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Riparian vegetation composition and channel morphology are susceptible to long-term alterations caused by
external stressors, including climate-change-induced droughts and engineered infrastructures. The objectives of
this study were to (1) quantify trends in riparian vegetation and channel/floodplain morphology over large
spatial (~290 km) and temporal scales (~30 years) and (2) investigate the relationships between hydroclimatic
drivers and changes in riparian vegetation and channel morphology. We implemented a random forest classifier
via a machine learning technique in Google Earth Engine. The study area was a 290 km reach of the Rio Grande
located in New Mexico, USA. We used the combination of remotely sensed data and products (e.g., Landsat
imagery, Normalized Difference Vegetation Index (NDVI), and land cover) to characterize vegetation, vegetation
cover changes, and river morphology shifts from 1984 to 2020. The trend analysis revealed increased vegetated
areas and NDVI (0.0004/yr) during long-term drought. The channel experienced a reduction in width associated
with vegetation encroachment and the formation of stable vegetated islands. The streamflow hydrograph
characteristics were positively correlated with vegetation cover and channel morphology. Our study contributes
novel insights into the long-term riparian ecosystem dynamics under drought stress, informing drought impact
mitigation and ecosystem management in arid and semi-arid regions.

1. Introduction hydraulics by adding resistance to the flow and reducing bed shear stress

(Nepf, 2012). Vegetation also affects the forms and dynamics of channel

In semi-arid regions such as the Southwestern United States (USA),
rivers are experiencing pressure due to drought-induced streamflow
alterations, increased water demand, changes in land use, and engi-
neered structures (e.g., dams, levees, etc.) (Poff et al., 2007). River en-
gineering projects disturb natural sediment transport processes (Bollati
et al., 2014). Artificial levees impact floodplain connectivity by limiting
the active floodplain and changing the original flow path of the channel
(Knox et al., 2022). These disturbances affect the riparian vegetation
and the river geomorphology (Stromberg et al., 2010). Consequently,
ecosystem services provided by the river system are deteriorating in
many river systems, particularly in semi-arid regions.

Besides providing ecosystem services, vegetation alters river

morphology, such as alteration of channel width, formation of stable
islands, and reduction in braiding intensities (Gurnell et al., 2001).
Furthermore, changes in river hydrology, geomorphology, and riparian
vegetation have cascading impacts on other aspects of the river corridor
system, including hydrological connectivity, sediment regimes, and
habitat provisioning (Brierley et al., 1999). These changes are sensitive
to the hydroclimatic components (streamflow and climatic conditions)
that vary from seasons to decades in addition to climate variability
(Yonaba et al., 2021a). Thus, understanding the interactions of these
components in response to external drivers of change is essential for
advancing river conservation and management. Long-term observation
can help river managers to understand the response of vegetation and
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channel morphology due to these external drivers.

Usually, riparian vegetation is monitored through indicators of suc-
cession, species composition (native or invasive species), vegetation
structure (height, density, biomass), and physiological processes (health
status, phenology, evapotranspiration) (Nagler et al., 2016). The
changes in channel morphology have been studied and quantified by
comparing channel topography, observing patterns in aerial imagery
(Swanson et al., 2011), through numerical approaches (e.g., BASEMENT
software) (Artini et al., 2021), and using physical models (Bertoldi et al.,
2015). Traditionally, topographic data are collected from field mea-
surements at different periods to determine the changes in channel ge-
ometry. However, due to the spatial variability and dynamics of
vegetation and morphology, field data collection is challenging,
labor-intensive, expensive, and time-consuming, making this approach
impractical for large study areas (>100 km) and multiple years
(Johansen et al., 2010). Remote Sensing (RS) approaches offer a
cost-effective way to monitor the vegetation and morphology over large
spatial domains for extended temporal scales.

Remote sensing products, especially satellite imagery (e.g., Landsat,
Sentinel, and MODIS), are widely used in determining changes in ri-
parian vegetation and channel morphology (Isikdogan et al., 2017;
Langat et al., 2019; Monegaglia et al., 2018). Most of the techniques rely
on spectral indices such as the Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI), Modified NDWI
(MNDWI), or simply by classifying images for delineating the wetted
channel and vegetation. NDVI is the most common indicator to monitor
vegetation impacts from climate trends and changes in streamflow.
NDVI represents photosynthetic activity, which is directly related to
climatic conditions (Ndayisaba et al., 2017) and water availability (Sims
and Colloff, 2012). Additionally, satellite images are used to extract
morphodynamics for either single or multithreaded channels with the
capacity to delineate surface water (Isikdogan et al., 2017), complex
features such as emerging bars (Monegaglia et al., 2018), and deposition
or erosion patterns (Langat et al., 2019). These studies utilized either
manual (Han et al., 2020), semi-automatic (Schwenk et al., 2017), or
fully automatic (Monegaglia et al., 2018) approaches to delineate open
water surface advancing from simple algorithms (Langat et al., 2019) to
deep learning algorithms (Isikdogan et al., 2017). However, such studies
are limited in terms of spatial and temporal scale, i.e., discrete analysis
ranging from seasons to decades. Moreover, large spatiotemporal scale
studies are challenging due to the limited data availability and pro-
cessing of large datasets.

The emergence of cloud-based storage and computing platforms such
as Google Earth Engine (GEE) (Gorelick et al., 2017) has enabled re-
searchers to undertake long-term, large-scale monitoring of vegetation
and channel morphology. Prior studies have implemented GEE for
spatiotemporal analysis of riparian vegetation and channel morphology
(Boothroyd et al., 2021a; Boothroyd et al., 2021b; Pu et al., 2021).
Boothroyd et al. (2021a) performed a spatiotemporal analysis of channel
morphology and riparian vegetation using NDWI and NDVI within GEE
cloud-based computing platform for a single-threaded, meandering
channel. Similarly, Pu et al. (2021) assessed riparian vegetation and
channel morphology in terms of NDVI and MNDWI using
high-resolution National Agriculture Imagery Program (NAIP) imagery
in GEE.

The mechanism and local effects of vegetation and hydrological
variables on morphology are well documented. Numerous studies
focused on determining the relationship between the NDVI and climate
variables (Chi et al., 2020; Weiss et al., 2004). Some studies investigated
the spatiotemporal trends of hydrological variables with riparian vege-
tation and channel morphology (Caruso et al., 2013; Picco et al., 2017).
Despite prior studies, there is still a gap in our knowledge regarding
interrelated responses of riparian vegetation and channel morphology at
a large spatiotemporal scale.

The response of riparian vegetation to long-term droughts in an arid
region, its cascading impacts on the other aspects of the river system,
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and the study of the complex interaction between the vegetation,
morphology, and hydroclimatic variables are the emerging topics of
interest in the present context. This research aimed to enhance the un-
derstanding of riparian vegetation and channel morphology responses to
external drivers of change (hydroclimatic variables) using ML on a large
spatiotemporal scale, especially for the semi-arid region. The objectives
of this research were to (1) quantify trends in riparian vegetation and
channel/floodplain morphology over large spatial (~290 km) and
temporal scales (~30 years) and (2) investigate the relationships be-
tween hydroclimatic drivers and changes in riparian vegetation and
channel morphology. This study used NDVI (1984-2020) and land cover
(LC) maps to determine the spatiotemporal changes of vegetation and
channel morphology for a 290 km reach of the Rio Grande in New
Mexico, USA.

2. Methods
2.1. Study area

This study focused on a 290 km reach of the Rio Grande in New
Mexico, USA (Fig. 1). The study reach extends from Cochiti Dam to
Elephant Butte Reservoir. This reach is also known as the Middle Rio
Grande (MRG). The MRG is a heavily regulated, physically modified,
snowmelt-dominated river, with the highest discharges occurring in
May and June. The dominant native vegetation species along the MRG
include cottonwood (Populus deltoids) and coyote willow (Salix exigua).
Non-native vegetation species includes salt cedar (Tamarix ramosissima)
and Russian olive (Elaeagnus angustifolia) (Mussetter Engineering Inc.,
2006).

The MRG has gone through several modifications across different
eras. From the 1930s to the 1950s, spoil-bank levees derived from the
excavation of riverside drains were constructed for flood protection
along both banks, disconnecting the river from its historical floodplains.
From the 1950s to the 1970s, engineered levees replaced the spoil banks,
and an equi-width (180 m) channel controlled by jetty jack fields were
constructed within the levees to improve downstream flow conveyance
and reduce flood risk. Cochiti Dam has regulated the streamflow at the
head of the reach since 1973. Four other low-head diversion dams along
the reach divert water for irrigation (Angostura, Isleta, and San Acacia
dams) and municipal water supply (Albuquerque drinking water
diversion) with no flood control capacity.

Due to an extended drought since 2000 (Petrakis et al., 2017), a
reduction in discharge has caused a narrowing of the channel, formation
of new bars and islands with stable vegetation, sediment aggradation,
and bank undercutting (Swanson et al., 2011). This reach also consists of
several river restoration projects implemented to recover the Federally
listed endangered Rio Grande silvery minnow (Hybognathus amarus) and
southwestern willow flycatcher (Empidonax traillii extimus). Some por-
tions of the riparian zone, especially the over-aged cottonwood gallery
forests that were initially established by floods in the 1940s, have been
impacted by wildfires in the past two decades.

Here, the study reach is divided into four sub-sections based on the
availability of validation datasets for sub-reaches (Fig. 1). The reach
from Cochiti dam to Alameda bridge is considered the Upstream reach;
Alameda bridge to Isleta dam is referred to as the Albuquerque reach;
Isleta dam to San Acacia dam is the Isleta reach; and San Acacia dam to
San Marcial is the San Acacia reach.

2.2. Data processing

The sequence of methodologies followed for preprocessing images
and data analysis is represented in Fig. 2. The datasets used in this study
are summarized in Table A1 (Appendix). The images were processed by
removing the shadows and clouds from Landsat images. The NDVI was
calculated from preprocessed images. Sample datasets were created for
the RF classification. The validated LC was overlaid with the NDVI to
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Fig. 1. Study area located between Cochiti Dam and Elephant Butte Reservoir.

determine the spatiotemporal trends of vegetation and morphology.
Finally, hydroclimatic variables were correlated with NDVI and channel
width to determine the spatiotemporal correlation between these
variables.

2.2.1. Image collections

This study used multi-spectral and multi-temporal satellite imagery,
Landsat images, collected by sensors Landsat 5, 7, and 8 from 1984 to
2020 (37 years). Landsat 5 Thematic Mapper imagery data are available
from 1984 to 2011; Landsat 7 Enhanced Thematic Mapper data from
1999 to the present; and Landsat 8 Operational Land Imagery from 2013
to the present. Landsat 7 data contains gaps between the images due to
scan line errors, which require correction to fill gaps with gap mask files.
Due to data limitations, Landsat 7 data was used for 2012 only. The
spatial resolution for these images is 30 m, collected every 16 days. For
Landsat 1 to 4, images are available from 1972, but the spatial resolution
is more than 30 m.

The trends for riparian vegetation and channel morphology were
investigated from May to August (growing season). The mean monthly
NDVI (Figure A1, Appendix) was higher from May to August compared
to other months of the year. The study region is arid to semi-arid, which
is beneficial for obtaining images with less cloud cover (mostly <10%)
during those months. The Landsat images from the GEE cloud-based
storage were used. First-tier surface reflectance Landsat products
available from the GEE data catalog are atmospherically corrected,
which is one of the advantages of using GEE.

2.2.2. Preprocessing of images
The image collections were filtered over the growing season in the

GEE cloud-based computing platform. Using the Landsat World Refer-
ence System, images were extracted and processed for paths 33 and 34
and rows 35 to 37. The study area contains 1532 tiles of images for the
growing season. Clouds and shadows were masked out using the func-
tion available in GEE API. The resulting images preserve the metadata
and footprint of input images, while areas transitioning from zero in the
mask are filled with zeros or values close to zero within the range of
pixel type (Gorelick et al., 2017). The images were aggregated using the
median function as a reducer to obtain annual time series images;
instead of the mean function for higher accuracy (Phan et al., 2020).

2.3. Vegetation trend analysis

NDVI was used for long-term monitoring of vegetation. NDVI (NIR-
R/R + NIR) depends on the red (R) and near-infrared (NIR) spectral
bands. NDVI was calculated using JavaScript from the preprocessed
images in the GEE code editor. NDVI values < 0.2 were masked out to
identify vegetation only (Yonaba et al., 2021b). The mean monthly
NDVI to investigate the seasonal variation in greenness and the mean
annual NDVI for the growing season were determined. Growing season
NDVI for sub-reaches was also determined to analyze spatial NDVI
trends.

Simple linear regression does not perform well for data affected by
seasonality (Assal et al., 2021) for determining trends. Therefore, a
non-parametric Mann-Kendall test was performed to determine the
trends in NDVI using a Python package called pymannkendall (Hussain
and Mahmud, 2019). This package includes the modified Mann-Kendall
test addressing autocorrelation by a variance correction approach
(Hamed and Ramachandra Rao, 1998). A p-value of 0.05 was used to
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Fig. 2. Flow chart summarizing the methods. Blue is coded for the processes performed, and light grey represents the input/output datasets. Dark grey represents the

available datasets from external sources.

check the significance of the trend. Also, the trend in NDVI for an
extended time may not always follow monotonic change. Due to
external disturbances such as flooding and drought events, abrupt
changes in the greenness of vegetation can occur. To address these is-
sues, trend breakpoints were detected manually (Assal et al., 2021).

The period from 1984 to 1999 was categorized as drought, and 2000
to 2020 as a non-drought period based on the study of Petrakis et al.
(2017) for further analysis. Palmer Drought Severity Index was used in
their study to determine the drought period.

2.4. LC mapping

LC maps were created from the Landsat Images to observe vegetation
status and channel morphology changes. LC classification was per-
formed using the built-in RF algorithm based on supervised image
classification within the GEE. The RF algorithm was selected because of
its robustness and accuracy, especially for LC classification (Yang and
Cervone, 2019).

The sampling datasets (training and testing) were created manually
to train the data for supervised classification. LC classification was
performed every two years with the assumption of less chance of change
in vegetation and morphology unless affected by extreme external
stressors (e.g., floods, wildfires). The datasets were visually verified for

2009, 2011, 2014, 2016, and 2018 with the available NAIP imagery. The
ratio of sampling data was created according to the best judgment of the
study area to avoid data imbalance issues. The average number of
sampling points ranged from 200 to 500 for each class. The sampling
datasets were randomly split into training (80% data) and testing (20%
data) datasets. Training datasets were used for the classification of im-
ages, and the testing datasets were used to check the model’s overall
accuracy (OA). LC was classified into three classes: bare land, water, and
vegetation. The riparian zone of the study area does not contain sig-
nificant areas of infrastructure such as buildings or other LC types. LC
maps were exported from GEE cloud storage for further analysis.

The channel morphology was analyzed by estimating the channel
width from LC. The channel width was obtained by counting the pixels
classified as water. The pixels on the channel islands identified with
vegetation were not included in determining channel width.

The two major parameters for RF algorithm are the number of decision
trees and the number of features/variables to consider for best splitting.
Based on previous studies, 100 decision trees were selected (Maxwell
et al.,, 2019). The number of features/variables used for splitting was
considered the default value (e.g., the square root of the total number of
input features).

Two commonly used matrices (OA and F1-score) were employed to
determine the LC accuracy (Foody, 2020). OA represents the proportion
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of correctly classified classes (Tiirk, 1979). F-measure (F1- score,
equation (2)) measures the model’s accuracy based on the harmonic
mean from precision (equation (3)) and recall (equation (4)) calculated
from binary confusion matrices.

True positive (TP) + True negative (TN)

OA= - —
TP + TN + False negative (FN) + False positive (FP)

(€8]

Fl 2Precision x Recall @
—score — ———— " 2 e
seore Recall + Precision

TP
Precision =——— 3
TP + FP
TP
Recall = ———— @
TP + FN

2.5. Validation datasets

The vegetated area obtained from the ML technique was compared
with the vegetation mapping prepared originally by Hink and Ohmart
(1984) and repeated several times in successive years. Those vegetation
maps were prepared by verification from field observations and aerial
photographs. The data are available periodically between 1984 and
2016 and cover the specific reach for a specific time.

The changes in channel width determined from ML were also verified
by comparing with surveyed cross-section data collected by the United
States Bureau of Reclamation (USBOR), Albuquerque Area Office.
USBOR contractors surveyed fixed cross-sections on a frequent basis
(every two to three years).

2.6. Hydroclimatic variables

The hydroclimatic variables used in this study were temperature,
precipitation, estimated reference evapotranspiration, and streamflow.
Meteorological variables collected at the Albuquerque Airport (ABQ)
were used. This station was selected because it lies in the middle of the
study reach. Streamflow data from USGS Gauge 08317400, below Cochiti
Dam was used. This gauging station was chosen because it represents the
overall streamflow patterns.

From the streamflow data, flood frequency, duration, timing, and
magnitude were analyzed from 1980 to 2020 using the Indicators of
Hydrologic Alteration (IHA) software package. IHA calculates 33 hy-
drological alterations and 34 environmental flow components (Richter
et al,, 1996) based on ecosystem influences such as soil moisture
availability for vegetation and habitat for aquatic organisms. Stream-
flows were categorized into extremely low flows (<10 percentiles of
daily flows), low flows (<75%), and high flows (>75%). High flows
were further classified as small (>2 years return period of high flows)
and large floods (10 years return period of high flows). Depending on the
section of the study reach, the floodplains start to inundate after
discharge exceeds 57-142 m>/s. The parameters such as high and low
flow frequency and high and low pulses influence the recruitment of
vegetation and the dynamics of the river system, which were used for
further analysis.

2.7. Correlation between vegetation, morphology, and hydroclimatic
variables

Spearman’s Rank correlations were calculated to determine the re-
lationships between vegetation, morphology, and hydroclimatic vari-
ables. Mean Decrease Impurity (MDI), one of the widely used measures
for selecting features (Calle and Urrea, 2011), was used to determine the
important hydroclimatic variables that impact the dependent/target
variable (NDVI for vegetation and channel width for morphology). MDI
determines the importance of each variable by evaluating the change in
prediction (Calle and Urrea, 2011). The higher MDI value means the
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variable’s importance is higher for predicting a target variable.
3. Results
3.1. LC classification accuracy

OA and F1-score were calculated to evaluate the performance of RF
for LC classification. OA was >95% for water, land, and vegetation
classes. F1-score was also >85% for each category. The classified images
were also visually verified using high-resolution NAIP imagery before
calculating these matrices.

3.2. Validation datasets

The vegetated area determined from RS techniques closely matched
the ground-truth data for the Albuquerque reach (Table 1). However, LC
from ML slightly underestimated the vegetated area compared to
ground-truth data for most conditions in other sub-reaches.

The relationship of channel width obtained from the ML and USBOR
surveyed cross-sections is shown in Fig. 3. The analysis reveals close
agreement between RS and field measurements of channel width (R? =
0.9942) with a small underestimation from ML compared to the survey
data.

3.3. Temporal analysis of vegetation and morphology

Between 1980 and 2020, riparian vegetation changed both in tem-
poral and spatial extent. The statistical summary of NDVI for the
growing season is represented by a box plot (Fig. 4). Fig. 4 reveals the
wider ranges (0.2-0.9) of NDVI over time. The analysis was limited to
NDVI >0.2. As a result, the minimum value is equal to 0.2.

The growing season mean NDVI for the study reach is shown in Fig. 5
(A). NDVI fluctuated from 1984 to 2000, with the lowest value in 1996.
NDVI was relatively low from 2000 to 2010 and increased from 2010 to
2020. This pattern was similarly observed for the sub-reaches (Fig. 5B).
However, NDVI for the Upstream reach was lower, and the Albuquerque
reach had higher NDVI until 2000 than the other sections. The Isleta
reach also experienced higher NDVI for the study period.

A non-parametric Mann-Kendall test was performed to investigate
temporal trends (Fig. 5 (A)). This test indicated no significant (p < 0.05)
monotonic trend for the entire study period. The annual increase of
0.0004/yr was observed. To observe the dynamics of vegetation, trends
were analyzed by considering breakpoints manually. The trend analysis
shows that there was no significant monotonic trend (p < 0.05) from
1984 t0 1987 (p =1.0), asignificant increasing trend from 1987 to 1995
(p = 0.047), a significant decreasing trend from 1995 to 2006 (p =
0.02), and again a significant increasing trend from 2006 to 2020 (p =
0.0045). The annual increase in NDVI from 1987 to 1995 was 0.0065/
yr. An annual decrease of 0.0062/yr was observed from 1996 to 2006.
An annual increase of 0.005/yr was observed from 2006 to 2020.

Table 1
Comparison of the vegetated area between the ML technique and the vegetation
mapping prepared by Hink and Ohmart (1984).

Year Sub-Reach Area from Area from  Percentage differences
ground-truthing ML (km?) between ground-truth
(km?) and ML

2003  San Acacia 48.35 40.26 16.7%

2016 51.13 52.22 —-2.13%

1984  Albuquerque 11.63 11.61 0.17%

2005 10.34 10.17 1.64%

1984 Isleta 30.69 23.14 24.6%

2003 31.57 27.15 14%

2016 36.26 32.61 10%

(Positive values mean the ground-truth overestimated the vegetated area
compared to ML).
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Fig. 6 shows the proportion of vegetation cover, including the pro-
portion of land and water. The vegetated area has increased even though
the reach has gone through a long-term extended drought for 20 years
since 2000. The proportion of the stream corridor classified as water has
decreased. This trend is consistent with field and aerial photograph
observations (Fig. 7) along with the development of vegetated sand bars
and islands. To elaborate more on change in vegetated area, the per-
centage change in vegetated area for the entire reach and sub-reaches
are also included in the Appendix (Figure A2).

The channel width reduced from an average width of 180 m in 1980
to 90 m in 2020 (Fig. 8). The width was relatively consistent from 1984
to 1998 and then decreased from 2000 to 2020. The minimum channel
width was also consistent with time. However, the range of channel
width has reduced from 30 to 420 m in 1984 to 30-180 m in 2020.

3.4. Spatial analysis of vegetation and morphology

The changes in spatial patterns of LC were consistent with temporal
analysis and revealed the increased vegetation coverage and narrowing
of the main channel (Fig. 9). Fig. 9 represents an example of spatial
analysis for the sub-section along the Rio Grande. The changes varied
spatially and temporally. Fig. 9 shows the increase in riparian vegetation

density, the change in the channel from a single thread to a braided
channel, and again to a single thread with a side channel covered by
vegetation. This result was consistent with visual observations of
channel and vegetation changes (e.g., Fig. 7).

3.5. Hydroclimatic variables

The alteration of streamflow obtained from the IHA metrics is rep-
resented in Fig. 10. The mean monthly discharge has reduced during the
drought (from 2000 to 2020) (Fig. 10A) compared to before 2000. The
peak discharge was reduced from 110 m>/s to 39 m%/s. The frequency
and duration of high pulses decreased, which allowed for vegetation
encroachment. Low pulses have also reduced, which is an essential
factor for recruiting native vegetation species.

The remaining hydrological variables, including streamflow for the
gauging station below the Cochiti Dam and climatic variables, are
included in the Appendix (Figure A3). The total precipitation was below
the average after 2000 (Figure A3 B), and the mean air temperature has
increased with time (Figure A3 C) with a fluctuation of estimated
reference evapotranspiration (Figure A3 D).
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Fig. 6. Proportion of land cover obtained from Random Forest classification for the entire reach.

3.6. Correlation between vegetation, morphology, and hydroclimatic
variables

A correlation analysis was performed over time (in years) for the four
most influential variables obtained from the MDI measure with the
dependent variables, NDVI and channel width (Fig. 11). High flow fre-
quency, high flow rise, high pulse count, and minimum air temperature
were the four most influential variables for predicting NDVI. In contrast,
vegetated area, total precipitation, fall rate, and extreme low duration
were most influential in predicting channel width. The figures for MDI

are included in the Appendix (Figure A4). Fig. 11A shows the weak
positive correlation of NDVI with all variables except minimum air
temperature. However, channel width had a strong positive correlation
with precipitation and a negative relation with fall rate (the rate at
which the hydrograph recedes), vegetated area, and extreme low
duration (Fig. 11B).
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Fig. 7. An example of aerial images for a sub-section representing the change in vegetation density and morphology.
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Fig. 8. Channel width from 1984 to 2020 [+ indicates the mean channel width; the box height ranges between the 25% quartile (Q1) and 75% quartile (Q3); the
solid middle line represents the median value; the whisker ranges from (Q1-1.5IQR) to (Q3+1.5IQR); IQR = Q3-Q1; and open circles represent the outliers].

4. Discussion
4.1. Spatiotemporal trends of vegetation and morphology

For arid to semi-arid regions, hydroclimatic variables are the drivers
of changes in riparian vegetation and morphology (Stromberg et al.,
2010). From 1984 to 1999, the floodplains of the MRG experienced
adequate inundation due to overbank flooding (Petrakis et al., 2017) to
sustain the riparian vegetation, and high flows contributed to the
maintenance of channel width and scouring of vegetation from island
and bar features. Severe drought conditions have persisted throughout
the Southwestern USA since 2000. The period has been marked by both
low precipitation and higher average temperatures (Williams et al.,

2022). All these factors contributed to a substantial reduction in
streamflow. High pulses are required to remove encroached vegetation
on the banks, islands, and bars. In addition, once vegetation is estab-
lished, high flows don’t generate enough shear stress to remove vege-
tation (Tetra Tech, 2015). This condition was observed in this study also,
in which approximately two years return period of flows in 2005
through the study reach was unable to remove the vegetation from bars
and islands to maintain channel width (Chaulagain, 2022). As a result,
two major effects are observed: (1) an increase in the vegetated area of
the riparian zone; and (2) a reduction in channel width, which is sup-
ported by the analysis of our study.

NDVI was reduced during drought and again increased due to
vegetation encroachment into the main channel and the formation of
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(healthy vegetation)].

vegetated islands and bars even during persistent drought. The decrease
in the width of the channel relates to reduced streamflow and an in-
crease in the vegetated area, including the changes in vegetation man-
agement (reduced maintenance such as vegetation mowing) due to
endangered species recovery efforts. In addition, narrower channels
cause the riverbeds to scour for the same reduced streamflow and create
a more incised river. In turn, the groundwater table drops, and the

health of the riparian forest is compromised. Endangered species, such
as silvery minnow in the case of Rio Grande, lose the habitat of shallow
pools they prefer (Archdeacon et al., 2020). Further, as the channel is
more incised, it takes a higher flow rate to inundate the vegetated
islands. Thus, the river starts to take a different character leading to the
invasion of non-native vegetation species resistant to drought
(Richardson et al., 2007) and more stable islands (Gurnell et al., 2001).
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4.2. Big data analysis performance

This study successfully performed LC classification and NDVI
computation from multi-spectral satellite images in a cloud-based plat-
form using the ML algorithm for large temporal and spatial scales. GEE
cloud-based computing platform provides access to big datasets and
improves the efficiency of performance in processing time by using a
built-in ML algorithm (Gorelick et al., 2017). The same analysis could
take longer, making the extensive temporal and spatial scale analysis
daunting.

Furthermore, LC classification using the RF algorithm is more ac-
curate than other approaches (Rodriguez-Galiano and Chica-Rivas,
2014). To compare the accuracy of LC for a larger time scale, the
availability of ground-truthing data is always a limitation. In this study,
some LC mappings were available at different times for specific reach of
the study area, which was helpful in verifying the ML approach. The
difference in the vegetated area obtained from LC was less than 1%
compared to vegetation mapping by Hink and Ohmart, especially for the
Albuquerque reach. This reach is densely vegetated and more consistent
with time, with fewer disturbances than other reaches. However, wild-
fires and complete channel desiccation have impacted the San Acacia
reach (Fitzner, 2018). The vegetation mapping for 2003 includes the
burning evidence for vegetation patches, and some areas have sparse
vegetation, which was delineated as vegetation. As a result, there was a
larger difference in vegetated areas between the classified LC and
ground-truth data.
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4.3. Correlation between hydroclimatic variables, vegetation, and
morphology

Riparian vegetation mostly depends on the streamflow and ground-
water for arid or semi-arid regions where precipitation is limited.
However, this study was limited to streamflow and climate variables
only. This research reveals that the fluctuation of NDVI is weakly
correlated with all the climate and streamflow variables. The negative
correlation with the minimum air temperature (warmer with time)
could be correlated with the negative impacts on the growth of local
vegetation species (Weiss et al., 2004) and also due to a reduction in soil
moisture. This result was consistent with other studies that have corre-
lated NDVI with temperature in arid or semi-arid regions (Nguyen et al.,
2015). Some previous studies found precipitation to be the dominant
variable (Wen et al., 2012) that impacts NDVI. However, precipitation
was not as influential as streamflow variables for the Rio Grande.

The positive correlation of average channel width with precipitation
is due to having enough flows in the river for sediment mobility and
removal of encroached vegetation on banks and islands, maintaining
channel width. Similarly, vegetation encroachment along the riverbanks
can explain the negative correlation of channel width with fall flow rate,
extreme low duration, and vegetated area.

4.4. Challenges in using RS images

The characteristics of the MRG led to several challenges in applying
RS approaches for LC classification. It is challenging to use medium-
resolution images for dynamic rivers similar to MRG. The channel
width changed dramatically along San Acacia reach from 1980 to 2020,
narrowing to less than 30 m in some places. Using Landsat images to
delineate the channel in some parts of the river made it challenging.
Also, due to the reduction in river discharge, there was little or no sur-
face flow in the downstream reach during the growing season in recent
years. As a result, the channel was misclassified as land, even for high-
resolution images (e.g., NAIP imagery). A high degree of supervised
training is needed when delineating the channel for turbid, dynamic,
and low-flow rivers using images to overcome these limitations.

There are also several limitations in our ability to classify riparian
vegetation. Riparian vegetation is the mixture of various vegetation
species, from grasses to taller trees (e.g., cottonwoods). In the MRG,
mostly willows and Russian olives are found on the river banks. The
width covered by these vegetation species is often less than 30 m, which
cannot be distinguished using low and medium-resolution images, as
was the case for some areas in our study reach. This limits the study of
riparian vegetation within narrow riparian corridors. As a result, this
study was limited to general vegetation cover rather than a more refined
classification. Vegetation species behave differently in response to
streamflow characteristics (e.g., high and low flow pulses) and climatic
conditions. As a result, vegetation communities can shift from trees and
shrubs to grasses or vice versa (Stromberg et al., 2010). In some cases,
native vegetation species are replaced by non-native species for altered
flows and climate conditions (Richardson et al., 2007). Due to the lim-
itation of the resolution of images, such shifts could not be investigated
in this study.

4.5. River management implications

The complex interactions between riparian vegetation, channel
morphology, and hydroclimatic variables shape rivers and floodplains
dynamically. Riparian vegetation impacts the dynamics, forms, and
processes of channel morphology (Gurnell, 2014). These changes in the
channel and the riparian vegetation can be observed at different
spatiotemporal scales. The historical monitoring of the whole reach
provides a better understanding of the system. In addition, this enables
us to predict the system’s behavior in response to similar hydroclimatic
conditions. This study has provided valuable information regarding the
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changes in riparian vegetation and morphology for a large spatiotem-
poral scale in relation to hydroclimatic variables in the arid environment
that has greater implications on river management such as restoration of
riparian vegetation and habitats, in addition to flood management and
water delivery. Furthermore, implementing an ML approach for pro-
cessing the RS products is promising for long-term monitoring of ri-
parian vegetation and channel morphology, which has broader
application in a wider range of arid and semi-arid river systems.

In this study, vegetation status in terms of area covered and the NDVI
were analyzed based on the streamflow statistics obtained from IHA and
climate variables such as temperature and precipitation using simple
correlation. However, in future studies, we can quantify the relationship
between the streamflow and the climatic variables to understand the
dominant factors responsible for a shift in vegetation and channel
morphology and the degree of their effects.

5. Conclusion

This research aimed to enhance the understanding of riparian
vegetation and channel morphology responses to external stressors
(hydroclimatic variables) by implementing ML techniques, especially
for semi-arid environments. This was accomplished by computing
vegetation indices and LC classification obtained from the RF classifi-
cation in GEE cloud-based storage and computing platform along the
MRG. The streamflow and climate variables were correlated with the
vegetation status and river morphology. Overall, the vegetated area has
increased with fluctuation at different times depending on the hydrology
and climatic conditions. The channel has narrowed due to reduced flows
and vegetation encroachment. The results also demonstrate that the
maintenance of channel width is challenging once the vegetation is
established.

The characteristics of the streamflow hydrograph (positive correla-
tion) and air temperature (negative correlation) were dominant among
the hydroclimatic variables influencing vegetation cover and channel
morphology. The quantification of the relationships between these
components with the hydroclimatic variables provides valuable infor-
mation to understand the nature of impacts and responses due to
climate-change-induced drought and engineered infrastructure. This
information is essential for river engineers, scientists, and managers
regarding river management, such as restoration of riparian vegetation
and habitats, including flood management and water delivery. However,
using high-resolution images is recommended to perform the vegetation
species basis analysis to determine the shift in community composition
and density to the changing environment with improved accuracy.

The tools utilized for this research rely on open-source algorithms
and cloud-based computing platforms. Thus, the framework of this study
is easily applicable on a large spatiotemporal scale for a broader range of
arid or semi-arid river systems for the integrated analysis of vegetation
and morphology. Overall, this study investigated the existing tools and
techniques to improve understanding of river dynamics in large
spatiotemporal scales influenced by long-term drought and engineered
structures.
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AbbreviationsFor readability, below, we provide a list of
abbreviations (ordered alphabetically) used in our article.

GEE Google Earth Engine

HA Indicators of Hydrologic Alterations

LC Land cover

LiDAR  Light Detection and Ranging

MDI Mean Decrease Impurity

ML Machine learning

MNDWI Modified Normalized Difference Water Index
MODIS Moderate Resolution Imaging Spectroradiometer
MRG Middle Rio Grande

NAIP National Agriculture Imagery Program

NDVI Normalized Difference Vegetation Index

OA Overall accuracy

RF Random Forest

RS Remote Sensing

USA United States

USBOR  United States Bureau of Reclamation
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