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1. Introduction. 

Sports constitute a universal language that are enjoyed by 
people worldwide both at the professional level and at the 
amateur level.  The economic impacts of professional sports are 
substantial whereas at the amateur level (e.g. Olympic games) 
considerations of national pride and rivalries play large 
motivating factors.  Accordingly, it is imperative that measures 
are taken to ensure that athletes are competing fairly and not 
taking substances that give them an unfair advantage.[1]  This 
has proven challenging to say the least with notable scandals 
including the use of steroids in Major League Baseball in the 
early 2000’s that lead to Congressional hearings[2] and the 
state-sponsored doping of Russian athletes.[3] Most recently, in 
2021 the International Olympic Committee announced that 
weightlifting was removed from the list of events for the 2028 
Olympics with the press release naming the “historical 
incidence of doping” as a contributing factor.[4] The world anti-
doping agency (WADA) develops and coordinates anti-doping 
rules across sports and countries and maintains a list of WADA-
banned substances. 

Currently, the most accurate and precise drug testing is 
performed using analytical techniques such as gas-
chromatography,[5] and ultra high-performance liquid 
chromatography,[5b, 6] however, they are expensive and are not 
mobile. Advancements in light-based sensors and enzyme-
linked immunoassays allow for the relatively quick detection of 
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prohibited substances.[5a, 6-7] Within the realm of 
supramolecular chemistry, the use of indicator displacement 
assays (IDA)[7a, 8] have been effective at the detection and 
differentiation of numerous classes of compounds including 
steroids,[9] opioids,[10] and amphetamines[8, 11] in 
biologically relevant media.  The creation of such indicator 
displacement assays relies on the ready availability of 
supramolecular hosts that both bind dyes and display either high 
selectivity or a broad based affinity profile toward suitable 
analytes to enable either lock-and-key or differential sensing 
approaches.[12]  A variety of hosts including calixarenes, 
cyclodextrins, cyclophanes, cucurbiturils, and pillararenes have 
been used to construct chemical sensing systems.[7b, 8, 13] We 
have recently reported sulfated pillararenes (P[n]AS) as a new 
class of water soluble pillararenes that engage in high affinity 
interactions with a variety of hydrophobic (di)cations in aqueous 
solution (Figure 1).[14]  For example, P[6]AS was shown to 
bind with nanomolar affinity toward post-translationally 
modified amino acids and peptides, drugs of abuse (opioid and 
non-opioid), and neuromuscular blocking agents.[14-15] In this 
paper, we investigate the binding of P[n]AS toward a panel of 
compounds that appear on the 2023 WADA Prohibited List[16] 
or are close structural analogues and the construction of a 
sensing assay for the WADA-banned substances based on 
indicator displacement using the P[5]AS•lucigenin and 
P[6]AS•Hoechst 33258 complexes. 

ARTICLE  INFO ABSTRACT 

Article history: 
Received 
Received in revised form 
Accepted 
Available online 

The molecular recognition properties of two pillar[n]arene sulfates (P[5]AS and P[6]AS) toward 
a panel of world anti-doping agency banned substances (1 – 11) were investigated by a 
combination of isothermal titration calorimetry, 1H NMR spectroscopy, and molecular modelling.  
Subsequently a sensing ensemble based on indicator displacement was created using the 
P[5]AS•lucigenin and P[6]AS •Hoechst 33258 complexes which allowed differentiation among 
the analytes with 90% accuracy.  The assay was extended to allow the quantitation of 
pseudoephedrine in simulated urine samples with a limit of quantitation that is 30-fold below the 
WADA threshold.   

2009 Elsevier Ltd. All rights reserved. 

 

Keywords: 
Pillararene 
Sensing ensemble 
WADA banned substances 
Host-Guest chemistry 
 



Tetrahedron 2 
 

  
Fig. 1. Chemical structures of pillararenes used in this study. 

2. Results and discussion.  

This results and discussion section is organized as follows. 
First, we discuss the selection of the hosts, dyes, and WADA 
banned substances.  Next, we present the thermodynamic 
parameters of P[n]AS•guest binding determined by isothermal 
titration calorimetry.  Subsequently, we use 1H NMR 
spectroscopy to determine binding induced changes in chemical 
shift and thereby glean information about P[n]AS•guest 
geometry.  Finally, we use P[n]AS (n = 5, 6) along with the dyes 
lucigenin and Hoechst 33258 to identify the WADA banned 
substances and to quantify epinephrine and pseudoephedrine in 
simulated urine. 

2.1. Selection of Host, WADA Banned Substances, and Dyes. 

As discussed above, P[n]AS (Figure 1) display high binding 
affinity and high selectivity toward hydrophobic cations in 
aqueous solution[14] which make them attractive components 
of sensing ensembles for numerous analytes. From amongst the 
list of WADA banned substances,[16] we selected 13 
compounds for this initial study including eight stimulants and 
four steroids (Figure 2).  Given the preference of pillar[5]arenes 
for linear alkane derivatives[17] over cyclic compounds, we 
selected compounds 1 – 6 which to probe the influence of chain 
length and branching location on P[5]AS•guest binding. 
Compounds 2 – 4 and 6 were purchased and used as the racemic 
mixture, whereas 5 is a mixture of diastereomers. Conversely, 
P[6]AS is a more voluminous host which binds larger guests 
including hydrophobic cationic stimulants 7 and 8 and neutral 
steroids 10 – 13.  Compounds 10 – 13 were selected to probe the 
whether a cationic center is required for selectivity with P[6]AS.  
Additionally, we added beta-blocker labetalol 9 to determine if 
our sensing assay can differentiate compounds based on their 
role in the body. Finally, two substances (1 and 10) that are not 
explicitly banned by WADA were selected to demonstrate that 
our sensing assay can differentiate structurally similar 
substances that are not banned thereby reducing the chance of 
type I errors (false-positives).  Finally, after some 
experimentation, we determined that lucigenin and Hoechst 
33258 are particularly appropriate dyes to use in concert with 
P[5]AS and P[6]AS, respectively, to construct indicator 
displacement assay based sensing ensembles. 

  
Fig. 2. Chemical structures of WADA banned substances and dyes used in 
this study. 
 
2.2. Measurement of the thermodynamics of P[n]AS•Guest 
complexation. 

First, we decided to measure the thermodynamics of 
P[n]AS•guest complexation for the WADA-banned substances 
given in Figure 2.  Given the high affinity binding previously 
reported for P[n]AS•guest complexation we elected to employ 
isothermal titration calorimetry[18] as our primary analytical 
technique because of its ability to measure Ka values in the 103 
– 107 M-1 range by direct ITC titrations.[19]  Figure 3a shows a 
plot of heat evolved versus time during the direct titration of a 
solution of P[6]AS (25 µM) in the ITC cell with a solution of 2 
(250 µM) from the ITC injection syringe.  For each ITC 
titration, the host and guest concentrations were selected to 
ensure an appropriate Wiseman c-value[18-20] and that full 
binding isotherm was sampled.  The raw heat data in Figure 3a 
was integrated in order to create the plot of DH versus molar 
ratio shown in Figure 3b which was fitted to a 1:1 binding 
isotherm using the PEAQ data analysis software to determine 
the Ka and DH values for each run.  The titrations were 
performed in triplicate which gave Ka = (5.59 ± 0.32) × 10⁶ M-1 
and ΔH = -9.17 ± 0.06 kcal mol-1 for the P[5]AS•2 complex after 
error propagation.[21]  Analogous direct titrations were 
performed in triplicate for most of the remaining guests with 
both P[5]AS and P[6]AS and the results are collected in Table 
1. 
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Fig. 3. a) ITC thermogram recorded during the titration of P[6]AS (25.0 μM) 
in the cell with 2 (250 μM) in the syringe. b) Plot of the integrated heats of 
each titration vs. the molar ratio with the solid line representing the best fit 
of the data to a 1:1 binding model with Ka = (5.59 ± 0.32) × 10⁶ M−1, ΔH = 
-6.38 ± 0.03 kcal mol−1. Conditions: PBS, pH 7.4, 298.0 K. 
 
2.3. Measurement of the binding constants for P[n]AS•dye 
complexes by fluorescence spectroscopy. 

As a prelude to the use of P[n]AS•dye complexes as the key 
components of sensing ensembles for WADA banned 
substances, we set out to measure the binding affinities for 
P[5]AS•lucigenin and P[6]AS•Hoechst 33258 by fluorescence 
spectroscopy. Experimentally, we found that when a PBS 
solution of lucigenin (4 µM) was titrated with a PBS solution of 
P[5]AS a quenching of the fluorescence emission at 500 nm 
(excitation at 365 nm) was observed.  Figure S19 shows a plot 
of fluorescence intensity at 500 nm versus P[5]AS concentration 
with triplicate measurements at each host concentration which 
could be fitted to a 1:1 binding model implemented in 
ScientistTM to determine Ka = (2.83 + 0.14) x 106 M-1 for the 
P[5]AS•lucigenin complex.  In a similar fashion, titration of a 

PBS solution of Hoechst 33258 (2 µM) with P[6]AS lead to a 
an ≈ 80-fold increase in fluorescence at 500 nm (excitation 355 
nm) followed by a decrease in fluorescence (Figure S20). This 
biphasic change in fluorescence is not consistent with a simple 
1:1 binding model. Hoechst 33258 contains two 
benzimidazolium binding sites which suggests a 2:1 host:guest 
binding stoichiometry.  Previously, Barooah and co-workers 
found that CB[7] and CB[8] form 2:1 CB[n]•Hoechst 332582 
complexes.[22]  Accordingly, we implemented a 2:1 host:guest 
binding model in ScientistTM which was used to extract Ka1:1 = 
(1.05 ± 0.36) x 108 M-1 and Ka2:1 = (1.27 ± 0.35) x 106 M-1. 

2.4. Discussion of the trends in P[n]AS•guest binding affinity. 

An examination of Table 1 shows that P[5]AS is the more 
selective host toward 1 – 11 with Ka values from 9650 – 1.1 x 
107 M-1; DH values range from -5.08 to -10.6 kcal mol-1.  P[5]AS 
does not bind to 7, 8, 10, and 11. P[6]AS displays good affinity 
across 1 – 11 with Ka values ranging from 2.78 x 103 to 6.37 x 
106 M-1; DH values range from -6.38 to -14.1 kcal mol-1.  From 
previous studies,[14] it is known that the pillar[5]arene cavity 
prefers linear alkyl groups over branched or cyclic alkyl groups.  
This trend is also seen in the current data set among the four C7-
compounds (1, 2, 5, and 6) where linear heptylammonium 1 
binds 1.9-fold stronger than 2-aminoheptane 2, 380-fold 
stronger than branched 5, and 1130-fold stronger than branched 
6.  A comparison of the binding affinity of 4 (6 carbons), 6 (7 
carbons), and 3 (8 carbons) which differ by the addition of CH2-
groups between the amino group and the isopropyl terminus is 
also instructive. A priori, one might expect that the longer and 
more hydrophobic the guest, the higher the Ka value.[23]  
Indeed, P[5]AS•3 is 33-fold weaker than P[5]AS•4 but 
P[5]AS•6 is weaker still.  Examination of molecular models 
(vide infra) shows that whereas the isopropyl group of 4 and 6 
experience steric interactions with the walls of the narrow 
P[5]AS host, the isopropyl group of 3 extends out the opposite 
portal of P[5]AS.  The more voluminous P[6]AS host binds all 
of the guests (1 – 11) less selectively with Ka values clustered in 
the 104 – 106 M-1 range.  In this instance the binding affinity of 
P[6]AS toward 3, 4, and 6 follow the expected trend where each 
additional CH2-group increases binding affinity.  For related 
reasons, the binding affinity of P[6]AS toward guests 1, 2, 5, 
and 6 which each contain 7 C-atoms cluster in a very narrow 
range of 1.82 – 3.65 x 106 M-1. 

 
Table 1. Binding Constants measured by ITC for the interaction of P[5]AS and P[6]AS with the panel of WADA-banned substances.  Conditions: PBS buffered 
H2O, pH 7.40, 298 K. 
 P[5]AS P[6]AS 

Guest Ka (M-1) DH˚ (kcal mol-1) Ka (M-1) DH˚ (kcal mol-1) 

1, 1HepNH3 c (1.12 ± 0.06) x 10⁷ -6.84 ± 0.03 (3.65 ± 0.22) x 10⁶ -7.68 ± 0.07 

2, 2HepNH3 (5.59 ± 0.32) x 10⁶ -9.17 ± 0.06 (1.82 ± 0.06) x 10⁶ -6.38 ± 0.03 

3, Octodrine (1.53 ± 0.08) x 10⁶ -9.87 ± 0.08 (6.37 ± 0.43) x 10⁶ -7.88 ± 0.05 

4, 1,3-dmButNH3 (4.64 ± 0.34) × 10⁴ -5.29 ± 0.13 (7.89 ± 0.17) x 10⁵ -6.43 ± 0.02 

5, 1,3-dmPentNH3 (2.95 ± 0.15) x 10⁴ -5.70 ± 0.13 (1.89 ± 0.05) x 10⁶ -7.11 ± 0.02 

6, 1,4-dmPentNH3 (9.90 ± 0.28) x 10³ -5.08 ± 0.23 (3.55 ± 0.13) x 10⁶ -8.01 ± 0.04 

7, Epinephrine n.b. n.b. (4.39 ± 0.17) x 10⁴ -9.44 ± 0.14 

8, Pseudoephedrine n.b. n.b. (3.76 ± 0.05) x 10⁵ -7.94 ± 0.02 

9, Labetalol (9.65 ± 0.27) x 10³ -10.6 ± 0.1 (9.26 ± 0.13) x 10⁵ -11.0 ± 0.0 

10, Hydrocortisone n.b. n.b. (2.78 ± 0.18) x 10⁴ -12.7 ± 0.4 

11, Corticosterone c n.b. n.b. (1.84 ± 0.09) x 10⁵ -14.1 ± 0.2 

Hoechst 33258 – – (3.49 ± 1.88) × 108 (1:1) – 



Tetrahedron 4 
(1.18 ± 0.33) × 106 (2:1)b 

Lucigenin (2.83 ± 0.14) × 106 a – – – 

a) Measured via change in fluorescence of lucigenin fitted to a 1:1 binding model; b) Measured via change in fluorescence of Hoechst 33258 fitted to a sequential 
2:1 (H:G) model; c) Not an explicitly WADA-banned substance; n.b. = no heat detected by ITC; – = not measured. 

2.5. Use of 1H NMR spectroscopy to glean information on 
P[n]AS•guest geometry. 

The central cavity of pillar[n]arene and related cyclophane 
hosts are shaped by n aromatic rings and therefore constitute a 
magnetic shielding environment.  Accordingly, the changes in 
guest chemical shift upon P[n]AS•guest complexation can be used 
to deduce the geometry of the complex.  For example, Figure 4 
shows 1H NMR spectra recorded for mixtures of P[n]AS (n = 5 or 
6) with (±)-4.  Figure 4a and 4e show the spectrum of uncomplexed 
P[5]AS and uncomplexed 4 whereas Figure 4c shows the spectrum 
of an equimolar mixture which exists as the P[5]AS•4 complex.  
Quite interestingly, the resonances for CH3,e and CH3,f of 4 undergo 
substantial upfield shifts (dD = -1.3 and -1.8 ppm) upon formation 
of the P[5]AS•4 complex which indicates that these protons are 
located within the anisotropic magnetically shielding environment 
defined by the five aromatic walls of P[5]AS. The resonances for 
Hc and Hd undergo smaller upfield shifts upon complexation (dD 
= -0.4 to -0.6 ppm). Conversely, CH3,a and Hb of 4 undergo only 
small changes in chemical shift (dD < 0.1 ppm) upon complexation 
which indicates that these protons are outside of the cavity of 
P[5]AS. At a 1:2 P[5]AS:4 ratio, the resonances for guest 4 shift 
back toward the chemical shifts of uncomplexed 4 which indicates 
that the kinetics of guest exchange are fast on the chemical shift 
timescale. Overall, these results indicate that the tail of 4 is able to 
enter the cavity of P[5]AS whereas the NH3+ head group resides 
outside the cavity nearby the OSO3- groups.  Figure 5a shows a 
cross-eyed stereoview of an energy minimized (MMFF) molecular 
model of P[5]AS•4 which is in accord with the geometrical 
features deduced on the basis of complexation induced changes in 
chemical shift.  Figure 4e and 4i show the 1H NMR spectra 
recorded for uncomplex 4 and P[6]AS, respectively, whereas 
Figure 4g shows the 1H NMR spectrum of an equimolar mixture 
which exists as the P[6]AS•4 complex. Unlike the observations for 
P[5]AS•4, all of the resonances of guest 4 shift upfield (Dd from -
1.2 to - 2.15 ppm) upon formation of the P[6]AS•4 complex with 
largest shifts experienced by CH3,e and CH3,f.  This observation 
suggests that the more voluminous P[6]AS is able to more fully 
encapsulate guest 4 within the anisotropic shielding region of its 
cavity.  Figure 5b shows an MMFF minimized model of P[6]AS•4.  
Figure 4f shows the 1H NMR spectrum recorded for a 1:2 mixture 
of P[6]AS and 4 which shows the guest resonances shifting back 
toward the chemical shifts for uncomplexed 4 which establishes 
fast kinetics of guest exchange on the chemical shift timescale for 
the P[6]AS•4 complex.  Related sets of 1H NMR spectra were 
recorded for the complexes between P[n]AS (n = 5, 6) with guests 
2, 5, and 6 (Figures S21 – S27) which displayed similar patterns 
of changes in chemical shift upon complexation.   

 
Fig. 4. 1H NMR spectra recorded for (600 MHz, RT, PBS buffered D2O, pD 
7.4) for: a) P[5]AS (1.0 mM), b) a mixture of 4 (0.5 mM) and P[5]AS (1.0 
mM), c) an equimolar mixture of 4 and P[5]AS (1.0 mM), and d) a mixture of 
4 (2.0 mM) and P[5]AS (1.0 mM), e) 4 (1.0 mM), f) a mixture of 4 (2.0 mM) 
and P[6]AS (1.0 mM), g) an equimolar mixture of 4 and P[6]AS (1.0 mM), 
and h) a mixture of 4 (0.5 mM) and P[6]AS (1.0 mM), i) P[6]AS (1.0 mM). 
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Fig. 5. Cross-eyed stereoviews of MMFF minimized models of: a) P[5]AS•4 
and b) P[6]AS•4.  Color code: C, grey; H, white; N, blue; O, red; S, yellow; 
H-bonds, red-yellow striped. 
 
2.6. Detection of WADA Banned Substances in PBS Buffer. 

2 .6.1.  Determinat ion of  the condi t ions  for  the 
assay.  
In a previous report, we measured the binding constants of 

P[6]AS toward modified peptides using 4′,6-diamidino-2-
phenylindole (DAPI) as the dye to construct and indicator 
displacement assay.[15b] Initially, we tested the fluorescence 
response of a series of P[n]AS•dye complexes  (DAPI, thioflavin 
T, proflavine, rhodamine 6G, lucigenin, and Hoechst 33258; 2.0 
µM concentrations) upon addition of the panel of tighter binding 
and structurally similar stimulants (1 – 6).  We found that the 
largest changes in fluorescence intensity were observed for 
lucigenin and Hoechst 33258 which was anticipated to result in 
highest performance in the sensing and differentiation of the 
WADA-banned substances.  Subsequently, we found that assays 
conducted using P[5]AS•lucigenin and P[6]AS•Hoechst 33258 (2 
and 5 µM concentrations) were appropriate; higher concentrations 
of sensing components were not included during this optimization 
in order to maximize compound differentiation at low WADA-
banned substance concentrations. 

2.6.2.  Implementat ion of  Linear Discriminant  
Analysis  (LDA) to Detect  and Dif ferent iate  WADA 
Banned Substances  in  PBS Buf fer  

After identifying appropriate dyes and dye concentrations 
(P[5]AS•lucigenin at 2 and 5 µM; P[6]AS•Hoechst 33258 at 2 and 
5 µM), we turn our attention to determining the best emission 
wavelengths to monitor.  For each condition, the fluorescence 
emission intensity was measured every 5 nm from 435 – 470 nm 
(P[5]AS•lucigenin) and from 335 – 435 nm (P[6]AS•Hoechst 
33258). Typically, previous researchers have increased the 
predictive accuracy of related differential sensing assays by 
working in pure water[24] and at relatively high concentrations of 
guest in order to maximize the change in spectroscopic signal of 
the displaced dye.[8] To provide an assessment of the predictive 
power of this P[n]AS-based assay as a method for drug testing, we 
elected to use the more competitive and biologically relevant PBS 
buffer (pH 7.4) as our medium. We then determined the lowest 
concentration of WADA-banned substance that yielded over a 
90% accuracy (50 μM) with 15 separate measurements of each 
analyte.  

To prevent overfitting and increase the generality of the sensing 
protocol, we reduced the number of dimensions (wavelengths) 
used first by feature selection, then by feature extraction. First, 
unhelpful and extraneous wavelengths were removed, and the 15 
best wavelengths were retained by performing analysis of variance 
(ANOVA) on the data.[25] To do this, at each wavelength the 
variance within the repetition measurements for each compound is 
compared to the total variance of all the signals at that wavelength. 
This process is then repeated for each wavelength. Wavelengths 
that have a greater difference between the two different types of 
variances contain more information and are thus more useful. 
Three additional wavelengths were added to more effectively 
detect and differentiate the aromatic guests 7 – 9 and steroids 10 – 
14 resulting in a total of 18 variables. From these 18 variables,  
new variables which explain the data more efficiently, called 
features or linear discriminants (LD), were found using the feature 
extraction algorithm linear discriminant analysis (LDA).[25] LDA 
is a supervised learning technique that finds new variables that are 
a linear combination of the original variables that both reduce the 
variance within each class (guest) while maximizing the variance 
between each class.  Figure 6 shows cross plots of the first three 
linear discriminants. These three discriminants retain 98.5% of the 
total variance, or information, from the original 18 variables 
remaining after feature extraction. These LDs not only more 
efficiently explain the data, but they are also useful for sensing 
applications because they carefully chosen to reduce the spread 
within of each group while maximizing the separation between 
groups.  

 

 
Fig. 6.  Cross sections of the three-dimensional LDA plot for the discrimination of 13 WADA-banned compounds at 50 μM of guest. The predictive accuracy 
was determined to be 92.3 ± 6.9 % as determined via stratified K-fold (K = 15) cross-validation. 
 

LDA can also be used as a predictive tool. To find the predictive 
power of the assay, stratified K-fold cross validation (CV) with K 

= 15 was used since there were 15 repetition measurements taken 
for each compound.[25b] For this purpose, the data from the 
measurements of the 12 different compounds (guests 1 - 11 and a 
PBS buffer blank) (50 μM) were randomly separated into 15 
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different groups such that a single measurement of each compound 
was randomly assigned to each group. Initially, one of the 15 
groups were held-out as the remaining data were used to train an 
LDA model. After the LDA was trained on the data from the 
remaining 14 groups, the held-out group was then used to test the 
accuracy of the model. This was repeated for each of the 15 groups, 
with a new model trained each time (for a total of 15 models). 
Using this method, in total, the models were able to predict the 
held-out data with an average accuracy of 92.3 ± 6.9 %. To more 
readily see which compounds were the most difficult to accurately 
predict and which compounds were most often confused for each 
other, a plot of true compound identity versus the predicted 
compound identity, known as a confusion matrix, was constructed. 
If the assay was able to perfectly predict each compound, you 
would expect to see 15’s on the diagonal since the true compound 
identity and the predicted identity match (Figure S27). For 
example, Figure S27 shows that 7 was predicted with the lowest 
accuracy (10/15) and was most often confused for 11; this makes 
sense as neither 7 nor 11 bind strongly to P[5]AS and have 
comparable association constants toward P[6]AS. Because we 
were satisfied with the predictive accuracy of the model, we did 
not seek to improve it further by increasing guest concentration, 
using a less competitive medium, or increasing the number of 
conditions (e.g. to better differentiate the steroids). 

An interesting feature that we recognized was that the LDA plot 
(Figure 6) separated chemicals of different pharmacological 
groups. For example, Figure 6c shows that steroids 10 – 12 were 
separated from the stimulants along a boundary that extends from 
the blank towards 6.  The LDA function plots the stimulants and 
steroid data points along the same plane, with only labetalol (9, 
beta-blocker), located in another plane. This suggests that the 
assay should be able to assign a new unknown analyte to the 
correct pharmacological group.  To test this concept, we measured 
estradiol 13 – which was not used in creating the classifier – using 
the same protocol. When the classifier was then asked to predict 
the identity of the compound, the LDA classifier predicted it was 
a steroid 80% of the time (12 – 8 times, 10 – 4 times) and it was 
twice confused for the blank. This assay offers useful information 
even when analyzing novel analytes because pharmacologically 
similar compounds are grouped together.  

Since each LD theoretically represents an underlying variable, 
it is worthwhile to attempt to determine the nature of the 
underlying variables (LD1 and LD2) because they may shed light 
on the nature of each binding interaction. It is natural to consider 
whether LD1 and LD2 correspond to the binding constant of each 
guest with P[6]AS and P[5]AS. Figures S28 – S31 show plots of 
each LD versus Ka, log Ka, DH, and –TDS.  Interestingly, the log 
Ka values (Figure S29) for P[5]AS and P[6]AS show a parabolic 
correlation with LD1; as LD1 becomes more positive, the Ka for 
both P[6]AS and P[5]AS trend toward 0. 

2.7. Quantitative Detection of Epinephrine and Pseudoephedrine 
in Simulated Urine. 

With the conditions now optimized for the separation of each 
compound, the ability of the assay to determine concentration in 
simulated urine was determined. Simulated urine was used as the 
medium because over 90% of the 241,430 samples tested and 
entered into the Anti-Doping Administration & Management 
System (ADAMS) in 2021 were urine samples[26] and to avoid 
the use of potentially biohazardous human samples. For this 
purpose, we spike simulated urine with different concentrations of 
either epinephrine 7 or pseudoephedrine 8 with the goal of 
accurately detecting them below the competition threshold limits 

(7: 0.27 μM; 8: 908 μM) defined by WADA.[27] The calibration 
measurements for concentrations from 0-2500 μM of 8 and 0-100 
μM of 7 were collected using the same conditions and wavelengths 
as above without further optimization.  The data was processed 
with a new LDA algorithm for each analyte to prevent overfitting. 
The first discriminant was then fitted to a regression support vector 
machine (rSVM).[25b] A rSVM is similar to traditional linear 
regression with a few notable exceptions. In this instance, the main 
advantage of the rSVM is that, instead of fitting a line with 
infinitely small thickness, it fits a line with a tunable width, ε, on 
either side of the central line. Any point inside this width is 
assumed to lie along the line and no penalty is applied to these data 
points when fitting which reduces the influence of outliers on the 
fitting. Examination of the data showed that the concentrations of 
8 were non-linear with respect to LD1, so the data was transformed 
into a plot of LD1 vs. the natural log of the concentrations. After 
the line was fit, the concentrations were transformed back to the 
original space by taking the exponent of the calibrated y values 
(Figure S32). After calibration, two previously unmeasured 
concentrations were chosen to test the accuracy of the assay. For 8 
one of these two concentrations was between the limit of LOD of 
our model and the WADA-defined threshold limit, and the other 
was above the WADA threshold limit. For 7 it quickly became 
apparent that the current assay would not be able to measure 7 at 
concentrations close to the WADA-threshold. The results of the 
calibration and prediction can be seen in Figure 7b. The LOD and 
LOQ for each model were defined according to previously defined 
values[25a] of 3σb and 10σb respectively plus the predicted blank 
concentration, where σb represents the standard deviation of the 
predicted blank concentration. 

The calibration plots yielded an LOD of 5.7 μM and LOQ of 
19.1 μM for 7 and an LOD of 28.6 μM and LOQ of 31.8 μM for 
8. For 7, we tested concentrations of 9.3 μM and 41.3 μM and 
obtained predicted concentrations of 8.6 ± 3.2 μM, and 48.3 ± 4.0 
μM, respectively. For 8, we tested concentrations of 186 μM and 
1200 μM, and obtained predicted concentrations of 135.2 ± 7.0 μM 
and 1270 ± 21 μM, respectively. Unfortunately, the assay is not 
yet sensitive enough to detect concentrations of 7 near the WADA-
threshold. However, the assay can predict the concentration of 8 
relatively accurately across a broad range of concentrations. For 
example, the assay has a LOQ that is 30-fold lower than the 
WADA threshold while maintaining the ability to predict 
concentrations above millimolar concentrations with less than 6% 
error. Taken together, this suggests that this proof-of-concept 
assay, with further optimization, could be useful as a quick and 
inexpensive way to screen athletes for banned stimulants. 
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Fig. 7.  Calibration plots for ten concentrations were measured (15 replicates 
per concentration) for: a) 8 from 0 – 2500 μM, and b) 7 from 0 – 100 μM in 
simulated urine. The calibrations were able to achieve LOD of 85.4 μM and 
LOQ of 146.8 μM for 8, and LOD of 5.7 μM and LOQ of 19.1 μM for 7. The 
red lines represent the standard deviation of the predicted concentrations. The 
solid black line represents a perfect correlation between predicted and actual 
concentrations. Two test concentrations (silver) used for each compound with 
one above and one below the WADA-LOQ. 

3. Conclusions 

In summary we have measured the thermodynamics of the 
binding of P[n]AS (n = 5, 6) toward a panel of stimulants, steroids, 
and a beta-blocker by ITC in PBS buffer.  We find that the narrow 
cavity of P[5]AS selectively binds to alkylammonium ions 1 – 6 
relative to the bulkier steroidal and aromatic guests. Binding of 
branched alkylammoniums (e.g. 5, 6) to P[5]AS is disfavored 
relative to linear alkylammonium 1 due to steric interactions 
between the Me-branches and the walls of the P[5]AS cavity.  
Conversely, the larger cavity of P[6]AS binds to the guest panel 
with a narrow range of binding affinities (27800 – 6.37 x 106 M-1).  
We used 1H NMR spectroscopy to observe the complexation 
induced changes of guest chemical shift to deduce geometrical 
features of the P[n]AS•guest complexes.  P[6]AS with its large 
cavity can encapsulate the entire hydrophobic regions of the guest 
resulting in upfield shifting of most resonances whereas P[5]AS is 
selective for narrow portions of the guest resulting in upfield 
shifting of a subset of resonances. An indicator displacement assay 
employing P[n]AS (n = 5, 6) and dyes lucigenin and Hoechst 
33258 was developed which allowed differentiation of the 
structurally similar members of the guest panel (50 μM) with over 
90 % accuracy in PBS. Although the current assay worked well 
using spiked artificial urine, additional compounds should be 
included in the training data if real world samples containing 
allowed drugs and WADA banned substances are assayed.  The 
assay was further developed to allow the measurement of 
pseudoephedrine in simulated urine with a LOQ well below the 
WADA threshold level for drug testing. Overall we have 
established that P[n]AS is a promising class of molecular container 
containers for the construction of indicator displacement assays 
and demonstrated their use in a proof-of-concept drug testing assay 
for a selection of WADA-banned substances.  

4. Experimental section 

4.1. General information 

Chemicals were purchased from commercial suppliers and 
used without further purification or were prepared by literature 
procedures.[14-15] Simulated urine was purchased from Flinn 
Scientific (“Artificial Urine, Normal” Lot#294189). PBS buffer 
was made by dissolving commercially available tablets (MP 
Biomedicals, Lot#S7091) in HPLC grade water and adjusting to 
pH 7.4 using aq. NaOH or HCl. 1H NMR spectra were measured 
on commercial instruments operating at 600 MHz using sodium 
phosphate buffered D2O saline (pD 7.4) as the solvent. Chemical 
shifts (δ) are referenced relative to the residual resonance for HOD 
(4.79 ppm). ITC data were collected on a Malvern Microcal 
PEAQ-ITC instrument and analyzed using the software provided 
by the vendor. All fluorescence measurements were performed 
using Greiner Bio-One black, flat-bottomed, polystyrene 96 well 
plate and measured with a SpectraMax 5e multimode plate reader. 
Data analysis and machine learning algorithms were implemented 
in Python using pandas,[28] numPy,[29] and scikit-learn[30] 
libraries. All data analysis files and csv files for the calibration 
curves and LDA plot can be found on GitHub: 
https://github.com/daking11/WADA_sensor.git. 
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