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A B S T R A C T   

Riparian vegetation composition and channel morphology are susceptible to long-term alterations caused by 
external stressors, including climate-change-induced droughts and engineered infrastructures. The objectives of 
this study were to (1) quantify trends in riparian vegetation and channel/floodplain morphology over large 
spatial (~290 km) and temporal scales (~30 years) and (2) investigate the relationships between hydroclimatic 
drivers and changes in riparian vegetation and channel morphology. We implemented a random forest classifier 
via a machine learning technique in Google Earth Engine. The study area was a 290 km reach of the Rio Grande 
located in New Mexico, USA. We used the combination of remotely sensed data and products (e.g., Landsat 
imagery, Normalized Difference Vegetation Index (NDVI), and land cover) to characterize vegetation, vegetation 
cover changes, and river morphology shifts from 1984 to 2020. The trend analysis revealed increased vegetated 
areas and NDVI (0.0004/yr) during long-term drought. The channel experienced a reduction in width associated 
with vegetation encroachment and the formation of stable vegetated islands. The streamflow hydrograph 
characteristics were positively correlated with vegetation cover and channel morphology. Our study contributes 
novel insights into the long-term riparian ecosystem dynamics under drought stress, informing drought impact 
mitigation and ecosystem management in arid and semi-arid regions.   

1. Introduction 

In semi-arid regions such as the Southwestern United States (USA), 
rivers are experiencing pressure due to drought-induced streamflow 
alterations, increased water demand, changes in land use, and engi
neered structures (e.g., dams, levees, etc.) (Poff et al., 2007). River en
gineering projects disturb natural sediment transport processes (Bollati 
et al., 2014). Artificial levees impact floodplain connectivity by limiting 
the active floodplain and changing the original flow path of the channel 
(Knox et al., 2022). These disturbances affect the riparian vegetation 
and the river geomorphology (Stromberg et al., 2010). Consequently, 
ecosystem services provided by the river system are deteriorating in 
many river systems, particularly in semi-arid regions. 

Besides providing ecosystem services, vegetation alters river 

hydraulics by adding resistance to the flow and reducing bed shear stress 
(Nepf, 2012). Vegetation also affects the forms and dynamics of channel 
morphology, such as alteration of channel width, formation of stable 
islands, and reduction in braiding intensities (Gurnell et al., 2001). 
Furthermore, changes in river hydrology, geomorphology, and riparian 
vegetation have cascading impacts on other aspects of the river corridor 
system, including hydrological connectivity, sediment regimes, and 
habitat provisioning (Brierley et al., 1999). These changes are sensitive 
to the hydroclimatic components (streamflow and climatic conditions) 
that vary from seasons to decades in addition to climate variability 
(Yonaba et al., 2021a). Thus, understanding the interactions of these 
components in response to external drivers of change is essential for 
advancing river conservation and management. Long-term observation 
can help river managers to understand the response of vegetation and 
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channel morphology due to these external drivers. 
Usually, riparian vegetation is monitored through indicators of suc

cession, species composition (native or invasive species), vegetation 
structure (height, density, biomass), and physiological processes (health 
status, phenology, evapotranspiration) (Nagler et al., 2016). The 
changes in channel morphology have been studied and quantified by 
comparing channel topography, observing patterns in aerial imagery 
(Swanson et al., 2011), through numerical approaches (e.g., BASEMENT 
software) (Artini et al., 2021), and using physical models (Bertoldi et al., 
2015). Traditionally, topographic data are collected from field mea
surements at different periods to determine the changes in channel ge
ometry. However, due to the spatial variability and dynamics of 
vegetation and morphology, field data collection is challenging, 
labor-intensive, expensive, and time-consuming, making this approach 
impractical for large study areas (>100 km) and multiple years 
(Johansen et al., 2010). Remote Sensing (RS) approaches offer a 
cost-effective way to monitor the vegetation and morphology over large 
spatial domains for extended temporal scales. 

Remote sensing products, especially satellite imagery (e.g., Landsat, 
Sentinel, and MODIS), are widely used in determining changes in ri
parian vegetation and channel morphology (Isikdogan et al., 2017; 
Langat et al., 2019; Monegaglia et al., 2018). Most of the techniques rely 
on spectral indices such as the Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI), Modified NDWI 
(MNDWI), or simply by classifying images for delineating the wetted 
channel and vegetation. NDVI is the most common indicator to monitor 
vegetation impacts from climate trends and changes in streamflow. 
NDVI represents photosynthetic activity, which is directly related to 
climatic conditions (Ndayisaba et al., 2017) and water availability (Sims 
and Colloff, 2012). Additionally, satellite images are used to extract 
morphodynamics for either single or multithreaded channels with the 
capacity to delineate surface water (Isikdogan et al., 2017), complex 
features such as emerging bars (Monegaglia et al., 2018), and deposition 
or erosion patterns (Langat et al., 2019). These studies utilized either 
manual (Han et al., 2020), semi-automatic (Schwenk et al., 2017), or 
fully automatic (Monegaglia et al., 2018) approaches to delineate open 
water surface advancing from simple algorithms (Langat et al., 2019) to 
deep learning algorithms (Isikdogan et al., 2017). However, such studies 
are limited in terms of spatial and temporal scale, i.e., discrete analysis 
ranging from seasons to decades. Moreover, large spatiotemporal scale 
studies are challenging due to the limited data availability and pro
cessing of large datasets. 

The emergence of cloud-based storage and computing platforms such 
as Google Earth Engine (GEE) (Gorelick et al., 2017) has enabled re
searchers to undertake long-term, large-scale monitoring of vegetation 
and channel morphology. Prior studies have implemented GEE for 
spatiotemporal analysis of riparian vegetation and channel morphology 
(Boothroyd et al., 2021a; Boothroyd et al., 2021b; Pu et al., 2021). 
Boothroyd et al. (2021a) performed a spatiotemporal analysis of channel 
morphology and riparian vegetation using NDWI and NDVI within GEE 
cloud-based computing platform for a single-threaded, meandering 
channel. Similarly, Pu et al. (2021) assessed riparian vegetation and 
channel morphology in terms of NDVI and MNDWI using 
high-resolution National Agriculture Imagery Program (NAIP) imagery 
in GEE. 

The mechanism and local effects of vegetation and hydrological 
variables on morphology are well documented. Numerous studies 
focused on determining the relationship between the NDVI and climate 
variables (Chi et al., 2020; Weiss et al., 2004). Some studies investigated 
the spatiotemporal trends of hydrological variables with riparian vege
tation and channel morphology (Caruso et al., 2013; Picco et al., 2017). 
Despite prior studies, there is still a gap in our knowledge regarding 
interrelated responses of riparian vegetation and channel morphology at 
a large spatiotemporal scale. 

The response of riparian vegetation to long-term droughts in an arid 
region, its cascading impacts on the other aspects of the river system, 

and the study of the complex interaction between the vegetation, 
morphology, and hydroclimatic variables are the emerging topics of 
interest in the present context. This research aimed to enhance the un
derstanding of riparian vegetation and channel morphology responses to 
external drivers of change (hydroclimatic variables) using ML on a large 
spatiotemporal scale, especially for the semi-arid region. The objectives 
of this research were to (1) quantify trends in riparian vegetation and 
channel/floodplain morphology over large spatial (~290 km) and 
temporal scales (~30 years) and (2) investigate the relationships be
tween hydroclimatic drivers and changes in riparian vegetation and 
channel morphology. This study used NDVI (1984–2020) and land cover 
(LC) maps to determine the spatiotemporal changes of vegetation and 
channel morphology for a 290 km reach of the Rio Grande in New 
Mexico, USA. 

2. Methods 

2.1. Study area 

This study focused on a 290 km reach of the Rio Grande in New 
Mexico, USA (Fig. 1). The study reach extends from Cochiti Dam to 
Elephant Butte Reservoir. This reach is also known as the Middle Rio 
Grande (MRG). The MRG is a heavily regulated, physically modified, 
snowmelt-dominated river, with the highest discharges occurring in 
May and June. The dominant native vegetation species along the MRG 
include cottonwood (Populus deltoids) and coyote willow (Salix exigua). 
Non-native vegetation species includes salt cedar (Tamarix ramosissima) 
and Russian olive (Elaeagnus angustifolia) (Mussetter Engineering Inc., 
2006). 

The MRG has gone through several modifications across different 
eras. From the 1930s to the 1950s, spoil-bank levees derived from the 
excavation of riverside drains were constructed for flood protection 
along both banks, disconnecting the river from its historical floodplains. 
From the 1950s to the 1970s, engineered levees replaced the spoil banks, 
and an equi-width (180 m) channel controlled by jetty jack fields were 
constructed within the levees to improve downstream flow conveyance 
and reduce flood risk. Cochiti Dam has regulated the streamflow at the 
head of the reach since 1973. Four other low-head diversion dams along 
the reach divert water for irrigation (Angostura, Isleta, and San Acacia 
dams) and municipal water supply (Albuquerque drinking water 
diversion) with no flood control capacity. 

Due to an extended drought since 2000 (Petrakis et al., 2017), a 
reduction in discharge has caused a narrowing of the channel, formation 
of new bars and islands with stable vegetation, sediment aggradation, 
and bank undercutting (Swanson et al., 2011). This reach also consists of 
several river restoration projects implemented to recover the Federally 
listed endangered Rio Grande silvery minnow (Hybognathus amarus) and 
southwestern willow flycatcher (Empidonax traillii extimus). Some por
tions of the riparian zone, especially the over-aged cottonwood gallery 
forests that were initially established by floods in the 1940s, have been 
impacted by wildfires in the past two decades. 

Here, the study reach is divided into four sub-sections based on the 
availability of validation datasets for sub-reaches (Fig. 1). The reach 
from Cochiti dam to Alameda bridge is considered the Upstream reach; 
Alameda bridge to Isleta dam is referred to as the Albuquerque reach; 
Isleta dam to San Acacia dam is the Isleta reach; and San Acacia dam to 
San Marcial is the San Acacia reach. 

2.2. Data processing 

The sequence of methodologies followed for preprocessing images 
and data analysis is represented in Fig. 2. The datasets used in this study 
are summarized in Table A1 (Appendix). The images were processed by 
removing the shadows and clouds from Landsat images. The NDVI was 
calculated from preprocessed images. Sample datasets were created for 
the RF classification. The validated LC was overlaid with the NDVI to 
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determine the spatiotemporal trends of vegetation and morphology. 
Finally, hydroclimatic variables were correlated with NDVI and channel 
width to determine the spatiotemporal correlation between these 
variables. 

2.2.1. Image collections 
This study used multi-spectral and multi-temporal satellite imagery, 

Landsat images, collected by sensors Landsat 5, 7, and 8 from 1984 to 
2020 (37 years). Landsat 5 Thematic Mapper imagery data are available 
from 1984 to 2011; Landsat 7 Enhanced Thematic Mapper data from 
1999 to the present; and Landsat 8 Operational Land Imagery from 2013 
to the present. Landsat 7 data contains gaps between the images due to 
scan line errors, which require correction to fill gaps with gap mask files. 
Due to data limitations, Landsat 7 data was used for 2012 only. The 
spatial resolution for these images is 30 m, collected every 16 days. For 
Landsat 1 to 4, images are available from 1972, but the spatial resolution 
is more than 30 m. 

The trends for riparian vegetation and channel morphology were 
investigated from May to August (growing season). The mean monthly 
NDVI (Figure A1, Appendix) was higher from May to August compared 
to other months of the year. The study region is arid to semi-arid, which 
is beneficial for obtaining images with less cloud cover (mostly <10%) 
during those months. The Landsat images from the GEE cloud-based 
storage were used. First-tier surface reflectance Landsat products 
available from the GEE data catalog are atmospherically corrected, 
which is one of the advantages of using GEE. 

2.2.2. Preprocessing of images 
The image collections were filtered over the growing season in the 

GEE cloud-based computing platform. Using the Landsat World Refer
ence System, images were extracted and processed for paths 33 and 34 
and rows 35 to 37. The study area contains 1532 tiles of images for the 
growing season. Clouds and shadows were masked out using the func
tion available in GEE API. The resulting images preserve the metadata 
and footprint of input images, while areas transitioning from zero in the 
mask are filled with zeros or values close to zero within the range of 
pixel type (Gorelick et al., 2017). The images were aggregated using the 
median function as a reducer to obtain annual time series images; 
instead of the mean function for higher accuracy (Phan et al., 2020). 

2.3. Vegetation trend analysis 

NDVI was used for long-term monitoring of vegetation. NDVI (NIR- 
R/R + NIR) depends on the red (R) and near-infrared (NIR) spectral 
bands. NDVI was calculated using JavaScript from the preprocessed 
images in the GEE code editor. NDVI values < 0.2 were masked out to 
identify vegetation only (Yonaba et al., 2021b). The mean monthly 
NDVI to investigate the seasonal variation in greenness and the mean 
annual NDVI for the growing season were determined. Growing season 
NDVI for sub-reaches was also determined to analyze spatial NDVI 
trends. 

Simple linear regression does not perform well for data affected by 
seasonality (Assal et al., 2021) for determining trends. Therefore, a 
non-parametric Mann-Kendall test was performed to determine the 
trends in NDVI using a Python package called pymannkendall (Hussain 
and Mahmud, 2019). This package includes the modified Mann-Kendall 
test addressing autocorrelation by a variance correction approach 
(Hamed and Ramachandra Rao, 1998). A p-value of 0.05 was used to 

Fig. 1. Study area located between Cochiti Dam and Elephant Butte Reservoir.  
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check the significance of the trend. Also, the trend in NDVI for an 
extended time may not always follow monotonic change. Due to 
external disturbances such as flooding and drought events, abrupt 
changes in the greenness of vegetation can occur. To address these is
sues, trend breakpoints were detected manually (Assal et al., 2021). 

The period from 1984 to 1999 was categorized as drought, and 2000 
to 2020 as a non-drought period based on the study of Petrakis et al. 
(2017) for further analysis. Palmer Drought Severity Index was used in 
their study to determine the drought period. 

2.4. LC mapping 

LC maps were created from the Landsat Images to observe vegetation 
status and channel morphology changes. LC classification was per
formed using the built-in RF algorithm based on supervised image 
classification within the GEE. The RF algorithm was selected because of 
its robustness and accuracy, especially for LC classification (Yang and 
Cervone, 2019). 

The sampling datasets (training and testing) were created manually 
to train the data for supervised classification. LC classification was 
performed every two years with the assumption of less chance of change 
in vegetation and morphology unless affected by extreme external 
stressors (e.g., floods, wildfires). The datasets were visually verified for 

2009, 2011, 2014, 2016, and 2018 with the available NAIP imagery. The 
ratio of sampling data was created according to the best judgment of the 
study area to avoid data imbalance issues. The average number of 
sampling points ranged from 200 to 500 for each class. The sampling 
datasets were randomly split into training (80% data) and testing (20% 
data) datasets. Training datasets were used for the classification of im
ages, and the testing datasets were used to check the model’s overall 
accuracy (OA). LC was classified into three classes: bare land, water, and 
vegetation. The riparian zone of the study area does not contain sig
nificant areas of infrastructure such as buildings or other LC types. LC 
maps were exported from GEE cloud storage for further analysis. 

The channel morphology was analyzed by estimating the channel 
width from LC. The channel width was obtained by counting the pixels 
classified as water. The pixels on the channel islands identified with 
vegetation were not included in determining channel width. 

The two major parameters for RF algorithm are the number of decision 
trees and the number of features/variables to consider for best splitting. 
Based on previous studies, 100 decision trees were selected (Maxwell 
et al., 2019). The number of features/variables used for splitting was 
considered the default value (e.g., the square root of the total number of 
input features). 

Two commonly used matrices (OA and F1-score) were employed to 
determine the LC accuracy (Foody, 2020). OA represents the proportion 

Fig. 2. Flow chart summarizing the methods. Blue is coded for the processes performed, and light grey represents the input/output datasets. Dark grey represents the 
available datasets from external sources. 
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of correctly classified classes (Türk, 1979). F-measure (F1- score, 
equation (2)) measures the model’s accuracy based on the harmonic 
mean from precision (equation (3)) and recall (equation (4)) calculated 
from binary confusion matrices. 

OA =
True positive (TP) + True negative (TN)

TP + TN + False negative (FN) + False positive (FP)
(1)  

F1 − score =
2Precision × Recall
Recall + Precision

(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

2.5. Validation datasets 

The vegetated area obtained from the ML technique was compared 
with the vegetation mapping prepared originally by Hink and Ohmart 
(1984) and repeated several times in successive years. Those vegetation 
maps were prepared by verification from field observations and aerial 
photographs. The data are available periodically between 1984 and 
2016 and cover the specific reach for a specific time. 

The changes in channel width determined from ML were also verified 
by comparing with surveyed cross-section data collected by the United 
States Bureau of Reclamation (USBOR), Albuquerque Area Office. 
USBOR contractors surveyed fixed cross-sections on a frequent basis 
(every two to three years). 

2.6. Hydroclimatic variables 

The hydroclimatic variables used in this study were temperature, 
precipitation, estimated reference evapotranspiration, and streamflow. 
Meteorological variables collected at the Albuquerque Airport (ABQ) 
were used. This station was selected because it lies in the middle of the 
study reach. Streamflow data from USGS Gauge 08317400, below Cochiti 
Dam was used. This gauging station was chosen because it represents the 
overall streamflow patterns. 

From the streamflow data, flood frequency, duration, timing, and 
magnitude were analyzed from 1980 to 2020 using the Indicators of 
Hydrologic Alteration (IHA) software package. IHA calculates 33 hy
drological alterations and 34 environmental flow components (Richter 
et al., 1996) based on ecosystem influences such as soil moisture 
availability for vegetation and habitat for aquatic organisms. Stream
flows were categorized into extremely low flows (<10 percentiles of 
daily flows), low flows (<75%), and high flows (>75%). High flows 
were further classified as small (>2 years return period of high flows) 
and large floods (10 years return period of high flows). Depending on the 
section of the study reach, the floodplains start to inundate after 
discharge exceeds 57–142 m3/s. The parameters such as high and low 
flow frequency and high and low pulses influence the recruitment of 
vegetation and the dynamics of the river system, which were used for 
further analysis. 

2.7. Correlation between vegetation, morphology, and hydroclimatic 
variables 

Spearman’s Rank correlations were calculated to determine the re
lationships between vegetation, morphology, and hydroclimatic vari
ables. Mean Decrease Impurity (MDI), one of the widely used measures 
for selecting features (Calle and Urrea, 2011), was used to determine the 
important hydroclimatic variables that impact the dependent/target 
variable (NDVI for vegetation and channel width for morphology). MDI 
determines the importance of each variable by evaluating the change in 
prediction (Calle and Urrea, 2011). The higher MDI value means the 

variable’s importance is higher for predicting a target variable. 

3. Results 

3.1. LC classification accuracy 

OA and F1-score were calculated to evaluate the performance of RF 
for LC classification. OA was >95% for water, land, and vegetation 
classes. F1-score was also >85% for each category. The classified images 
were also visually verified using high-resolution NAIP imagery before 
calculating these matrices. 

3.2. Validation datasets 

The vegetated area determined from RS techniques closely matched 
the ground-truth data for the Albuquerque reach (Table 1). However, LC 
from ML slightly underestimated the vegetated area compared to 
ground-truth data for most conditions in other sub-reaches. 

The relationship of channel width obtained from the ML and USBOR 
surveyed cross-sections is shown in Fig. 3. The analysis reveals close 
agreement between RS and field measurements of channel width (R2 =

0.9942) with a small underestimation from ML compared to the survey 
data. 

3.3. Temporal analysis of vegetation and morphology 

Between 1980 and 2020, riparian vegetation changed both in tem
poral and spatial extent. The statistical summary of NDVI for the 
growing season is represented by a box plot (Fig. 4). Fig. 4 reveals the 
wider ranges (0.2–0.9) of NDVI over time. The analysis was limited to 
NDVI >0.2. As a result, the minimum value is equal to 0.2. 

The growing season mean NDVI for the study reach is shown in Fig. 5 
(A). NDVI fluctuated from 1984 to 2000, with the lowest value in 1996. 
NDVI was relatively low from 2000 to 2010 and increased from 2010 to 
2020. This pattern was similarly observed for the sub-reaches (Fig. 5B). 
However, NDVI for the Upstream reach was lower, and the Albuquerque 
reach had higher NDVI until 2000 than the other sections. The Isleta 
reach also experienced higher NDVI for the study period. 

A non-parametric Mann-Kendall test was performed to investigate 
temporal trends (Fig. 5 (A)). This test indicated no significant (p < 0.05) 
monotonic trend for the entire study period. The annual increase of 
0.0004/yr was observed. To observe the dynamics of vegetation, trends 
were analyzed by considering breakpoints manually. The trend analysis 
shows that there was no significant monotonic trend (p < 0.05) from 
1984 to 1987 (p = 1.0), a significant increasing trend from 1987 to 1995 
(p = 0.047), a significant decreasing trend from 1995 to 2006 (p =

0.02), and again a significant increasing trend from 2006 to 2020 (p =

0.0045). The annual increase in NDVI from 1987 to 1995 was 0.0065/ 
yr. An annual decrease of 0.0062/yr was observed from 1996 to 2006. 
An annual increase of 0.005/yr was observed from 2006 to 2020. 

Table 1 
Comparison of the vegetated area between the ML technique and the vegetation 
mapping prepared by Hink and Ohmart (1984).  

Year Sub-Reach Area from 
ground-truthing 
(km2) 

Area from 
ML (km2) 

Percentage differences 
between ground-truth 
and ML 

2003 San Acacia 48.35 40.26 16.7% 
2016 51.13 52.22 −2.13% 
1984 Albuquerque 11. 63 11.61 0.17% 
2005 10.34 10.17 1.64% 
1984 Isleta 30.69 23.14 24.6% 
2003 31.57 27.15 14% 
2016 36.26 32.61 10% 

(Positive values mean the ground-truth overestimated the vegetated area 
compared to ML). 
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Fig. 6 shows the proportion of vegetation cover, including the pro
portion of land and water. The vegetated area has increased even though 
the reach has gone through a long-term extended drought for 20 years 
since 2000. The proportion of the stream corridor classified as water has 
decreased. This trend is consistent with field and aerial photograph 
observations (Fig. 7) along with the development of vegetated sand bars 
and islands. To elaborate more on change in vegetated area, the per
centage change in vegetated area for the entire reach and sub-reaches 
are also included in the Appendix (Figure A2). 

The channel width reduced from an average width of 180 m in 1980 
to 90 m in 2020 (Fig. 8). The width was relatively consistent from 1984 
to 1998 and then decreased from 2000 to 2020. The minimum channel 
width was also consistent with time. However, the range of channel 
width has reduced from 30 to 420 m in 1984 to 30–180 m in 2020. 

3.4. Spatial analysis of vegetation and morphology 

The changes in spatial patterns of LC were consistent with temporal 
analysis and revealed the increased vegetation coverage and narrowing 
of the main channel (Fig. 9). Fig. 9 represents an example of spatial 
analysis for the sub-section along the Rio Grande. The changes varied 
spatially and temporally. Fig. 9 shows the increase in riparian vegetation 

density, the change in the channel from a single thread to a braided 
channel, and again to a single thread with a side channel covered by 
vegetation. This result was consistent with visual observations of 
channel and vegetation changes (e.g., Fig. 7). 

3.5. Hydroclimatic variables 

The alteration of streamflow obtained from the IHA metrics is rep
resented in Fig. 10. The mean monthly discharge has reduced during the 
drought (from 2000 to 2020) (Fig. 10A) compared to before 2000. The 
peak discharge was reduced from 110 m3/s to 39 m3/s. The frequency 
and duration of high pulses decreased, which allowed for vegetation 
encroachment. Low pulses have also reduced, which is an essential 
factor for recruiting native vegetation species. 

The remaining hydrological variables, including streamflow for the 
gauging station below the Cochiti Dam and climatic variables, are 
included in the Appendix (Figure A3). The total precipitation was below 
the average after 2000 (Figure A3 B), and the mean air temperature has 
increased with time (Figure A3 C) with a fluctuation of estimated 
reference evapotranspiration (Figure A3 D). 

Fig. 3. Relationship of channel width from machine learning (Landsat derived LC) and cross-sections measured by United States Bureau of Reclamation, 
Albuquerque. 

Fig. 4. NDVI for growing season for study reach. Red star represents the mean NDVI. The whisker represents the minimum and maximum value of NDVI, the box 
height ranges between the 25% quartile (Q1) and 75% quartile (Q3), and the solid middle line represents the median value. 
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3.6. Correlation between vegetation, morphology, and hydroclimatic 
variables 

A correlation analysis was performed over time (in years) for the four 
most influential variables obtained from the MDI measure with the 
dependent variables, NDVI and channel width (Fig. 11). High flow fre
quency, high flow rise, high pulse count, and minimum air temperature 
were the four most influential variables for predicting NDVI. In contrast, 
vegetated area, total precipitation, fall rate, and extreme low duration 
were most influential in predicting channel width. The figures for MDI 

are included in the Appendix (Figure A4). Fig. 11A shows the weak 
positive correlation of NDVI with all variables except minimum air 
temperature. However, channel width had a strong positive correlation 
with precipitation and a negative relation with fall rate (the rate at 
which the hydrograph recedes), vegetated area, and extreme low 
duration (Fig. 11B). 

Fig. 5. Annual mean NDVI for the growing season only (A) study reach with trendlines [no significant trend in changing NDVI from 1984 to 2020; from 1984 to 
1987, no significant trend; from 1987 to 1995 NDVI, increasing trend; from 1995 to 2006, decreasing trend; and from 2006 to 2020, increasing trend] (B) 
Sub-reaches. 

Fig. 6. Proportion of land cover obtained from Random Forest classification for the entire reach.  
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4. Discussion 

4.1. Spatiotemporal trends of vegetation and morphology 

For arid to semi-arid regions, hydroclimatic variables are the drivers 
of changes in riparian vegetation and morphology (Stromberg et al., 
2010). From 1984 to 1999, the floodplains of the MRG experienced 
adequate inundation due to overbank flooding (Petrakis et al., 2017) to 
sustain the riparian vegetation, and high flows contributed to the 
maintenance of channel width and scouring of vegetation from island 
and bar features. Severe drought conditions have persisted throughout 
the Southwestern USA since 2000. The period has been marked by both 
low precipitation and higher average temperatures (Williams et al., 

2022). All these factors contributed to a substantial reduction in 
streamflow. High pulses are required to remove encroached vegetation 
on the banks, islands, and bars. In addition, once vegetation is estab
lished, high flows don’t generate enough shear stress to remove vege
tation (Tetra Tech, 2015). This condition was observed in this study also, 
in which approximately two years return period of flows in 2005 
through the study reach was unable to remove the vegetation from bars 
and islands to maintain channel width (Chaulagain, 2022). As a result, 
two major effects are observed: (1) an increase in the vegetated area of 
the riparian zone; and (2) a reduction in channel width, which is sup
ported by the analysis of our study. 

NDVI was reduced during drought and again increased due to 
vegetation encroachment into the main channel and the formation of 

Fig. 7. An example of aerial images for a sub-section representing the change in vegetation density and morphology.  

Fig. 8. Channel width from 1984 to 2020 [+ indicates the mean channel width; the box height ranges between the 25% quartile (Q1) and 75% quartile (Q3); the 
solid middle line represents the median value; the whisker ranges from (Q1-1.5IQR) to (Q3+1.5IQR); IQR = Q3-Q1; and open circles represent the outliers]. 
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vegetated islands and bars even during persistent drought. The decrease 
in the width of the channel relates to reduced streamflow and an in
crease in the vegetated area, including the changes in vegetation man
agement (reduced maintenance such as vegetation mowing) due to 
endangered species recovery efforts. In addition, narrower channels 
cause the riverbeds to scour for the same reduced streamflow and create 
a more incised river. In turn, the groundwater table drops, and the 

health of the riparian forest is compromised. Endangered species, such 
as silvery minnow in the case of Rio Grande, lose the habitat of shallow 
pools they prefer (Archdeacon et al., 2020). Further, as the channel is 
more incised, it takes a higher flow rate to inundate the vegetated 
islands. Thus, the river starts to take a different character leading to the 
invasion of non-native vegetation species resistant to drought 
(Richardson et al., 2007) and more stable islands (Gurnell et al., 2001). 

Fig. 9. Spatial analysis for every ten years (A) Land cover and (B) NDVI [NDVI <0 = water, 0–0.2 = land, 0.2–0.5 = sparse and >0.5 = dense vegetation 
(healthy vegetation)]. 
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Fig. 10. Stream flow variables from Indicators of hydrologic alterations (A) Mean monthly discharges (B) Duration of high and low pulses (C) Frequency of high and 
low pulses. 
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4.2. Big data analysis performance 

This study successfully performed LC classification and NDVI 
computation from multi-spectral satellite images in a cloud-based plat
form using the ML algorithm for large temporal and spatial scales. GEE 
cloud-based computing platform provides access to big datasets and 
improves the efficiency of performance in processing time by using a 
built-in ML algorithm (Gorelick et al., 2017). The same analysis could 
take longer, making the extensive temporal and spatial scale analysis 
daunting. 

Furthermore, LC classification using the RF algorithm is more ac
curate than other approaches (Rodriguez-Galiano and Chica-Rivas, 
2014). To compare the accuracy of LC for a larger time scale, the 
availability of ground-truthing data is always a limitation. In this study, 
some LC mappings were available at different times for specific reach of 
the study area, which was helpful in verifying the ML approach. The 
difference in the vegetated area obtained from LC was less than 1% 
compared to vegetation mapping by Hink and Ohmart, especially for the 
Albuquerque reach. This reach is densely vegetated and more consistent 
with time, with fewer disturbances than other reaches. However, wild
fires and complete channel desiccation have impacted the San Acacia 
reach (Fitzner, 2018). The vegetation mapping for 2003 includes the 
burning evidence for vegetation patches, and some areas have sparse 
vegetation, which was delineated as vegetation. As a result, there was a 
larger difference in vegetated areas between the classified LC and 
ground-truth data. 

4.3. Correlation between hydroclimatic variables, vegetation, and 
morphology 

Riparian vegetation mostly depends on the streamflow and ground
water for arid or semi-arid regions where precipitation is limited. 
However, this study was limited to streamflow and climate variables 
only. This research reveals that the fluctuation of NDVI is weakly 
correlated with all the climate and streamflow variables. The negative 
correlation with the minimum air temperature (warmer with time) 
could be correlated with the negative impacts on the growth of local 
vegetation species (Weiss et al., 2004) and also due to a reduction in soil 
moisture. This result was consistent with other studies that have corre
lated NDVI with temperature in arid or semi-arid regions (Nguyen et al., 
2015). Some previous studies found precipitation to be the dominant 
variable (Wen et al., 2012) that impacts NDVI. However, precipitation 
was not as influential as streamflow variables for the Rio Grande. 

The positive correlation of average channel width with precipitation 
is due to having enough flows in the river for sediment mobility and 
removal of encroached vegetation on banks and islands, maintaining 
channel width. Similarly, vegetation encroachment along the riverbanks 
can explain the negative correlation of channel width with fall flow rate, 
extreme low duration, and vegetated area. 

4.4. Challenges in using RS images 

The characteristics of the MRG led to several challenges in applying 
RS approaches for LC classification. It is challenging to use medium- 
resolution images for dynamic rivers similar to MRG. The channel 
width changed dramatically along San Acacia reach from 1980 to 2020, 
narrowing to less than 30 m in some places. Using Landsat images to 
delineate the channel in some parts of the river made it challenging. 
Also, due to the reduction in river discharge, there was little or no sur
face flow in the downstream reach during the growing season in recent 
years. As a result, the channel was misclassified as land, even for high- 
resolution images (e.g., NAIP imagery). A high degree of supervised 
training is needed when delineating the channel for turbid, dynamic, 
and low-flow rivers using images to overcome these limitations. 

There are also several limitations in our ability to classify riparian 
vegetation. Riparian vegetation is the mixture of various vegetation 
species, from grasses to taller trees (e.g., cottonwoods). In the MRG, 
mostly willows and Russian olives are found on the river banks. The 
width covered by these vegetation species is often less than 30 m, which 
cannot be distinguished using low and medium-resolution images, as 
was the case for some areas in our study reach. This limits the study of 
riparian vegetation within narrow riparian corridors. As a result, this 
study was limited to general vegetation cover rather than a more refined 
classification. Vegetation species behave differently in response to 
streamflow characteristics (e.g., high and low flow pulses) and climatic 
conditions. As a result, vegetation communities can shift from trees and 
shrubs to grasses or vice versa (Stromberg et al., 2010). In some cases, 
native vegetation species are replaced by non-native species for altered 
flows and climate conditions (Richardson et al., 2007). Due to the lim
itation of the resolution of images, such shifts could not be investigated 
in this study. 

4.5. River management implications 

The complex interactions between riparian vegetation, channel 
morphology, and hydroclimatic variables shape rivers and floodplains 
dynamically. Riparian vegetation impacts the dynamics, forms, and 
processes of channel morphology (Gurnell, 2014). These changes in the 
channel and the riparian vegetation can be observed at different 
spatiotemporal scales. The historical monitoring of the whole reach 
provides a better understanding of the system. In addition, this enables 
us to predict the system’s behavior in response to similar hydroclimatic 
conditions. This study has provided valuable information regarding the 

Fig. 11. Correlation between (A) NDVI with important variables predicted (B) 
Morphology (channel width) with important variables predicted from MDI 
(numerical values represent Spearman’s Rank Correlation Coefficient, a posi
tive value means positive relation and negative means negative relation, closer 
to ±1 (darker shade) means strong relation and closer to 0 (lighter shade) 
means weaker relation between the variables). 
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changes in riparian vegetation and morphology for a large spatiotem
poral scale in relation to hydroclimatic variables in the arid environment 
that has greater implications on river management such as restoration of 
riparian vegetation and habitats, in addition to flood management and 
water delivery. Furthermore, implementing an ML approach for pro
cessing the RS products is promising for long-term monitoring of ri
parian vegetation and channel morphology, which has broader 
application in a wider range of arid and semi-arid river systems. 

In this study, vegetation status in terms of area covered and the NDVI 
were analyzed based on the streamflow statistics obtained from IHA and 
climate variables such as temperature and precipitation using simple 
correlation. However, in future studies, we can quantify the relationship 
between the streamflow and the climatic variables to understand the 
dominant factors responsible for a shift in vegetation and channel 
morphology and the degree of their effects. 

5. Conclusion 

This research aimed to enhance the understanding of riparian 
vegetation and channel morphology responses to external stressors 
(hydroclimatic variables) by implementing ML techniques, especially 
for semi-arid environments. This was accomplished by computing 
vegetation indices and LC classification obtained from the RF classifi
cation in GEE cloud-based storage and computing platform along the 
MRG. The streamflow and climate variables were correlated with the 
vegetation status and river morphology. Overall, the vegetated area has 
increased with fluctuation at different times depending on the hydrology 
and climatic conditions. The channel has narrowed due to reduced flows 
and vegetation encroachment. The results also demonstrate that the 
maintenance of channel width is challenging once the vegetation is 
established. 

The characteristics of the streamflow hydrograph (positive correla
tion) and air temperature (negative correlation) were dominant among 
the hydroclimatic variables influencing vegetation cover and channel 
morphology. The quantification of the relationships between these 
components with the hydroclimatic variables provides valuable infor
mation to understand the nature of impacts and responses due to 
climate-change-induced drought and engineered infrastructure. This 
information is essential for river engineers, scientists, and managers 
regarding river management, such as restoration of riparian vegetation 
and habitats, including flood management and water delivery. However, 
using high-resolution images is recommended to perform the vegetation 
species basis analysis to determine the shift in community composition 
and density to the changing environment with improved accuracy. 

The tools utilized for this research rely on open-source algorithms 
and cloud-based computing platforms. Thus, the framework of this study 
is easily applicable on a large spatiotemporal scale for a broader range of 
arid or semi-arid river systems for the integrated analysis of vegetation 
and morphology. Overall, this study investigated the existing tools and 
techniques to improve understanding of river dynamics in large 
spatiotemporal scales influenced by long-term drought and engineered 
structures. 
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