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ABSTRACT 

Direct ink writing (DIW) is an extrusion-based additive 
manufacturing technology. It has gained wide attentions in both 
industry and research because of its simple design and versatile 
platform. In electric-field-assisted Direct Ink Writing (eDIW) 
processes, an external electric field is added between the nozzle 
and the printing substrate to manipulate the ink-substrate 
wetting dynamics and therefore optimize the ink printability.  
eDIW was found effective in printing liquids that are typically 
difficult to print in the conventional DIW processes. In this paper, 
an eDIW process modeling system based on machine learning 
(ML) algorithms is developed. The system is found effective in 
predicting eDIW printing geometry under varied process 
parameter settings. Image processing approaches to collect 
experiment data are developed. Accuracies of different machine 
learning algorithms for predicting printing results and trace 
width are compared and discussed.  The capabilities, 
applications and limitations of the presented machine learning-
based modeling approach are presented.  

Keywords: Electric-field-assisted direct ink writing 
(eDIW); Machine learning; Process modelling; Artificial neural 
network (ANN). 
 
1. INTRODUCTION 

Direct Ink Writing (DIW), also known as Robocasting, was 
first introduced in 1997 [1]. It is an extrusion-based layer-by-
layer additive manufacturing technique that applies a constant 
pressure to extrude liquids or pastes along the predesigned path 
onto the substrate to fabricate 3D structures. Different type of 
materials including ceramics, polymers, metals, and composites 

can be used as printing ink for DIW [2-4]. DIW is one of the 
most versatile additive manufacturing techniques, with a wide 
range of applications including electronics, microfluidic devices 
and tissue engineering [5-7]. 

DIW processes can be coupled with external fields, such as 
magnetic, electric, or acoustic fields, to control spatial variations 
of microstructures of the extruded inks or even the extrusion 
geometry [8-10].   In particular, electric field has been found 
effective for not only controlling microstructures of composite 
inks, but also improving the printing resolution and enabling a 
wider range of ink choices [11-12].  Researchers have tried 
various ways of integrating an external electric field in DIW 
processes, resulting in electrohydrodynamic 3D printing, 
electrowetting-assisted direct ink writing, electrostatically-
assisted direct ink writing processes, etc. [13-15].  In this paper, 
regardless of the way of integrating the electric field, we call all 
those systems as electric-field-assisted direct ink writing 
(eDIW).   

In our previous works, electric field is generated near the 
printing orifice to change the ink flow dynamics and the extruded 
ink filament geometry [16-19]. By applying an external electric 
field, the geometry stability of the extruded ink filament can also 
be improved [20-21]. The present group found that the eDIW 
technology enabled the use of low viscosity material and 
broadens the choice of printable inks. In addition, the integration 
of electric field also enabled higher printing speed and 
resolution, and the use of super rough substrates.  

When introducing new material to eDIW system, bulge or 
discontinuity issue will arise if not applying appropriate 
parameters during the manufacturing process [22-23]. A hybrid 
method based on physics and empirical parameters was 
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developed in our previous work for process planning [20]. The 
working ranges of eDIW process parameters was derived from 
the physic-based formulas. However, some terms involved in the 
calculation, like real-time contact angle and surface tension, 
need to be measured using complex instruments and time-
consuming experimental procedures for different materials. 
What’s more, this method is only suitable for the electrowetting-
assisted DIW setup, where the electric field is added between the 
nozzle and substrate. Therefore, a more general modeling 
approach to identify the appropriate parameter settings and 
predict printing results need to be developed, which can be easily 
applied for any ink materials and any kind of eDIW setups. 

As a disruptive technology widely investigated in recent 
years, Machine Learning (ML) has come to attention in many 
industries including the field of Additive Manufacturing (AM), 
due to its vast capabilities in data analysis such as regression and 
clustering [24]. ML algorithms have already demonstrated 
effectiveness in AM in many aspects, such as material design, in-
process defect detection, quality control, geometric deviation 
control for manufacturing error compensation and so on [24-28]. 
ML algorithms also have strong ability in result prediction, after 
training with a set of input data. Process parameter settings can 
be directly used as the independent variables to train the models, 
which makes the process planning easy to implement.  

In this paper, a ML-based system is developed to predict 
eDIW printing output. When developing a new material, this 
system can be used to research the working range of process 
parameter settings, to achieve a successful printed model with 
the target width of the printing filaments. Instead of spending 
large amount of time and resources to perform experiments with 
all combinations of parameters, this system only needs a small 
amount of experimental data. The system is able to predict the 
quality of the eDIW-printed filaments and the filament width. 
This prediction and modelling system can be applied to any new 
material using eDIW and even traditional DIW system, which 
can significantly save the time and labor costs when introducing 
new materials to the manufacturing process. 

In the rest of the paper, the design of the eDIW modelling 
system is demonstrated in section 2. Modeling results and 
discussions are presented in section 3. Conclusions are drawn in 
section 4. 
 
2. EDIW MODELLING SYSTEM DESIGN 
 
2.1 Overview of Electric-field-assisted DIW Systems 

Appropriate electric field settings have been found 
beneficial to the DIW manufacturing process, including 
enhanced printing speed and resolution, capability of spatially 
controlling fillers in ink, enabling the use of super rough 
substrates, etc. [16-21,29]. The electric fields can be applied in 
the DIW system in various ways, as shown in Figure 1. Despite 
the multiple ways of generating the electric field, the electric 
field intensity on the substrate location where the ink is deposited 
is used as the input parameter in the ML-based modeling 
approach.  As a result, the proposed ML-based modeling 

approach can be used regardless of the way that the electric field 
is generated.   

Here, the eDIW setup shown in Figure 1d is used to carry 
out experiments. Nordson EFD E3V robot is integrated with an 
EFD Ultimus II dispensing system, which has a pressure control 
accuracy of 0.1psi. A dispensing nozzle with an inner diameter 
of 0.4064mm was used. The standoff distance between the 
substrate and the nozzle was set to be 0.1mm. The electric field 
was generated using a custom 60-watt high voltage power 
source, which can provide voltage up to 30kV with a resolution 
of 1mV. The anode of the power source was connected to the 
stainless-steel dispensing nozzle. The cathode was connected to 
a thin copper film which was covered by 0.3mm thick double-
sided polyimide (50mJ/m2 surface energy) as the dielectric 
substrate on the moving platform. The distance between the 
dispensing nozzle and the copper sheet was calculated and the 
voltage was set accordingly to obtain the required electric field 
strength. 

Parameters studied in experiments and used as input 
variables in the ML-based modeling system include printing 
speed, air pressure in the syringe, and the electric field strength. 

 

FIGURE 1: EDIW SETUP DESIGN: (A) GOVERNING 
ELECTRODE IN FRONT AND GROUND WIRE ON TIP [7]; (B) 
ELECTRIC FIELD AROUND TIP [4]; (C) GOVERNING 
ELECTRODE ON TOP OF BALL-BEARING [9]; (D) ELECTRODES 
ON TIP AND SUBSTRATE 
 
 
2.2 ML-based eDIW Modeling System Design 

As illustrated in Figure 2, a system for the eDIW printing 
output prediction is built with five steps. Starting from step 1, 
simple straight parallel lines are printed on the substrate with 
varied process parameter settings. Microscopic images of the 
printed samples will then be taken, which contain three to five 
printed lines. In step 2, the microscopic images will be processed 
using an VGGNetmodel to discriminate whether the sample is a 
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successful printing or a failed one. The average width of the 
printed filaments in the successfully printed samples is further 
computed in step 3. The collected data is used to train the ML 
models in step 4.  After training, the ML models are used to 
predict the printing quality (i.e., success or failure) and filament 
width under varied process parameter settings. 
 
2.3 Preliminary Experiments  

A new DIW ink material developed in our previous study is 
used as a test case here to show the ML-based modelling 
approach [21]. Specifically, 1 wt.% Poly(3,4-
ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) 
dispersion (CLEVIOS™, PH 1000) was purchased from 
Heraeus, Germany. Poly(ethylene oxide) (PEO) particles 
(Mw~10000, Sigma Aldrich, Germany) was mixed with the 
PEDOT:PSS dispersion to prepare the mixture. PEO powder was 
added in a ratio of 52 wt.%, calculated based on solid weight of 
PEO and PEDOT:PSS. All materials were used as received. The 
mixture was stirred in a magnetic stirrer at 200 rpm for 17 hours 
before use. Three levels of electric field strength, 0kV/cm, 
4kV/cm, and 8kV/cm were studied over printing speed values 
ranging from 20mm/s to 500mm/s and air pressure values 
ranging from 0.2psi to 3psi. 

As listed in Table 1, ten groups of experiments were 
designed with different levels of three process parameters, i.e., 
controllable factors A, B, and C. Two replicates were conducted. 
In total, 252 tests were performed by printing 5 parallel straight 
lines under the specified parameter setting. After ink drying, the 
printed samples were characterized by taking microscopic 
images. For example, Figure 3 shows microscopic images of four 
printed samples.  The yellow background is the substrate, and the 
black color is the printed ink. The microscopic images will then 
be analyzed in step 2 as detailed in the following section.  
 
 
 

 

Process input 
parameters 
(factors) 

(A) 
Pritning 
speed 

(mm/s) 

(B) Air 
pressure  

(psi) 

(C) Electric 
field strength 

(kV/cm) 

Group 1 20 0.2/0.5/0.7/1  0/4/8 

Group 2 30 0.2/0.5/0.7/1  0/4/8 

Group 3 40 0.3/0.7/1/1.5  0/4/8 

Group 4 60 0.3/1/1.5/2  0/4/8 

Group 5 80 0.3/1/1.5/2  0/4/8 

Group 6 100 0.5/1/1.5/2  0/4/8 

Group 7 150 0.5/1/2/3  0/4/8 

Group 8 200 1/1.5/2/3  0/4/8 

Group 9 300 0.5/1/1.5/2/3  0/4/8 

Group 10 500 0.5/1/1.5/2/3  0/4/8 
TABLE 1: PRELIMINARY EXPERIMENTS DESIGN 

FIGURE 2: FLOW CHART OF A DATA DRIVEN PREDICTIVE MODELING SYSTEM TO PREDICT THE PRINT QUALITY AND 
PRINTING WIDTH 
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FIGURE 3: (A) BULGE SAMPLE; (B) BULGE ISSUE SOLVED 
BY ADDING 8KV/CM ELETRIC FIELD; (C) DISCONTINOUS 
SAMPLE; (D) DISCONTINOUS ISSUE SOLVED BY ADDING 
8KV/CM ELETRIC FIELD. 
 
2.4.1 Image-based Failure Discrimination 

Common defects and failures in eDIW include bulge and 
discontinuity as shown in Figure 3a and 3c, respectively.  Due to 
the relatively large width of the printed lines, classical line 
detection methods such as Probabilistic Hough Transform (PHT) 
does not work well for processing the microscopic images. 
Another route may be training or fine-tuning deep learning 
networks, but it is not suitable for small dataset. To analyze the 
microscopic images of the printed samples and detect printing 
failures, here we investigated texture classification method, 
which is a robust yet faster method. 

In particular, Leung-Malik (LM) filter bank [30], a multi-
scale, multi-orientation filter bank with 48 different filters is used 
here. The filters are hand-crafted with arbitrary kernel sizes as 
(49,49) in the experiments. The LM filter bank has a total of 48 
filters, 2 Gaussian derivative filters at 6 orientations and 3 scales, 
8 Laplacian of Gaussian filters and 4 Gaussian filters. There are 
two filters particularly sensitive to shape change in vertical 

direction and best suit the needs for detections of bulge or 
discontinuity in the printed samples. 

Given the specific filters with the kernel size, we can use it 
to conduct 2D convolution on any given image. the images were 
first converted to grayscale images in which the substrate is 
white color and the ink is black.  The grayscale conversion 
reduces the number of channels from 3 to 1. The convolution is 
done on a GPU with the deep learning platform PyTorch. The 
program classifies any images with identified pixels above a 
certain threshold as failure and classify as success otherwise. By 
carefully tuning the threshold, an accuracy up to 96.8% can be 
achieved for detecting images with printing failures. However, 
this method was time consuming, and the threshold need to be 
adjusted manually for every group of experiment setting. 
Therefore, another method, VGGNet (Figure 4) was used to 
generate a computer vision classifier, to automatically identify 
images of failure samples. 

60% of the pre-experiment images were randomly chosen as 
training data while the rest was set as testing data. The training 
data were used to train VGGNet. Pytorch was used to extract the 
features of the images, transferring the images from 480×640×3 
to 1×4096 vectors. Those vectors were used as the input data for 
the deep learning neural network. After fitting a linear 
classification model, we got the result as a 2× 4096 matrix, 
adding the linear classifier result (i.e., class 1: failure, or class 2: 
success). The cross-entropy loss functions were used to optimize 
the training model. We found that the best result was given when 
setting the batch size as 32. Then this well-trained system was 
able to identify the existing of bulge and the discontinuous part 
shown on the pre-experiment images, achieving an accuracy as 
high as 94%. 

 
2.4.2 Printing Width Computation 

For images detected as success from the previous step, the 
average widths of printed lines were computed. Here, the canny 
algorithm [31] was used to extract the successfully printed line 
structure, after the success images were converted to grayscale. 
The “higher and lower sensitivity thresholds” were turned to 400 
and 700, respectively. However, Canny algorithm is not able to 
distinguish the upper and lower boundaries of printed filaments, 

FIGURE 4: VGG NEURAL NETWORK SYSTEM FOR FAILURE RESULT DETECTION 
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which means, all identified lines structures were displayed in 
yellow color in the canny map (Figure 5b). 

 

FIGURE 5: WIDTH MEASUREMENT PROCESS: (A) 
GREYSCALE IMAGE; (B) APPLY CANNY ALGORITHM TO 
GREYSCALE IMAGE; (C) APPLY SOBEL FILTER TO 
GREYSCALE IMAGE; (D) CANNY MAP WITH NOISE ON FIRST 
DETECTING COLUMN. 

 
To handle the scenario where lines are close to the top or 

bottom edges of the images and are not complete in the image, 
Sobel filter [32] was added to compute the pixel gradient change 
direction of each detected edge, to see whether it changes from 
black pixel to white or from white pixel to black. Positive pixel 
derivative (i.e., black to white) indicates the lower boundary 
while negative pixel derivative stands for upper boundary. If the 
image begins with a lower boundary or ends with an upper 
boundary, the line would be detected as incomplete and would 
be dropped. Figure 5 is an example of the width measurement 
process. After applying Canny algorithm to a grayscale image 
(Fig.5a), the edges were extracted and highlighted (Fig.5b). Next 
step was transforming the grayscale image to a Sobel algorithm 
map, where the upper boundary is detected as deep blue color 
and the lower boundary as yellow color (Fig.5c). In this example, 
the first printed line was not counted into later calculation since 
the first boundary was not in deep blue. Similarly, the last 

filament was also dropped because of the lack of lower boundary. 
The printed lines that can be counted in further steps are 
indicated by orange arrows in Figure 5c. 

Five detection points at the pixel column of 100, 200, 300, 
400 and 500 among the 640 pixels in x direction were defined to 
compute the average width. The width of the printed filaments 
was measured as the distance between the neighboring upper and 
lower boundaries in detection columns. The positions of pixels 
in x and y direction obtained from Canny algorithm, and the pixel 
derivatives gotten from Sobel algorithm, were used to compute 
the distance. An average width was calculated using the line 
widths at all detection columns. It is possible to have noise on 
the detection column, which could seriously affect the result. An 
example is shown in Figure 5d, noise exists on the first detection 
column, which exists on the original images or is generated in 
image transform process. To address this challenge, we added 
some checking code to remove the effect of noise. If an odd 
number of points was detected in a detection column, then this 
detection column would be discarded and only the results 
obtained from the other four detection columns would be used to 
calculate the average width. If in one detection column, the width 
of any filament is more than 15 pixels larger than others, then 
this detection column will also be considered to have noise and 
be discarded. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Printing Result Prediction 

The printing speed, air pressure and electric field strength 
settings were collected and used as independent variables for the 
machine learning model training. The printing result (e.g., 
success or failure) of the pre-experiment samples, which are 
determined in VGG model in image processing step, were treated 
as dependent data to train the machine learning model. The data 
collected for pre-experiments were randomly split into two sets, 
i.e., 60% as training data and 40% as testing data. Several 
different classification models were investigated to fit the 
training data, including logistic regression, Support Vector 
Machines (SVM) with different functions, random forest, and 
Multi-Layer Perceptron (MLP) classifier. 

FIGURE 6: PRINTING RESULT PREDICTION FROM MLP CLASSIFIER MODEL 
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The prediction of printing result is a 2-class classification 
problem. Logistic regression model is one of the simplest 
algorithms which generates a decision boundary between two 
classes. The model predicts the probability of occurrence of two 
classes and gives the predicted classification according to the 
probability. SVM algorithm generates hyperplanes as decision 
boundaries to classify the data points in high dimensional feature 
space. SVM finds an optimal hyperplane with the maximum 
margin, which means the hyperplane has the maximum distance 
between training data points in two classes. To train SVM 
models, we have investigated linear function, radial basis 
functions and polynomial functions with different degrees and 
regularization weights as kernel functions of the hyperplane.  

Instead of generating boundaries between two classes to 
make the prediction, random forest model provides a decision 
analysis method to solve the classification problem. In this 
approach, multiply decision trees were created, where the 
conjunctions of the features are represented by the branches of 
trees. The final prediction of the random forest is related to the 
selection of most decision trees. It is also possible to draw 
decision boundaries based on the output of random forest model. 
However, even though the accuracy of boundary can be 
improved by adding the number of decision trees, the boundary 
lines are still not as smooth as the other algorithms. Compared to 
traditional machine learning approaches, neural network models 
have bigger expressive compacity. MLP is one of the most 
commonly used feedforward Artificial Neural Network (ANN) 
model. MLP classifier consists of more than three layers of 
nodes, which are fully connected to the following layer. The 
input data sets are mapped to the output predictions through the 
nonlinear activation functions of the nodes of the layers. 

The testing results of different functions were summarized 
and compared in Table 2. 

 
Machine learning models Testing accuracy 
Logistic regression 80.47% 
SVM (linear function kernel) 78.09% 
SVM (radial basis function 
kernel) 81.27% 

SVM (4-degree polynomial 
function kernel) 76.57% 

Random forest (n=200) 98.01% 
MLP Classifier 94.62% 

TABLE 2: TESTING ACCURACY FOR THE PRINTING 
QUALITY PREDICTION 
 

From Table 2, it can be seen that the random forest gives the 
highest accuracy (i.e., 0.98). However, due to its inherent 
principle, random forest model can’t provide a smooth boundary 
for the printing result prediction. Therefore, the MLP classifier 
which gives an accuracy of 94.62% and a smooth boundary is 
considered as the best choice.  

The decision boundaries of the two classes predicted by 
MLP are shown in Figure 6, where the results are listed for 
different electric field strength (0, 4, 8 kV/cm). The yellow area 
is failure where printing result would have bulge or discontinuity 

problems, and the green area is success where ink can be 
successfully deposited and solidified on the substrate without 
defects. Normally, the top left yellow area is failure with bulge 
observed on printed lines. The bottom right yellow area is failure 
where printed lines break to segments. The points represent the 
experiment data. Dark green points represent the successfully 
printed experiments and the purple crosses represent the failure 
experiments. It was found that the MLP classifier model 
produced the smoothest boundary among all the tested models. 
The boundary line for the top left part is kind of up and down 
because the resolution of the air pressure is limited (i.e., only 
0.1psi) and the input data is also limited in this region. The 
weight percentage of the failure points is increased to generate a 
clear boundary. These results also show that the printable area is 
significantly increased with the increase of the electric field 
strength, which indicates the enhancement of printability by 
incorporating the electric field.  This prediction is consistent with 
the experimental findings concluded in our previous work [20]. 

 
3.2 Printing Width Prediction 

To predict the printed line width, the input data (independent 
variables) are printing speed, air pressure, and electric field 
strength, while the output data (dependent variable) is the 
average width computed from step 3, the width computation 
step. The data set are randomly split into 60% as training data 
and the remaining 40% as testing.  

Here, polynomial regression models with degrees ranging 
from 1 to 5 were investigated. The performance fails to meet the 
expectation probably because of the over-fit issue. Therefore, 
ridge regression models are introduced here to apply L2 
regularization to the polynomial functions which suffered from 
multicollinearity. Besides, MLP regressor, decision tree and 
random forest model with 2000 benches were also investigated 
to fit the data and predict the printing width. Two criteria were 
used to evaluate the training score of the models, mean squared 
error and coefficient of determination. The smaller the mean 
squared error and the larger the coefficient of determination, the 
better the training result. The scores were listed in Table 3.  

Compared with all other models, random forest gives the 
smallest mean squared error and the largest coefficient of 
determination. The prediction results for the printing speed in 
range of 0-500 mm/s and air pressure from 0 to 3.0 psi under 
0/4/8kV/cm electric field were shown in Figure 7 a-c, combined 
with the printable boundaries obtained from printing result 
prediction. However, an unavoidable problem generated by 
using random forest method was that the resolution of the 
prediction is strongly relying on the parameter intervals in the 
pre-experiments. It provides high accuracy prediction for the 
testing data, which have the same interval of parameters as 
training data. However, when the random forest model is used to 
predict the printing width using input variables with a smaller 
interval, the predicting score is not good anymore. Same problem 
occurs with decision tree model. 
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Machine learning models Mean 
squared 
error 

Coefficient of 
determination 

Polynomial 
regression 

1 degree 0.025387 0.1493 
2 degrees 0.007963 0.7332 
3 degrees 0.004779 0.8399 
4 degrees 0.028729 0.0373 
5 degrees 0.003737 0.8748 

Ridge 
regression 

2 degrees 
(alpha=0.1) 

0.008026 0.7311 

3 degrees 
(alpha=0.01) 

0.004773 0.8401 

4 degrees (alpha 
=0.01) 

0.003539 0.8814 

5 degrees (alpha 
=0.01) 

0.003844 0.8712 

MLP Regressor 0.003177 0.8935 
Decision Tree 0.003437 0.8848 
Random Forest (n=2000) 0.001218 0.9592 

TABLE 3: TESTING SCORE FOR PRINTING WIDTH 
PREDICTION 

 
MLP regressor model (Figure 7 d-f) is again found to work 

best among all methods, as it showed smooth and high score 
prediction. With the MLP regressor model, it is possible to 
predict the printing result in high resolution without narrow 
down the input parameter interval. It means that we can use a 
small amount of pre-experiment data to develop a high-fidelity 
model to predict the printing results and printing width of the 
eDIW process under varied process settings. When increasing air 
pressure or decreasing printing speed, the printing width rises 

because of the enlarged volume of material. The printing width 
also grows with the increase of the applied electric field strength, 
which agrees well with the physical explanation. When a larger 
electric field strength is applied, the contact angle between 
extruded ink and substrate reduces and hence the line width 
increases.  

Combining the outcome obtained from printing result and 
printing width predictions, the final prediction maps is 
established in Fig. 7. To summarize, to develop a printing 
prediction map for a new ink, a small set of preliminary 
experiments (less than 300 tests) needs to be conducted to collect 
experimental data to train the models. The amount of 
experimental data needed depends on the range of parameters to 
study. Printed samples are then characterized by microscopic 
imaging. Experimental data including printing results (success 
or failure) and printing width of the successfully-printed samples 
are extracted from imaging processing and then used to train ML 
models. In this study, MLP method was found to be the most 
effective ML model and was chosen to generate the prediction 
map.  After training, the MLP model-based prediction system is 
able to predict the printing result and printing width for any 
process parameter settings within the range, which can be used 
for eDIW process planning. 
 
4. CONCLUSION 

In summary, an ML-based modeling approach is developed 
to predict the eDIW printing result and guide the eDIW process 
planning.  This modeling approach can be applied to any inks 
and any electric field configurations without barriers, promoting 
the development and utilization of new materials for eDIW and 
facilitating eDIW process planning for any printing tasks. 

 

FIGURE 7: PRINTING WIDTH PREDICTION FROM RANDOM FOREST MODEL (A-C) AND MLP REGRESSOR (D-F). 
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