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1. Introduction.

Sports constitute a universal language that are enjoyed by
people worldwide both at the professional level and at the
amateur level. The economic impacts of professional sports are
substantial whereas at the amateur level (e.g. Olympic games)
considerations of national pride and rivalries play large
motivating factors. Accordingly, it is imperative that measures
are taken to ensure that athletes are competing fairly and not
taking substances that give them an unfair advantage.[1] This
has proven challenging to say the least with notable scandals
including the use of steroids in Major League Baseball in the
early 2000’s that lead to Congressional hearings[2] and the
state-sponsored doping of Russian athletes.[3] Most recently, in
2021 the International Olympic Committee announced that
weightlifting was removed from the list of events for the 2028
Olympics with the press release naming the “historical
incidence of doping” as a contributing factor.[4] The world anti-
doping agency (WADA) develops and coordinates anti-doping
rules across sports and countries and maintains a list of WADA-
banned substances.

Currently, the most accurate and precise drug testing is
performed wusing analytical techniques such as gas-
chromatography,[5] and ultra high-performance liquid
chromatography,[5b, 6] however, they are expensive and are not
mobile. Advancements in light-based sensors and enzyme-
linked immunoassays allow for the relatively quick detection of
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prohibited substances.[Sa, 6-7] Within the realm of
supramolecular chemistry, the use of indicator displacement
assays (IDA)[7a, 8] have been effective at the detection and
differentiation of numerous classes of compounds including
steroids,[9] opioids,[10] and amphetamines[8, 11] in
biologically relevant media. The creation of such indicator
displacement assays relies on the ready availability of
supramolecular hosts that both bind dyes and display either high
selectivity or a broad based affinity profile toward suitable
analytes to enable either lock-and-key or differential sensing
approaches.[12] A variety of hosts including calixarenes,
cyclodextrins, cyclophanes, cucurbiturils, and pillararenes have
been used to construct chemical sensing systems.[7b, 8, 13] We
have recently reported sulfated pillararenes (P[#]AS) as a new
class of water soluble pillararenes that engage in high affinity
interactions with a variety of hydrophobic (di)cations in aqueous
solution (Figure 1).[14] For example, P[6]AS was shown to
bind with nanomolar affinity toward post-translationally
modified amino acids and peptides, drugs of abuse (opioid and
non-opioid), and neuromuscular blocking agents.[14-15] In this
paper, we investigate the binding of P[n]AS toward a panel of
compounds that appear on the 2023 WADA Prohibited List[16]
or are close structural analogues and the construction of a
sensing assay for the WADA-banned substances based on
indicator displacement using the P[5]ASelucigenin and
P[6]AS+Hoechst 33258 complexes.
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P[5]AS (n = 5)
R = SO;Na

= P[BJAS (n=6)
R'=SO;Na

Fig. 1. Chemical structures of pillararenes used in this study.
2. Results and discussion.

This results and discussion section is organized as follows.
First, we discuss the selection of the hosts, dyes, and WADA
banned substances. Next, we present the thermodynamic
parameters of P[n]ASeguest binding determined by isothermal
titration calorimetry.  Subsequently, we use 'H NMR
spectroscopy to determine binding induced changes in chemical
shift and thereby glean information about P[n]ASeguest
geometry. Finally, we use P[n]AS (n=35, 6) along with the dyes
lucigenin and Hoechst 33258 to identify the WADA banned
substances and to quantify epinephrine and pseudoephedrine in
simulated urine.

2.1. Selection of Host, WADA Banned Substances, and Dyes.

As discussed above, P[n]AS (Figure 1) display high binding
affinity and high selectivity toward hydrophobic cations in
aqueous solution[14] which make them attractive components
of sensing ensembles for numerous analytes. From amongst the
list of WADA banned substances,[16] we selected 13
compounds for this initial study including eight stimulants and
four steroids (Figure 2). Given the preference of pillar[5]arenes
for linear alkane derivatives[17] over cyclic compounds, we
selected compounds 1 — 6 which to probe the influence of chain
length and branching location on P[5]ASeguest binding.
Compounds 2 — 4 and 6 were purchased and used as the racemic
mixture, whereas 5 is a mixture of diastereomers. Conversely,
P[6]AS is a more voluminous host which binds larger guests
including hydrophobic cationic stimulants 7 and 8 and neutral
steroids 10 — 13. Compounds 10 — 13 were selected to probe the
whether a cationic center is required for selectivity with P[6]AS.
Additionally, we added beta-blocker labetalol 9 to determine if
our sensing assay can differentiate compounds based on their
role in the body. Finally, two substances (1 and 10) that are not
explicitly banned by WADA were selected to demonstrate that
our sensing assay can differentiate structurally similar
substances that are not banned thereby reducing the chance of
type 1 errors (false-positives). Finally, after some
experimentation, we determined that lucigenin and Hoechst
33258 are particularly appropriate dyes to use in concert with
P[5]AS and P[6]AS, respectively, to construct indicator
displacement assay based sensing ensembles.
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Fig. 2. Chemical structures of WADA banned substances and dyes used in
this study.

2.2. Measurement of the thermodynamics of P[n]AS*Guest
complexation.

First, we decided to measure the thermodynamics of
P[n]ASeguest complexation for the WADA-banned substances
given in Figure 2. Given the high affinity binding previously
reported for P[n]ASeguest complexation we elected to employ
isothermal titration calorimetry[18] as our primary analytical
technique because of its ability to measure K, values in the 10°
— 107 M range by direct ITC titrations.[19] Figure 3a shows a
plot of heat evolved versus time during the direct titration of a
solution of P[6]AS (25 uM) in the ITC cell with a solution of 2
(250 uM) from the ITC injection syringe. For each ITC
titration, the host and guest concentrations were selected to
ensure an appropriate Wiseman c-value[18-20] and that full
binding isotherm was sampled. The raw heat data in Figure 3a
was integrated in order to create the plot of AH versus molar
ratio shown in Figure 3b which was fitted to a 1:1 binding
isotherm using the PEAQ data analysis software to determine
the K, and AH values for each run. The titrations were
performed in triplicate which gave K, = (5.59 + 0.32) x 10° M'!
and AH=-9.17 + 0.06 kcal mol™! for the P[5]AS2 complex after
error propagation.[21]  Analogous direct titrations were
performed in triplicate for most of the remaining guests with
both P[5]AS and P[6]AS and the results are collected in Table
1.
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Fig. 3. a) ITC thermogram recorded during the titration of P[6]AS (25.0 uM)
in the cell with 2 (250 pM) in the syringe. b) Plot of the integrated heats of
each titration vs. the molar ratio with the solid line representing the best fit
of the data to a 1:1 binding model with K. = (5.59 + 0.32) x 10° M ", AH =
-6.38 £ 0.03 kcal mol™'. Conditions: PBS, pH 7.4, 298.0 K.

2.3. Measurement of the binding constants for P[n]ASsdye
complexes by fluorescence spectroscopy.

As a prelude to the use of P[n]ASedye complexes as the key
components of sensing ensembles for WADA banned
substances, we set out to measure the binding affinities for
P[5]ASelucigenin and P[6]AS*Hoechst 33258 by fluorescence
spectroscopy. Experimentally, we found that when a PBS
solution of lucigenin (4 uM) was titrated with a PBS solution of
P[5]AS a quenching of the fluorescence emission at 500 nm
(excitation at 365 nm) was observed. Figure S19 shows a plot
of fluorescence intensity at 500 nm versus P[5]AS concentration
with triplicate measurements at each host concentration which
could be fitted to a 1:1 binding model implemented in
Scientist™ to determine K, = (2.83 + 0.14) x 10° M™! for the
P[5]ASelucigenin complex. In a similar fashion, titration of a

3
PBS solution of Hoechst 33258 (2 uM) with P[6]AS lead to a
an =~ 80-fold increase in fluorescence at 500 nm (excitation 355
nm) followed by a decrease in fluorescence (Figure S20). This
biphasic change in fluorescence is not consistent with a simple
1:1 binding model. Hoechst 33258 contains two
benzimidazolium binding sites which suggests a 2:1 host:guest
binding stoichiometry. Previously, Barooah and co-workers
found that CB[7] and CBJ[8] form 2:1 CB[n]*Hoechst 332582
complexes.[22] Accordingly, we implemented a 2:1 host:guest
binding model in Scientist™ which was used to extract Kqi.1 =
(1.05 £ 0.36) x 10 M" and Koo = (1.27 £0.35) x 10° M.

2.4. Discussion of the trends in P[n]AS+guest binding affinity.

An examination of Table 1 shows that P[S]AS is the more
selective host toward 1 — 11 with K, values from 9650 — 1.1 x
10’ M!; AH values range from -5.08 to -10.6 kcal mol™!. P[5]AS
does not bind to 7, 8, 10, and 11. P[6]AS displays good affinity
across 1 — 11 with K, values ranging from 2.78 x 10° to 6.37 x
10° M™'; AH values range from -6.38 to -14.1 kcal mol'. From
previous studies,[14] it is known that the pillar[5]arene cavity
prefers linear alkyl groups over branched or cyclic alkyl groups.
This trend is also seen in the current data set among the four C7-
compounds (1, 2, 5, and 6) where linear heptylammonium 1
binds 1.9-fold stronger than 2-aminoheptane 2, 380-fold
stronger than branched 5, and 1130-fold stronger than branched
6. A comparison of the binding affinity of 4 (6 carbons), 6 (7
carbons), and 3 (8 carbons) which differ by the addition of CH»-
groups between the amino group and the isopropyl terminus is
also instructive. A priori, one might expect that the longer and
more hydrophobic the guest, the higher the K, value.[23]
Indeed, P[5]ASe3 is 33-fold weaker than P[5]ASe<4 but
P[5]AS<6 is weaker still. Examination of molecular models
(vide infra) shows that whereas the isopropyl group of 4 and 6
experience steric interactions with the walls of the narrow
P[5]AS host, the isopropyl group of 3 extends out the opposite
portal of P[5]AS. The more voluminous P[6]AS host binds all
of the guests (1 — 11) less selectively with K, values clustered in
the 10* — 10° M! range. In this instance the binding affinity of
P[6]AS toward 3, 4, and 6 follow the expected trend where each
additional CH,-group increases binding affinity. For related
reasons, the binding affinity of P[6]AS toward guests 1, 2, 5,
and 6 which each contain 7 C-atoms cluster in a very narrow
range of 1.82 —3.65 x 10° M.,

Table 1. Binding Constants measured by ITC for the interaction of P[5]AS and P[6]AS with the panel of WADA-banned substances. Conditions: PBS buffered

H20, pH 7.40, 298 K.

P[5]AS P[6]AS
Guest Ko (M) AH" (kcal mol™) Ko (M) AH" (kcal mol™)
1, 1HepNH3 © (1.12 £ 0.06) x 107 -6.84 +0.03 (3.65 £0.22) x 10°® -7.68 £ 0.07
2, 2HepNH3 (5.59 +£0.32) x 10° -9.17 £ 0.06 (1.82 £0.06) x 10° -6.38 £ 0.03
3, Octodrine (1.53 £ 0.08) x 10°® -9.87 £ 0.08 (6.37 £0.43) x 10° -7.88 £ 0.05
4, 1,3-dmButNH3 (4.64 £0.34) x 10* -5.29+0.13 (7.89 £0.17) x 10° -6.43 £ 0.02
5, 1,3-dmPentNH3 (2.95 £ 0.15) x 10* -5.70+£0.13 (1.89 £ 0.05) x 10° -7.11+0.02
6, 1,4-dmPentNH3 (9.90 £0.28) x 10° -5.08 £0.23 (3.55 £0.13) x 10° -8.01+0.04
7, Epinephrine n.b. n.b. (4.39£0.17) x 10* -9.44 +0.14
8, Pseudoephedrine n.b. n.b. (3.76 £ 0.05) x 10° -7.94 £ 0.02
9, Labetalol (9.65 £ 0.27) x 10® -10.6 £0.1 (9.26 £0.13) x 10° -11.0+ 0.0
10, Hydrocortisone n.b. n.b. (2.78£0.18) x 10* -12.7+0.4
11, Corticosterone © n.b. n.b. (1.84 £0.09) x 10° -14.1+0.2
Hoechst 33258 - - (3.49 £ 1.88) x 108 (1:1) -
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Lucigenin (2.83 £0.14) x 102 -

(1.18 £0.33) x 108 (2:1)b

a) Measured via change in fluorescence of lucigenin fitted to a 1:1 binding model; b) Measured via change in fluorescence of Hoechst 33258 fitted to a sequential
2:1 (H:G) model; ¢) Not an explicitly WADA-banned substance; n.b. = no heat detected by ITC; — = not measured.

2.5. Use of 'H NMR spectroscopy to glean information on
P[n]ASeguest geometry.

The central cavity of pillar[n]arene and related cyclophane
hosts are shaped by n aromatic rings and therefore constitute a
magnetic shielding environment. Accordingly, the changes in
guest chemical shift upon P[n]ASeguest complexation can be used
to deduce the geometry of the complex. For example, Figure 4
shows '"H NMR spectra recorded for mixtures of P[n]AS (n= 5 or
6) with (£)-4. Figure 4a and 4e show the spectrum of uncomplexed
P[5]AS and uncomplexed 4 whereas Figure 4c shows the spectrum
of an equimolar mixture which exists as the P[5]AS+4 complex.
Quite interestingly, the resonances for CH; .and CHj; rof 4 undergo
substantial upfield shifts (A = -1.3 and -1.8 ppm) upon formation
of the P[5]AS<4 complex which indicates that these protons are
located within the anisotropic magnetically shielding environment
defined by the five aromatic walls of P[5]AS. The resonances for
H. and Hq undergo smaller upfield shifts upon complexation (dA
= -0.4 to -0.6 ppm). Conversely, CH;, and H, of 4 undergo only
small changes in chemical shift (A < 0.1 ppm) upon complexation
which indicates that these protons are outside of the cavity of
P[5]AS. At a 1:2 P[5]AS:4 ratio, the resonances for guest 4 shift
back toward the chemical shifts of uncomplexed 4 which indicates
that the kinetics of guest exchange are fast on the chemical shift
timescale. Overall, these results indicate that the tail of 4 is able to
enter the cavity of P[5]AS whereas the NH;" head group resides
outside the cavity nearby the OSOs™ groups. Figure 5a shows a
cross-eyed stereoview of an energy minimized (MMFF) molecular
model of P[5]ASe4 which is in accord with the geometrical
features deduced on the basis of complexation induced changes in
chemical shift. Figure 4e and 4i show the 'H NMR spectra
recorded for uncomplex 4 and P[6]AS, respectively, whereas
Figure 4g shows the '"H NMR spectrum of an equimolar mixture
which exists as the P[6]AS+4 complex. Unlike the observations for
P[5]AS-4, all of the resonances of guest 4 shift upfield (AS from -
1.2 to - 2.15 ppm) upon formation of the P[6]AS*4 complex with
largest shifts experienced by CHs.and CHsy. This observation
suggests that the more voluminous P[6]AS is able to more fully
encapsulate guest 4 within the anisotropic shielding region of its
cavity. Figure 5b shows an MMFF minimized model of P[6]AS<4.
Figure 4f shows the "H NMR spectrum recorded for a 1:2 mixture
of P[6]AS and 4 which shows the guest resonances shifting back
toward the chemical shifts for uncomplexed 4 which establishes
fast kinetics of guest exchange on the chemical shift timescale for
the P[6]AS+4 complex. Related sets of '"H NMR spectra were
recorded for the complexes between P[n]AS (n =5, 6) with guests
2, 5, and 6 (Figures S21 — S27) which displayed similar patterns
of changes in chemical shift upon complexation.
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Fig. 4. "H NMR spectra recorded for (600 MHz, RT, PBS buffered D>O, pD
7.4) for: a) P[5]AS (1.0 mM), b) a mixture of 4 (0.5 mM) and P[S]AS (1.0
mM), ¢) an equimolar mixture of 4 and P[5]AS (1.0 mM), and d) a mixture of
4 (2.0 mM) and P[S]AS (1.0 mM), ¢) 4 (1.0 mM), f) a mixture of 4 (2.0 mM)
and P[6]AS (1.0 mM), g) an equimolar mixture of 4 and P[6]AS (1.0 mM),
and h) a mixture of 4 (0.5 mM) and P[6]AS (1.0 mM), i) P[6]AS (1.0 mM).



Fig. 5. Cross-eyed stereoviews of MMFF minimized models of: a) P[5]AS+4
and b) P[6]AS<4. Color code: C, grey; H, white; N, blue; O, red; S, yellow;
H-bonds, red-yellow striped.

2.6. Detection of WADA Banned Substances in PBS Buffer.

2.6.1. Determination of the conditions for the
assay.

In a previous report, we measured the binding constants of
P[6]AS toward modified peptides using 4',6-diamidino-2-
phenylindole (DAPI) as the dye to construct and indicator
displacement assay.[15b] Initially, we tested the fluorescence
response of a series of P[n]ASedye complexes (DAPI, thioflavin
T, proflavine, rhodamine 6G, lucigenin, and Hoechst 33258; 2.0
puM concentrations) upon addition of the panel of tighter binding
and structurally similar stimulants (1 — 6). We found that the
largest changes in fluorescence intensity were observed for
lucigenin and Hoechst 33258 which was anticipated to result in
highest performance in the sensing and differentiation of the
WADA-banned substances. Subsequently, we found that assays
conducted using P[5]AS<lucigenin and P[6]AS*Hoechst 33258 (2
and 5 uM concentrations) were appropriate; higher concentrations
of sensing components were not included during this optimization
in order to maximize compound differentiation at low WADA-
banned substance concentrations.

2.6.2. Implementation of Linear Discriminant
Analysis (LDA) to Detect and Differentiate WADA
Banned Substances in PBS Buffer

5
After identifying appropriate dyes and dye concentrations

(P[5]ASelucigenin at 2 and 5 uM; P[6]AS+Hoechst 33258 at 2 and
5 uM), we turn our attention to determining the best emission
wavelengths to monitor. For each condition, the fluorescence
emission intensity was measured every 5 nm from 435 — 470 nm
(P[5]ASelucigenin) and from 335 — 435 nm (P[6]AS+Hoechst
33258). Typically, previous researchers have increased the
predictive accuracy of related differential sensing assays by
working in pure water[24] and at relatively high concentrations of
guest in order to maximize the change in spectroscopic signal of
the displaced dye.[8] To provide an assessment of the predictive
power of this P[n]AS-based assay as a method for drug testing, we
elected to use the more competitive and biologically relevant PBS
buffer (pH 7.4) as our medium. We then determined the lowest
concentration of WADA-banned substance that yielded over a
90% accuracy (50 uM) with 15 separate measurements of each
analyte.

To prevent overfitting and increase the generality of the sensing
protocol, we reduced the number of dimensions (wavelengths)
used first by feature selection, then by feature extraction. First,
unhelpful and extraneous wavelengths were removed, and the 15
best wavelengths were retained by performing analysis of variance
(ANOVA) on the data.[25] To do this, at each wavelength the
variance within the repetition measurements for each compound is
compared to the total variance of all the signals at that wavelength.
This process is then repeated for each wavelength. Wavelengths
that have a greater difference between the two different types of
variances contain more information and are thus more useful.
Three additional wavelengths were added to more effectively
detect and differentiate the aromatic guests 7 —9 and steroids 10 —
14 resulting in a total of 18 variables. From these 18 variables,
new variables which explain the data more efficiently, called
features or linear discriminants (LD), were found using the feature
extraction algorithm linear discriminant analysis (LDA).[25] LDA
is a supervised learning technique that finds new variables that are
a linear combination of the original variables that both reduce the
variance within each class (guest) while maximizing the variance
between each class. Figure 6 shows cross plots of the first three
linear discriminants. These three discriminants retain 98.5% of the
total variance, or information, from the original 18 variables
remaining after feature extraction. These LDs not only more
efficiently explain the data, but they are also useful for sensing
applications because they carefully chosen to reduce the spread
within of each group while maximizing the separation between
groups.
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Fig. 6. Cross sections of the three-dimensional LDA plot for the discrimination of 13 WADA-banned compounds at 50 uM of guest. The predictive accuracy
was determined to be 92.3 £ 6.9 % as determined via stratified K-fold (K = 15) cross-validation.

LDA can also be used as a predictive tool. To find the predictive
power of the assay, stratified K-fold cross validation (CV) with K

= 15 was used since there were 15 repetition measurements taken
for each compound.[25b] For this purpose, the data from the
measurements of the 12 different compounds (guests 1 - 11 and a
PBS buffer blank) (50 uM) were randomly separated into 15
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different groups such that a single measurement of each compound
was randomly assigned to each group. Initially, one of the 15
groups were held-out as the remaining data were used to train an
LDA model. After the LDA was trained on the data from the
remaining 14 groups, the held-out group was then used to test the
accuracy of the model. This was repeated for each of the 15 groups,
with a new model trained each time (for a total of 15 models).
Using this method, in total, the models were able to predict the
held-out data with an average accuracy of 92.3 + 6.9 %. To more
readily see which compounds were the most difficult to accurately
predict and which compounds were most often confused for each
other, a plot of true compound identity versus the predicted
compound identity, known as a confusion matrix, was constructed.
If the assay was able to perfectly predict each compound, you
would expect to see 15’s on the diagonal since the true compound
identity and the predicted identity match (Figure S27). For
example, Figure S27 shows that 7 was predicted with the lowest
accuracy (10/15) and was most often confused for 11; this makes
sense as neither 7 nor 11 bind strongly to P[5]AS and have
comparable association constants toward P[6]AS. Because we
were satisfied with the predictive accuracy of the model, we did
not seek to improve it further by increasing guest concentration,
using a less competitive medium, or increasing the number of
conditions (e.g. to better differentiate the steroids).

An interesting feature that we recognized was that the LDA plot
(Figure 6) separated chemicals of different pharmacological
groups. For example, Figure 6¢ shows that steroids 10 — 12 were
separated from the stimulants along a boundary that extends from
the blank towards 6. The LDA function plots the stimulants and
steroid data points along the same plane, with only labetalol (9,
beta-blocker), located in another plane. This suggests that the
assay should be able to assign a new unknown analyte to the
correct pharmacological group. To test this concept, we measured
estradiol 13 — which was not used in creating the classifier — using
the same protocol. When the classifier was then asked to predict
the identity of the compound, the LDA classifier predicted it was
a steroid 80% of the time (12 — 8 times, 10 — 4 times) and it was
twice confused for the blank. This assay offers useful information
even when analyzing novel analytes because pharmacologically
similar compounds are grouped together.

Since each LD theoretically represents an underlying variable,
it is worthwhile to attempt to determine the nature of the
underlying variables (LD1 and LD2) because they may shed light
on the nature of each binding interaction. It is natural to consider
whether LD1 and LD2 correspond to the binding constant of each
guest with P[6]AS and P[S]AS. Figures S28 — S31 show plots of
each LD versus K,, log K., AH, and -TAS. Interestingly, the log
K., values (Figure S29) for P[5]AS and P[6]AS show a parabolic
correlation with LD1; as LD1 becomes more positive, the K, for
both P[6]AS and P[5]AS trend toward 0.

2.7. Quantitative Detection of Epinephrine and Pseudoephedrine
in Simulated Urine.

With the conditions now optimized for the separation of each
compound, the ability of the assay to determine concentration in
simulated urine was determined. Simulated urine was used as the
medium because over 90% of the 241,430 samples tested and
entered into the Anti-Doping Administration & Management
System (ADAMS) in 2021 were urine samples[26] and to avoid
the use of potentially biohazardous human samples. For this
purpose, we spike simulated urine with different concentrations of
either epinephrine 7 or pseudoephedrine 8 with the goal of
accurately detecting them below the competition threshold limits

(7: 0.27 uM; 8: 908 uM) defined by WADA.[27] The calibration
measurements for concentrations from 0-2500 uM of 8 and 0-100
UM of 7 were collected using the same conditions and wavelengths
as above without further optimization. The data was processed
with a new LDA algorithm for each analyte to prevent overfitting.
The first discriminant was then fitted to a regression support vector
machine (rSVM).[25b] A rSVM is similar to traditional linear
regression with a few notable exceptions. In this instance, the main
advantage of the rSVM is that, instead of fitting a line with
infinitely small thickness, it fits a line with a tunable width, &, on
either side of the central line. Any point inside this width is
assumed to lie along the line and no penalty is applied to these data
points when fitting which reduces the influence of outliers on the
fitting. Examination of the data showed that the concentrations of
8 were non-linear with respect to LD1, so the data was transformed
into a plot of LD1 vs. the natural log of the concentrations. After
the line was fit, the concentrations were transformed back to the
original space by taking the exponent of the calibrated y values
(Figure S32). After calibration, two previously unmeasured
concentrations were chosen to test the accuracy of the assay. For 8
one of these two concentrations was between the limit of LOD of
our model and the WADA-defined threshold limit, and the other
was above the WADA threshold limit. For 7 it quickly became
apparent that the current assay would not be able to measure 7 at
concentrations close to the WADA-threshold. The results of the
calibration and prediction can be seen in Figure 7b. The LOD and
LOQ for each model were defined according to previously defined
values[25a] of 3o, and 100, respectively plus the predicted blank
concentration, where o, represents the standard deviation of the
predicted blank concentration.

The calibration plots yielded an LOD of 5.7 uM and LOQ of
19.1 uM for 7 and an LOD of 28.6 uM and LOQ of 31.8 uM for
8. For 7, we tested concentrations of 9.3 pM and 41.3 uM and
obtained predicted concentrations of 8.6 = 3.2 uM, and 48.3 £ 4.0
UM, respectively. For 8, we tested concentrations of 186 uM and
1200 uM, and obtained predicted concentrations of 135.2 7.0 uM
and 1270 + 21 pM, respectively. Unfortunately, the assay is not
yet sensitive enough to detect concentrations of 7 near the WADA-
threshold. However, the assay can predict the concentration of 8
relatively accurately across a broad range of concentrations. For
example, the assay has a LOQ that is 30-fold lower than the
WADA threshold while maintaining the ability to predict
concentrations above millimolar concentrations with less than 6%
error. Taken together, this suggests that this proof-of-concept
assay, with further optimization, could be useful as a quick and
inexpensive way to screen athletes for banned stimulants.



2500
2000
15004
1000

500

Predicted Conc. (uM) £

1000 2000
Actual Conc. (uM)

o

=

100 -
80
60 *

40

Predicted Conc. (uM)

20 L)

0

0 25 50 75 100
Actual Conc. (uM)

Fig. 7. Calibration plots for ten concentrations were measured (15 replicates
per concentration) for: a) 8 from 0 — 2500 uM, and b) 7 from 0 — 100 uM in
simulated urine. The calibrations were able to achieve LOD of 85.4 uM and
LOQ of 146.8 uM for 8, and LOD of 5.7 uM and LOQ of 19.1 uM for 7. The
red lines represent the standard deviation of the predicted concentrations. The
solid black line represents a perfect correlation between predicted and actual
concentrations. Two test concentrations (silver) used for each compound with
one above and one below the WADA-LOQ.

3. Conclusions

In summary we have measured the thermodynamics of the
binding of P[#]AS (n= 15, 6) toward a panel of stimulants, steroids,
and a beta-blocker by ITC in PBS buffer. We find that the narrow
cavity of P[5]AS selectively binds to alkylammonium ions 1 — 6
relative to the bulkier steroidal and aromatic guests. Binding of
branched alkylammoniums (e.g. 5, 6) to P[S]AS is disfavored
relative to linear alkylammonium 1 due to steric interactions
between the Me-branches and the walls of the P[5]AS cavity.
Conversely, the larger cavity of P[6]AS binds to the guest panel
with a narrow range of binding affinities (27800 — 6.37 x 10° M™).
We used 'H NMR spectroscopy to observe the complexation
induced changes of guest chemical shift to deduce geometrical
features of the P[n]ASeguest complexes. P[6]AS with its large
cavity can encapsulate the entire hydrophobic regions of the guest
resulting in upfield shifting of most resonances whereas P[5]AS is
selective for narrow portions of the guest resulting in upfield
shifting of a subset of resonances. An indicator displacement assay
employing P[n]AS (n = 5, 6) and dyes lucigenin and Hoechst
33258 was developed which allowed differentiation of the
structurally similar members of the guest panel (50 pM) with over
90 % accuracy in PBS. Although the current assay worked well
using spiked artificial urine, additional compounds should be
included in the training data if real world samples containing
allowed drugs and WADA banned substances are assayed. The
assay was further developed to allow the measurement of
pseudoephedrine in simulated urine with a LOQ well below the
WADA threshold level for drug testing. Overall we have
established that P[n]AS is a promising class of molecular container
containers for the construction of indicator displacement assays
and demonstrated their use in a proof-of-concept drug testing assay
for a selection of WADA-banned substances.

4. Experimental section

4.1. General information

7

Chemicals were purchased from commercial suppliers and
used without further purification or were prepared by literature
procedures.[14-15] Simulated urine was purchased from Flinn
Scientific (“Artificial Urine, Normal” Lot#294189). PBS buffer
was made by dissolving commercially available tablets (MP
Biomedicals, Lot#S7091) in HPLC grade water and adjusting to
pH 7.4 using aq. NaOH or HCIL. 'H NMR spectra were measured
on commercial instruments operating at 600 MHz using sodium
phosphate buffered D,O saline (pD 7.4) as the solvent. Chemical
shifts (3) are referenced relative to the residual resonance for HOD
(4.79 ppm). ITC data were collected on a Malvern Microcal
PEAQ-ITC instrument and analyzed using the software provided
by the vendor. All fluorescence measurements were performed
using Greiner Bio-One black, flat-bottomed, polystyrene 96 well
plate and measured with a SpectraMax Se multimode plate reader.
Data analysis and machine learning algorithms were implemented
in Python using pandas,[28] numPy,[29] and scikit-learn[30]
libraries. All data analysis files and csv files for the calibration
curves and LDA plot can be found on GitHub:
https://github.com/daking1 I/WADA_sensor.git.
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