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ABSTRACT

Direct ink writing (DIW) is an extrusion-based additive
manufacturing technology. It has gained wide attentions in both
industry and research because of its simple design and versatile
platform. In electric-field-assisted Direct Ink Writing (eDIW)
processes, an external electric field is added between the nozzle
and the printing substrate to manipulate the ink-substrate
wetting dynamics and therefore optimize the ink printability.
eDIW was found effective in printing liquids that are typically
difficult to print in the conventional DIW processes. In this paper,
an eDIW process modeling system based on machine learning
(ML) algorithms is developed. The system is found effective in
predicting eDIW printing geometry under varied process
parameter settings. Image processing approaches to collect
experiment data are developed. Accuracies of different machine
learning algorithms for predicting printing results and trace
width are compared and discussed. The capabilities,
applications and limitations of the presented machine learning-
based modeling approach are presented.

Keywords: Electric-field-assisted direct ink writing
(eDIW); Machine learning; Process modelling; Artificial neural
network (ANN).

1. INTRODUCTION

Direct Ink Writing (DIW), also known as Robocasting, was
first introduced in 1997 [1]. It is an extrusion-based layer-by-
layer additive manufacturing technique that applies a constant
pressure to extrude liquids or pastes along the predesigned path
onto the substrate to fabricate 3D structures. Different type of
materials including ceramics, polymers, metals, and composites
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can be used as printing ink for DIW [2-4]. DIW is one of the
most versatile additive manufacturing techniques, with a wide
range of applications including electronics, microfluidic devices
and tissue engineering [5-7].

DIW processes can be coupled with external fields, such as
magnetic, electric, or acoustic fields, to control spatial variations
of microstructures of the extruded inks or even the extrusion
geometry [8-10]. In particular, electric field has been found
effective for not only controlling microstructures of composite
inks, but also improving the printing resolution and enabling a
wider range of ink choices [11-12]. Researchers have tried
various ways of integrating an external electric field in DIW
processes, resulting in electrohydrodynamic 3D printing,
electrowetting-assisted direct ink writing, electrostatically-
assisted direct ink writing processes, etc. [13-15]. In this paper,
regardless of the way of integrating the electric field, we call all
those systems as electric-field-assisted direct ink writing
(eDIW).

In our previous works, electric field is generated near the
printing orifice to change the ink flow dynamics and the extruded
ink filament geometry [16-19]. By applying an external electric
field, the geometry stability of the extruded ink filament can also
be improved [20-21]. The present group found that the eDIW
technology enabled the use of low viscosity material and
broadens the choice of printable inks. In addition, the integration
of electric field also enabled higher printing speed and
resolution, and the use of super rough substrates.

When introducing new material to eDIW system, bulge or
discontinuity issue will arise if not applying appropriate
parameters during the manufacturing process [22-23]. A hybrid
method based on physics and empirical parameters was
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developed in our previous work for process planning [20]. The
working ranges of eDIW process parameters was derived from
the physic-based formulas. However, some terms involved in the
calculation, like real-time contact angle and surface tension,
need to be measured using complex instruments and time-
consuming experimental procedures for different materials.
What’s more, this method is only suitable for the electrowetting-
assisted DIW setup, where the electric field is added between the
nozzle and substrate. Therefore, a more general modeling
approach to identify the appropriate parameter settings and
predict printing results need to be developed, which can be easily
applied for any ink materials and any kind of eDIW setups.

As a disruptive technology widely investigated in recent
years, Machine Learning (ML) has come to attention in many
industries including the field of Additive Manufacturing (AM),
due to its vast capabilities in data analysis such as regression and
clustering [24]. ML algorithms have already demonstrated
effectiveness in AM in many aspects, such as material design, in-
process defect detection, quality control, geometric deviation
control for manufacturing error compensation and so on [24-28].
ML algorithms also have strong ability in result prediction, after
training with a set of input data. Process parameter settings can
be directly used as the independent variables to train the models,
which makes the process planning easy to implement.

In this paper, a ML-based system is developed to predict
eDIW printing output. When developing a new material, this
system can be used to research the working range of process
parameter settings, to achieve a successful printed model with
the target width of the printing filaments. Instead of spending
large amount of time and resources to perform experiments with
all combinations of parameters, this system only needs a small
amount of experimental data. The system is able to predict the
quality of the eDIW-printed filaments and the filament width.
This prediction and modelling system can be applied to any new
material using eDIW and even traditional DIW system, which
can significantly save the time and labor costs when introducing
new materials to the manufacturing process.

In the rest of the paper, the design of the eDIW modelling
system is demonstrated in section 2. Modeling results and
discussions are presented in section 3. Conclusions are drawn in
section 4.

2. EDIW MODELLING SYSTEM DESIGN

2.1 Overview of Electric-field-assisted DIW Systems
Appropriate electric field settings have been found
beneficial to the DIW manufacturing process, including
enhanced printing speed and resolution, capability of spatially
controlling fillers in ink, enabling the use of super rough
substrates, etc. [16-21,29]. The electric fields can be applied in
the DIW system in various ways, as shown in Figure 1. Despite
the multiple ways of generating the electric field, the electric
field intensity on the substrate location where the ink is deposited
is used as the input parameter in the ML-based modeling
approach. As a result, the proposed ML-based modeling

approach can be used regardless of the way that the electric field
is generated.

Here, the eDIW setup shown in Figure 1d is used to carry
out experiments. Nordson EFD E3V robot is integrated with an
EFD Ultimus II dispensing system, which has a pressure control
accuracy of 0.1psi. A dispensing nozzle with an inner diameter
of 0.4064mm was used. The standoff distance between the
substrate and the nozzle was set to be 0.1mm. The electric field
was generated using a custom 60-watt high voltage power
source, which can provide voltage up to 30kV with a resolution
of ImV. The anode of the power source was connected to the
stainless-steel dispensing nozzle. The cathode was connected to
a thin copper film which was covered by 0.3mm thick double-
sided polyimide (50mJ/m? surface energy) as the dielectric
substrate on the moving platform. The distance between the
dispensing nozzle and the copper sheet was calculated and the
voltage was set accordingly to obtain the required electric field
strength.

Parameters studied in experiments and used as input
variables in the ML-based modeling system include printing
speed, air pressure in the syringe, and the electric field strength.
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FIGURE 1: EDIW SETUP DESIGN: (A) GOVERNING
ELECTRODE IN FRONT AND GROUND WIRE ON TIP [7]; (B)
ELECTRIC FIELD AROUND TIP [4]; (C) GOVERNING
ELECTRODE ON TOP OF BALL-BEARING [9]; (D) ELECTRODES
ON TIP AND SUBSTRATE

2.2 ML-based eDIW Modeling System Design

As illustrated in Figure 2, a system for the eDIW printing
output prediction is built with five steps. Starting from step 1,
simple straight parallel lines are printed on the substrate with
varied process parameter settings. Microscopic images of the
printed samples will then be taken, which contain three to five
printed lines. In step 2, the microscopic images will be processed
using an VGGNetmodel to discriminate whether the sample is a
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FIGURE 2: FLOW CHART OF A DATA DRIVEN PREDICTIVE MODELING SYSTEM TO PREDICT THE PRINT QUALITY AND

PRINTING WIDTH

successful printing or a failed one. The average width of the
printed filaments in the successfully printed samples is further
computed in step 3. The collected data is used to train the ML
models in step 4. After training, the ML models are used to
predict the printing quality (i.e., success or failure) and filament
width under varied process parameter settings.

2.3 Preliminary Experiments

A new DIW ink material developed in our previous study is
used as a test case here to show the ML-based modelling
approach  [21].  Specifically, 1 wt.%  Poly(3,4-
ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)
dispersion (CLEVIOS™, PH 1000) was purchased from
Heraeus, Germany. Poly(ethylene oxide) (PEO) particles
(Mw~10000, Sigma Aldrich, Germany) was mixed with the
PEDOT:PSS dispersion to prepare the mixture. PEO powder was
added in a ratio of 52 wt.%, calculated based on solid weight of
PEO and PEDOT:PSS. All materials were used as received. The
mixture was stirred in a magnetic stirrer at 200 rpm for 17 hours
before use. Three levels of electric field strength, OkV/cm,
4kV/cm, and 8kV/cm were studied over printing speed values
ranging from 20mm/s to 500mm/s and air pressure values
ranging from 0.2psi to 3psi.

As listed in Table 1, ten groups of experiments were
designed with different levels of three process parameters, i.e.,
controllable factors A, B, and C. Two replicates were conducted.
In total, 252 tests were performed by printing 5 parallel straight
lines under the specified parameter setting. After ink drying, the
printed samples were characterized by taking microscopic
images. For example, Figure 3 shows microscopic images of four
printed samples. The yellow background is the substrate, and the
black color is the printed ink. The microscopic images will then
be analyzed in step 2 as detailed in the following section.

Process input P (A) (B) Air (C) Electric
ritning
parameters pressure field strength
(factors) Eiped (psi) (kV/cm)
(mm/s)
Group 1 20 0.2/0.5/0.7/1 0/4/8
Group 2 30 0.2/0.5/0.7/1 0/4/8
Group 3 40 0.3/0.7/1/1.5 0/4/8
Group 4 60 0.3/1/1.5/2 0/4/8
Group 5 80 0.3/1/1.5/2 0/4/8
Group 6 100 0.5/1/1.5/2 0/4/8
Group 7 150 0.5/1/2/3 0/4/8
Group 8 200 1/1.5/2/3 0/4/8
Group 9 300 0.5/1/1.5/2/3 0/4/8
Group 10 500 0.5/1/1.5/2/3 0/4/8

TABLE 1: PRELIMINARY EXPERIMENTS DESIGN
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FIGURE 3: (A) BULGE SAMPLE; (B) BULGE ISSUE SOLVED
BY ADDING 8KV/CM ELETRIC FIELD; (C) DISCONTINOUS
SAMPLE; (D) DISCONTINOUS ISSUE SOLVED BY ADDING
8KV/CM ELETRIC FIELD.

2.4.1 Image-based Failure Discrimination

Common defects and failures in eDIW include bulge and
discontinuity as shown in Figure 3a and 3c, respectively. Due to
the relatively large width of the printed lines, classical line
detection methods such as Probabilistic Hough Transform (PHT)
does not work well for processing the microscopic images.
Another route may be training or fine-tuning deep learning
networks, but it is not suitable for small dataset. To analyze the
microscopic images of the printed samples and detect printing
failures, here we investigated texture classification method,
which is a robust yet faster method.

In particular, Leung-Malik (LM) filter bank [30], a multi-
scale, multi-orientation filter bank with 48 different filters is used
here. The filters are hand-crafted with arbitrary kernel sizes as
(49,49) in the experiments. The LM filter bank has a total of 48
filters, 2 Gaussian derivative filters at 6 orientations and 3 scales,
8 Laplacian of Gaussian filters and 4 Gaussian filters. There are
two filters particularly sensitive to shape change in vertical
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direction and best suit the needs for detections of bulge or
discontinuity in the printed samples.

Given the specific filters with the kernel size, we can use it
to conduct 2D convolution on any given image. the images were
first converted to grayscale images in which the substrate is
white color and the ink is black. The grayscale conversion
reduces the number of channels from 3 to 1. The convolution is
done on a GPU with the deep learning platform PyTorch. The
program classifies any images with identified pixels above a
certain threshold as failure and classify as success otherwise. By
carefully tuning the threshold, an accuracy up to 96.8% can be
achieved for detecting images with printing failures. However,
this method was time consuming, and the threshold need to be
adjusted manually for every group of experiment setting.
Therefore, another method, VGGNet (Figure 4) was used to
generate a computer vision classifier, to automatically identify
images of failure samples.

60% of the pre-experiment images were randomly chosen as
training data while the rest was set as testing data. The training
data were used to train VGGNet. Pytorch was used to extract the
features of the images, transferring the images from 480x640x3
to 1x4096 vectors. Those vectors were used as the input data for
the deep learning neural network. After fitting a linear
classification model, we got the result as a 2X4096 matrix,
adding the linear classifier result (i.e., class 1: failure, or class 2:
success). The cross-entropy loss functions were used to optimize
the training model. We found that the best result was given when
setting the batch size as 32. Then this well-trained system was
able to identify the existing of bulge and the discontinuous part
shown on the pre-experiment images, achieving an accuracy as
high as 94%.

2.4.2 Printing Width Computation

For images detected as success from the previous step, the
average widths of printed lines were computed. Here, the canny
algorithm [31] was used to extract the successfully printed line
structure, after the success images were converted to grayscale.
The “higher and lower sensitivity thresholds” were turned to 400
and 700, respectively. However, Canny algorithm is not able to
distinguish the upper and lower boundaries of printed filaments,

Class 1:
failure

-

™~ Class 2:

success

2X4096 matrix

FIGURE 4: VGG NEURAL NETWORK SYSTEM FOR FAILURE RESULT DETECTION
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which means, all identified lines structures were displayed in
yellow color in the canny map (Figure 5b).

0 100 200 300 400 500 600 O

100 200 300 400 500 600

FIGURE 5: WIDTH MEASUREMENT PROCESS: (A)
GREYSCALE IMAGE; (B) APPLY CANNY ALGORITHM TO
GREYSCALE IMAGE; (C) APPLY SOBEL FILTER TO
GREYSCALE IMAGE; (D) CANNY MAP WITH NOISE ON FIRST
DETECTING COLUMN.

To handle the scenario where lines are close to the top or
bottom edges of the images and are not complete in the image,
Sobel filter [32] was added to compute the pixel gradient change
direction of each detected edge, to see whether it changes from
black pixel to white or from white pixel to black. Positive pixel
derivative (i.e., black to white) indicates the lower boundary
while negative pixel derivative stands for upper boundary. If the
image begins with a lower boundary or ends with an upper
boundary, the line would be detected as incomplete and would
be dropped. Figure 5 is an example of the width measurement
process. After applying Canny algorithm to a grayscale image
(Fig.5a), the edges were extracted and highlighted (Fig.5b). Next
step was transforming the grayscale image to a Sobel algorithm
map, where the upper boundary is detected as deep blue color
and the lower boundary as yellow color (Fig.5c¢). In this example,
the first printed line was not counted into later calculation since
the first boundary was not in deep blue. Similarly, the last
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filament was also dropped because of the lack of lower boundary.
The printed lines that can be counted in further steps are
indicated by orange arrows in Figure 5c.

Five detection points at the pixel column of 100, 200, 300,
400 and 500 among the 640 pixels in x direction were defined to
compute the average width. The width of the printed filaments
was measured as the distance between the neighboring upper and
lower boundaries in detection columns. The positions of pixels
inx and y direction obtained from Canny algorithm, and the pixel
derivatives gotten from Sobel algorithm, were used to compute
the distance. An average width was calculated using the line
widths at all detection columns. It is possible to have noise on
the detection column, which could seriously affect the result. An
example is shown in Figure 5d, noise exists on the first detection
column, which exists on the original images or is generated in
image transform process. To address this challenge, we added
some checking code to remove the effect of noise. If an odd
number of points was detected in a detection column, then this
detection column would be discarded and only the results
obtained from the other four detection columns would be used to
calculate the average width. If in one detection column, the width
of any filament is more than 15 pixels larger than others, then
this detection column will also be considered to have noise and
be discarded.

3. RESULTS AND DISCUSSION

3.1 Printing Result Prediction

The printing speed, air pressure and electric field strength
settings were collected and used as independent variables for the
machine learning model training. The printing result (e.g.,
success or failure) of the pre-experiment samples, which are
determined in VGG model in image processing step, were treated
as dependent data to train the machine learning model. The data
collected for pre-experiments were randomly split into two sets,
i.e., 60% as training data and 40% as testing data. Several
different classification models were investigated to fit the
training data, including logistic regression, Support Vector
Machines (SVM) with different functions, random forest, and
Multi-Layer Perceptron (MLP) classifier.
E=8.0kV/cm
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FIGURE 6: PRINTING RESULT PREDICTION FROM MLP CLASSIFIER MODEL
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The prediction of printing result is a 2-class classification
problem. Logistic regression model is one of the simplest
algorithms which generates a decision boundary between two
classes. The model predicts the probability of occurrence of two
classes and gives the predicted classification according to the
probability. SVM algorithm generates hyperplanes as decision
boundaries to classify the data points in high dimensional feature
space. SVM finds an optimal hyperplane with the maximum
margin, which means the hyperplane has the maximum distance
between training data points in two classes. To train SVM
models, we have investigated linear function, radial basis
functions and polynomial functions with different degrees and
regularization weights as kernel functions of the hyperplane.

Instead of generating boundaries between two classes to
make the prediction, random forest model provides a decision
analysis method to solve the classification problem. In this
approach, multiply decision trees were created, where the
conjunctions of the features are represented by the branches of
trees. The final prediction of the random forest is related to the
selection of most decision trees. It is also possible to draw
decision boundaries based on the output of random forest model.
However, even though the accuracy of boundary can be
improved by adding the number of decision trees, the boundary
lines are still not as smooth as the other algorithms. Compared to
traditional machine learning approaches, neural network models
have bigger expressive compacity. MLP is one of the most
commonly used feedforward Artificial Neural Network (ANN)
model. MLP classifier consists of more than three layers of
nodes, which are fully connected to the following layer. The
input data sets are mapped to the output predictions through the
nonlinear activation functions of the nodes of the layers.

The testing results of different functions were summarized
and compared in Table 2.

Machine learning models Testing accuracy
Logistic regression 80.47%

SVM (linear function kernel) 78.09%

SVM (radial basis function 81.27%

kernel)

SVM (4-degree polynomial o

function kernel) 76.57%

Random forest (n=200) 98.01%

MLP Classifier 94.62%

TABLE 2: TESTING ACCURACY FOR THE PRINTING
QUALITY PREDICTION

From Table 2, it can be seen that the random forest gives the
highest accuracy (i.e., 0.98). However, due to its inherent
principle, random forest model can’t provide a smooth boundary
for the printing result prediction. Therefore, the MLP classifier
which gives an accuracy of 94.62% and a smooth boundary is
considered as the best choice.

The decision boundaries of the two classes predicted by
MLP are shown in Figure 6, where the results are listed for
different electric field strength (0, 4, 8 kV/cm). The yellow area
is failure where printing result would have bulge or discontinuity

problems, and the green area is success where ink can be
successfully deposited and solidified on the substrate without
defects. Normally, the top left yellow area is failure with bulge
observed on printed lines. The bottom right yellow area is failure
where printed lines break to segments. The points represent the
experiment data. Dark green points represent the successfully
printed experiments and the purple crosses represent the failure
experiments. It was found that the MLP classifier model
produced the smoothest boundary among all the tested models.
The boundary line for the top left part is kind of up and down
because the resolution of the air pressure is limited (i.e., only
0.1psi) and the input data is also limited in this region. The
weight percentage of the failure points is increased to generate a
clear boundary. These results also show that the printable area is
significantly increased with the increase of the electric field
strength, which indicates the enhancement of printability by
incorporating the electric field. This prediction is consistent with
the experimental findings concluded in our previous work [20].

3.2 Printing Width Prediction

To predict the printed line width, the input data (independent
variables) are printing speed, air pressure, and electric field
strength, while the output data (dependent variable) is the
average width computed from step 3, the width computation
step. The data set are randomly split into 60% as training data
and the remaining 40% as testing.

Here, polynomial regression models with degrees ranging
from 1 to 5 were investigated. The performance fails to meet the
expectation probably because of the over-fit issue. Therefore,
ridge regression models are introduced here to apply L2
regularization to the polynomial functions which suffered from
multicollinearity. Besides, MLP regressor, decision tree and
random forest model with 2000 benches were also investigated
to fit the data and predict the printing width. Two criteria were
used to evaluate the training score of the models, mean squared
error and coefficient of determination. The smaller the mean
squared error and the larger the coefficient of determination, the
better the training result. The scores were listed in Table 3.

Compared with all other models, random forest gives the
smallest mean squared error and the largest coefficient of
determination. The prediction results for the printing speed in
range of 0-500 mm/s and air pressure from 0 to 3.0 psi under
0/4/8kV/cm electric field were shown in Figure 7 a-c, combined
with the printable boundaries obtained from printing result
prediction. However, an unavoidable problem generated by
using random forest method was that the resolution of the
prediction is strongly relying on the parameter intervals in the
pre-experiments. It provides high accuracy prediction for the
testing data, which have the same interval of parameters as
training data. However, when the random forest model is used to
predict the printing width using input variables with a smaller
interval, the predicting score is not good anymore. Same problem
occurs with decision tree model.
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Machine learning models Mean Coefficient of
squared determination
error

Polynomial | 1 degree 0.025387 | 0.1493

regression | 2 degrees 0.007963 | 0.7332

3 degrees 0.004779 | 0.8399
4 degrees 0.028729 | 0.0373
5 degrees 0.003737 | 0.8748

Ridge 2 degrees 0.008026 | 0.7311

regression | (alpha=0.1)

3 degrees 0.004773 | 0.8401
(alpha=0.01)

4 degrees (alpha | 0.003539 | 0.8814
=0.01)

5 degrees (alpha | 0.003844 | 0.8712
=0.01)

MLP Regressor 0.003177 | 0.8935

Decision Tree 0.003437 | 0.8848

Random Forest (n=2000) 0.001218 | 0.9592

TABLE 3: TESTING SCORE FOR PRINTING WIDTH
PREDICTION

MLP regressor model (Figure 7 d-f) is again found to work
best among all methods, as it showed smooth and high score
prediction. With the MLP regressor model, it is possible to
predict the printing result in high resolution without narrow
down the input parameter interval. It means that we can use a
small amount of pre-experiment data to develop a high-fidelity
model to predict the printing results and printing width of the
eDIW process under varied process settings. When increasing air
pressure or decreasing printing speed, the printing width rises

E=0.0kV/cm

E=4.0kV/cm

because of the enlarged volume of material. The printing width
also grows with the increase of the applied electric field strength,
which agrees well with the physical explanation. When a larger
electric field strength is applied, the contact angle between
extruded ink and substrate reduces and hence the line width
increases.

Combining the outcome obtained from printing result and
printing width predictions, the final prediction maps is
established in Fig. 7. To summarize, to develop a printing
prediction map for a new ink, a small set of preliminary
experiments (less than 300 tests) needs to be conducted to collect
experimental data to train the models. The amount of
experimental data needed depends on the range of parameters to
study. Printed samples are then characterized by microscopic
imaging. Experimental data including printing results (success
or failure) and printing width of the successfully-printed samples
are extracted from imaging processing and then used to train ML
models. In this study, MLP method was found to be the most
effective ML model and was chosen to generate the prediction
map. After training, the MLP model-based prediction system is
able to predict the printing result and printing width for any
process parameter settings within the range, which can be used
for eDIW process planning.

4. CONCLUSION

In summary, an ML-based modeling approach is developed
to predict the eDIW printing result and guide the eDIW process
planning. This modeling approach can be applied to any inks
and any electric field configurations without barriers, promoting
the development and utilization of new materials for eDIW and
facilitating eDIW process planning for any printing tasks.
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FIGURE 7: PRINTING WIDTH PREDICTION FROM RANDOM FOREST MODEL (A-C) AND MLP REGRESSOR (D-F).
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