(EQ + h) = hFQ

for any h € ker(H?(Wq;Z) — H?(Y;7Z)).

Proposition 4.3. For s € spin®(Wy,s0) and s € spin®(Ws,s0), we
have p(s) = p(s). For s € spin®(Wo, s0), we have u(s) = u(s) + 1.

Proof. The lemma is trivial for s € spin®(Wa,s0). For those s €
spin®(W1,s0), since s = § + ¢1(s), the difference p(s) — p(8) equals the
mod 2 reduction of ¢; (s), which is just the Stiefel-Whitney class wa(W7).
According to Lemma 4.1 the cobordism W is spin, hence wqo(W7) = 0
and p(s) = p(8). The proof for s € spin®(Wy, s9) is similar. q.e.d.

By functoriality of monopole Floer homology, the cobordism Wj,
equipped with a spin® structure s € spin®(W, s9), induces a map

HM(Wj,5) : HM(Yj,sly;) = HM (Yji1,8lv,.,.), j € Z/3.
We will combine these maps into a single map

Fyy, : HM(Y;, [s0]) — HM (Y41, [s0])

1 As we mentioned in the introduction, the monopole Floer homology will have
the rational numbers as their coefficient ring unless otherwise noted.
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defined by the formula
Fy, = (=1 - HM (W, s).
sespin® (W ,s0)

Note that, up to an overall sign, the maps Fyy, are independent of the
arbitrary choices of base points in the definition (10).

Proposition 4.4. We have Fy, , o Fyw, =0 for all j € Z/3.

Proof. Using the composition law for the cobordism induced maps in
monopole Floer homology, we obtain

(11)
Fw,.,oFw, = Z (—1)“(5|WJ')+M(5|Wj+1)-ﬁ-]\/4(Wj+1OWj,5).
sespin®(W; W 41,50)
The manifold
Xj =W;ju Wi = (=Wjo) # CP?

has an embedded 2-sphere F; with self-intersection —1. Therefore,
every s € spin®(X;,s0) can be uniquely written as s;#sy with s; €
spin®(—Wj_2, 50) and s2 € spin®(CP?). Let us consider a diffeomorphism
of X; which takes [E}] € Ha(X;) to —[E;] € Ha(X;) and restricts to the
identity map on —Wj, 2. Since this diffeomorphism does not change the

homology orientation, and since the cobordism map in monopole Floer
homology is natural, we obtain the identity

HM (Wji1 0 W, s14£82) = HM(Wji1 0 Wy, 51%52).

Note that §, never equals s, because CP? is not spin. As a result, the
terms on the right hand side of (11) come in pairs. The proof of the
proposition will be complete after we prove the following lemma. q.e.d.

Lemma 4.5. For any j € Z/3, any spin® structures
51 € spin®(—W;9,50) and sg € spin®(CP?),
we have the following relation in Fo
n((s1#52) lw,) +p((s1482) lw ) = L+ p((s1#52) [w; ) +p((s1#52) w4, )
Proof. Let PD stand for the Poincaré duality isomorphism. Then
(12) S1#s2 = 51#82 + (2k + 1) - PD [E}]

for some k € Z. To prove the lemma, we will compute the mod 2
reductions of PD [Ej]|lw, and PD [Ej]|w, ,, which we will denote by
(PD [Ej]lw, )r, and (PD [Ej]|w;,,, )F,, respectively.

Recall that W) is obtained by attaching a 2-handle H; to I x Yj.
Since 72 (treated as a knot in {1} x Y}) is an Fy longitude, we can find
an immersed, possibly non-orientable surface o < Y with boundary
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2. Capping Yz off with the surface ¥; < H; bounded by ~2, we obtain
a closed surface ¥ U,, X2 which generates the group
ker(H?(W;; ) — H?(Y;F2))* = coker(Ha(Y;Fo) — Hy(Wj;Fa)) = Fa.
As a result, we have
(PD[Ej]lw;)r, = #(Ej 0 (31 Uy, 32))  (mod 2).

Since X1 U, X2 is contained in W, the 2-sphere £} in the above formula
can be replaced by E; n Wj, which is a 2-disk D; < H;. The bound-
ary of Dj, denoted by ¢;41, is the core of the solid torus Yj41\int(Y"),
therefore,

#(Ej 0 (31 Uqy X)) = #(Dj 0 X)),
which is the linking number of /;,1 and 7 inside 0H;. After a moment’s
thought we conclude that

k(lj11,72) = £ # (v N y2)
and therefore

(PD[Ejllw, ), = #(7; ny2)  (mod 2).

A similar argument shows that

(PD [Ej:”Wj+1)]F2 = #(’Vj-i-? N '72) (mOd 2)
The rest of the proof is straightforward. We assume that j = 0; the
other cases are similar. By (12) and the definition of p, we have

p((s1#52) lwy) + pl(s1#52) lwy ) — p(s1#52) lwy) — p((s1#82)lwy ) =
(PD [Eo]lwy ), +(PD [Eo]lw, )r, = #(v0ny2)+#(12072) =1 (mod 2).
q.e.d.

We are now ready to state the main result of this section, the exact
triangle in monopole Floer homology with rational coefficients.

Theorem 4.6. The following sequence of monopole Floer homology
groups is exact over the rationals

L FM(Y, [so]) — HM (Y2, [s0))
LV, F (Yo, [so]) 20
4.2. Proof of the exact triangle. We already know from Proposi-
tion 4.4 that the composite of any two adjacent maps is zero. To com-
plete the proof of exactness, we will combine the universal coefficient
theorem with the Fy coefficient exact triangle proved in [38].

Before we go on with the proof, we need to review some basic con-
structions in monopole Floer homology; see Kronheimer-Mrowka [37]
for details. For any j € Z/3, denote by C°(Y;) (resp. C*(Y;) and
C"(Yj)) the free Z-modules generated by the gauge equivalence classes
of irreducible monopoles (resp. boundary stable and boundary unstable
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monopoles) whose associated spin® structure belongs to spin®(Yj,so).
By counting points in the zero-dimensional moduli spaces of monopoles
on R x Y}, we obtain a linear map

05(Yj) - C°(Yj) — C°(Yj)
and it companions 22(Y;), U(Y;), (Y}), 2u(Y), BM(Yy), 2(Yy),
0¢(Y;). Note that the last four maps count only reducible monopoles.
Set
C(Y;) = C°(Y;) @ C°(Y5)
and define the map . .
o)) : () = (Y))
by the matrix -
[@?(Yj) _ —0(Yj)au(Y)) }
03(Y;) 05(Yj) — 0 (Y3)ou(Yy) |
One can check that 0(Y;)o0(Y;) = 0. The homology o of the chain com-
plex (C(Y}), 0(Y;)) is the monopole Floer homology HM(YJ, [50]; 7). To
obtain homology with rational coefficients, we set C(Y; o = (Y, ) ®zQ
and use the linear map 0(Y;)g = 0(Y;) ® id as the boundary operator.

(We will henceforth use s1m11ar notations without further explanation).
Consider the manifold with cylindrical ends

Wy = (0,00 x ¥5) uy, Wj Uy, ([0,+%0) x Y1),

(In what follows, the superscript * will indicate attaching a product end
to the boundary of the manifold at hand). For any s € spin®(Wj, so),
the count of monopoles on W; defines the map

mg(Wj,s) : C°(Y;) — C°(Yj41)
and its companion maps mg(Wj,s), mi(Wj,s), mi(Wj,s), m;(W;j,s),
my(Wj,s), my(Wj,s), and m(Wj,s). Define the map
m(Wy.s) : O(Y)) = C(¥a)

by the matrix

[mZ(Wy‘aﬁ) —my (W, 5)05(Y;) — 0 (YVig1)im a5, ) }

mg(Wj,s) mg(Wj,s) —mi(Wj,8)05(Y;) — 05 (Y1) me (W, 8)
and sum over all the spin® structures with proper signs to obtain the
map

(W) = > (=DM m(W,s) : C(Y;) = C(Yjg).
sespin®(Wj,s0)

This is the chain map that induces the map Fyy, in the exact triangle.
As our next step, we will construct an explicit null-homotopy of the
composite m(Wj41) o m(W;). To this end, recall that the composite
cobordism
Xj=Wj oy, Wi
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from Y; to Yj, o contains an embedded 2-sphere E; with self-intersection
number —1. Denote by S; the boundary of a normal neighborhood of
Ej. Let

Qj=1{g9r|TeR}

be the family of metrics on X; constructed as follows. Start with an
arbitrary metric go on X; which is a product metric near 0.X;, Yj41,
and §;, and which has the property that the metric it induces on S
is close enough to the round metric to have positive scalar curvature.
For any T € R, the metric gy is then obtained from gg by inserting the
cylinder [T, —T"] x S; into a normal neighborhood of S; if T' < 0, and
by inserting the cylinder [—T',T] x Yj1 into a normal neighborhood of
Yj if T > 0.

Given a spin® structure s on X;, we again count monopoles on the
manifold X ]* with cylindrical ends over the whole family Q); to define
the map

HE(X;,5) : C°(Y;) — C°(Yy2)
and its companion maps H?(X;,s), H*(Xj,s), HY(Xj,s), H(Xj,s),
H:(X;,s), H(Xj,s), and H%(X},s). Using these maps, we define the
map
H(Xj,8) : C(Yj) = C(Yjy2)
by the matrix

—H*(X,,5)0:(Y;) ]

HOo(X. o 7 u 7] _

S5 | (W 1, 8)m (Wi sluw,) — 22(V542) B3 (X sluw,)
HO(X‘ 5) gs(Xjﬂﬁ) - H‘g(vaﬁ)éZ(YvJ) B

B B 7 _(rng(Wj+175‘Wj+1)mZ(ij5‘Wj)_ag(}/j+2)H{j(Xja5)

Note that an Fy version of this map can be found in [38, page 491],
and the correct sign assignments for its integral version in [37, (26.12)].
By summing up over the spin® structures, we obtain the map

HXj) = Y (~)HEmI e B (X 8) - O(Y;) — C (V).

sespin©(X;,50)
Proposition 4.7. (1) One has the equality
(13)  0(Yjr2) o H(X;) + H(X;) 0 0(Y)) = m(Wjs1) o (W),
(2) The map V; : Cv’(Yj) — Cv’(Y]) defined as
H(Xj41) 0 m(Wy) — i(Wii2) o H(X;)
1s an anti-chain map. Moreover, the map
(¥))q: C(¥j)a — C(Yj)o

induces an isomorphism in homology.
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Proof. (1) We can upgrade the proof of the mod 2 version [38, Propo-
sition 5.2] of this result to the integers as follows: Let B; be the (closed)
normal neighborhood of F; and Z; the closure of X;\B;. The family Q)
of metrics on X can be completed by adding the disjoint union Z5 u B}
at T' = —oo and the disjoint union W*u WZ , at T' = +c0. Denote this
new family by Qj. Given monopoles a on Y; and b on Yj,2 and a spin®
structure s on X, consider the parametrized moduli space

M(a, (X7,5),b)q

on (X¥,s) and construct its compactification M™(a,(X},5),b)g by
adding in broken trajectories. When this moduli space has dimension
one, the number of its boundary points, counted with sign, must be
zero. This gives us a boundary identity. By adding these boundary

(_1)u(5\wj)+ﬂ(5|wj+1), we obtain

identities over all possible s with sign
various summed up boundary identities for different (a, b).

We claim that the points in M*(a, (X7,5),b), ,, donot contribute to
these identities: As explained in the proof of [38, Proposition 5.2], these
points always come in pairs of the form (v,7’) and (v,~"”), where v is a
(possibly broken) solution over Z¥ and 7’ and 7" are reducible solutions
over Bj*. Moreover, ' and 7" correspond to conjugate spin® structures
over BY. Since by (B;) = b1(Bj) = 0, all reducible monopoles over BY
are positive. Therefore, (v,v") and (v,~”) contribute to their respec-
tive boundary identities with the same sign. By Lemma 4.5, when we
take the sum with the weights (—1)“(5‘WJ)+“(5|WJ+1) these contributions
cancel.

The rest of the proof proceeds exactly as in [38, Proposition 5.2]. In
[37, Lemma 26.2.3], several similar boundary identities are obtained by
considering one-dimensional moduli spaces of monopoles for a family
of metrics parametrized by [0,1]. As a consequence of our claim, the
summed up boundary identities we have here can be obtained from
the identities there by removing terms corresponding to 1T' = 0. For
example, we have

0= 3 (—p el e o (X, 6)a0 (V) — 9(Yie2) HE(X, 5)

sespin©(X;,50)

+ Hy (X,5)0,(Y5)05(Y;) + 05 (Vi) Hy (X, 5)02(Y))
+ 05 (Yj4+2) 05 (Yir2) HI (X, 5)

+mg(Wii1,8lw,, )mo(Wj, slw,)

+mg Wy, slw, o )mg (W, slw; )09 (Y;)

— m(Wis1,8lw;,,)00(Yir1)mI(Wj, slw,)

— O (Yir2)my (Wi, slw,, )me(Wj, slw;)
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Using these identities, formula (13) can be proved by an elementary
(but cumbersome) calculation.

(2) The fact that ¥; is an anti-chain map follows easily from (1).
According to [38, Lemma 5.11], the map

U; @ id: C(Y;) ® Fa — C(Y;) @ Fa

induces an isomorphism in homology. By the universal coefficient the-
orem, the map Wq also induces an isomorphism in homology. q.e.d.

The proof of Theorem 4.6 is now completed by the following ‘triangle
detection lemma’. The mod 2 version of this lemma appears as Lemma
4.2 in [56]. The proof of the version at hand is essentially the same.?

Lemma 4.8. For any j € Z/3, let (C}, 0;) be a chain complex over the
rationals. Suppose that there are chain maps f; : C; — Cj11 satisfying
the following two conditions:

e the composite fjy1 0 f; is null-homotopic by a chain homotopy

Hj : Cj g Cj+2 with
0H;j+ Hj0 = fjt10fj, and
e the map
Yj=Hjp10fj = fijy20 Hj : C5 — O,
which is an anti-chain map by the first condition, induces an iso-
morphism in homology.
Then the sequence

(f5)= (fj+1)x

- —— Hy(Cj)

15 exact.

Hy(Cj+1) Hy(Cjr2) —— -

5. Skein relations up to constants

Let (Lo, L1, L2) be a skein triangle obtained by resolving a crossing ¢
of the link L = L9 as shown in Figure 1.

Definition 5.1. The skein triangle (Lg, L1, L2) will be called admis-
sible if
1) |L2| = |Lo| + 1 = |L1| + 1, which is equivalent to saying that the
resolved crossing c is between two different components of Lo, and
2) at least one of the links Lo, L, and Lo is ramifiable.

In Section 2 we defined a link Ly by changing the crossing c¢. Using
the cyclic symmetry as in Figure 2, we can find a link projection of Ly
such that L; and Lo are the two resolutions of Ly at a crossing c. Then

2A version of this lemma over the integers can be found as Lemma 7.1 in [35].
Our sign conventions here are slightly different.
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we define L as the crossing change of Lg at c. The link L; is defined
similarly.

Lemma 5.2. If (Lo, L1, Lo) is an admissible skein triangle then at
most one of the six links Lo, L1, Lo, Lo, L1, Lo is not ramifiable. In
particular, we have three more admissible skein triangles, (L1, Lo, L2),
(Ll,Lo, Lg), and (Ll, Lo,Lg).

Proof. By our definition of L, all of the triples (L1, Lo, L2), (L1, Lo,
L), and (L1, Lo, Lo) are skein triangles. Now suppose that two of the
links Lo, L1, L2, Lo, L1, and Ly are not ramifiable. By [51, Claim
3.2], these two links have to be L; and L;;; for some j € Z/3. Recall
that after putting suitable signs, the determinants of the three links
in a skein triangle add up to zero. Therefore, from the skein trian-
gles (Lj_1,Lj41,L;) and (Lj,Lj_1,Lj11) we deduce that det(Lg) =
det(Ly) = det(Lg). Since (Lo, L1, L2) is a skein triangle, this implies
that det(Lg) = det(L1) = det(Le2) = 0. This contradicts Condition (2)
of Definition 5.1. q.e.d.

Let (Lo, L1, Lo) be an admissible skein triangle and B < S® a small
ball containing the resolved crossing c¢. Denote by Y the double branched

cover of S3\B with branch set (S3\B) n Ly then Y is a manifold with
torus boundary Y.

Definition 5.3. A boundary framing is a pair of oriented simple
closed curves (m,[) on dY such that

(1) #(mnl) = -1,
(2) [I] =0€ H1(Y;Q), and
(3) either m or [ represents the zero element in H;(Y;Fa).

One can easily check that a boundary framing always exists. Once a
boundary framing (m,[) is fixed, we will define the following numbers:

e The divisibility of the longitude
t(Y)=min{a€eZ|a>0 and a-[l]=0€ H(Y;Z) };

e Set s(Y) = 0if [ represents the zero element in H;(Y;F2) and set

s(Y) = 1 otherwise;

e The double branched cover Y; = ¥(L;), j € Z/3, is obtained from

Y by attaching a solid torus along 0Y, matching the meridian with

a simple closed curve v; on 0Y. We will orient the curves v; by

the following two conditions:

(a) #(70 N 71) = #(1n N 72) = #(72 N Y0) = —1, where the alge-
braic intersection numbers # are calculated with respect to the
boundary orientation on 0Y (see Ozsvath-Szabé6 [56, Section
2]), and
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(b) #(y2nm) > 0 when s(Y') = 0 and #(y2nl) > 0 when s(Y') =1
(this makes sense because o represents zero in Hi(Y;Fq) by
Definition 5.1 (1)).

Having oriented the curves 7, this way, we define the integers

(pj,qj) by the equality [v;] = p; - [m] + ¢; - [{], which holds in

Hy(3Y;Z).

Definition 5.4. Given a boundary framing (m, (), we define the reso-
lution data for the admissible skein triangle (Lg, L1, Lo) as the six-tuple

(t(Y), S(Y), (p07 QO)v (ph QI))

(we should note that (p2,q2) = (—po — p1, —qo — q1) since [yo] + [11] +
[’yg] =0¢ Hl(aY,Z))

The main goal of this section is to establish the following ‘skein re-
lations up to universal constants’. We will show later in Section 6 that
these universal constants actually vanish.

Theorem 5.5. Let (Lo, L1, L) be an admissible skein triangle, and
fix a boundary framing (m,1) on the boundary 0Y of the manifold Y as
above. Then

1) if all of the links Lo, L1, Lo are ramifiable,

(14)  2x(L2) = x(Lo) + x(L1) + C(t(Y), s(Y), (po, 90), (P1, 01));
2) if L; is not ramifiable for some j € Z/3 then Lj+1 and Lj+1 are
all ramifiable and, in addition,

(15)  x(Lj-1) = x(Lj—1) + CF (((Y), s(Y), (po, @), (1, 1)) and
(16)  x(Lj+1) = x(Lj+1) + Cf (t(Y),s(Y), (po, q0), (1, q1)),

where  C(t(Y),s(Y), (po, @), (p1,¢1))  and  C5(t(Y),s(Y), (po, q0),
(p1,q1)) are certain universal constants depending only on the resolution

data.

5.1. The action of covering translations. We will use 75; to denote
covering translations on various double branched covers M such as M =
Y; or M = Wj.

Lemma 5.6. Let (Lo, L1, L2) be an admissible skein triangle. Then
exactly one of the following two options is realized:
1) if all L; are ramifiable, there exists a unique n € Z/3 such that
|pn| > |pnt1| and, in addition,
° bl(}/j) = bl(Wj> =0 fOT“ allj € Z/?),
o by (Wpi1) =1, by (Wy_1) = b3 (W,,) =0, and
o by (Wat1) = 0, by (W) = by (W) = L.
2) if Ly, is not ramifiable for some n € 7Z/3 then
e b1(Y,) =1 and by (Yn—1) = b1(Yn41) =0,
o by(W;) = b3 (W;) =0 for all j € Z/3, and
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o by (Wi1) = 1 and by (W_1) = by (W) = 0.

Proof. The claims about b; follow easily from the Mayer—Vietoris
sequence. As for the b;—r claims, note that the inequality |p,| > |pn+1]
is equivalent to p, having an opposite sign to both p,—1 and p,+1.
The result then follows from the explicit calculation of the cup-product
structure on H%(W;) in Lemma 5.12. q.e.d.

Lemma 5.7. The covering translations act as follows:
1) 75(a) = —a for any a € H*(Y;Z);

2) T{ij(b) = —b for any be H*(Y};Z);

3) T{/"Vj(c) = —c for any ce H*(W;; Z);

4) T{ij(d) = —d for any d e H\(Y};Z);

5) TI’/"Vj(e) = —e for any e Hi(W;;Z);

6) 7 (s) = § for any s € spin®(Y);

7) v, (s) = § for any s € spin®(Yj);

8) T)”‘(j (s) =5 for any s € spin®(X;).

Proof. Since Hy(Y;Z) = 0, the universal coefficient theorem provides
a natural identification of H?(Y;Z) with the torsion part of Hy(Y;Z).
Therefore, to prove (1), we only need to show that 7 acts on H1(Y;Z)
as —1. To see this, let & be a loop in Y which does not intersect the
branch locus. The image of & under the covering map ¥ — S3\B
will be called . Since S3\B is contractible, there is a continuous map
f:D? - S3\B with f(0D?) = a. Lift f toamap f: F — Y, where F
is a double branched cover of D2, If f(dF) equals & or 7(@&), then & is
null-homologous. Otherwise, we have f(0F) = & + (&), which implies
[@] = —[7(&)] and proves (1). Claim (4) can be proved similarly, while
(2) is just the Poincaré dual of (4), and (5) follows from (4) and the fact
that Hy(0W;j;Z) — H,(Wj;Z) is onto.

We will next prove (3) under the assumption that bi(Y;) = 0 (oth-
erwise, b1(Yj4+1) = 0, and the argument is similar). Using the Mayer—
Vietoris sequence for the decomposition of W; into I x Y; and the 2-
handle, we obtain an exact sequence

0 —— HY(S' x D%7Z) —%— H2(W;;Z)

*
—— H*IxYj;Z) ——>

The maps induced by 7 on the cohomology groups in this sequence are
compatible with ¢ and i*. For any element o € H?(Wj;Z), it follows
from Claim (2) that i*(T{‘,}/J_ (@) +a) = Ty, (7*(a)) +i* () = 0. Therefore,
there exists 8 € H(S' x D?;Z) such that 0f = T{,“V],(a) + a.. Notice that

o(=B) = 07514 p2(B)) = Tﬁkvj(Tﬁkvj (a) +a) = T{,“Vj () + = 0p.
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Since ¢ is injective, S must vanish and therefore TI’,"VJ_ () + o = 0 as
claimed in (3).

Let us now turn our attention to the action of 7* on spin® struc-
tures, starting with (7). Turaev [70, Section 2.2] established a natural
one-to-one correspondence between spin structures on Y; and quasi-
orientations on L;. Using this correspondence, one can easily see that
all the spin structures on Y; are invariant under 7y,. This proves (7) for
self-conjugate spin® structures. Since any spin® structure can be written
as s + h, with s self-conjugate and h € H%(Y';Z), claim (7) follows from
(2). To prove (6), consider so = 51|y with s1 a spin® structure on Yj.
By (7) we have 73 (s9) = 59. Then we express a general spin® structure
as 50+ h with h € H2(Y;Z) and use (1). We are left with (8). Take any
s € spin®(Wj). It follows from (7) that

iy )y, = 73 (sly;) = 5.

Therefore, 3, (s) = 5 + h for some h € ker(H?*(W;;Z) — H?*(Y};Z)).
Using (3), we conclude that ¢y (T‘j‘vjs) = —c1(8) = ¢1(5) and therefore

2h = 0. However, it follows from the Mayer—Vietoris exact sequence
that ker(H%(W;; Z) — H?*(Y;;Z)) is torsion free. Therefore, h = 0, and
claim (8) is proved. q.e.d.

5.2. Spin‘ systems and their equivalence. In this section we intro-
duce the concept of a spin® system on a skein triangle and relate the
spin® systems corresponding to admissible skein triangles with the same
resolution data.

Definition 5.8. Let (Lo, L1, L2) be a skein triangle and s¢ a fixed
self-conjugate spin® structure on Y. A spin® system S((Lo, L1, L2),%0)
is the set

U (spin®(Wj,s0) u spin®(Y}, s0))
JEZ/3
endowed with the following additional structure:

1) the restriction map
7jj+1 : spin®(Wj, s9) — spin®(Y}, s9) x spin®(Yj41,50)

for every j € Z/3,

2) for every s € spin®(Wj, so) with r; j4+1(s) torsion, the Chern num-
ber c1(5)% € Q (see (19)), and

3) the involution T‘;kvj on spin®(Wj,s9) and the involution 7’{% on
spin®(Yj,s0). By Lemma 5.7, these act by conjugation on the
set of spin® structures.

Definition 5.9. Two spin® systems

S((LOaL17L2)>50) and S(( 67 /1>L,2)a56)
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are called equivalent if sign(W;) = sign(W;) for all j € Z/3 and there
exist bijections

0 :spin® (W, s0) —spin®(W},50) and 6; : spin®(Y}, s0) —spin®(Y}, s0)
which are compatible with the additional structures (1), (2), and (3) in
the obvious way. We use ~ to denote this equivalence relation.

Theorem 5.10. Let (Lo, L1, L2) and (Lj, LY, L) be admissible skein
triangles. Suppose that, for a suitable choice of boundary framings, the
resolution data of (Lo, L1, La) matches that of (Ly, L, Lb). Then there
exist disjoint decompositions

sc-spin®(Y) = Agu A1 and sc-spin®(Y') = Aj u A}

with the following properties:

o |Ao| = |A1| and |Ap| = |AY| (the vertical bars stand for the cardi-
nality of a set), and
o fori=0,1 and any sp € A; and s, € A}, we have

S((LO)L17L2)750) NS(( 67 lleIZ))56)

The proof of Theorem 5.10 will take up the rest of this subsection.
The idea of the proof is straightforward: we give an explicit description
of the topology and the spin® structures on Y; and W; in terms of the
resolution data.

We begin by studying the algebraic topology of cobordisms W;. Let
us consider the decompositions

W;=(IxY)urxey D' and Y; =Y ugy (S* x D?).

The gluing map in the first decomposition (which matches the decompo-
sition (9)) identifies 0Y with the standard torus in S* = 0D* by sending
v; and 7,41 to the standard meridian m and longitude [, respectively.
The corresponding Mayer—Vietoris exact sequences are of the form

(17) — HYY) —— H'(3Y)
H2(W)) —2 H2(Y) ——
and
(18) Z—> Hl(Y>@H1(Sl X DZ) N Hl(ay) L
H2(Y)) — H2(Y) o,

Let 4;, 1, and [ € H'(0Y) be the Poincaré duals of [v;], [m], and
[l] € H1(0Y), respectively. The following lemma is a direct consequence
of (17) and (18).
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Lemma 5.11. There are isomorphisms

keriy, = Z@®Z/{(0,t(Y))) with generators dw, (1), ﬁwj(f), and

ker iy, = Z®Z/{(0,t(Y)),(pj,q;)) with generators dy,(1m), dy;(l),

under which the map ker iW], — ker iyj @ ker iyj+1 induced by the bound-
ary inclusions is the natural projection map.

Recall that, for a cohomology class o € H?(W;) with alaw, torsion,
the number o? € Q is defined as follows. Let u; : H%(W;, oW;) —
H?(Wj;) be the map induced by the inclusion. Then there exists a
non-zero integer k and a cohomology class 3 € H*(W;,0W;) such that
koo = u;j(3). We define

(19) o’ = % (B— B, [W;, dW;]).

Lemma 5.12. (1) Suppose that p; # 0 and pj+1 # 0. Then

a2

20 ow (arm + bl))? = ———.
(20) (o e+ B =
(2) Suppose that either p; = 0 or pjr1 = 0. Then o = 0 for any
o € H*(Wj) with a|aw, torsion.

Proof. Associated with the decomposition W; = (I xY) Urxay D% is
the Mayer—Vietoris exact sequence in homology,

—— Ho(Y) —2 Hy(W;) ——

H(0Y) —— Hi(Y) ——

from which we conclude that Hy(WW;) is a copy of Z generated by the
homology class [X] of a surface ¥ with J[X] = ¢(Y)[l]. The surface X
splits as F} U F5, where Fj is an embedded surface in I x Y bounded
by t(Y) copies of [, and F is the Seifert Surface for the right handed
(t(Y) - pj,t(Y) - pj+1) torus link in dD*. From this description, we see
that the homological self-intersection number of ¥ equals the linking
number between two parallel copies of the (¢(Y) - p;,t(Y) - pj+1) torus
link, which equals ¢(Y)? - p; - pj4+1. Therefore,

(PD[E] — PD[X], [W;,0W;]) = (u;(PD[Z]), [£]) = t(Y)* - pj - pj+1-
Comparing this to
(owym, [E]) = (i, O[] ) = (m, ¢(Y)[1] ) = £(Y)

we obtain
u;(PD[X]) = ow, (ty - pj - pj1 70 + ki)
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for some integer k, whose value is of no importance to us because dw, (/)

is torsion. From this we deduce that

a2

(t(Y) - pj - pj+1)

a2

Pj - Pj+1
This completes the proof of (1). To prove (2), observe that the map
H%(W;;Q) — H?*(Yj4+1;Q) is injective when p; = 0, and that the map
H?*(W;;Q) — H?*(Y;;Q) is injective when p;j41 = 0. Therefore, any
element o with a|ap torsion is a torsion itself. q.e.d.

(Ow, (arn + bl))* = - -(PD[X] — PD[X], [W;,0W;])

Let X; = W; U Wj41 be the composite cobordism from Y to Yj .
As we mentioned in the proof of the exact triangle in Section 4.2, there
exists an embedded 2-sphere F; < X; with homological self-intersection
—1. It is obtained by gluing a disk D1 < W to a disk Dy < W) along
—0Dy = 0Dy = lj;1, where [j41 is the core of the solid torus Yj1\int Y.
Orient Ej; so that [;4; is homotopic to ;42 in Yji1\intY. Also recall
a decomposition X; = (—Wj2) # CP?, which induces an isomorphism

(21) pijr1 s H*(Wig) ® H?(CP?) — H?(Xj).

Lemma 5.13. For any integers a, b, ¢, denote by & the image of

A~

(Ow; o (@ + bl),c- PD [E}]) under the map pj 1. Then
Elw, = ow, (am + bl + ¢5j) and  Elw,., = dw, ., (arm + bl + Aj1a).
Proof. It is a direct consequence of the naturality of the boundary
map in the Mayer—Vietoris exact sequence that
pj.i+1(0w,., (@i + ), 0)|w, = dw, (e +bl) for n=j,j+1.
We still need to show that

pj1j+1(07 PD [E]])|Wg = aVVj (’AV])
and
pj7j+1(07 PD [Ej])’Wj+1 = aVVJ‘+1 (:Vj+2)'

The Poincare dual of p;;11(0,PD[E}]) is realized by the sphere Ej.
Therefore, the restriction of p; j11(0, PD [E;]) to W} equals the Poincare
dual of [E; n W] € Ho(W;, 0W;). Using the fact that E; n W is a disk
contained in the two-handle D W) with the boundary /;,1, one can
easily verify that [E; n W;] equals the Poincare dual of dy,(v;). This
finishes the proof of the first formula. The proof of the second formula
is similar. q.e.d.

We will next study the spin and spin® structures on the manifolds Y
and W;. First, define a map

Az spin(Y) — HY(OY;Fy)
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as follows (compare with Turaev [71]). Fix a diffecomorphism ¢ : Y —
JRQ/Z2 and let z1, z2 be the standard coordinates on R2. Pull back the
vector fields 0/0x1, 0/0x2 via ¢ to obtain vector fields U, U2 on 0Y.
Any loop v in dY gives rise to the loop

V(@) = (7i(x), 01 (2), va(x))
in the frame bundle of Y, where 7i(x) is the outward normal vector at
x € 0Y. We define \(s) to be the unique cohomology class in H!(dY, Fy)
with the property that (A(s),[vy]) = 0 if and only if 4 can be lifted to a
loop in the spin bundle for s.

Lemma 5.14. The map X : spin(Y) — HY(0Y;F3) has the following
properties:
(1) A does not depend on the choice of diffeomorphism o,
(2) M5 +w) =5+ wlay for any s € spin(Y) and w e H(Y;Fs), and
(3) for any j € Z/3, a spin structure s can be extended to Y; if and
only if (\(s),v;) = 1 € Fa. The extension is unique if it exists.
Proof. This is immediate from the definition of the map . q.e.d.

Lemma 5.15. Any s € spin(Y') extends to a spin structure on Ya,
and to a spin structure on one of the manifolds Yo and Y1 but not the
other. For any so € sc-spin®(Y'), we have the following identity for the
counts of self-conjugate spin® structures:

201 00) . | se-spin® (Yo, 50)| + 27 V) - [ sc-spin® (Y1, 50|
(22) = 2010%) | se-spin®(Ya, 50)].
Proof. Since the map H'(Ys;Fy) — H'(Y;Fs) is an isomorphism,

any spin structure s on Y can be extended to a spin structure on Ys.
This implies that

(23) (A(s), [v0]) + (A(s), [n1]) = (A(s), [v2]) = 1.
It now follows from Lemma 5.14 (3) that s can be extended a spin struc-
ture on exactly one of the manifolds Yy and Y;. This finishes the proof
of the first statement.

According to Remark 4.2, a self-conjugate spin® structure on Y; cor-
responds to 2021(¥3) gpin structures. Therefore,

209 - [ sc-spin® (Y], 50)| = | spin(Yj, 50)],
and (22) is equivalent to
| spin(Y2, s0)| = | spin(Yo, s0)| + | spin(Y1, s0)|,

which follows easily from the first statement. q.e.d.

Lemma 5.16. A self-conjugate spin® structure sg € sc-spin®(Y’) has
the following extension properties to the cobordisms W;:

1) sc-spin®(Wo,s0) = J;
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2) If t(Y) is odd, then sc-spin®(Wi,s0) # & and sc-spin®(Wa, s¢) #
3) %%(Y) is even, there is a disjoint decomposition
(24) sc-spin®(Y) = Ap u 43
such that |Ag| = |A1| and, in addition,
(25)
so€ Ao if and only if sc-spin®(W1,s0) = and sc-spin®(Wa,s0) # ,
so€ Ay if and only if sc-spin®(W1q,s0)# & and sc-spin®(Wa,s0) = .

Proof. Denote by 5(1) and 53 the two spin structures on Y correspond-
ing to the self-conjugate spin® structure sg on Y. Then
(26)
sc-spin®(W;,50) # & <=  spin(W;,s0) # & or spin(W;,s3) # &.

Since the cobordism W; is obtained by attaching D* to the manifold
VVJQ along S3, see (9), we conclude that, for both k = 1 and k = 2,

spin(Wj,s8) # @ <= spin(Yj,s5) # & and spin(Yjy1,545) # &
= (As0), D = Ash), [Nl = 1.

With this understood, (1) follows from Lemma 5.15. Since s} and s2
correspond to the same spin® structure, we can write s§ = 52 + (wr,)|ay,
where wg, is the mod 2 reduction of the generator w € H'(Y;Z). This
implies that
A(s) = Alsg) + (wr, )lov

It is not difficult to see that (wr,)|sy # 0 if and only if ¢(Y') is odd.
Therefore, if t(Y) is odd, A(s}) # A(s2). By Lemma 5.15, one of s§
(k = 1,2) can be extended over Y (and hence W5), while the other one

can be extended over Y7 (and hence Wj). Claim (2) now follows from
(26). If t(Y) is even, A(s)) = A(s3). Define the sets

Aj = {so | N8, [v]) =0 for k=1,2}, j=0,1,
then (24) and (25) follow directly from (23), and the equality |Ag| = | A1]

can be verified as follows:

I : L.
ol = 5 [spin(¥p)| = 1 [spin(¥)| = 5 [spin(¥3)| = |41,

q.e.d.

Remark 5.17. The disjoint decomposition sc-spin®(Y) = Agu A; of
(24) with the additional properties (25) holds only for even ¢(Y). We
will extend it to the case of odd ¢(Y) by choosing an arbitrary disjoint
decomposition such that |Ap| = |A1].
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In our next step toward the proof of Theorem 5.10, we will study the
set of ‘relative characteristic vectors’ defined as

Char(Wj,s0) = {ci(s) | s € spin®(W}, s0)}.

To state the following set of results about this set, we need to recall
the maps iy, : H*(W;) — H*(Y) and oy, : H'(0Y) — H?*(W;) from
the Mayer—Vietoris exact sequence (17).

Lemma 5.18. The set Char(Wj,s0) is a coset of 2keriw, inside of
ker iy, which can be described precisely as follows:
1) Suppose t(Y) is odd. Then, for any sg € sc-spin®(Y),
a) Char(Wj,s0) = 2keriw, forj=1,2,
b) Char(Wy,sp) = ow, (m) + 2ker W, -
2) Suppose t(Y) is even and so € Ag. Then
a) Char(WQ,so) = 2ker iWQ,
b) Chal“(Wl,So) = 6W1 (’3’2) + 2ker Wy
¢) Char(Wy,so) = dw, (J0) + 2 ker iy, .
3) Suppose t(Y') is even and sg € A;. Then
a) Char(Wh,s0) = 2 ker iyy,,
b) Char(Ws,s0) = dw, (J2) + 2keriyy,,
¢) Char(Wy,so) = dw, (71) + 2 ker iy, .

Proof. We will only prove case (2) because cases (1) and (3) are simi-
lar. In case (2), we have even t(Y') and sg € Ag. Since sc-spin®(Ws, s5¢) #
&, the coset Char(Was,s9) must contain zero. This proves (a). To
prove (b), note that the image of Char(W7, s0) under the restriction map
ker iy, — keriy, does not contain zero because sc-spin®(Y1,s0) = &,
while the image of Char(W1,s0) under the map keriy, — keriy, con-
tains zero because sc-spin(Ya,s0) # . It is now not difficult to check
that dw, (92) + 2keriyy, is the only one coset (of the four) satisfying
these requirements. This proves (b). Case (c) is similar. q.e.d.

Let (Lo, L1,L2) and (L{, L}, L5) be two admissible skein triangles
with the same resolution data, and let us fix decompositions
sc-spin®(Y) = Agu A1 and  sc-spin®(Y’) = Ay U A
as in Lemma 5.16 and Remark 5.17. Combining all of the above lemmas,

we obtain the following result.

Proposition 5.19. Let 5o € A,, and s; € A, withn =0 orn = 1.
Then there exist isomorphisms &; : ker iy, — ker iWJ/_ and §; : keriy, —
ker iy with the following properties:

J

1) &(@)ly; = &(aly;) and §(Qlyr, | = &+a(aly,);

2) For any « € ker iy, with o|aw, torsion, we have o = (&(a))?;
3) &;(Char(W;,s0)) = Char (W7}, sp),
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4) Let pj i1 be the isomorphism (21) and p}jﬂ the corresponding
isomorphism for the skein triangle (L{, L, L}). Then, for any
B € keriw,,, and any integer k we have

E1(ps1(B.k - PDIEDws) = 0 1(€js2(8), k- PD[E}Dlys  and

&i+1(pigr1(B k- PDE; Dlw, y) = pj11(8+2(8), k- PD[Ef])lwr -

With all the necessary preparations now in place, we are finally ready
to prove the main result of this subsection, Theorem 5.10.

Proof of Theorem 5.10. Let Ag, Ay, Aj, and A} be as above, and s € A,
and s(, € A for n = 0 or n = 1. We first pick any sy, € spin®(Wp, sp).
It follows from Proposition 5.19 (3) that &y(c1(swy,)) € Char(W{, s;) and
there exists sy such that ¢1(syy) = {o(c1(sw,)). Denote by & the spin®
structure on CP? with ¢;(5) = PD [E;] = PD [E}] and let
Sw; = (5W0#g)|Wj and 5VVJ’. = (5W6#§)|W]' for j =1,2, and
sy, = sw,ly; and Syr = Swj{’}/j/ for j =0,1,2.
Using Proposition 5.19 (4) one can show that
Eilealsw,)) = cr(swy) and &(e(sy;)) = eulsy).

We now define the map éj : spin®(Wj, 80) — spin®(W/, s4) by the for-
mula
Hj(ﬁwj +h) = 5W]’» + f](h) for h € ker in
and the map 0; : spin®(Yj,s9) — spin®(Y}, 55) by the formula
0;(sy, +h) = syr + j(h) for he€keriy,.
It is not difficult to verify that éj and 60; are compatible with the ad-

ditional structures in Definition 5.8 and that they provide the desired
equivalence S((Lo, L1, L2),50) ~ S((Lg, L, LY), 50)- q.e.d.

5.3. Truncated Floer homology. Recall that, according to Theo-
rem 4.6, we have the following Floer exact triangle over the rationals

Fj —_— Fy —_—
@) . —% HM(Y1,[s0]) —> HM(Y2, [s0])
Fj —_— Fy
—2 HM(Yp, [s0]) —2
Let us introduce the constants
co = b; (WQ) + bl(Yb), c1 = b; (Wl) + bl(Yg), and ¢y =0,

and use them to define ‘twisted’ versions of the maps # induced by the
covering translations on HM (Y}, [so]) by the formula

fi = (=1)% -7« HM(Y;, [s0]) — HM (Y}, [s0]).
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Lemma 5.20. The maps f; are compatible with the maps Fy; in the
sense that

(28) fiv10Fw, = Fw, o f; for jeZ/3.

Proof. Since the covering translation 7y, on W; extends the covering
translations 7y; and 7y, , on its boundary components, the functoriality
of the monopole Floer homology and Lemma 5.7 imply that

gy T o TMWy,s) = (1)U HRIW, 7i,8) 0 7
— (_1)b;(Wj)+b1(Yj+1) . M(Wj,ﬁ) o7,

for any sespin®(Wj, [so]). To explain the extra factor (—1)b5r (W5)+b1(Yj1)
we recall that the homology orientation, that is, an orientation of the
vector space

/\max (H'(WiR)@ I (Wi R) @ H' (Yj11;R))

is involved in the definition of the map HM (W); see [37, Definition
3.4.1]. Here, I'T(W;) stands for a maximum positive subspace for the
intersection form on im(H?(W;, 0W;) — H?(W;)). By Lemma 5.7, the
covering translation 7y, acts as the negative identity on the space

H'(WiR)@ IT(Wj;R) @ H' (Y415 R),
thereby changing the homology orientation by the factor of
(_1)b2+(Wj)+b1(Wj)+b1(Yj+1)
Recall that the map Fyy, was defined in Section 4 by the formula

Fw, = > (=19 HM(W;,s),

J
sespin®(W;,s0)

where p(s) is the Fo-valued function defined in (10). Therefore, in order
to deduce (28) from (29), we just need to check the relation

b (W) + b1(Yj41) + cj1 +¢ = pls) — p(E)  (mod 2)

for any s € spin®(Wj,s0). For j = 1 and j = 2, this is immediate from
Proposition 4.3. For j = 0, this follows from Proposition 4.3 and the
identity

(30)  b1(Yp) + b1(Y1) + b1 (Ya) + by (Wo) + by (Wh) + by (Wa) = 1,

which is a consequence of Lemma 5.6. q.e.d.

Since HM (Y}, [s0]) usually has infinite rank as a Z-module, we will
truncate it before discussing Lefschetz numbers.
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Definition 5.21. For any rational number ¢ and j € Z/3, define the
truncated monopole Floer homology as

Hy(Vls) = ( @ @ HMu(Y9))

s‘y =50 a<q
c1(s) torsion

®( @ HME;.).

5|y =50
c1(s) non-torsion

Also define
HM.(Y;.[s0]) = HM(Y;. [s0]) / HM <,(Y;, [s0]).

We wish to find truncations of HM (Y}, [so]) for all j € Z/3 which are
preserved by the maps Fyy;. To this end, recall the map
p : tor-spin®(Y;) — [0, 2)
defined by the formula
1
4

for any choice of smooth compact spin® manifold (X, 5) with the spin®
boundary (Y}, s) (see [6]).

pls) = 1 (c1(8)? — sign(X)) (mod 2)

Definition 5.22. Let 5§ € sc-spin®(Y2,80) and choose an even inte-
ger N > 0 large enough so that, for each j € Z/3, the following two
conditions are satisfied:

1) the natural map mgq(}/}, [s0]) — HM™(Y;,[s0]) is surjective,

and

2) for any s € spin®(Y}, s9), there exists a finite set

{ah az, ..., an} c EJ/W(YVJ’,S)
representing a set of generators for HM,cq(Y},5) as a quotient
Q[U]-module, such that
Fy,(a;) @ HM <y (Y41, [s0]).
(That this can be achieved follows from [37, Lemma 25.3.1]).

The truncated triangle with parameter (N,s) is then defined as the 3-
periodic chain complex

Fu (N) ——
- HM <N+ p)+01) (Y1, [50])
Fu, (NG) ~——
s HM (v p3)+o(2) (Y2 [0])
Fivy (N.3)

— Fuv (N3)
HM 4 p(s)10(0) (Yo, [50]) 2 ...

where Fyy, (N, 5) is the restriction of Fyy, and o(j) is defined as follows:
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1) if b1(Y;,) = 1 for some n € Z/3 then o(n) = o(n—1) = o(n+1) = 0;
2) if b (W,) = 1 for some n € Z/3 then o(n + 1) = 0, o(n) = 1/2,
and o(n — 1) = 1/4.
(Note that by Lemma 5.6, exactly one of these two cases occurs). We
denote this truncated triangle by €S(N,5). It is a subcomplex of the
exact triangle (27), and we denote by €~ (N, §) the quotient complex.

Lemma 5.23. The image Fyy, (M<N+p(5)+0(j) (Y}, [s0])) is contained
mn
HM <N+ p@E)+o(j+1) (Yj+1, [50]),
and therefore the map Fy,(N,5) is well defined.

Proof. We will only give the proof in the case when b;(Y,,) = 1 for
some n € Z/3 since the other case is similar.

We will start with the map Fyy, . Since b(Y,) = 1, we have v, = [,
which implies that |pp+1| = 1 and pp—1 + pp+1 = —pn = 0. Using (20)
and Lemma 5.6, we obtain

L (A(8) ~ 2x(Wii) ~ B0(Wi)) < 7(-1-243) =0

for any s € spin®(W,41, [so]). Therefore, Fyy, , decreases the absolute
grading, and the statement follows from the fact that o(n+1) = o(n—1).
Let us now consider the map Fyy, ,. For a given s € spin®(W,,_1, 80),
there are two possibilities:
e 5|y, is non-torsion. There is nothing to prove in this case because
no truncation is done on m(Yn,5|Yn).
e 5|y, is torsion. Since by (Y,—1) = 0, the restriction s|aw,, is torsion
and the map oM (Wh,s) has Q—-degree

i (c1(s)? — 2x(Wy,) — 30(Wy,)) = i (0—-2-0) = _%.

The statement follows from the fact that o(n) > o(n — 1) — 1/2.
Finally, consider the map Fyy,. For a given s € spin®(W,,so), there
are again two possibilities:
e 5|y, is non-torsion. Then M(Yn,dyﬂ) = HM™(Yy,,s|y,) and
the statement follows from Part (2) of Definition 5.22.
e 5|y, is torsion. As in the corresponding case for Fyy, ,, the map
HM(W,,s) has Q-degree —1/2, and the statement follows from
the fact that o(n + 1) > o(n) — 1/2.
q.e.d.

Note that, in general, neither €S(N,5) nor €~ (N,5) is exact. We
denote their homology groups by {Hf (N,s)} and {H; (N,s)}, respec-

tively. The absolute Z/2 grading on HM (Yj,[s0]) induces an absolute
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Z/2 grading on these homology groups. The maps f; give rise to invo-
lutions on both €S(N,§) and €~ (N,5). We denote the corresponding
chain maps by ff (N, ) and fi (N, s). We also denote the induced maps
on Hf(N,ﬁ) and Hf(N,ﬁ) by, respectively, ff(N,é)* and ff(N,E)*.
With a slight abuse of language, we will call all of these involutions
covering involutions.

Lemma 5.24. For any j € Z/3, there is an isomorphism
& HE(N,5) — Hj (N, 5)

compatible with the covering involution. The map §; shifts the absolute
Z/2 grading by the same amount as the map Fyy, .

Proof. Treat the exact triangle (27) as a chain complex with trivial
homology. Call this chain complex €. Then we have a short exact
sequence

and the statement follows from the long exact sequence it generates in
homology. q.e.d.

Next, we will show that the chain complex €~ (NV,s) only depends
on the equivalence class of the spin® system S((Lo,L1,L2),80). To
make this statement precise, consider another admissible skein triple
(Ly, L7, LY), and let s, be a self-conjugate spin® structure on Y’ =
$(S3\B'), where B’ is a small ball containing the resolved crossing.
We suppose that there exists an equivalence

S((L07 L17 L2)750) ~ S((L/ ) Lllu L/2)756)

provided by the maps {6;} and {f;} as in Definition 5.9. We write
§' = 0;(s) and choose N’ large enough as to satisfy the conditions of

Definition 5.22. All of the above constructions can be repeated with
(Lg, Ly, LY) in place of (Lo, L1, L2) and (N’,8') in place of (N, ).

Lemma 5.25. There is an isomorphism between the chain complezes
€7 (N,5) and €~ (N',§"). This isomorphism preserves the covering in-
volution, absolute 7./2 grading and the relative Q-grading.

Proof. The chain complex € (N,s) can be explicitly described in

terms of the spin® structures and their Chern classes. For example,
when b;(Y;) = 0, each s € tor-spin®(Yj,s¢) contributes a summand

T (s) = Z[U,U~]/Z[U] to EJ\/J;(N, §), supported in even Z/2 grading.
The smallest Q—degree in this summand is given by
min{a | a € 2Z + p(s), a > N + p(3) + o(j)}.

The covering involution interchanges 7 (s) and 7 (5). We have a similar
description for the chain maps in €~ (N,s). The lemma can now be
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checked using this description and the corresponding description for
C>(N',§). q.e.d.

Corollary 5.26. For each j € 7Z/3, there exists an isomorphism
Hf (N",§") — Hf(N,%) that is compatible with the covering involution
and preserves the absolute Z/2 grading.

Proof. This follows by combining Lemma 5.25 with Lemma 5.24.
q.e.d.

Lemma 5.27. The following identity holds for the Lefschetz numbers
on the truncated monopole Floer homology:

Lef (755 1o (V:5)) + Lef (75, 1(N,8)) — Lef(75 1 (N,5))
=(= 1)1 VO Lef (f5(N.5))
+ (—1)P WD+ 02) Lef(£5(N, 5)) — Lef (f5 (N, 5))
=(= 1)1 YO0 Lef(f§5(N,5).)
+ (~ 1) V0D Lef (£5(N,8)) — Lef(f5(N,8).).
A similar equality holds for (L, LY, LY).

Proof. The first equality should be clear from the definition of f;. The
second equality is based on the following observation: by [38, Proposi-

tion 2.5], the map FV?/]- (N, s) preserves the absolute Z/2 grading if and
only if

1

SOC)) + 0 (W)~ bi(Y5) + B1(Yj41)) =0 (mod 2).

Using Lemma 5.6, it is not difficult to check that this is equivalent to
the condition

by (Wj) +b1(Yj1) =0 (mod 2).
This is exactly when the sign before Lef( ff (N,s)) differs from the sign
before Lef(fS {(N,5)) (see (30)). As a result, this kind of alternating

7+1
sum of the Lefschetz numbers for the chain map equals the correspond-
ing sum for the induced map on homology. q.e.d.

Corollary 5.28. We hawve the following equality of Lefschetz numbers

[50] (N7 g))
N’ §)) — Lef(%z,v%] (N',§")).

Lef (7 0] (V58)) + Lef (75 so](N:5)) — Lef (75,

_ Lef(i—é’[%]( N F)) + Lef(fé[s&](

Proof. This follows from Corollary 5.26 and Lemma 5.27. q.e.d.

As our next step, we will study relations between the Lefschetz num-
bers Lef (75 [50] (N,s)) and the corresponding Lefschetz numbers on the
J

reduced Floer homology.
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Definition 5.29. For any s € sc-spin®(Y}), define the normalized
Lefschetz number Lef®(Yj,s) of the map

red HMred (Y 5) HMred(Y'j ’ 5)

as follows:
o if b1(Y;) =0, we let

Lef®(Y;,5) = Lef(r{<%) + h(Y}, 5).

o if b1(Y;) = 1, recall that (as in Heegaard Floer theory [54, §4.2])
there are two Frgyshov invariants ho(Yj,s) and hq(Y},s) (see the
proof of Lemma 5.30 below). We let

Lef*(Yj, 8) = Lef (135%) + ho(Yj,8) + h1(Yj,5).

Lemma 5.30. For any s € sc-spin®(Y;) and any rational number g,
consider the map

vlqu : @ Ej/wa(ijs) - @ E]/Wa(yjﬁ)-
7 a<q asq
For all sufficiently large q, its Lefschetz number satisfies the equality
(31)  Lef(73%) — 091y — Lef*(Yj,s) + C(b1(Y)), q — p(s)),

where C(b1(Y}),q — p(s)) is constant depending only on bi(Y;) and the
mod 2 reductzon of g — p(s) in Q/2Z.

Proof. Let us assume that b;(Y}) = 1; the case of b1 (Y}) = 0 is similar
(and easier). We have the following (non-canonical) decomposition for

I?]\//[(Ys)'
(QLU, UM/QIUT) anq (v:e) @ (QUU, U1/ QLU -2y (v;6) ® HM ™ (Y}, 5),

with the lower indices indicating the absolute grading of the bottom of
the U—tail. Regarding the absolute Z/2 grading, the first summand is
supported in the even grading while the second summand is supported
in the odd grading. With respect to this decomposition, the map 7y; s
is given by the matrix

1 0 =

0 -1 *

0 0 7
(the action on the second summand is —1 because T{’}j acts as negative
identity on H'(Y;;R); see [37, Theorem 35.1.1]). Therefore, if ¢ is large
enough so that HM red(Yj,s) is supported in degree less than ¢, we
obtain

Lef (75 ) —a—Lef*(Y),5) = [{k € Z7° | =2ho(Y,s) + 2k < q}[—q/2 +
[{k e 27° | —2h(Y,s) + 2k < q}| — ¢/2.
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Clearly, this number only depends on the mod 2 reduction of ¢ +
2ho(Y,s) and g + 2h1(Y,s). To complete the proof, we observe that
p(s) + 2ho(Y,s) € 2Z and p(s) + 2h1(Y,s) € 2Z + 1, which follows di-
rectly from the definition of the absolute grading in monopole Floer
homology. q.e.d.

By setting ¢ = N + o(j) + p(5) and taking the sum of the equalities
(31) over all spin®-structures s € sc-spin(Yj, s9), we obtain the equality

(32)
Lef (755 (1 (IV,5)) > Lef®(Yj}, )

sesc-spin®(Y},s0)

_ obi(¥))-1 |sc-spin®(Yj, 50)| - (N + p(8)) + C,

where C' is a constant depending on b1(Y}), o(j), [sc-spin®(Y}, so)|, and
the mod 2 reduction of p(s) — p(s) for s € sc-spin®(Y7, s¢).

Corollary 5.31. If S((Lo, L1, L2),s0) ~ S((Ly, L}, L)), s() then

D Lef’(Yp,5)+ > Lef°(Yi,s)— ). Lef(Ya,s)

sesc-spin©(Yp,s0) sesc-spin©(Y7,s0) sesc-spin€(Y2,50)
- > Lef®(Y],s) + > Lef° (Y], s)
sesc-spin®(Yy,s() sesc-spin® (Y7 ,s(,)

- > Lef°(Y;, 5)

sesc-spin® (Y7 ,s())
In addition,

(33)

2\T1I—2( D Lef°(Yo,8) + > Lef°(Yi,s) — LefO(Yg,s))

sesc-spin®(Yp) sesc-spin©(Y7) sesc-spin®(Ya)

= C(t(Y),s(Y), (po; ), (p1,q1))-

Proof. Since b1(Y;) = bi(Y)), o(j) = o'(j), |sc-spin®(Yj, s0)|
| sc-spin®(Y], 55) |, and

p(s) —p(3) = p(6(s)) — p(s') (mod 2),

the constant C' in (32) equals the corresponding constant for Y’. Now
we add the equalities (32) for Yy, Y7 and subtract the one for Y. By
comparing the result with the corresponding result for Yj’ and applying
(22) and Corollary 5.28, we finish the proof of the first claim. The
second claim follows easily from (1) and Theorem 5.10. q.e.d.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 5.5. For any ramifiable link L;, it follows from for-
mula (7) for the Murasugi signature that

1 1
(34) QL1 D, Lef(Yj,s) — 3 8(Ls) = x(Ly).
sesc-spin®(Y})
Therefore, (14) follows from (33) and Lemma 3.1. This proves statement
(1) of Theorem 5.5.

The first assertion of statement (2) follows from Lemma 5.2. To
prove the second assertion, suppose that Lo is not ramifiable. Then
72 represents zero elements in both H;(Y;F2) and Hi(Y;Q). We de-
note the resolution data for (Lo, L1, L) by (¢(Y), s(Y), (po, 90), (p1,¢1))-
Then s(Y) = 0 and (p2,¢2) = (0,1), which implies that (p1,q1) =
(—po, —qo — 1). It follows from Lemma 5.2 that (L;, Lo, L2) forms an
admissible skein triangle, and one can check that its resolution data is
(t(Y),s(Y), (po,q0 — 1), (—po, —qo)). The equality (33) now reads

(35)
D Lef°(Yo,8)+ > Lefo(Yi,8)— ). Lef°(Ys)
sesc-spin®(Yp) sesc-spin© (Y1) sesc-spin®(Ya)

= 2ll21=2. C((Y), s(Y), (po, 90 — 1), (—Po, —0)),

where Y stands for the double branched cover of S% with branch set
L;. Subtracting (33) from (35), we obtain

2‘?1'71( S Lef(Tie) - Y Lef(Yi9))

sesc-spin® (Y1) sesc-spin€(Y7)

=C(t(Y),s(Y), (po; q0—1), (=0, —q0)) —C(t(Y), s(Y), (po, 20), (p1, 01))-

Combining this with Lemma 3.1 and (34), we finish the proof of (15)
in the case of n = 2. The proofs of (16) for n = 2, and of both (15)
and (16) for n = 0 and n = 1 are similar. q.e.d.

6. Vanishing of the universal constants

In this section, we will prove that the constants

C(t(Y),5(Y), (po, 90); (p1, 1)) and CF(¢(Y), s(Y), (po, q0) (p1, 1))

in Theorem 5.5 vanish for all resolution data. The cyclic symmetry of
skein triangles will then imply Proposition 2.2 and therefore finish the
proof of Theorem 2.1.

Definition 6.1. A six-tuple (¢, s, (po, o), (p1,4q1)), where t is a posi-
tive integer, s € Z/2, and pj,q; € Z, j = 0,1, is called admissible is the
following four conditions are satisfied:

1) poq1 — p1go = 1,
2) s =0if ¢ is odd,
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3) p2 = —po — p1 is even when s = 0, and g2 = —qp — ¢q1 is even when
s =1.

Lemma 6.2. The resolution data (t(Y),s(Y), (po, o), (p1,q1)) asso-
ciated with an admissible skein triangle (Lo, L1, L2) as in Definition 5./
1s an admissible six-tuple.

Proof. This can be easily verified: (1) corresponds to the requirement
that #(y0 ny1) = —1, (2) follows from the fact that [ is an Fy longitude
when ¢(Y") is odd, and (3) is true because 7, is an Fy longitude by part
(1) of Definition 5.1. g.e.d.

Theorem 6.3. Every admissible siz-tuple (t, s, (po, qo), (p1,q1)) s the
resolution data of an admissible skein triangle. Furthermore,
1) if (pj,q;) # (0,1) for all j € Z/3 then C(t,s, (po,q0), (p1,q1)) = 0,
and

2) if (pj a5) = (0,1) for some j € Z/3 then C}(t, s, (po, q0), (p1,91)) =
0.

Our proof of Theorem 6.3 is inspired by the proof of [57, Theorem
7.5]. The idea is roughly as follows: starting with two-bridge links,
which are alternating and hence have vanishing y, we will generate
sufficiently many examples of Montesinos links with vanishing y to cover
all possible admissible six-tuples. We will then apply Theorem 5.5 to
conclude that the constants in question are all zero.

Proposition 6.4. Theorem 6.3 holds for all admissible siz-tuples
with t = 1.

Proof. Observe that since ¢t = 1 is odd, we automatically have s = 0
by Definition 6.1, so the admissible six-tuples at hand are of the form
(1,0, (po, o), (P1,q1)) With pogi — p1go = 1 and even ps = —po — p1.
Let us consider an unknot in S3 with Y = S! x D? and the standard
boundary framing (m,l) on 0Y, which has ¢t = 1 and s = 0. For
every j € Z/3, the manifold Y; obtained by the p;/q; surgery on the
unknot is a lens space of the form Y; = ¥(L;), where L; is a two-bridge
link. The links l_}j are also two-bridge, and hence alternating. It then
follows from [47, Theorem 1.2] and [17, Lemma 3.4], combined with the
relation cited in Remark 1.1 between the Heegaard Floer and monopole
correction terms that x(L;) = x(L;) = 0. The result will now follow
from Theorem 5.5 as soon as we show that (Lo, L1, L) is an admissible
skein triangle. But the latter is a special case of the more general result
proved below in Lemma 6.6. q.e.d.

To continue, we will introduce some notation. Choose three distinct
circle fibers in S? x S! and remove their disjoint open tubular neighbor-
hoods. The resulting manifold will be called N. The tori T}, j = 1,2, 3,
on the boundary of N have natural framings (x;, h), where h is the circle
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fiber and the curves x1, x2, and x3 co-bound a section of the product
circle bundle.

Denote by QT = Q u {00} the extended set of rational numbers,
with the convention that oo = 1/0. Given three numbers a;/b; € Q%
with co-prime (aj,b;), j = 1,2,3, denote by Y (a1/b1,az/ba,as/b3) the
closed manifold obtained by attaching to IV three solid tori along their
boundaries so that their meridians match the curves ajz;+b;h. A direct
calculation shows that the first homology group of Y (a; /b1, a2/b2, as/bs)
is finite if and only if bjasas + a1boas + ajasbs # 0, in which case

(36) |H1(Y(a1/bl,a2/b2, a3/b3); Z)| = |b1a2a3 + a1b2a3 + a1a2b3|.

A surgery description of Y (ay/b1,as/bs,as/bs) is shown in Figure 3.
Denote by Y (a1/b1,az/ba, ®) the manifold with a single boundary com-
ponent obtained by attaching to N just the first two solid tori.

ai/by as/bs

Figure 3. The manifold Y (a1/b1, as/ba, as/b3).

The 180° rotation with respect to the dotted line in Figure 3 makes
Y (a1 /b1, az/ba, ag/bs) into a double branched cover over S® with branch
set the Montesinos link K (a1/b1, az/b2,as/bs) pictured in Figure 4.

Each of the boxes marked a;/b; in the figure stands for the rational
tangle T'(a;/bj) obtained from a continued fraction decomposition

1
(37) aj/bj:[tl,...,tkj]:tl——

t - -
? 1
127
by applying consecutive twists to neighboring endpoints starting from
two unknotted and unlinked arcs. Our conventions for rational tangles
should be clear from the examples in Figure 5.
We will study skein triangles formed by these Montesinos links. Given

po/qo and p1/q1 € QF with co-prime (po,qo) and (p1,q1), define the
distance between them by the formula

(38) A(po/q0,p1/q1) = |Poq1 — p1qol.
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Figure 4. The Montesinos link K (aj/by,a2/b2,as/bs).
XOT:

3 =[3] —7/3 =[-2,3] 31/7 = [4,-2,3]
Figure 5. Examples of rational tangles.

We will say that three points in Q* form a triangle if the distance
between any two of them is equal to 1. Two triangles T and 15 are
called adjacent if the intersection T7 N Th consists of exactly two points.

Lemma 6.5. For any r,s,t € QT with A(r,s) = 1, there exists a
chain of triangles Sp, Si,...,S, such that r,s € Sy, t € Sp, and S; is
adjacent to S;y1 for alli=0,...,n

Proof. The modular group PSL(2,Z) acts on the set Q1 by linear
fractional transformations

a b (P\ _ ap + bq
c d q cp+dq

This action preserves the distance (38) and hence sends triangles to
triangles. It follows from the general properties of the modular group
(and can also be checked directly) that, for any pair r, s € QT of distance
1, there exists A € PSL(2,Z) such that A-r = 0 and A-s = o0.
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Therefore, we may assume without loss of generality that r = 0 and
s = 0.

Observe that there are exactly two choices for the triangle Sy with
vertices 0 and o0: in one of these triangles, the third vertex is 1, and in
the other —1. Therefore, we will find a chain of triangles Sy, S1,..., 5,
connecting 0 and o to t = p/q as soon as we find a chain of triangles
S1,...,S, connecting 0 and +1 to ¢t = p/q. First suppose that the
triangle Sy has vertices 0, 1, and co. The matrix

i)

sends 0, 1, and p/q into o, 0, and (p — q)/p, respectively, and turns the
problem at hand into the problem of finding a chain of triangles Sy,.. .,
Sy connecting 0 and o to (p — ¢q)/p. This is, of course, the original
problem with ¢t = p/q replaced by t = (p — ¢)/p. Similarly, the matrix

(17)

sends 0, 1, and p/q into 0, oo, and p/(q — p), respectively, thereby re-
placing ¢t = p/q by t = p/(q — p). If the triangle Sy has vertices 0, —1,

and oo, the matrices
11 10
(o) = (1)

can be used to replace t = p/q with t = (p + q)/p and t = p/(p + q),
respectively. In summary, ¢ = p/q can be replaced with any one of
the four fractions (p + ¢q)/q and p/(q = p). One can find a sequence of
such replacements making any ¢ = p/q into t = 1, for which there is an
obvious solution. q.e.d.

Lemma 6.6. For any p, g € Q" and any adjacent triangles {r,s,t}
and {r,s,t'}, one can find a planar projection of the link K(p,q,t) and
a crossing ¢ such that

e the two resolutions of K(p,q,t) at the crossing ¢ are K (p,q,r) and
K(p,q,s), and
e the link K(p,q,t) with the crossing ¢ changed is K(p,q,t").

In particular, each of the sets

{K(p,q,7), K(p,q,8), K(p,q,t)} and {K(p,q,7),K(p,q,s), K(p,q,t')}

forms an admissible skein triangle, possibly after a permutation. For
both skein triangles, the manifold Y with torus boundary is just Y(p, q, e).

Proof. Let B3 be a 3-ball in S® which contains the third rational
tangle in all of the Montesinos links at hand. Identify its boundary 0B>
with the quotient (R?/Z?)/ + 1 of the torus R?/Z? by the hyperelliptic
involution. The standard action of SL(2,Z) on the plane R? induces an
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action of PSL(2,Z) on 0B3 which permutes the points (0,0), (0,1/2),
(1/2,0), and (1/2,1/2). Every A € PSL(2,Z) gives a homeomorphism
A : 0B® — 0B? which extends to a homeomorphism f4 : B> — B3 by
the coning construction, f4 (t-x) =t - A(x). The homeomorphism fy4
sends a rational tangle T'(¢) to a rational tangle T'(A - £ ), which can be
seen by factoring A into a product of Dehn twists

4= ()
o) (o)) o) (o) 6o

using a continued fraction p/q = [t1,...,tx] as in (37). Now, given
r,s € Q% there exists A € PSL(2,Z) such that A-r =0, A-s = w0,
and then necessarily {A -t, A-t'} = {£1}. By the coning construction,
fa extends to the exterior of B3, resulting in a homeomorphism of

3. This homeomorphism turns the original tangle decompositions into
tangle decompositions of the form

K(p,q,7) =T 0 T(0), K(p,q,s) =T u T(0), and
{K(p,q.t), K(p,q,t)} ={T"v T(1), T"v T(-1)},

where T” is a certain tangle in the exterior of B3. The conclusion of the
lemma is now clear. q.e.d.

Proposition 6.7. Suppose the link K(ri,re,13) is ramifiable and
1/r; is an integer or infinity for some j. Then x(K(ri,72,73)) = 0.

Proof. In this case, K (r1,79,73) is a two-bridge link and, in particular,
it is alternating. The result now follows from [47] and [17] as in the
proof of Proposition 6.4. q.e.d.

Proposition 6.8. For any p,q,v € QF, suppose that K(p,q,r) is
ramifiable and Theorem 6.3 holds for all admissible siz-tuples with t =

t(Y(p,q,e)). Then x(K(p,q,7)) = 0.

Proof. Use formula (36) to find a positive integer k such that both
K(p,q,1/k) and K(p,q,1/(k+1)) are ramifiable. It follows from Propo-
sition 6.7 that

X(K(p,q,1/k)) = x(K(p, ¢, 1/(k +1))) = 0.
Since A(1/k,1/(k + 1)) = 1, Lemma 6.5 supplies us with a chain of
triangles So, S1,...,S, such that 1/k,1/(k + 1) € Sy, r € Sy, and S is

adjacent to S;,1 for alli = 0,...,n. We claim that forany m =0,...,n
and s € Sy, such that K(p,q, s) is ramifiable,

X(K(p,q,s)) = 0.

We will proceed by induction on m. First, suppose that m = 0. If
s=1/kor 1/(k + 1), the claim follows from Proposition 6.7; otherwise,
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it follows from Theorem 5.5 (1). Next, suppose that the claim holds for
m and prove it for m + 1. Write S,,+1 = {s,u,v} and suppose that
K(p,q, s) is ramifiable. If s € S, then the claim follows from the in-
duction hypothesis. Otherwise, write S,, = {u,v,w} and consider two
possibilities. One possibility is that both K(p,q,u) and K(p,q,v) are
ramifiable. Then x (K (p,q,u)) = x(K(p,q,v)) = 0 by the induction hy-
pothesis and the vanishing of x (K (p, ¢, s)) follows from Theorem 5.5 (1).
The other possibility is that one of K (p,q,u) and K(p, ¢, v) is not ram-
ifiable. Then by Theorem 5.5 (2), the link K(p,q,w) is ramifiable and
X(K(p,q,s)) = x(K(p,q,w)) = 0 by the induction hypothesis.  q.e.d.

The following lemma will be helpful in computing ¢(Y (n, a/b, e)). It
uses the notation dive(m) = max {c € N | 2¢ divides m}.

Lemma 6.9. For any integer n and co-prime integers a and b with
b1(Y(n,a/b,e)) =1, the integer t(Y (n,a/b,e)) is a divisor of n. In par-
ticular, t(Y (n,a/b,e)) < |n|, with t(Y (n,a/b,e)) = |n| if and only there
exists an integer k such that a = kn and n divides k + b. Furthermore,
if diva(n) # diva(a) then the integer t(Y (n,a/b,e)) is odd.

Proof. We will use the notation Y = Y (n,a/b,e). The homology
group Hi(Y;Z) is generated by the homology classes [z1], [z2], [3],
and [h] subject to the relations

n-lx1]+[h] =0, a-[ze]+b-[h] =0, [z1]+ [z2] + [z3]=0.
One can easily see that the kernel of the map Hy(0Y;Z) — H1(Y;Z) is
generated by the homology class

a+bn _ na (23]
ged(n, a) ged(n,a) 3

and therefore

t(Y)=gcd<a+bn na >

ged(n,a) ” ged(n, a)

To prove the first statement of the lemma, write n = ged(n,a) - n’

and a = ged(n, a) - o' with the relatively prime n’ and a’. Then
t(Y) = ged (o' + bn', ged(n, a) - n'd’).

Note that any prime p that divides the product n’a’ must divide either
n/ or a’ but not both. In either case, p cannot divide a’ + bn’ because a’
and b are relatively prime. Therefore, all the common divisors of a’ + bn/
and ged(n, a)-n'a’ must also be divisors of ged(n, a), which implies that
t(Y) is a divisor of ged(n,a) and hence of n.

If t(Y) = |n|, the integer n must divide ged(n,a) implying that n =
ged(n,a) and a = kn for some integer k. Since n’ = 1 and o’ = k, the
fact that n divides a’ + bn’ is equivalent to saying that n divides k + b.
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Finally, suppose divy(n) # divge(a), then n’a’ must be even. If n' is
even then a’ is odd hence a’ + bn’ must be odd. On the other hand, if
a’ is even then both n’ and b are odd hence o’ + bn’ must still be odd.
In both cases, ¢(Y) is odd because it divides a’ + bn’. q.e.d.

Proposition 6.10. Theorem 6.3 holds for all admissible siz-tuples
with t odd.

Proof. Observe that since t is odd, s must be zero by Definition 6.1.
We will proceed by induction on t. The case ¢ = 1 was proved in
Proposition 6.4. Suppose the statement holds for allodd ¢t = 1,...,2n—
1 and consider links of the form K(2n + 1,—(2n + 1),a/b). An easy
calculation with formula (36) shows that such a link is ramifiable if and
only if a/b # co.

It follows from Lemma 6.9 that (Y (2n+1, e,a/b)) and t(Y (e, —(2n+
1),a/b)) are divisors of 2n+1. We claim that they can not be both 2n+1:
otherwise, by Lemma 6.9 again, there would exist an integer k such that
a = (2n 4+ 1)k and 2n + 1 divides both b + k and b — k, which would
contradict the assumption that a and b are co-prime. Together with
Proposition 6.8 and the induction hypothesis, this claim implies that

X(K2n+1,—(2n+1),a/b)) =0
for any a/b # co. Since t(Y (2n+1, —(2n+1),)) = 2n+1 by Lemma 6.9,

all the constants
C(zn + 17 07 (p07 QO)7 (plv ql)) and C]i(2n + 17 07 (p07 QO)7 (p17 ql))

must vanish by Theorem 5.5. This completes the inductive step and
hence the proof of the proposition. q.e.d.

Proposition 6.11. Suppose that K (n,as/be, as/bs) is ramifiable and
dive(n) # dive(az). Then x(K(n,az/bz,as/bs)) = 0.

Proof. When divg(n) # diva(az), the integer t(K(n,az/bs,)) must
be odd by Lemma 6.9. The result now follows from Proposition 6.10
and Proposition 6.8. q.e.d.

The following simple lemma will be instrumental in completing the
proof of Theorem 6.3.

Lemma 6.12. For any admissible siz-tuple (t, s, (po,qo), (P1,q1)),
C(t7 S, (p()? QO); (p17 Q1)) = C(t7 S, (p07 q0 + kp[))a (p17 q1 + kpl)) and

i \l,$,\P0,40),\P1,41 = i \Uy S, {P0, 40 0), \P1, 41 1))
C5(t,s, (o, q0), (p1,@1)) = C5(t,s, (po, qo + kpo), (1, @1 + kp1))
assuming the constants are defined. Here, k can be any integer when

s =0, and k can be any even integer when s = 1.

Proof. The right hand sides of the equalities in Theorem 5.5 do not
depend on the choice of framing. Therefore, we can replace the framing
(m,1) by (m — kl,1) without changing the corresponding constants (for
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this to be true, k needs to be even when s = 1 so that m — kl is still an
[F longitude). This proves the statement of the lemma. q.e.d.

Proposition 6.13. Theorem 6.3 (1) holds for any t.

Proof. The case of odd t was dealt with in Proposition 6.10 hence we
will focus on the case of ¢ = 2n with positive n. We will consider two
separate cases, those of s = 0 and s = 1.

Let us first suppose that s = 1. It follows from the homological calcu-
lation in the proof of Lemma 6.9 that the Q-longitude [ of the manifold
Y (2n,—2n,e) is xg with divisibility 2n, while its Fy longitude m can
be chosen to be h. We wish to show that C'(2n, 1, (po, ), (p1,q1)) =0
for any admissible six-tuple (2n, 1, (po, qo), (p1,q1)) with non-zero pg, p1,
and py (recall that g2 = —qo —q1 and py = —pg —p1). By Lemma 6.12, it
suffices to show that C'(2n,1, (po,qo + kpo), (p1,q1 + kp1)) = 0 for some
even integer k.

Since m = h and [ = z3, the constant C'(2n, 1, (po, g0 + kpo), (p1,q1 +
kq1)) arises in the admissible skein triangle comprising the links

Lj = K(2n,—2n,(q¢; + kp;)/pj), Jj=0,1,2.

Since ¢ is even by Definition 6.1 (3), the integers qo, q1, and ps must
be odd. Therefore,

diva(gj + kpj) = 0 # diva(2n)

for j = 0,1 and any even k. Using Proposition 6.11, we conclude that
X(Lo) = x(L1) = 0. To show that x(L2) = 0, we just need to find an
even integer k such that

din(qQ + kp2) #* diV2(2n).

This can be done as follows: since ps and 242" +1 are co-prime, there
exists an (obviously even) k such that 242"+ divides go + kps, which
implies that divy (g2 + kp2) > diva(2n). Now that we know that x(L;) =
0 for j = 0,1,2, we use Theorem 5.5 and Lemma 6.12 to conclude that

C(2n) 1) (va QO)7 (pla (I1)) = 0.
Let us now suppose that s = 0. Our argument will be similar to that

in the s = 1 case but with the manifold Y (4n,4n/(2n — 1),e). The
Q-longitude ! of this manifold is —2x3 + h with divisibility 2n, and it
also happens to be its 5 longitude. We set m = x3. As before, for any
admissible six-tuple (2n,0, (po, qo), (p1,¢1)) with non-zero pg, p1, and
p2, we want to show that

C(2n,0, (po, qo0 + kpo), (p1,q1 + kp1)) =0

for some integer k. This constant arises in the admissible skein exact
triangle with the links

Lj = K(4n,4n/(2n — 1), (p; — 2q; — 2kp;)/(q; + kp;)), j=0,1,2.
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Since (2n,0, (po,qo0), (p1,41)) is an admissible six-tuple, py is even and
G2, Po, and p; are odd. Therefore,

dive(pj — 2q; — 2kp;) = 0 # dive(4n)

for j = 0,1 and any k. Using Proposition 6.11, we conclude that x(Lg) =
X(L1) = 0. Now, we wish to find an integer k such that

divy (pQ — 2q0 — Qkpg) # divy (477,)

If po = 0 (mod 4) this is true for any k because divy(p2—2q2—2kps) = 1.
Let us now assume that py = 4¢ + 2. Then py — 2¢g2 — 2kpy = 4(£ + (1 —
¢2)/2 — k(20 +1)). Since 20+ 1 is odd, we can choose k so that 24iv2(47)
divides (¢ + (1 — g2)/2 — k(2¢ + 1)) and therefore

diva(p2 — 2g2 — 2kpe) > dive(4n).

In either case, Proposition 6.11 implies that y(Lz2) = 0 for a properly
chosen k. Theorem 5.5 now completes the proof. q.e.d.

Lemma 6.14. Suppose that n is even and the link K(n,az/bs, az/bs)
is ramifiable. Then

X(K(n, a2/b2, ag/b3)) = 0.

Proof. 1If either as or as is odd, this follows from Proposition 6.11,
hence we will focus on the case of even as and asz. Since ag and bz are
co-prime, there exist integers c3 and dz such that agds — cgbs = 1. By
replacing (cs, ds) by (c3 + kas, ds + kbs) if necessary and using (36), we
may assume that the links

L= K(n, ag/bg,c;;/dg) and L = K(TL, ag/bQ, (03 + 65)/(65 + dg))

are both ramifiable. Since c3 is odd and a3 is even, we have x(L) =
X(L") = 0 by Proposition 6.11. After a cyclic permutation if necessary,
the triple (K (n,az/ba,bs/as), L, L") forms an admissible skein triangle
consisting of three ramifiable links. By Proposition 6.13,

X(K(TL, ag/bg, ag/b3)) =0.
q.e.d.
Proposition 6.15. Theorem 6.3 (2) holds for any t.

Proof. The case that t is odd has been dealt with in Proposition 6.10
so we will assume that t = 2m. By Lemma 6.14, all ramifiable links of
the form K (2m, —2m,p/q) and K (4m,4m/(2m—1),p/q) have vanishing
X- These links cover all possible admissible skein triangles with ¢ = 2m.
Therefore, we can use Theorem 5.5 to conclude that C*(2m, s, (po, qo),
(p1,q1)) equals zero, as long as it is defined. q.e.d.

Proposition 6.13 together with Proposition 6.15 finishes the proof of
Theorem 6.3.
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7. The Seiberg—Witten and Furuta—Ohta invariants of
mapping tori

Let Y be the double branched cover of a knot K in an integral ho-
mology sphere Y’. The manifold Y is a rational homology sphere, which
comes equipped with the covering translation 7 : Y — Y. The mapping
torus of 7 is the smooth 4-manifold X = ([0,1] x Y") /(0,z) ~ (1,7(z))
with the product orientation. We will show in Section 7.1 that X has
the integral homology of S' x S3 and that it has a well defined invari-
ant Apo(X) of the type introduced by Furuta—Ohta [20]. The following
theorem is the main result of this section.

Theorem 7.1. Let A(Y') be the Casson invariant of Y, and sign (K)
the signature of the knot K. Then

1
Aro(X) = 2-AY') + 3 sign (K).
Proof of Theorem C. Applying Theorem 7.1 to the homology sphere
Y’ = 83, we obtain

Aro(X) = sign (K).

On the other hand, using the splitting theorem [44, Theorem A] to-
gether with Theorem A of this paper, we have

1
Asw(X) = — Lef(r) — h(Y,s) = ~3 sign (K)
for the unique spin structure on Y. This completes the proof.  q.e.d.

Theorem 7.1 was proved in [16] and [63] under the assumption that ¥
is an integral homology sphere. Our proof here will rely on the extension
of those techniques to the general case at hand.

7.1. Preliminaries. We begin in this section with some topological
preliminaries, including an extension of the Furuta—Ohta invariant
Aro(X) to a wider class of manifolds than that in the original paper
[20].

The Furuta—Ohta invariant was originally defined in [20] for smooth
4-manifolds X satisfying two conditions, H,(X;Z) = H,(S' x S3;7Z)
and Hy(X;7Z) = H,(S%Z), where X is the universal abelian cover of
X. To fix the signs, one needs to fix an orientation on X as well as
a homology orientation, i.e. a choice of generator of H'(X;Z). The
mapping tori we consider in this section provide examples of manifolds
X which satisfy the first condition but not the second (which can only
be guaranteed if we use rational coefficients). Therefore, we need an
extension of the Furuta—Ohta work to define A\po(X) in this case.

Let X be an arbitrary smooth oriented 4-manifold such that
H.(X;Z) = Hy(S' x 83;7Z) and Hy(X;Q) = H. (53 Q). Let M*(X)
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be the moduli space of irreducible ASD connections in a trivial SU(2)—
bundle £ — X. All such connections are necessarily flat hence we can
identify M™*(X') with the irreducible part of the SU(2)—character variety
of ™1 (X) .

Lemma 7.2. The moduli space M*(X) is compact.

Proof. The spectral sequence argument of Furuta—Ohta [20, Section
4.1] works in our situation with little change to show that the SU(2)
character variety of 71 X has the right Zariski dimension at the reducible
representations, and hence the set of reducibles is a single isolated com-
ponent of the character variety, which is obviously compact. q.e.d.

Given the compactness of M*(X), the definition of the Furuta—Ohta
invariant proceeds exactly as in [20] and [63] giving a well-defined in-
variant

(39) Mo(X) = [#MH(X) € @,

where #M*(X) stands for the count of points in the (possibly per-
turbed) moduli space M*(X) with the signs determined by a choice of
orientation and homology orientation on X.

Remark 7.3. The original definition of App in [20] had a denomi-
nator of 1/2, which was replaced by the 1/4 in equation (39) in [63] to
match the conjectured mod 2 equality with the Rohlin invariant [20,
Conjecture 4.5]. It is not obvious from the definition that the origi-
nal Arpp should even be an integer, although this turns out to be true
[60, Section 5]. On the other hand, Theorem 7.1 makes it clear that
the generalized A\pp invariant defined herein is not an integer, since the
signature of a knot can be an arbitrary even integer. We conjecture
that with the normalization used in this paper, Apo(X) reduces mod
2 to the Rohlin invariant of X, defined as an element of Q/27Z. This
conjecture was confirmed in [63] for the mapping tori of finite order
diffeomorphisms of integral homology spheres, and now the formula of
Theorem 7.1 reduced mod 2 implies that the conjecture is also true for
all of the mapping tori X in Theorem 7.1.

Remark 7.4. A closer examination of the argument in [20, Section
4.1] shows that the following hypotheses would allow for a well-defined
Aro invariant: X has the integral homology of S! x S3 and, for every
non-trivial U(1) representation «, the cohomology H'(X;C,) vanishes.
Examples of such manifolds X may be obtained by surgery on a knot in
5% whose Alexander polynomial has no roots on the unit circle. For in-
stance, the spin of the figure-eight knot in the 3-sphere has this property,
as do the Cappell-Shaneson knots [10]. The latter knots are fibered with
fiber T3, and hence it is not difficult to count the irreducible SU(2) rep-
resentations of 71 (X). For example, one of the Cappell-Shaneson knots
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gives rise to a 3-torus fibration X over the circle with the monodromy

010
011
1 00

and hence has fundamental group with presentation
ﬂ-l(X) = <t,x,y,z ’ [x7y] = 17[y72] = 17 [x,z] = 17
tot™t =y, tyt ™t = yz, t2t T = 2.

A direct calculation shows that, up to conjugation, 71(X) admits a
unique irreducible SU(2) representation given by

_ 2mi/3 —27i/3
= e y

t=3, x , y=z=e

and that this representation gives a non-degenerate point in the instan-
ton moduli space on X. Therefore, the generalized App invariant of
X equals +1/4. On the other hand, the spin structure on the torus
fiber induced from its embedding in X is the group-invariant one [11].
Since the Rohlin invariant of this spin structure equals 1, the generalized
Aro(X) does not reduce mod 2 to the Rohlin invariant of X.

For the rest of Section 7, we will assume that X is the mapping torus
of 7: Y — Y, an involution which exhibits Y as the double branched
cover of an integral homology sphere Y’ with branch set a knot K.

Lemma 7.5. The manifold X has the integral homology of S* x S3.

Proof. Let Ak (t) be the Alexander polynomial of the knot K nor-
malized so that Ag (1) = 1 and Ag(t71) = Ag(t). Then Hi(Y) is a
finite group of order |Ax(—1)| on which 7, acts as minus identity, see
Lemma 5.7 or [31, Theorem 5.5.1]. Since |Ag(—1)| is odd, the fixed
point set of 7, : H1(Y) — H;(Y) must be zero. Now, the natural pro-
jection X — S! gives rise to a locally trivial bundle with fiber Y. The
E? page of its Leray-Serre spectral sequence is

Epy = Hy(S', He(Y)),

where H,4(Y") is the local coefficient system associated with the fiber
bundle. The groups qu vanish for all p > 2 hence the spectral sequence
collapses at its F page. This implies that

Hi(X) = Hi (S, Ho(Y)) @ Ho(S*, H1(Y)) = Z @ Ho(S*, H1(Y)).

The generator of 71 (S') acts on Hy(Y) as 7y : H1(Y) — H1(Y), there-
fore, Ho(S1, H1(Y)) = Fix(74) = 0 and hence H;(X) = Z. Similarly,

Hy(X) = Hi(SY, H,(Y)) @ Ho(S', Ha(Y)) =0

because Fix(7y) = 0 and Hy(Y) = H'(Y) = 0. This completes the
proof. q.e.d.
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Since X = R x Y, where Y is a rational homology sphere, both
conditions Hy(X;7Z) = Hy(S' x §%,Z) and Hy(X;7Z) = H.(S%,Z) are
satisfied, and the invariant Apo(X) is well defined by the formula (39).
To prove that Apo(X) is given by the formula of Theorem 7.1, we need
to analyze the moduli spaces M*(X) that go into its definition.

7.2. Equivariant theory. We will first describe M*(X) in terms of
R(Y), the SU(2) character variety of m1(Y"). To this end, consider the
splitting
R(Y) = {0} u Rap(Y) u Rin(Y),

whose three components consist of the trivial representation and the
conjugacy classes of abelian (that is, non-trivial reducible) and irre-
ducible representations, respectively. Note that 6 is the only central
representation 7;(Y) — SU(2) because Y is a Z/2 homology sphere;
see the proof of Lemma 7.5. This decomposition is preserved by the
map 7 : R(Y) —» R(Y).

Lemma 7.6. The involution 7 acts as the identity on Rap(Y).

Proof. Up to conjugation, any abelian representation m(Y) — SU(2)
can be factored through a representation « : Hi(Y) — U(1), where
U(1) stands for the group of unit complex numbers in SU ( ). Since
the involution 7 acts as minus identity on Hy(Y), we have 7%a = a1,
which is obviously a conjugate of . Moreover, any unit quaternion u
which conjugates a~! to a must belong to j - U(1) because « is not a

central representation. q.e.d.

Let R7(Y) be the fixed point set of the involution 7* acting on
R(Y)N\{0} = Rap(Y) 1 Rie(Y). It follows from the above lemma that

RT(Y) = Rap(Y) 1 Ri(Y).

Proposition 7.7. Let i : Y — X be the inclusion map given by the
formula i(z) = [0,x]. Then the induced map

(40) i M*(X) > R7(Y)
is well defined, and is a one-to-one correspondence over Ra,(Y) and a
two-to-one correspondence over RI (Y.

Proof. The natural projection X — S! is a locally trivial bundle
whose homotopy exact sequence

0 — m(Y) — m(X) Z 0

splits, making 71(X) into a semi-direct product of 71(Y) and Z. Let
t be a generator of Z then every representation A : m(X) — SU(2)
determines and is uniquely determined by the pair (o, u) where u =
A(t) and o = i*A : m(Y) — SU(2) is a representation such that
7*a = uau~'. In particular, the conjugacy class of « is fixed by 7*.
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If & = 0 then A must be reducible, hence « is not in the image of
i*. If « is non-trivial abelian, we can conjugate it to a representation
whose image is in the group of unit complex numbers in SU(2). Then
a is of the form a = i*A with v = A(¢) in the circle j - U(1), as
in the proof of Lemma 7.6. In particular, A is irreducible and u? =
—1. Since any two quaternions in j - U(1) are conjugate to each other
by a unit complex number, the map i* is a one-to-one correspondence
over Rap(Y). Finally, let a be an irreducible representation with the
character in R7(Y"). Then there is a unit quaternion u such that 7*a =
uwaw™!, and therefore v is in the image of i*. Moreover, there are exactly
two different choices of u such that 7*a = uau=! because if ulaul_l =
U2y 1 then u1 = t uo since « is irreducible. The irreducibility of «
also implies that u> = +1. In this case, the map i* is a two-to-one
correspondence. q.e.d.

Remark 7.8. It follows from the above proof that the characters in
M*(X) that are mapped by ¢* to R,p(Y') are binary dihedral, while
those mapped to R7_(Y') are not.

1rr
The Zariski tangent space to R7(Y') at a point [a] € R7(Y) is the
fixed point set of the map 7* : Tj,)R(Y) — TjoyR(Y'). Using an iden-
tification Tj,;R(Y) = H'(Y,ad @) and the fact that 7%« = uou™", this
set can be described in cohomological terms as the fixed point set of the
map

Aduor*: H(Y,ada) — H'(Y,ada).

We will call R™(Y') non-degenerate if the equivariant cohomology groups
H!(Y,ad o) = Fix (Aduo* : H (Y,ada) — H'(Y,ad o))
vanish for all [a] € R7(Y). The moduli space M*(X) is called non-
degenerate if coker(d% @ d¥) = 0 for all [A] € M*(X). Since ind(d* &
d}) = dimM*(X) = 0, this is equivalent to ker(d% @ d}) = 0 and,

since 4 is flat and irreducible, to simply H'(X;ad A) = 0.

Proposition 7.9. The moduli space M*(X) is non-degenerate if and
only if R™(Y') is non-degenerate.

Proof. The group H'(X,ad A) can be computed with the help of the
Leray-Serre spectral sequence of the fibration X — S' with fiber Y.
The Es—page of this spectral sequence is

Y — HP(S, H9(Y, ad ),

where a = i*A and H?(Y, ad o) is the local coefficient system associated
with the fibration. The groups EY? vanish for all p > 2, so the spectral
collapses at the Es—page, and

(41)  HY(X,adA) = HY(S', H'(Y,ada)) @ HO(S', H (Y, ad o).



576 J. LIN, D. RUBERMAN & N. SAVELIEV

The generator of 71 (S!) acts on the cohomology groups H*(Y, ad a) as
Aduor*: H*(Y,ada) > H*(Y,ad «),

where u is such that 7%« = uau™!. If « is irreducible, H(Y,ad o) = 0
and the first summand in (41) vanishes. If « is non-trivial abelian, we
may assume without loss of generality that it takes values in the group
U(1) of unit complex numbers. Then 7*a = uau~! for some u € j-U(1)
and H°(Y,ada) =i - R as a subspace of su(2), with 7* = id. One can
easily check that Ad u acts as minus identity on ¢-R hence the first sum-
mand in (41) again vanishes. The second summand in (41) is the fixed
point set of 7 acting on H'(Y, ad ), which is the equivariant cohomol-
ogy H(Y,ada). Thus we conclude that H'(X,ad A) = H!}(Y,ad ),
which completes the proof. q.e.d.

Let us assume that R7(Y) is non-degenerate. For any [a] € R7(Y),
its orientation will be given by

(_1)sf" (6,)

where sf7 (6, «) is the mod 2 equivariant spectral flow defined in [63,
Section 3.4] for irreducible ar. That definition extends word for word
to abelian « after one resolves the technical issue of the existence of a
constant lift, which we will do next.

Let P be an SU(2) bundle over Y with a fixed trivialization and « an
abelian flat connection in P; we are abusing notations by using the same
symbol for the connection and its holonomy. It follows from Lemma 7.6
that 7 admits a lift 7 : P — P such that 7*a = «. Since « is abelian,
this lift is defined uniquely up to the stabilizer of «, which is a copy of
U(1) in SU(2). The lift 7 can be written in the base-fiber coordinates
as 7(z,y) = (7(z), p(x) - y) for some function p : Y — SU(2). We call it
constant if there exists u € SU(2) such that p(z) = u for all x € SU(2).

Lemma 7.10. By changing o within its gauge equivalence class, one
may assume that 7 is a constant lift with u?® = —1.

Proof. The equation 7*a = « implies that (7?)*a = a hence the
gauge transformation 72 belongs to the stabilizer of the connection .
If x € Fix(7) then 72(z,y) = (z,p(z)? - y) hence p(x)? is a unit com-
plex number independent of x. This implies that p(z) itself is a unit
complex number unless p(x)? = —1. It is this last case that must be
realized because, at the level of holonomy representations, 7*a = a~*
is conjugate to o by an element u € SU(2) with u? = —1; see the proof
of Lemma 7.6. Since p(z)? = —1 describes a single conjugacy class
trp(x) = 0 in SU(2), we may assume that p(z) = u for all z € Fix(7).

To finish the proof, we will follow the argument of [63, Section 2.2].
Let u : P — P be the constant lift u(x,y) = (7(x), u-y) and consider the
SO(3) orbifold bundles P/7 and P/u over the integral homology sphere
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Y’. All such bundles are classified by the holonomy around the singular
set in Y. Since this holonomy equals ad(u) in both cases, the bundles
P/7 and P/u must be isomorphic, with any isomorphism pulling back
to a gauge transformation g : P — P that relates the lifts 7 and wu.
q.e.d.

Proposition 7.11. Assuming that the moduli space R™(Y') is non-
degenerate, the map (40) is orientation preserving.

Proof. The proof from [63, Section 3] extends to the current situation
with no change. q.e.d.

7.3. Orbifold theory. Under the continued non-degeneracy assump-
tion, we will now describe R7(Y") in terms of orbifold representations.
Let us consider the orbifold fundamental group 7} (Y’,K) = m (Y’ —
N(K))/{u?), where p is a meridian of K. This group can be included
into the split orbifold exact sequence

Tx

1 mY (Y, K)

72 1.

Denote by RY (Y’, K; SO(3)) the character variety of irreducible SO(3)
representations of the group 71} (Y’, K), and also introduce the character
variety R7(Y; SO(3)) of irreducible representations m1Y — SO(3).

Proposition 7.12. The pull back of representations via the map s
in the orbifold eract sequence gives rise to a one-to-one correspondence

™ RY (Y, K;S0(3)) — R7(Y;50(3)).

Proof. One can easily see that a representation o : 7} (Y, K) —
SO(3) pulls back to a trivial representation 6 : mY — SO(3) if and
only if o/ is reducible. The same argument as in [16, Proposition 3.3]
shows that all pull-back representations belong to R7 (Y, SO(3)). The
inverse map for 7* is constructed as follows: given [a] € R7 (Y, SO(3))
choose v € SO(3) such that 7*a = vav™!, and define a representation
o of T} (Y, K) = mY x Z/2 by the formula

(42) (g p*) = alg)- "

If « is irreducible, the element v is unique hence formula (42) gives an
inverse map. If o is non-trivial abelian, lift it to a U(1) representation
using the fact that Y is a Z/2 homology sphere. The proof of Lemma 7.6
then tells us that v = Adw for some u € j - U(1). Since any two
elements of j - U(1) are conjugate to each other by a unit complex
number, formula (42) again gives an inverse map. q.e.d.

The representations 7 (Y’, K) — SO(3) need not lift to SU(2) repre-
sentations. However, they lift to projective representations 7} (Y, K) —
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SU(2) sending p? to +1. The character variety of such projective rep-
resentations will be denoted by R" (Y”, K), and it will be oriented using
the orbifold spectral flow.

Proposition 7.13. The correspondence of Proposition 7.12 gives rise
to an orientation preserving correspondence RV (Y, K) — R7(Y') which

is one-to-one over Rap(Y) and two-to-one over R (Y).

Proof. Let us consider the adjoint representation Ad : SU(2) —
SO(3) and the induced maps

RT(Y) > R™(Y;S0(3)) and RY(Y',K)—RY(Y' K;SO(3)).

The first map is a one-to-one correspondence because Y is a Z/2 ho-
mology sphere. The second map is the quotient map by the action of
Z/2 sending the image of the meridian p to its negative. The fixed
points of this action are precisely the binary dihedral projective rep-
resentations o/ : 7} (Y, K) — SU(2). Now, the proof will be fin-
ished as soon as we show that an irreducible projective representation
o 7y (Y',K) — SU(2) is binary dihedral if and only if its pull back
representation 7*a/ : w1 (Y) — SU(2) is abelian.

If 7%/ is abelian, its image belongs to U(1) < SU(2) and the image
of o/ to its Z/2 extension. This extension is the binary dihedral group
U(1) u j-U(1). Conversely, it follows from the orbifold exact sequence
that mY is the commutator subgroup of w1} (Y’, K) therefore, if o is
binary dihedral, the image of 7*a’ must belong to the commutator
subgroup of U(1) u j-U(1), which is of course the group U(1).

Since the orbifold spectral flow matches the equivariant spectral flow
used to orient R7(Y'), the above correspondence is orientation preserv-
ing. q.e.d.

7.4. Perturbations. In this section, we will remove the assumption
that R7(Y') is non-degenerate which we used until now. To accomplish
that, we will switch from the language of representations to the lan-
guage of connections. Let P a trivialized SU(2) bundle over Y. Any
endomorphism 7 : P — P which lifts the involution 7 induces an action
on the space of connections A(Y") by pull back. Since any two such lifts
are related by a gauge transformation, this action defines a well defined
action on the configuration space B(Y) = A(Y)/G(Y'). The fixed point
set of this action will be denoted by B (Y').

The irreducible part of B7(Y') was studied in [63] hence we will only
deal with reducible connections. In fact, we will further restrict our-
selves to constant lifts u with u? = —1 because any flat abelian connec-
tion a admits such a lift; see Lemma 7.10.

Let A*(Y) < A(Y) consist of all non-trivial connections A such that
u*A = A, and G*(Y) < G(Y) of all gauge transformations g such that
gu = ug. The quotient space A*(Y)/G"(Y) will be denoted by B“(Y).
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The following lemma is a key to making the arguments of [63] work in
the case of abelian connections.

Lemma 7.14. The group G*(Y) acts on A“(Y') with the stabilizer
{£1}. Moreover, the natural map B*(Y) — B7(Y) is a two-to-one
correspondence to its image on the irreducible part of B*(Y), and a
one-to-one correspondence on the reducible part.

Proof. For the sake of simplicity, we will assume that reducible con-
nections have their holonomy in the subgroup U(1) of unit complex
numbers in SU(2), and that uw € j-U(1). Let us suppose that g*A = A
for a connection A € A*(Y) and a gauge transformation g € G*(Y).
If A is irreducible, we automatically have ¢ = +1. If A is non-trivial
abelian, then g is a complex number, and the condition ug = gu implies
that g = +1.

To prove the second statement, consider a connection A such that
u*A = A and consider its gauge equivalence class in B7(Y"). It consists
of all connections g*A such that u*g*A = g*A. Since A = u*A, we
immediately conclude that u*¢g*A = g*u™A so that ug and gu differ by
an element in the stabilizer of A. If A is irreducible, its stabilizer consists
of +1 hence ug = +gu. The group of gauge transformations satisfying
this condition contains G“(Y) as a subgroup of index two, which leads
to the desired two-to-one correspondence. If A is non-trivial abelian,
its stabilizer consists of unit complex numbers. Therefore, we can write
ug = c*gu with ¢ € U(1) or, equivalently, ucg = cgu. This provides us
with a gauge transformation cg € G*(Y") such that (cg)*A = A, yielding
the one-to-one correspondence on the reducible part. q.e.d.

With this lemma in place, the proof of Proposition 7.7 can be re-
stated in gauge-theoretic terms as in [63, Proposition 3.1]. The treat-
ment of perturbations in our case is then essentially identical to that
in [16] and [63], one important observation being that the orbifold rep-
resentations o’ that pull back to abelian representations of 7 (Y") are
in fact irreducible. This fact is used in the proof of [16, Lemma 3.8],
which supplies us with sufficiently many admissible perturbations.

7.5. Proof of Theorem 7.1. The outcome of Section 7.2 and Sec-
tion 7.3 is that, perhaps after perturbing as in Section 7.4, we have two
orientation preserving correspondences,

M*(X) — RT(Y) «— RY(Y' K),

both of which are one-to-one over R,,(Y) and two-to-one over R (V)
(we omit perturbations in our notations). These correspondences give
rise to an orientation preserving one-to-one correspondence between
M*(X) and RV (Y’, K). The proof of Theorem A will be complete
after we express the signed count of points in R" (Y”’, K) in terms of the

Casson invariant of Y/ and the knot signature of K.
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The character variety RY (Y’, K) of projective representations o’ splits
into two components corresponding to whether the square of o'(u)
equals +1 or —1. Let E be the exterior of the knot K then this splitting
corresponds to the splitting

RV(Y',K) = Sy(E,SU(2)) u S12(E,85U(2)) u S1(E,S5U(2))
of [16, Proposition 3.4], where S,(F, SU(2)) comprises the conjugacy

classes of representations 7y : m X — SU(2) such that try(u) =2 cos(27a).
According to Herald [25], the signed count of points in

equals 4-\(Y"), while the signed count of points in Sy (£, SU(2)) equals
4-\(Y")+1/2 sign (K). Adding up the two counts and dividing by four
we obtain the desired formula

Aro(X) = 2-A(Y) + ésign(K).

8. Strongly non-extendable involutions and Akbulut corks

A cork is a pair (W, 7) which consists of a smooth compact con-
tractible 4-manifold W and an involution 7 on its boundary that does
not extend to a self-diffeomorphism of W. Sometimes the definition of
a cork includes the hypothesis that W have a Stein structure (see for
instance [2, Definition 10.3]) but we do not require this.

8.1. Strongly non-extendable involutions. Figure 6 (a) shows the
cork constructed by Akbulut [1], and Figure 6 (b) shows the involution
7 on its boundary. This cork will be called W7, and its boundary Y;.

T

0 Q 0

2
Q

(a) (b)

Figure 6. Akbulut cork W and the involution on Y; = 0W7.
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Theorem 8.1. The involution T : Y1 — Y7 does not extend to a
diffeomorphism of any smooth 7/2 homology 4-ball bounded by Y;.

The proof of Theorem 8.1 makes use of a gluing theorem for Seiberg—
Witten invariants, which we briefly summarize. Let (X, s) be a smooth
closed oriented 4-manifold with a spin® structure s and b (X) > 1.
Suppose that X is decomposed as X = X; U Xo with by (X2) > 1. Let
Y be the oriented boundary of X; and consider two cobordisms, M;
from S to Y and M, from Y to S3, obtained by removing open 4-balls
from X7 and Xo, respectively. Let s; be the induced spin® structures on
M;, i = 1,2, and sg the induced spin® structure on Y. Then we have
two maps in monopole homology,

HM,(My,s): HM(S*) — HM,(Y,s)) and
HM" (Ms,s5) : HM (S%) — HM (Y, s0).

Denote by 1 and 1 the canonical generators of ﬁ]\//[*(S?’) and @*(53).
The gluing theorem expresses the Seiberg—Witten invariant of (X, s) as
follows.

Proposition 8.2. Suppose that Y is a rational homology sphere.
Then

(43) SW(X,s) = ( HM (M, s1)(1), HM" (M>, s5)(1)).

Formula (43) is a slight strengthening of the formula that appears just
before [37, Definition 3.6.3], in that (43) holds for each spin® structure
separately, rather than for the sum over the spin® structures on X, as
would be the case for b;(Y) > 0. Our strengthened formula follows
from the remark on [37, page 569] following the proof of Proposition
27.4.1. (Separating the spin® structures can also be achieved using local
coefficients as in [37, Section 3.7-3.8], but we do not need this in our
situation.)

The following simple algebraic lemma is presumably well-known.

Lemma 8.3. Let A be a 2 x 2 matriz with A?> = I and tr(A) = —2.
Then A = —1I, where I stands for the identity matrix.

Proof. By the Cayley-Hamilton theorem, we have that A? — tr(A) -
A+ det(A) - I = 0, where det(4) = +1. If det(A) = —1, we obtain
tr(A)-A = 0, which contradicts the invertibility of A. Hence det(A4) = 1,
which implies that A = —1. q.e.d.

Proof of Theorem 8.1. We will omit the spin® structure sg from our no-
tations. We claim first that the action of 7, on HM™(Y}) is minus the
identity. To prove this, we will combine our Theorem A with a Hee-
gaard Floer homology calculation by Akbulut and Durusoy [3]. They
work with a picture that is the mirror image of Figure 6 (a) and show
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that HF*(=Y1) = Ty ® Zy ® Z(o), where the first summand is a
tower Z[U, U~1]/U - Z[U] with the lowest degree in grading 0. It follows
that HF™(=Y1) = Z¢) ® Zg) and HF™ (Y1) = Z @ Z, with both
summands of odd grading (with respect to the absolute Z/2 grading).
The parity can be checked using the formula

AMY) = X(HF™(Y)) = 1/2-d(Y)
of [54, Theorem 1.3], where A(Y') is the Casson invariant of Y. Since
A(Y1) = =2, see for instance [65], and d(Y7) = 0, both summands in

HF™4(Y]) must have odd grading. We translate this computation into
the monopole homology, keeping in mind the isomorphisms

(44)  HMy(Y) = (HM_,_o(-Y))* = (HF*,_ (-Y))*.

The grading shift for the first ‘duality’ isomorphism is [37, Proposition
28.3.4], while the second equality of the absolute Q-gradings is deduced
from [59, 27, 21].

Now, the involution 7 makes Y7 into a double branched cover of the 3-
sphere with branch set a knot K1 = S3. As described in [60] and drawn
in Figure 7, the knot K is obtained from the left-handed (5, 6)-torus
knot on six strings by adding one full left-handed twist on two adjacent
strings. In particular, the signature of K; is 16. Using Theorem A, we
compute

1
tr(1y) = — Lef(1) = ~3 sign(Ki) = —2
and, using Lemma 8.3, conclude that
(45) Te = —1 : HF oq(Y1) > HF0q(Y1).

In order to compute the action of 7 on HM (Y1), consider the short
exact sequence in monopole homology

0 —— HM™(Y;,) —— HM_ (Y1) —L— HM_5(Y;) —— 0.

Since HM™4(Y) =~ Z @ Z and HM _(Y;) = Z, the group .ﬁ]\\f,l(Yl)
must be free of rank 3. We define a splitting HM _5(Y7) — ﬁ]\\/[,l(Yl)
of this short exact sequence by sending the canonical generator 1 €
HM _5(Y1) to the element ey = ﬁ]\\i*(Ml,sl)(i) € ﬁl\\i_l(Yl) as
above, where M is obtained from W7 by removing an open 4-ball. Using
the fact that H M (M, s1) maps the canonical generator of HM _5(S3)
to that of HM _5(Y7), we see that f(ey) = 1.

For any choice of free generators {eg,e;} of HM™(Y;) we have a

set of free generators {eg, ey, e} of HM —1(Y7). The action of 7, on
HM _1(Y7) is then given by a matrix of the form
-1 0 p
(46) 0 -1 ¢
0 01
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Figure 7.

with some unknown integers p and ¢. In what follows, we will extract
some information about p and ¢ from the fact that a cork twist on W3
changes the Seiberg—Witten invariant of a certain closed 4-manifold.

There is an embedding [22, Figure 9.5] (see also [1]) of W7 into the
blown up K3-surface, X = K3 # CP?, such that the cork twist results
in the manifold

XT = W1 Ur (X — int(Wl))

with the trivial Seiberg—Witten invariant. On the other hand, the
blowup formula for Seiberg—Witten invariants [19] implies that the
Seiberg—Witten invariant of X equals 1 for the spin® structure s whose
first Chern class is the generator of H2(CP?). Since Y; is an integral
homology sphere, there is an obvious correspondence, s <> s7, between
spin® structures on X and X7. Using the gluing formula (43) with
X1 =Wj and X5 = X — int(WW7), we obtain

—)M *

SW(X,s) = (HM (My,51)(1), HM " (Mz,52)(1)) =1 and
SW(XT,57) = (r(HM (M, 51) (1)), HM " (Ma, s5)(1)) = 0.
If we write HM " (Ma, 59)(1) = aef + bef + cefy, with respect to the dual
basis of H M _I(Yl), the above formulas reduce to

SW(X,s) =c=1 and SW(X7,s") =ap+bg+c=0,
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implying that ap+ bg+ 1 = 0 and, in particular, that the integers p and
q are co-prime. Therefore, by a change of basis {eg, e1}, we can turn the
matrix (46) of the involution 7 into

A=

O O =
|
O = O
— = O

Now, suppose that Y7 bounds another smooth Z/2-homology 4-ball
W'. W' has a unique spin structure sy, which must be preserved
by any diffeomorphism. By studying the spin manifold (W', sy/), one
defines the element ey € HM —1(Y7) by the same procedure as eyy. As
before, f(ey) = 1. Suppose that 7 extends to a diffeomorphism on W’.
Then, by naturality of monopole Floer homology, one must have

™ (ewr) = ewr.

But since the kernel of A— I is generated by the vector (0, 1,2), we have
ewr = (0, ¢, 2c) for some integer c. In particular, f(ey) = 2c¢ is an even
integer, which contradicts f(ey) = 1. q.e.d.

Remark 8.4. We can prove the same non-extension result for other
involutions on homology spheres, even those that are not the boundaries
of contractible manifolds. For example, an extension [53] of Taubes’ re-
sult [67] (plus the fact [18] that 3(2,3,7) bounds a spin manifold with
intersection form Eg@H ) implies that the homology sphere (2,3, 7) #—
¥(2,3,7) does not bound a smooth contractible manifold. On the other
hand, we can construct an involution on this manifold as follows. View
¥(2,3,7) as the link of a singularity,

5(2,3,7) = {(x,9,2) e C |2+ + 27 = 0, |« + |y|* + |2 = 1},
and consider the involutions 7y and 71 acting on ¥(2, 3, 7) by the formula
(47) 70(907% Z) = (_xayv Z) and Tl<$>yaz) = (.Cl_f,y, 2)

Let 7 denote the map on HM™4(%(2,3,7);Q) = Q induced by T,
i = 0,1. The involution 7y is isotopic to the identity hence 77 is the
identity; the action of 7{* is computed in Section 10 below as negative
one. Suppose T = To#71 extends as a diffeomorphism on some Z/2
homology ball with boundary ¥(2,3,7) #—3(2,3,7). Adding a 3-handle
results in a Z/2 homology cobordism W from ¥(2,3,7) to itself that
admits a self-diffeomorphism restricting to 79 and 7 on its two boundary
components. By functoriality of monopole Floer homology, W induces
trivial map on HM*™4(X(2,3,7)). This contradicts the splitting formula
for Agw [44, Theorem A] and the fact that it reduces mod 2 to the
Rohlin invariant [50, Theorem A].
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8.2. Constructing corks. Starting with the cork Wi, one can con-
struct a number of other corks by the method we describe in this sub-
section. Recall that the involution 7 : W7 — 0W; makes 0W; into a
double branched cover ¥(K7) of the 3-sphere with branch set the knot
K c 83 shown in Figure 7. Let K be an arbitrary knot in S smoothly
concordant to Kj. The double branched cover of I x S3 with branch set
the concordance is a Z/2 homology cobordism Uk from oW, = 3(K;)
to ¥(K). The manifold

Wy = Wi vew, Uk

is a smooth Z/2 homology 4-ball with the natural involution 7x : 0Wx —
0Wp on its boundary given by the covering translation.

Corollary 8.5. The involution i can be extended to Wi as a home-
omorphism but not as a diffeomorphism. Moreover, if 71 (Uk) is nor-
mally generated by the image of w1 (0W71) then the manifold Wi is con-
tractible and therefore (W, Tr) is a cork.

Proof. The involution 7x extends as a homeomorphism because 7
does. To prove that 7 does not extend as a diffeomorphism, consider
the Z/2 homology ball

W = Wk s (—Uk)

with boundary Y, where —Ug denotes Ug with reversed orientation.
Suppose Ti extends as a diffeomorphism on Wg. By gluing this dif-
feomorphism with the covering translation on —Ug, we obtain a diffeo-
morphism on W that extends the involution 7 on its boundary. This
contradicts Theorem 8.1. q.e.d.

Examples of knots K which are concordant to K; and, at the same
time, satisfy the condition of Corollary 8.5 can be constructed using
the technique of infection [12]. Choose a knot 7 in the complement
of K7 that is unknotted in S and has even linking number with K;.
Let J be any slice knot in S3. Denote by v(n) and v(J) open tubular
neighborhoods of the two knots. Then

(8% —v(m) v (8% = v(J))

is diffeomorphic to S2, provided we glue the meridian of J to the lon-
gitude of 7, and vice versa. Under this diffeomorphism, the knot K;
becomes a new knot, K(J,7n).

One can similarly ‘infect’ the product concordance from K; to itself
by removing I x v(n) from I x S% and gluing in the exterior of a concor-
dance C = I x S3 from the unknot to J; see Gordon [23]. This gives a
concordance C(J,n) from Ki to K(J,n). Writing U, for the double
branched cover of I x S3 with branch set C(.J,7), we claim that U K(Jm)
is a Z/2 homology cobordism from 0W; = ¥X(K;) to X(K(J,n)) whose
fundamental group is normally generated by m (X(K7)).
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To see this, note that by the assumption on the linking number, the
preimage of the cylinder I x 1 in I x X(K7) consists of two cylinders,
I x m; and I x 2. Therefore,

Uk () =((I x 2(K1)) = (I x v(m)) — (I x v(1n2)))
U (I x 8% —v(C)) u ((Ix8%—v().

In this identification, the longitude for each copy of C' is glued to the
corresponding meridian of 71 or 72. Since the bottom of C' is an unknot,
this means that the group 7r1(UK( Jm)), computed via van Kampen’s
theorem, is normally generated by 71 (3(K7)) and two copies of 71 ((I x
S$3) —v(C)). But the meridians of the two copies of C', which normally
generate 71 ((IxS%)—v(C)), are the longitudes of I xn; and I xn,. Since
these are in m(X(K7)), it follows that 71 (X(K7)) normally generates
T (UK (4m))-

One can also construct concordances to which Corollary 8.5 would
apply by replacing a tangle in K; with one that is concordant to it;
see Kirby-Lickorish [34] and Bleiler [8]. As we mentioned in the in-
troduction, the corks are usually detected with the help of an effective
embedding. A good example illustrating this point would be the corks
constructed in [5] using a similar trick with invertible homology cobor-
disms. However, this is not how the corks in Corollary 8.5 are detected:
there does not seem to exist an obvious effective embedding that would
help detect them.

8.3. A re-gluing formula. The above calculation of the induced ac-
tion of 7 on monopole Floer homology allows us to determine the effect
of cutting and gluing along the homology sphere Y7 via 7 in a more
general situation.

Theorem 8.6. Let Y1 be the manifold with involution T shown in
Figure 6 (b), and X a smooth closed oriented 4-manifold with b (X) > 1
decomposed as X = X1 U Xo with bj (X3) > 1 and 0Xy =Yy, Let X™
be the manifold obtained by cutting X open along Y1 and regluing using
7. Then

SW(X,s) = (1) 0+ (X) gy (X7 7).

Proof of Theorem 8.6. We wish to apply the gluing formula of Sec-
tion 8.1 to Y = —Y] (note that the orientation convention for Y; in
the above theorem is opposite of that in Section 8.1). The key to doing
that are the following two observations:

(1) Write M; = X; — int(B*) then the absolute Z/2 grading of M
(My,51)(1) is equal to by(X1) + b3 (X1) + 1 (mod 2).

(2) The isomorphisms (44) and the formula (45) imply that 7* acts as
identity on HM odd(—Y1) and minus identity on HM even(—Y1) =
HMred(_Yl)‘
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Now, if by (X2) > 1, the result follows from Proposition 8.2. If b5 (X3) =
1 then both manifolds X; and X5 in the splitting X = X; u X5 have
positive b and the result follows from the pairing formula [37, Equation
3.22]. q.e.d.

Corollary 8.7. In the situation of Theorem 8.6, twisting the man-
ifold X along Y1 via the involution T can only kill the Seiberg—Witten
mwvariant of X when the piece bounded by Y1 is negative definite.

In particular, if X1 = —W7, the cork twist cannot change the Seiberg—
Witten invariant of X. This is perhaps more readily seen via the blow-
up formula for the Seiberg—Witten invariants, using the fact (which is
implicit in [4]) that the cork twist extends over W # CP2.

9. Knot concordance and Khovanov homology thin knots

In this section, we prove the results in Section 1.2.3 from the intro-
duction. We start with the following lemma, which is presumably well
known.

Lemma 9.1. Let L be a ramifiable link in the 3-sphere that is Kho-
vanov homology thin over Fy. Then (L) is a monopole L-space over
the rationals, that s,

HM™(S(L); Q) = 0.
Proof. Let us fix an orientation on the link L. According to Bloom

[9], there is a spectral sequence whose Fo page is Kh (L;Fy) and which
converges to HM (—X(L);F2) (we refer to [9, Section 8] for the definition
of this tilde-version of monopole Floer homology). In particular, this
implies that

(48) dims, (Kh (L;F»)) > dimg, (HM(=3(L); F2)).

Recall from [32] that the reduced Khovanov cohomology categorifies

the Jones polynomial Jy. Together with the Khovanov homology thin
condition, this implies that

(49) dimg, (KT (L F2)) = |J(=1)| = |H)(S(L); 2)].
Combining (48) and (49) with the universal coefficient theorem, we ob-
tain
(50)
[H\(S(L);Z)| > dimp, (HM(=S(L);F2)) > dimg(HM(-%(L); Q)).
By the definition of HM , one has
dimg(HM (—=X(L),s;Q)) > 1
for any spin® structure s, with equality holding if and only if
HM™(=%(L),s;Q) = 0.
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Therefore, (50) implies that —X(L) is a monopole L-space over the
rationals. By the duality in the reduced monopole homology, (L) is a
monopole L—space over the rationals as well. q.e.d.

Proof of Corollary E. This is a direct consequence of Lemma 9.1 and
Theorem A. q.e.d.

Proof of Corollary F. In the case of a knot K, the Murasugi signature
of K equals its usual signature, and the double branch cover ¥(K) has a
unique spin structure. Therefore, Theorem A reduces to the statement
that

L(K) = go(K) = h(S(K)),

where o(K) and h(3(K)) are additive concordance invariants. This
makes L(K) into an additive concordance invariant. This invariant is
non-trivial: for example, if K is the right handed (3,7)-torus knot,
o(K) =—-8and h(X(K)) = h(X(2,3,7)) =0, hence L(K) = —1. q.e.d.

Proof of Corollary G. This is immediate from Corollary F. q.e.d.

10. Monopole contact invariant

In this section we will prove Theorem H. Consider the Brieskorn ho-
mology sphere Y = 3(2,3,7), along with the involution 7 (z,y,z) =
(%, 9, Z) described in Remark 8.4. We give Y the canonical orientation
as a link of singularity. By combining the calculation of Heegaard Floer
homology in [58] with the identification between Heegaard Floer and
monopole Floer homology, we obtain

HM(Y;Z) = HF*(Y;Z) = Ti) ® Z_1)
and .
HM™\(Y) = HM(_(Y;Z) = Z_y).

To determine the induced action of 7 on HM™(Y) we will use the
fact that 7 makes Y into a double branched cover of the 3-sphere with
branch set the (2, —3, —7) pretzel knot K, pictured as the Montesinos
knot K(2,—3,—7) in Figure 4. Either by a direct calculation, or by
using the formula of [66, Section 7] for the knot signature in terms of
the fi—invariant, we obtain

o(K) =8n(%(2,3,7) = 8.
Theorem A then tells us that

Lef(rs) = %U(K) ) = 1

and therefore 7, : HM™4(Y) — HM™(Y) is negative identity.
According to [69] (see also [49, Theorem 1.6]), the manifold —Y
admits a unique (up to isotopy) tight contact structure £, which is Stein
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fillable and has Gompf invariant § = 2. By applying the involution 7,
we obtain another contact structure 7*(&). Since 7*(§) is also tight, it
must be isotopic to &.

Now, suppose there is a canonical choice of the contact element
Y(-Y,€) € I\{]\//[(Y;Z). This element is non-zero and it is supported
in degree —(6 4+ 2)/4 = —1. Since 7, acts as negative identity on

—_—

HM™\(Y) = HM (_y)(Y;Z), we have

P(=Y,€) # — (=Y, &) = T (h(=Y,€)) = (=Y, 7:(€)).

However, this contradicts the naturality of the contact invariant because
7+(§) and & are isotopic.
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