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ABSTRACT
Radial distribution functions (RDFs) are widely used in molecular simulation and beyond. Most approaches to computing RDFs require
assembling a histogram over inter-particle separation distances. In turn, these histograms require a specific (and generally arbitrary) choice of
discretization for bins. We demonstrate that this arbitrary choice for binning can lead to significant and spurious phenomena in several com-
monplace molecular-simulation analyses that make use of RDFs, such as identifying phase boundaries and generating excess entropy scaling
relationships. We show that a straightforward approach (which we term Kernel-Averaging Method to Eliminate Length-Of-Bin Effects) mit-
igates these issues. This approach is based on systematic and mass-conserving mollification of RDFs using a Gaussian kernel. This technique
has several advantages compared to existing methods, including being useful for cases where the original particle kinematic data have not been
retained, and the only available data are the RDFs themselves. We also discuss the optimal implementation of this approach in the context of
several application areas.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138068

I. INTRODUCTION

In any system consisting of discrete particles with known posi-
tions, there can be tremendous utility in knowing the probability
distribution for inter-particle separation distances. This fact is well-
known to practitioners of molecular simulation, who typically store
this information within the radial distribution function (RDF),1–3

but closely related ideas are frequently used in fields as far-ranging
as granular and colloidal mechanics,4 atmospheric science,5 astron-
omy and cosmology,6 animal behavior,7 pedestrian mobility,8,9 and
urban systems modeling.10

A very typical approach to estimating this probability dis-
tribution from particle trajectory data involves histogramming.
In particular, inter-particle separation distances are computed
for all pairs of particles in the system, and these distances are

then organized in a histogram ranging from a separation distance
of zero to a maximum separation distance, rmax. In some cases, a
normalization convention is subsequently applied (as is the case for
the RDF, for which convention dictates that the RDF approaches
unity at large separation distances). All such histograms necessar-
ily require the introduction of an arbitrary length-scale, �r, which
is used to convert a continuous variable (the inter-particle sepa-
ration distance) into a discrete variable amenable to binning. For
the purposes of acronym facilitation, we refer to �r, in this work,
as the “length of bin” (this quantity also frequently goes by the
name, “bin width”). It is natural to wonder whether this arbitrary
choice of length-scale can introduce spurious length-of-bin effects.
As we show throughout Sec. IV, there are indeed many molecular
simulation analysis tools with a sensitive dependence on the length
of bin.
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In this manuscript, we address the following questions: “To
what extent does the choice of length of bin affect several com-
monplace modeling and analysis procedures used in molecular
simulation?” and “Given an existing RDF, constructed with some
choice of �r, how can we reduce or even eliminate these length-
of-bin effects?” In a data-enthusiastic age, such questions take on
outsize importance for the practice of molecular simulation as they
impact optimal practices for on-the-fly storage and analysis of data,
comparison against molecular simulation datasets generated in the
past (often with the underlying kinematic data inaccessible or never
stored in the first place), and post-processing and analysis of new
datasets, including and especially for the purpose of using modern
data-driven methods.

Several approaches have been proposed to mitigate spurious
effects associated with arbitrary choices of the length of bin, which
we broadly categorize into four (largely but not entirely disjoint)
sets:

1. Averaging over multiple snapshots of the system: This is the
most straightforward option available to a molecular simula-
tion practitioner and is almost certainly the most widely used
approach to generate smooth RDFs. This approach has two
critical shortcomings, relative to the methods discussed below:
(1) Despite well-characterized scalings for statistical error in
particle-based simulations as a function of thermodynamic
and/or hydrodynamic conditions,11 it is essentially impossi-
ble, in practice, to predict a priori the number of snapshots
needed to achieve an “acceptable” level of smoothness in the
RDF (we leave the discussion of what “acceptable” means in
the first place to Sec. IV). As a consequence, in practice, one
must always collect a conservatively large number of snap-
shots in order to produce a smooth RDF via such averaging,
a pronounced burden if each timestep of the simulation car-
ries significant cost (as is the case, e.g., with ab initio molecular
dynamics) or if the system features especially long time-scales
for spatial decorrelation.12 Moreover, this approach is a non-
starter for historical datasets in the literature, for which it
may be difficult (or impossible) to obtain additional snap-
shots of the system under study, due to a variety of practical
constraints. (2) Averaging is altogether untenable for any
application that requires on-the-fly estimates (however coarse)
of the RDF, as might be the case for a molecular simulation
integrated into a workflow with feedback control.

2. Augmenting the spatial configuration data: This family of
approaches, unlike the one above, leverages additional data
and identities from statistical physics—in particular, related to
inter-particle forces13–15—as a strategy for reducing variance
in the RDF. These techniques, including techniques devel-
oped explicitly within the framework of control variates,16–18

are particularly promising in terms of efficient utilization of
molecular simulation data. However, just as above, these tech-
niques cannot readily be used with historical datasets if the
forces were not originally retained; it is worth emphasizing
that it was not broadly appreciated until recently that force
data might be useful for improving estimates of the RDF.
Moreover, although the framework of control variates is suffi-
ciently general that this family of approaches might potentially
be extensible beyond molecular simulation, at present, there

are no extensions of this idea to athermal systems, for which
there may be a complex relationship between inter-particle
forces and the RDF not dictated by equilibrium statistical
mechanics.

3. Fitting a smooth function to the data: This broad idea can
take an enormous number of forms. In the simplest sense,
this can entail fitting the RDF data with a (sufficiently high-
order) polynomial (see, e.g., Ref. 3) or a composition of
a large number of functions with physically or empirically
motivated functional forms (see, e.g., Ref. 19 for an early
example of this approach, Ref. 20 for an example using a
generic set of orthogonal basis functions, or Refs. 21 and 22
for recent machine-learning-inspired implementations of this
idea). This problem has also been tackled by fitting smooth
functions to the empirically observed cumulative distribu-
tion function,23,24 sidestepping issues related to sampling error
sensitivity for the probability density itself. A core challenge
with all of these approaches, as noted by Allen and Tildes-
ley,3 is that a suitable choice for the form of this function (or
set of basis functions) must be chosen carefully. Without a
priori knowledge of the general shape of the RDF for a par-
ticular material at a particular point on its phase diagram, it
can be challenging to select a suitable form, and it may require
a substantial number of terms to reasonably approximate the
RDF.

4. Mollifying the RDF data itself: One can also make use of a
variety of smoothing techniques, which can directly operate
on the RDF data, to reduce length-of-bin effects. A (non-
exhaustive) list of techniques includes nearest-neighbor aver-
ages, window averages, and Gaussian kernel smoothing; we
refer the interested reader to a more complete accounting in
Ref. 25. Such techniques avoid the shortcomings discussed
above; in particular, they can be used to analyze any his-
torical dataset that contains the RDF, can be used on the
fly, can be readily extended to athermal systems, and do
not require any prior assumptions about suitable basis func-
tions. The technique described in this manuscript takes this
approach and goes beyond any existing technique for three
primary reasons: (1) this mollification technique explicitly
accounts for the radial Jacobian factor in the RDF (as was
done in Ref. 24, which describes a smooth-function-fitting
approach); (2) the method is specifically calibrated and tested
to reduce length-of-bin effects for multiple end-use applica-
tions involving the RDF instead of being optimal for a single
application (as done, e.g., in Refs. 26 and 27); and (3) unlike
the approach in Refs. 26 and 27, this method can function
exclusively as a post-processing technique acting on the RDF
and the RDF alone (it does not require access to the under-
lying particle positions, or the additional storage and com-
putational costs associated with retaining and reprocessing
the particle positions).

II. METHODOLOGY
A. Molecular-dynamics (MD) simulations

Throughout this work, we consider a bulk system of fluid
atoms with mass mLJ, number density ρ, and average temperature
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T (situated within a cubic domain, with periodic boundary condi-
tions applied in all three dimensions). Fluid atoms interact via the
Lennard–Jones (LJ) potential,

uLJ(r) = 4εLJ��σLJ

r
�12 − �σLJ

r
�6�, (1)

where uLJ(r) is the interaction energy of two particles sepa-
rated by a distance r, and εLJ and σLJ are energy- and length-
scales for the LJ potential, respectively. In all discussions that
follow, all quantities are non-dimensionalized against the length-
scale σLJ, energy-scale εLJ, mass-scale mLJ, time-scale

�
mLJσ2

LJ�εLJ,

density-scale mLJ�σ3
LJ, diffusivity-scale σ2

LJ��mLJσ2
LJ�εLJ, entropy-

scale kB, and temperature-scale εLJ�kB, where kB is the Boltzmann
constant.

Simulations are performed with the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)28 code using a
timestep of 2 × 10−3. All systems contain N = 2000 fluid atoms. Sys-
tems are initially run for a time of 200 in the NVT ensemble using
the Langevin thermostat29 to reach the desired temperature T; the
desired temperatures studied herein span 0.9 ≤ T ≤ 3. To vary the
density ρ, the side length of the simulation box is varied within 13 ≤
L ≤ 15, corresponding to densities in the range 0.59 ≤ ρ ≤ 0.91. A
total of 70 combinations of T and ρ are studied. All of the observables
discussed below are subsequently sampled over a data collection
period of 200 in the NVE ensemble.

● Radial distribution function: We compute the RDF for our
(isotropic) systems as g(r) = �N(r+�r�2)−N(r−�r�2)

4πr2ρ�r �, where
the angle brackets indicate an average computed over all par-
ticles serving as the reference particle, and N(r + �r�2) −
N(r − �r�2) is the number of particles whose spatial loca-
tions are between r − �r�2 and r + �r�2 removed from
the reference particle, and ρ is the fluid density. For each
simulation, several lengths of bin �r were considered.● Coefficient of self-diffusion: We measure the mean-squared
displacement as ��r(t) − r(0)�2�, where r is the position

vector of a reference particle, t denotes the length of the mea-
surement window, and, again, the angle brackets indicate
an average computed over all particles serving as the refer-
ence particle. Using the Einstein relation, the self-diffusion
coefficient (in three spatial dimensions) is estimated as D =
��r2(t)��

6t , which we obtain via least-squares regression to a
(zero-intercept) line.

III. KAMEL-LOBE
In this section, we describe the Kernel-Averaging Method

to Eliminate Length-Of-Bin Effects (KAMEL-LOBE) scheme
[Fig. 1(a)]. The goal of this technique is to standardize RDFs such
that:

1. The resulting RDFs are useful for scientific applications that
make use of the RDF (specifically in the sense that these appli-
cations no longer exhibit a dependence on otherwise arbitrary
choices for the RDF length of bin �r).

2. We make no assumptions (implicitly or explicitly) about the
general shape of the RDF (e.g., the sizes or locations of its
peaks), eliminating the need for a priori knowledge of suitable
basis functions to represent the RDF.

3. This standardization can be carried out in a computation-
ally efficient manner either on the fly during a molecular
simulation or as a post-processing step, including on already-
computed RDFs (for which the underlying kinematic data are
not available).

A. The method itself
In what follows, we assume that we are in possession of an

RDF: In particular, we have a vector g supplying n values of the
RDF at the radial coordinates r ∈ { 1

2 �r, 3
2 �r, . . . , rmax}, where (as a

reminder) �r is the length of each bin, and rmax ≡ (n − 1
2)�r is the

maximum radius at which the RDF is evaluated. The core idea of
KAMEL-LOBE is to convert g into a smoothed version g̃ through
the composition of three linear operations, g̃ = T3T2T1g, given as
follows:

FIG. 1. (a) Schematic representation of the KAMEL-LOBE scheme, showing radial bins of constant width �r around a reference particle (yellow). The particle number
contribution made by the other particle (red) is the largest (dark green) for the bin within which its center is located, but non-zero for nearby bins (lighter shades of green). (b)
Density for the Gaussian kernel used in KAMEL-LOBE as a function of x, the distance from the bin within which a particle’s center is located. The color indicates the width of
the Gaussian kernel w, with larger values (yellow) corresponding to spreading across a broader spatial extent.
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1. Integration to obtain the cumulative radial distribution func-
tion: We compute the total number of particles within
radius r as N(r) = ∫ r

0 4πr′2ρg(r′)dr′. We emphasize again

that our analysis is carried out under the assumption of an
isotropic system. We can numerically approximate N(r) via
trapezoidal-rule integration as N = T1g, where T1 is given by

T1 = 2πρ�r

�������������������

0 0 0 ⋅ ⋅ ⋅ 0

1 1 0 ⋅ ⋅ ⋅ 0

1 2 1
. . . ⋮

⋮ ⋮ . . .
. . . 0

1 2
. . . 2 1

�������������������

�������������������

0 0 0 ⋅ ⋅ ⋅ 0

0 (�r)2 0 ⋅ ⋅ ⋅ 0

0 0 (2�r)2 . . . ⋮
⋮ ⋮ . . .

. . . 0

0 0
. . . 0 ((n − 1)�r)2

�������������������

. (2)

It is worth noting that this step is conceptually identi-
cal to the first step in the construction by van Zon and
Schofield,24 which follows in the footsteps of work by
Berg and Harris.23

2. Application of a Gaussian kernel to mollify the cumula-
tive radial distribution function: Rather than assuming each
particle to be concentrated at a point (i.e., a Dirac delta
“distribution”), we spread each particle’s contribution to N(r)
over a range, following a(n approximately) Gaussian dis-
tribution centered at the particle’s location. The degree of
smoothing is set by the standard deviation (characteristic
width) of this Gaussian kernel [Fig. 1(b)], which we denote
as w (so as to avoid conflation with the Lennard–Jones
length-scale σLJ). Although a Gaussian distribution has infi-
nite support, we spread each particle over a finite range
of ∼±2w from the location of its center, with no spread-
ing beyond this range (i.e., no mass is spread outside of
a width of ∼4w). In what follows, we investigate the range
0 ≤ w ≤ 0.2; the lower bound corresponds to no smoothing
(i.e., the way that RDFs are typically presented, for which the
Gaussian kernel takes on the limiting shape of a Dirac delta
“distribution”).
To accomplish this smoothing for a particle with its center at
a distance r from the reference particle, we first compute the
number of bins k over which smoothing will be performed as
k = 2�2w��r� − 1, where �x� is the ceiling function. We then
compute a vector of Gaussian weights u = (u1, u2, . . . , uk).
The weight uj is calculated as the area within the jth bin
of a Gaussian probability density function centered at the
location of the particle of interest; the jth bin has a width
of �r and is centered at (j−m)�r, where m = �2w��r�. In
other words, uj = Φ((j−m+1/2)�r) − Φ((j−m−1/2)�r), where
Φ denotes the Gaussian cumulative distribution function.
Smoothing is performed only for separation distances exceed-
ing 2w; the first m entries of N are left unchanged (this
prevents us from computing u in a bin where g is not defined
in the first place, i.e., where r < 0). Overall, we transform
the cumulative radial distribution function N to its smoothed
version Ñ as T2N, where T2 is partitioned as

T2 = 1
∑k

j=1u j

����������

A

B

C

����������
, (3)

and the two blocks A (m × n), B ((n − 2m) × n), and C
(m × n) are

A = [Im�0n−m], (4)

B =

��������������������

u1 u2 ⋅ ⋅ ⋅ uk 0 0 ⋅ ⋅ ⋅ 0

0 u1 u2 ⋅ ⋅ ⋅ uk
. . .

. . . 0

0 0
. . .

. . .
. . .

. . .
. . . ⋮

⋮ ⋮ . . .
. . .

. . .
. . .

. . . 0

0 0
. . . 0 u1 u2

. . . uk

��������������������

, (5)

C = [0n−m�Im]. (6)

Here, Im denotes an m × m identity matrix, and 0n−m denotes
an m × (n −m) matrix of zeroes. The normalization 1∑k

j=1 u j

is included in T2 to conserve particle mass after smooth-
ing; for reasonable choices of �r, this normalizing factor
should be ∼1.05, reflecting the fact that ∼95% of the mass of
a Gaussian is contained within two standard deviations of its
mean.

3. Differentiation to obtain a mollified radial distribution func-
tion: We compute the smooth g(r) profile denoted by g̃(r) as
g̃(r) = 1

4πr2ρ
d
dr Ñ(r). We numerically evaluate this expression

with centered finite differences, g̃ = T3Ñ, where T3 is given by
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T3 = � 1
4πρ
�� 2

�r
�

����������������������

0 0 0 ⋅ ⋅ ⋅ 0

0
1
(�r)2 0 ⋅ ⋅ ⋅ 0

0 0
1

(2�r)2
. . . ⋮

⋮ ⋮ . . .
. . . 0

0 0
. . . 0

1
((n − 1)�r)2

����������������������

��������������������

1 0 0 ⋅ ⋅ ⋅ 0

−2 1 0
. . . ⋮

2 −2 1
. . . 0

. . .
. . .

. . .
. . . 0

. . .
. . . 2 −2 1

��������������������

. (7)

In particular, T3 is lower triangular, with an alter-
nating pattern of 2’s and −2’s below the diagonal. Each
i, j ∈ {1, 2, . . . , n} element of T3 can be written as

[T3]i j =
�����������������������

0 i < j or i = j = 1

� 1
4πρ
�� 2

�r
�� 1
(i − 1)�r

�2

i = j(≠1)
2� 1

4πρ
�� 2

�r
�� 1
(i − 1)�r

�2(−1)i− j i > j
(8)

B. Statistical mechanics underlying an upper
bound for w

Thus far, we have not discussed how to select w, the stan-
dard deviation of the Gaussian kernel. Purely from the perspective
of statistics, it is clear that progressively larger choices of w will
progressively reduce spurious high-frequency variations in the RDF
associated with low statistics in each bin. As such, a more interest-
ing question is: What is the largest reasonable choice of w? Before
exploring this question empirically through extensive numerical
simulation and analysis in Sec. IV, we first provide some rationaliza-
tion for an upper bound on w grounded in the statistical mechanics
of a Lennard–Jones material.

Because the minimum of the LJ potential (for two bare LJ
atoms) is located at a separation distance of 21/6, at zero temperature,
one should not expect to find two atoms with any smaller separation
distance than this (in a condensed phase due to long-range attrac-
tive interactions, the minimum is located at a separation distance
slightly less than 21/6 but not by more than a few percent for realistic
densities). At finite temperature T (which, in our non-dimensional
units, is also to say finite thermal energy T), atoms may access
smaller separation distances than that corresponding to mechani-
cal equilibrium but cannot come arbitrarily close due to short-range
repulsion. We can obtain the scaling for the smallest thermody-
namically plausible separation distance rmin as a function of tem-
perature by comparing the interaction energy against the thermal
energy,

4(ξ2 − ξ) ∼ T, (9)

where ξ ≡ r−6
min. This implies

ξ ∼ 1 +√1 + T
2

, (10)

which, in turn, suggests

rmin ∼ � 2
1 +√1 + T

�1�6
. (11)

We require that w respects rmin; in other words, the choice
of w must not cause a significant amount of particle weight to be
shifted to distances less than rmin. Since the majority of particle
weight appears in the vicinity of a separation distance of 21/6 on the
unmollified RDF, this requirement is equivalent to requiring

2w < 21�6 − � 2
1 +√1 + T

�1�6
(12)

since the furthest distance that KAMEL-LOBE causes any particle
weight to move is 2w.

For T on the order of unity (characteristic of a LJ fluid, at least
when the density is unity or less), (12) implies w � 0.07; the lower the
temperature, the lower the maximum value of w that respects rmin.
Thus, balancing both statistics and statistical mechanics considera-
tions, we expect that a suitable choice of w for fluid systems is on
the order of 10−2 for realistic temperatures [even when T = 10, (12)
demands that w < 0.12].

Before proceeding, two remarks are in order:

1. A strength of KAMEL-LOBE over existing techniques that
employ Gaussian smoothing26,27 is that KAMEL-LOBE trun-
cates (and re-normalizes) its Gaussian, as opposed to using a
full Gaussian with infinite support. This approach ensures that
rmin can be better respected through suitably small choice of w.

2. For systems with T � 1, it is clear that only w’s that are van-
ishingly small satisfy (12). As such, we caution that KAMEL-
LOBE (or any other mollification technique) should be used
with care for the analysis of RDFs obtained from simulations
at very low temperatures.
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FIG. 2. Instantaneous RDFs computed for a Lennard–Jones fluid (ρ = 0.81,
T = 1.1) with three different �r values: �r = 7.9 × 10−2, �r = 2.6 × 10−2, and
�r = 1.3 × 10−4.

IV. RESULTS AND DISCUSSION
A. The radial distribution function itself

We begin with the very simple question: “How does KAMEL-
LOBE affect the RDF itself?” To calibrate expectations, we first
report the effect of �r on the RDF for systems of different tempera-
tures and densities using the standard approach for computing g(r).
The maximum radius is set to rmax = 4.0, and the number of bins is
varied such that 1.3 × 10−4 ≤ �r ≤ 7.9 × 10−2.

In the following, when g(r) is computed using information
from a single snapshot of a system at a fixed moment in time, we
refer to it as an “instantaneous profile.” Figure 2 illustrates instanta-
neous profiles for a system with ρ = 0.81 and T = 1.1. Qualitatively,
we observe three regimes:

1. For the coarsest choices of �r, g(r) does not appear smooth
for the reason that �r is not much less than the intrinsic wave-
length of the RDF. We expect a priori that this wavelength is
of order unity since solvation shells in a dense fluid should be
separated by roughly one molecular diameter.

2. For intermediate choices of �r, g(r) appears smooth; we do
not comment at this junction on what exactly constitutes an
“intermediate choice” of �r, and we will show below that an
exact definition is, in fact, immaterial for the applications of
interest.

FIG. 3. Instantaneous RDFs, processed using KAMEL-LOBE (w = 1.5 × 10−2),
for a Lennard–Jones fluid (ρ = 0.81, T = 1.1) with three different �r values:
�r = 7.9 × 10−2, �r = 2.6 × 10−2, and �r = 1.3 × 10−4 (same conditions as
Fig. 2).

3. For the finest choices of �r, g(r) exhibits significant amounts
of noise, a consequence of each individual bin housing a rel-
atively small number of particles. We also note that since
the traditional approach to computing the RDF assigns the
entirety of a particle to the bin in which its center of mass falls,
the finer �r is, the higher the maximum value taken on by g(r)
within an instantaneous profile.

By visual inspection, these same RDFs are all rendered con-
siderably smoother through the use of KAMEL-LOBE (Fig. 3).
To check that the added smoothness is statistically meaning-
ful, in Fig. 4, we show comparisons between RDFs obtained
using KAMEL-LOBE and RDFs produced from averaging in time.
We readily observe that the differences between KAMEL-LOBE
RDFs and time-averaged RDFs are small. In fact, point-wise dif-
ferences between KAMEL-LOBE and long-time-averaged results
[shown in Fig. 4 as g10 000(r)] are 5% or less, suggesting that
KAMEL-LOBE can generate reasonable estimates for RDFs in set-
tings where long-time averages are impractical or infeasible to
collect. Such estimates may be especially useful for molecular
simulations that make use of computationally expensive inter-
atomic interactions (as is the case for, e.g., ab initio molecular
dynamics).
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FIG. 4. For a system with ρ = 0.86 and T = 2, a comparison between (a) cumula-
tive averages of the instantaneous RDF profiles, computed using �r = 1 × 10−4

and a timestep of 2 × 10−3 and (b) that same cumulative RDF profile after use of
KAMEL-LOBE with w = 1.5 × 10−2. The total amount of time used for each RDF is
shown on the far left; the four rows thus make use of 100, 101, 102, and 104 instan-
taneous RDFs, respectively. The values of RWA (Sec. IV B) and (per-particle) Sexc
(Sec. IV C) are shown for each RDF. Each inset figure in (b) shows the differ-
ence between each RDF obtained from KAMEL-LOBE and the RDF obtained from
long-time averaging, g10 000(r).

B. Application of KAMEL-LOBE to simple analyses
that use the radial distribution function

These observations have straightforward yet noteworthy conse-
quences for several commonplace heuristics and analysis procedures
used for interpreting molecular simulation results, of which we
highlight two here:

1. Delineation of phases: Numerous techniques30–35 make use
of multiple points sampled from the RDF as a criterion to
define the phase boundaries for a material. For example,
the Wendt–Abraham parameter RWA is defined as the ratio
between the first minimum of the RDF (beyond the first max-
imum) and the first maximum of the RDF and is used to
identify the boundary between the amorphous solid and liq-
uid phases, with the value R∗WA = 0.14 frequently used as the
threshold between these phases.30 It is a direct consequence
of our earlier observations that the choice of �r can affect
RWA. In Figs. 5(a) and 5(b), we show this dependence over the
full range of temperatures studied for a system with ρ = 0.81,
for which we do not expect the presence of a solid phase.31,36

FIG. 5. The Wendt–Abraham parameter RWA as a function of �r for systems
with ρ = 0.81 and temperatures in the range 0.9 ≤ T ≤ 3, computed using (a)
unmodified RDFs and (b) RDFs post-processed using KAMEL-LOBE. (c) RWA as
a function of the Gaussian kernel width w for a system with ρ = 0.81 and T = 1.1.
Symbol colors indicate the choice of �r ; shading indicates one standard deviation
of RWA over all systems simulated. The left-most data (w = 0) correspond to no
use of KAMEL-LOBE and are separated from the other data by a broken horizontal
axis. In all panels, the threshold that is typically used to delineate the liquid phase
from the amorphous solid phase, R∗WA = 0.14, is indicated by a black dashed line.

FIG. 6. The value of the first RDF peak g(rpeak) as a function of the Gaussian
kernel width w for a system with ρ = 0.81 and T = 1.1. Symbol colors indicate the
choice of �r ; shading indicates one standard deviation of g(rpeak) over all systems
simulated. The left-most points (w = 0) correspond to no use of KAMEL-LOBE
and are separated from the other data by a broken horizontal axis.
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FIG. 7. For the same set of 70 systems of LJ fluid, scaled diffusivity D∗ as a function of (negative per-particle) excess entropy using a variety of choices of �r (1.3 × 10−4

≤ �r ≤ 7.9 × 10−2, indicated by color). Thin dashed lines indicate the best fit of form Eq. (15) to systems analyzed using constant �r . Radial distribution functions for the
two extremal choices of �r are shown as insets. (a) w = 0 (unmodified RDFs) and (b) w = 1.5 × 10−2.

FIG. 8. Minimum (blue) and maximum
(red) values of the excess entropy
scaling relationship fitting parameters (a)
C1 and (b) C2, as a function of the Gaus-
sian kernel width w. For both figures,
the range of lengths of bin used is 1.3× 10−4 ≤ �r ≤ 7.9 × 10−2. The left-
most points (w = 0) correspond to
no use of KAMEL-LOBE and are
separated from the other data by a
broken horizontal axis.

In other words, we would expect that RWA > R∗WA strictly.
Unlike the unmodified RDFs (i.e., w = 0), which do not match
this expectation—in fact, they lead to values of RWA that
cross the R∗WA threshold at temperature-dependent values of �r
[Fig. 5(a)]—the RDFs processed using KAMEL-LOBE lead to
RWA values that are strictly above R∗WA for all systems studied
[Fig. 5(b)]. What’s more, except for the coarsest values of �r(�r � 10−2), all RWA curves show essentially no dependence
on �r. In Fig. 5(c), we show that for w � 2 × 10−3, all choices of
�r lead to RWA > R∗WA. Moreover, for w � 10−2, RWA depends
weakly on the choice of �r. Since it is undesirable to smooth
to the extent that g(r) is featureless (corresponding to the
RWA → 1 limit), we conclude that w ≈ O(10−2) is suitable for
this application, a result that supports the analysis in Sec. III B.
In other words, to return to the question posed in Sec. I,
such a choice of w generates mollified RDFs that are, for this
application, “acceptably” smooth.

2. Kinetic-theory-based analyses: Several approaches to model-
ing fluid transport properties grounded in kinetic theory37,38

rely heavily upon the RDF. For example, within Enskog the-
ory38 or Prigogine–Nicolis–Misguich theory,39 the values of
various fluid transport coefficients (e.g., viscosity and thermal
conductivity) can be expressed in terms of the RDF evaluated
at the separation distance corresponding to inter-particle con-
tact, typically taken as the first maximum of the RDF, g(rpeak).
Naturally, any scheme for computing the RDF that leads to

a �r-dependent RDF will affect the specific value of g(rpeak).
In Fig. 6, we show that g(rpeak) is only weakly dependent on
�r when KAMEL-LOBE is employed, with w selected to be
greater than 2 × 10−3. As in the previous example, we find
that w ≈ O(10−2) is suitable for this application, yet again in
support of the analysis in Sec. III B.

We note that these are only two of many application areas
where a consistent protocol for generating RDFs is important;
several others are discussed by Torquato.40

C. Case study on the use of KAMEL-LOBE for excess
entropy scaling relationships

In this section, we describe in detail the beneficial effects
that KAMEL-LOBE has on a particular application that makes
use of radial distribution functions, namely, the construction of
excess entropy scaling relations. We provide a brief overview of
excess entropy scaling that is sufficient to follow the remainder
of this section but refer the interested reader to the comprehen-
sive review of Dyre.41 In brief, the excess entropy Sexc is defined
as the difference between a system’s entropy at a given density and
temperature and the ideal gas entropy under the same conditions,
Sideal(ρ, T),

Sexc(ρ, T) ≡ S(ρ, T) − Sideal(ρ, T). (13)
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FIG. 9. Contour plots for four quantities of interest considered herein [C1, C2, RWA,
and g(rpeak)] as a function of �r and w. C1 and C2 are computed using the same
70 systems of LJ fluid as shown in Fig. 7; RWA and g(rpeak) are shown for a system
with ρ = 0.81 and T = 1.1.

By construction, this is a negative quantity. In all of the results
that follow, we invoke the two-particle-correlation approximation,
which has been shown to be valid for a broad range of fluids.41 This
approximation supplies an estimate for the excess entropy using the
RDF42–45 (hence the connection with this work),

Sexc�N ≈ −2πρ� ∞
0
(g(r) ln g(r) − g(r) + 1)r2dr. (14)

The essence of an excess entropy scaling relationship is that
this quantity can be directly connected to transport coefficients. In
particular, Rosenfeld46 demonstrated the existence of a relationship
between the excess entropy and (an appropriately scaled version of
the) diffusion coefficient for a system of LJ particles, given by

D∗ = C1 exp�−C2
Sexc

N
�, (15)

where D∗ ≡ �ρ1�3�m�kBT�D, D is the fluid’s coefficient of self-
diffusion, and C1 and C2 are material-specific constants. The

applicability of this scaling for diffusivity has been validated in a
wide range of fluids beyond LJ fluids, including hard spheres;47

supercooled, glassy, and/or binary mixtures;48–51 ionic melts;52

hydrocarbons;53 a variety of coarse-grained fluids;54 and active
fluids.55

Given our earlier findings, it is natural to ask the ques-
tion: “Do arbitrary binning choices also affect excess entropy
scaling relations?” In what follows, we answer this question in
the affirmative (and to a significant extent) and demonstrate
that KAMEL-LOBE can substantially improve the consistency of
excess entropy scaling relations obtained using RDFs within the
two-particle-correlation approximation.

Based upon the MD dataset generated for LJ fluids (0.59 ≤ ρ≤ 0.91, 0.9 ≤ T ≤ 3), Fig. 7(a) demonstrates the broad range of excess
entropy scaling relations that can be obtained simply by varying
�r. (It is worth noting that the choice of �r does not affect the
measured self-diffusion coefficient, and so this choice has no effect
on D∗.) Although an excess entropy scaling relation manifests for
each choice of �r [i.e., an expression of the form given in Eq. (15)
accurately describes the data], it is evident that there are substan-
tial length-of-bin effects, namely, C1 and C2 both show a significant
dependence on �r. As such, these constants do not depend only on
the material in question; they also depend upon the approach to bin-
ning when constructing the RDF. Of particular interest, even when
the RDF is “quite smooth” to the eye, as is the case for all choices of
�r in the vicinity of 10−2, C1 and C2 both still exhibit dependence
on �r. We also observe that the highest and lowest computed mag-
nitudes for the excess entropy correspond to the finest and coarsest
bin widths, respectively, which we can rationalize as a natural con-
sequence of Jensen’s inequality and the (negative) entropy being a
convex function. The use of KAMEL-LOBE [Fig. 7(b)] collapses all
of the data to a single curve, which is well described using a single
value of C1 and C2.

This observation has major implications for the use of excess
entropy scaling relationships: Dating back to Rosenfeld’s initial work
(which reported C1 as 0.6 and C2 as −0.8 for LJ fluids), values of
C1 and C2 are often treated as quasi-universal for the fluid in ques-
tion.42 From a practical perspective, this observation has led to major
efforts to compute these constants for a broad range of fluids of
industrial interest.56,57 Our work suggests that the generalizability of
such efforts would benefit significantly from the use of the KAMEL-
LOBE scheme since direct use of Eq. (14) on raw RDF data can
lead to a wide range of values for the fitting parameters in excess
entropy scaling relationships; as such, it is not possible to directly
compare C1 and C2 values unless one also knows the corresponding
choice of �r used in the analysis. It is worth mentioning that this
issue could be avoided altogether if one computed the exact excess
entropy (see, e.g., approaches described in Refs. 58–60); neverthe-
less, since the use of the two-particle-correlation approximation is
widespread, there is value in techniques that enhance the consistency
and reproducibility of excess entropy results within the framework
of this approximation.

To underscore the value of KAMEL-LOBE, in Fig. 8, we show
the minimum and maximum values of C1 and C2 obtained as a func-
tion of w using the same range of choices for �r. With no use of
KAMEL-LOBE, it is possible for length-of-bin effects to give rise
to values of C1 that vary over nearly three decades. A desirable
choice of w is one for which the distance between the maximum
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FIG. 10. (a) For three values of the solute fraction ϕ,
comparison between instantaneous RDFs using �r = 1.3× 10−2, those same RDFs processed with KAMEL-LOBE(w = 1.5 × 10−2), and the long-time-averaged RDF com-
puted over 1000 profiles. Each inset figure in (a) shows the
difference between each RDF obtained from KAMEL-LOBE
and the RDF obtained from long-time averaging, g1000(r).
(b) For five values of the solute fraction ϕ, RWA as a function
of w. (c) For five values of the solute fraction, −Sexc�N as a
function of w.

and minimum (i.e., the magnitude of length-of-bin effects) is as
small as possible, for both C1 and C2; this is true for 2 × 10−3 � w� 2 × 10−2. Reassuringly, the upper end of this range is on the same
order of magnitude as the choice made in Refs. 26 and 27, which
studied elemental sodium and aluminum, and made choices for w
(which these references term as the “broadening parameter”) that
are ∼3 × 10−2 in non-dimensional units. As with the examples in
Sec. IV B, we find that w ≈ O(10−2) is suitable for the application of
excess entropy scaling, yet again supporting the analysis presented
in Sec. III B.

The broad suitability of w ≈ O(10−2) is underscored in Fig. 9,
which reveals the presence of a vertical band of w values cen-
tered around w ≈ O(10−2) for which all quantities of interest dis-
cussed herein show little to no dependence on the choice of �r.
In contradistinction, the far left side of Fig. 9 highlights the mag-
nitude of length-of-bin effects that may arise in the absence of
KAMEL-LOBE. Figure 9 promisingly suggests that the length-scale
w may not require extensive calibration for each end-use appli-
cation and that in fact a single choice may be suitable for most
applications.

D. Case study on the use of KAMEL-LOBE
for solvation structure

In this final section, we turn our attention to the use of RDFs
to study solvation structure, inspired by work on similar problems
in Refs. 17 and 61. We study a simple problem in this setting, which
highlights the power of KAMEL-LOBE to overcome low statistics.
For MD simulations with 8000 LJ particles (ρ = 0.86, T = 2), we
designate a fraction ϕ of the particles (at random) to be “solute”

particles. We now ask the question: “Using KAMEL-LOBE, how well
can we reconstruct the results obtained using all particles and long-
time averaging, equipped only with RDFs computed from the subset
of solute particles?” Since all inter-particle interactions remain the
same as before, we expect that any RDF obtained from solute–solute
interactions should not differ (at least in the sense of a long-time
average) from its counterpart obtained using all particles. In Fig. 10,
for ϕ = 50%, we observe close agreement between results obtained
using the solute–solute RDF and the result obtained using long-
time averaging over all particles (i.e., ϕ = 100%). As expected, the
quality of RDFs (and quantities of interest computed using these
RDFs) deteriorates as ϕ (and the total number of solute–solute pairs)
decreases; nevertheless, using KAMEL-LOBE, there is still reason-
ably strong point-wise agreement for the RDF for ϕ as low as 20%.
Moreover, for ϕ ≥ 20%, there is less than 10% variation in RWA and
Sexc�N when w � 10−2, yet again suggesting the broad suitability of
w ≈ O(10−2).

V. CONCLUSION
Histogram-based approaches are widely used for the computa-

tion of radial distribution functions (RDFs) and related quantities
in molecular simulation and beyond. Such approaches necessarily
make use of an artificial length-scale, namely, the size of each his-
togram bin (or length of bin). Here, we have demonstrated that
numerous applications that make use of the RDF are plagued with
length-of-bin effects. We introduce the Kernel-Averaging Method to
Eliminate Length-Of-Bin Effects (KAMEL-LOBE), which systemati-
cally mollifies RDFs with a Gaussian kernel. As compared to existing
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techniques, this approach has the benefit of simultaneously satisfy-
ing all of the following: KAMEL-LOBE (1) can be used for historical
RDF datasets, for which the underlying kinematic data are inacces-
sible; (2) is able to perform on-the-fly smoothing for instantaneous
RDFs that are collected during a simulation, generating RDFs that
compare favorably with those obtained from averaging in time; (3)
is agnostic to whether or not a system is thermal; (4) does not
require a priori knowledge of suitable basis functions; and (5) explic-
itly accounts for the radial Jacobian factor in the computation of
the RDF. We demonstrate that the mollified RDFs produced using
KAMEL-LOBE substantially improve the consistency of numerous
molecular simulation analyses that make use of RDFs, including the
identification of phase boundaries, the calculation of quantities rel-
evant to kinetic theory, and the generation of excess entropy scaling
relationships. These strengths persist even when considering RDFs
computed over a subset of all particles in the system. We have fur-
ther shown that a non-dimensionalized Gaussian kernel width on
the order of 10−2 (in particular, 1.5 × 10−2) is broadly suitable for all
of the applications studied herein.

Based upon these results, there is strong reason to believe
that there are also significant length-of-bin effects in many data-
driven models that incorporate RDFs as a feature (indeed, all of
the applications presented in this work can be viewed as especially
physically transparent data-driven models). As such, there is a com-
pelling case to use KAMEL-LOBE as a standard pre-processing step
in molecular simulation analyses that make use of an RDF. In an
increasingly data-driven landscape, including the widespread use
of machine-learning techniques, we believe that such standardized
pre-processing steps are critical for ensuring the robustness and
comparability of molecular simulation results as well as models
trained using these results.

We close by noting several natural extensions for the ideas dis-
cussed in this manuscript: The Lennard–Jones interaction potential
used throughout this work is steeply repulsive at inter-particle sep-
aration distances below unity; it would be interesting to assess the
utility of KAMEL-LOBE for much softer and/or bounded potentials,
which permit a greater degree of particle–particle overlap. For such
potentials, it is well-known that the general framework of excess
entropy scaling applies but requires modification in the scaling of
the transport quantity.62 It would also be interesting to investigate
the extent to which the strategy described here may also be use-
ful for histogram-based calculations beyond the radial distribution
function (as one of many examples, inhomogeneous fluid density
profiles in the vicinity of a solid interface63–65). All of these calcula-
tions share, in common, the problem that the full contribution of
any given particle is made to the bin within which that particle’s
center resides, which amplifies the importance of the (entirely
artificial) length of the bin, thereby generating spurious effects.
It is reasonable to expect that judicious averaging with respect
to a sensible choice of the kernel may reduce or eliminate such
spurious effects.
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