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SUMMARY

Quantile regression has become a widely used tool for analyzing competing risks data. How-
ever, quantile regression for competing risks data with a continuous mark is still scarce. The
mark variable is an extension of cause-of-failure in a classical competing risks model where
cause of failure is replaced by a continuous mark only observed at uncensored failure times.
An example of the continuous mark variable is the genetic distance that measures dissimilar-
ity between the infecting virus and the virus contained in the vaccine construct. In this article,
we propose a novel mark-specific quantile regression model. The proposed estimation method
borrows strength from data in a neighborhood of a mark and is based on an induced smoothed
estimation equation, which is very different from the existing methods for competing risks data
with discrete causes. The asymptotic properties of the resulting estimators are established across
mark and quantile continuums. In addition, a mark-specific quantile-type vaccine efficacy is pro-
posed and its statistical inference procedures are developed. Simulation studies are conducted
to evaluate the finite sample performances of the proposed estimation and hypothesis testing
procedures. An application to the first HIV vaccine efficacy trial is provided.

Some key words: Competing risks; Continuous mark; Hypothesis testing; Mark-specific quantile regression; Survival
data; Vaccine efficacy.

1. INTRODUCTION
1.1.  Background

Quantile regression provides a comprehensive description on different parts of the conditional
distribution of responses (Koenker & Bassett, 1996), and it has become a widely used tool in
the survival analysis. For example, Powell (1984, 1986) modified the least absolute deviation
procedure to analyze censored observations. Portnoy (2003) developed a recursively reweighed
estimation procedure by using the principle of self-consistency for the Kaplan-Meier estimator.
Peng & Huang (2008) proposed a recursive series of estimating equations for a sequence of
quantiles based on the martingale feature associated with censored data. De Backer et al. (2019)
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suggested an adaptive method to analyze survival data through modifying the so-called check
function.

Competing risks data are common in survival analysis. When the competing causes of fail-
ures are finite, Peng & Fine (2007) proposed a nonparametric quantile inference method for
cause-specific failure probabilities. Peng & Fine (2009) presented a competing risks quantile re-
gression based on the cause-specific cumulative incidence function. Sun et al. (2012) developed
a generalized linear quantile regression for competing risks data when the failure type may be
missing. More related works are referred to Lee & Han (2016), Ahn & Kim (2018), Choi et al.
(2018) and Farcomeni & Geraci (2020), among others. Competing risks models with continuous
causes-of-failure (marks) are useful with many important applications (Sun et al., 2009, 2020).
Our research is motivated by a data set from an HIV vaccine efficacy trial, in which the vaccine
may only provide protection for HIV strains genetically similar to the HIV virus or viruses rep-
resented in the vaccine. The similarity between the infecting virus and the virus contained in
the vaccine construct can be measured by the genetic divergence (or distance). Thus, the genetic
divergence of infecting HIV viruses from the HIV strain represented in the vaccine needs to be
taken into account to properly assess vaccine efficacy.

The mark variable is a measure of the genetic distance between two aligned HIV sequences,
which is defined as the weighted percent mismatch of amino acids between the two HIV se-
quences. Since this distance may be unique for all infected subjects and the genetic diversity of
HIV is extensive, it is natural to consider the mark as a continuous variable. Furthermore, during
the observing period, the volunteers are potentially at risk of HIV infection from more than one
mutually exclusive strains of viruses, and the mark is only observed when HIV infection occurs.
If HIV infection does not occur, then the mark is undefined and is not meaningful. Thus, this
situation can be considered as a competing risks setting, where causes of failure are replaced
by a continuous mark only observed at uncensored failure times, and the mark is considered as
continuous causes of failure (Sun et al., 2009). A preliminary analysis of the data is given in
Fig. 1, which plots the curves of the mark-specific cumulative incidence functions separately
for subjects stratified by treatment, age at the median values and behavioral risk score (Gilbert
et al., 2008). Fig. 1 is quite suggestive of the effects of age and behavioral risk score on the
mark-specific cumulative incidence functions.

When analyzing continuous mark data, the existing methods developed for discrete competing
risks can no longer be applied. First, the mark is from a continuous distribution, and observations
at a specified value of the mark are sparse. This feature of data is very different from that of
discrete competing risks data. In addition, inspecting Fig. 1 reveals that the effects of covariates
on the conditional quantiles of the failure time may vary nonlinearly with the mark. But the
methods of Peng & Fine (2009), Sun et al. (2012), Ahn & Kim (2018), Choi et al. (2018) and
Farcomeni & Geraci (2020) assume that the effects of covariates are constant at each given
quantile level. Therefore, suitable methods are needed to analyze the varying effects of covariates
with the mark. Moreover, although the marginal quantile regression methods such as in Portnoy
(2003) and Peng & Huang (2008) can be used to assess the vaccine efficacy, it may fail to reveal
the important relation between the vaccine efficacy and infecting viruses if the mark is ignored. A
toy example is given at near the end of Section 1.3. The aim of this paper is to develop a quantile
regression methodology for analyzing survival data with continuous marks and assessing the HIV
vaccine efficacy. The proposed method allows the covariate effects to vary nonlinearly with the
mark.
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Fig. 1. The estimated mark-specific cumulative incidence functions for the vaccine trial data. The mark-specific cumulative
incidence function (Gilbert et al., 2008) is defined as F,(t) = limp—o P(T' <t, v <V < v+ h)/h, where T is the time
infected with HIV and V' denotes the mark (i.e., weighted percent mismatch of amino acids).

1.2.  Mark-specific quantile regression model

Let 7" be the failure time of interest and C' be the censoring time. Let V' denote a continuous
mark variable, and Z = (1, Z7) ", where Z is a p-dimensional covariate vector. Assume that e
C' is independent of (7', V') given Z. Further denote X = min(7,C) as the observed time and
A = I(T < C) as the censoring indicator, where I(-) denotes an indictor function. The mark is
observed only when the corresponding failure time is uncensored. If A = 0, then V' is undefined
and is not meaningful. The conditional mark-specific cumulative incidence function is defined as

F,(t|Z)=lim P(T <t, v <V <wv+h|Z)/h. %
h—0

The mark-specific cumulative incidence function is an extension of the cause-specific cumulative
incidence function, where the cause of the failure time is replaced by a continuous mark (Gilbert
et al., 2008). Suppose that F,(t|Z) < 7 for some constant 7 > 0, and the support of the mark
V is taken to be [0, 1], rescaling V' if necessary. For v € [0, 1] and 7 € (0, 7), we define the Tth
conditional mark-specific quantile by %

Qu(7|Z) = inf{t : F,(t|Z) > 7}.

Under the competing risks framework, the mark V' is only meaningfully defined when failure
occurs and it can not be treated as a covariate. The proposed conditional mark-specific quantile
Q.(7|Z) is not the conventional conditional quantile function Q(7|Z, v) obtained by treating V/
as a covariate, where Q(7|Z,v) = inf{t : F(t|Z,v) > 7} and F(t|Z,v) = P(T < t|Z,V =v) 1w
is the conditional distribution of 7" given Z and V' = v. The conditional distribution function
F(t|Z,v), and therefore Q(7|Z, v), is not identifiable under the competing risks setting.

The conditional mark-specific cumulative incidence function is an extension of the cause-
specific cumulative incidence function in a competing risks setting, where the cause of the fail-
ure time is replaced by a continuous mark only observed at the failure time (Gilbert et al., 2008). 105
Thus, the conditional mark-specific quantile function is an extension of the cause-specific quan-
tile function in a competing risks setting for continuous cause of failure, and is defined analo-
gously to that for the competing risks data with finitely many competing risks (Peng & Fine,
2009). The conditional mark-specific quantile function @, (7|Z) can be interpreted as the earli-
est time given covariate Z at which the proportion of subjects whose failures have occurred with 110
mark V' = v exceeds 7. For the HIV vaccine efficacy trials, ), (7|Z) can be interpreted as the
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first time given covariate Z at which the proportion of volunteers who have infected HIV with
mark V = v exceeds 7.

Because Fy,(t|Z) = F(t|Z,v) fy(v|Z), where fi(v]|Z) is the conditional density function of
V given Z, it follows that Q,(7|Z) = Q(7*(Z,v)|Z,v) with 7*(Z,v) = 7/ fi(v|Z), and the
range of 7 is not necessarily bounded by 1. This is different from the competing risks quantile
regression of Peng & Fine (2009) for discrete mark in which case fy (v|Z) is the conditional
probability mass function and 7 = 7%(Z, v) fy (v|Z) is bounded by 1 due to 0 < 7*(Z,v) < 1.In
what follows, we consider 7 < 7 = min,, , max; F,({|Z = z) (see Section 2.3 for more details
about the choice of the upper quantile).

We propose a novel mark-specified quantile regression model to capture the nonlinear inter-
action effects between the covariates and the mark on the failure. Specifically, for v € [0, 1] and
7 € (0, 7), the model postulate that

Qu(7Z) = exp{Z B (v)}, (1)

where 3% (v) = (55, (v), 81, (v), ... ,B;T(v))T is a (p + 1)-dimensional vector of unknown con-
tinuous functions of v and 7, and characterizes the varying effects of Z on the conditional mark-
specific quantile of the failure time with respect to V. By setting the first component of Z as 1,
model (1) has a nonparametric baseline function exp{/3;_ (v)}. Model (1) has a similar form of
the varying-coefficient quantile regression model (Kim, 2007) in the absence of censored data:

Q(r]Z,v) = exp{Z" B;(v)}.

However, since Q,(7|2) = Q(7*(Z,v)|Z,v), 7*(Z,v) = 7/ fv(v|Z) depends on fy(v|Z) and
(Z,v), and fy(v|Z) is not identifiable under the competing risks setting, the method of Kim
(2007) can not be directly applied to estimate B:*( Z) (v) or 5%(v) for model (1). In this paper,
we develop an induced smoothing procedure (Brown & Wang, 2007) to estimate 5%(v) under
model (1), which can be fast implemented using widely available numerical methods, such as
the Newton-Raphson algorithm.

1.3.  Quantile-type vaccine efficacy
The proposed model has applications in sieve analysis of vaccine efficacies. To evaluate the
HIV vaccine efficacy, write the covariate as Z = (1, 71, Z; )T7 where 7 is the treatment (vac-
cine) group indicator and Z5 is a vector of other covariates. We define the mark-specific quantile-
type vaccine efficacy as

—1.

. QU(T‘LZI == 1,Z2)
QVE-(v) = O L. 2 = 0. )

The function QVE, (v) characterizes the nonlinear dependence on v of the ratio of the conditional
mark-specific quantile of the failure time at level 7 under vaccine assignment (Z; = 1) compared
to under placebo assignment (Z; = 0). A positive value of QVE,(v) indicates the effectiveness
of the vaccine that it takes longer time to reach same percentage (7) of the mark-specific infec-
tions/diseases for the vaccine group as opposed to the placebo group. The larger the value of
QVE, (v) the more effective the vaccine is. It is close to zero if and only if the conditional mark-
specific quantiles of the failure time have no clear differences between the vaccine and placebo
groups. Here we focus on the log-linear model for Q,(7|Z). This is because under model (1),
QVE, (v) = exp{f} (v)} — 1 is free of Z; but depends on the mark value v, which simplifies
the inference procedure for QVE. (v).

The mark-specified quantile regression model (1) complements the modeling approaches
based on the mark-specific hazard functions (Sun et al., 2009; Han et al., 2017; Sun et al.,
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2020) by allowing covariate effects varying over 7. It also complements the marginal quan-
tile regression models (Portnoy, 2003; Peng & Huang, 2008) by providing additional insights
on how the relation between the quantile and covariates changes with the mark. To illus-
trate the difference from the marginal quantile regression model, we consider a toy exam-
ple. Let B (v) = 7(y0 +v)? and Bf (v) = 791{2(70 + v) + 71}. Assume that V is from
U(0,1), and log(T) from U(0, (V + 40 +v1Z1)?) given V and Z;, where U(0,c) denotes
a uniform distribution on (0,c¢) (¢ > 0). Thus, the marginal quantile of 7 given Z; is
Q(7)Z1) = exp{ry0(1 +70) + 771 (1 + 270 + 71)Z1 }, where Q(7|Z) = inf{t : F'(t|Z) > 7}
and F(t|Z) = P(T <t|Z). If y1 = —(2v + 1), then QVE, = Q(7|Z1 = 1)/Q(7|Z1 = 0) —
1 = 0. But QVE,(v) = exp{771[2(70 + v) + 71|} — 1, which is not zero if 7; # 0. That is, the
important vaccine effects can be missed without the consideration of the mark under this case.

We also consider a cumulative version of QVE.(v), which is defined as CQVE,(v) =
f; QVE, (u)du with 0 < a < 1. The quantity can be used to assess the vaccine efficacy over
a range of marks for v € [a,b] C (0,1) and quantile levels 7 € [1p, T7]. We construct simulta-
neous confidence bands for CQVE,(v), and propose test statistics to evaluate the mark-specific
vaccine efficacy based on the estimator of CQVE,(v) for v € [a,b] C (0, 1).

2. ESTIMATION PROCEDURES
2.1.  Induced smoothing estimators

Suppose that we observe n independent and identically distributed copies of (X, A, AV, Z),
denoted by (X;, A;, A;Vi, Z;) (i = 1,...,n). In what follows, assume 7; are continuous random
variables. Let N;(t,v) = I(X; < t,A; = 1,V; <) be the marked point counting process with
a jump at an uncensored failure time X; and the associated mark V;. Define G(¢|Z;) = P(C; >
t|Z;) as the survival function of the censoring time. Since C; is independent of (7;, V;) given Z;,
it can be checked that

1 Lot 1
(82 llblg%) QhE{/o /o G(S\Zi)lau vl < h)NZ(dS’d“)‘ZZ}

which suggests that we can borrow strength from data in a neighborhood of a mark. For each
v € (0,1), we propose the following mark-specific localized estimating equation to estimate

B1(v):
Un{B:(v)} =0,

n

1 1 L 1 -
— ) - < 7. _ . —
0n(©) = 302 [ || Gz test < 27 1w — vyt aw ] ,
L is the follow-up time satisfying P(X; > L) > 0, Kj(x) = K(xz/h)/h, K(x) is a kernel func-
tion with support on (—1, 1) and h is a bandwidth.

Since U, (£) is only monotone but not continuous, an exact zero-crossing of U, (£) may not
exist. To be more specific, Fig. S1 in the Supplementary Material presents U, {3, (v)} as a func-
tion of 37 (v) with 7 = 0.2 and v = 0.5 for model M3 studied in Section 4, that is, 3 _(v) and
B5(v) are assumed to be known. The sample size is 1500 and the bandwidth is 0.2. It can be
seen that U, { 8- (v)} is very jagged and may flat at 0.43 (the value of 5;.(0.5)), which results in
numerical challenges in computing the solution of U, (), particularly with multiple covariates.
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In addition, since U, (&) is nondifferentiable, the variance estimation of the resulting estimators
can be very difficult.

To address these issues, we next propose an induced smoothing method to approximate U, ()
using continuously differentiable functions (Brown & Wang, 2007). Specifically, let ' (v) be a
given (p + 1) x (p + 1) matrix such that |- (v)|| p = O(1), where || D||r denotes the Frobenius
norm of any matrix D. Similarly to Brown & Wang (2007), a smoothed version of U, {((v)} can
be constructed by S, {f;(v)} = Ew[Un{B-(v) + (nh)~Y/?I'(v)W}], where W is a random
vector from N (0, I,11) independent of (X;, A;, A;V;, Z;), and I,, 1 denotes the identity matrix
of size p + 1. A direct calculation shows that

1 ,L 1 ZZTBT(U) — logt B 4 S
/0 /0 G(t|Zi)(I){ (nh) =172, }Kh(u v)N;(dt, du) ,

where ®(z) denotes the cumulative function of the standard normal distribution and ~; =
ZI T (0T (v) " Z;.

In practice, the survival function G(¢|Z) is usually unknown, but can be estimated from the
observed data. For instance, if the censoring is dictated by administrative decisions or appears
to be independent of the covariates, we can use the Kaplan-Meier estimator for the censoring
distribution. When the censoring depends on the covariates, we can estimate G (t|Z) by specify-
ing a semiparametric regression model for the censoring time, such as the Cox model. Here for
notational simplicity, we just consider that the censoring is independent of the covariates, and the
estimation procedures are similar for the case when the censoring depends on the covariates. Let
G(t) be the survival function of the censoring time, and we focus on the Kaplan-Meier estimator
of G(t), denoted by G(t). In addition, in the numerical studies below, we take T'; (v) = I, for
computational convenience.

Let S, (b) denote the estimating equation by replacing G(t|Z;) with G(t) in S,,(b). We can
show (as in the proof of Theorem 1 below) that S, {8, (v)} is generally close to U, {3, (v)}.
This fact can also be confirmed in the aforementioned Fig. S1, where S,,{,(v)} approximates
Un{pB-(v)} well and has a unique solution. In what follows, we propose to estimate 5%(v) by the
solution to S, {3, (v)} = 0, denoted by 3, (v).

SulBr )} = - 37
=1

2.2.  Asymptotic properties

We establish the uniform consistency and asymptotic normality of 3, (v) for (v,7) € B =
[a,b] x [0, 7], where 0 < a <b < 1and 0 < 79 < 7y < 7. We assume the following condi-
tions.

Condition 1. P(X > L) > 0, and Z is bounded almost surely.
Condition 2. Each component of 5% (v) is Lipschitz continuous with respect to (v, 7) € B.

Condition 3. The conditional density function f(¢,v|z) of (T,V) given Z = z is twice
continuously differentiable with respect to ¢ and v, and is bounded uniformly in (¢,v,z2) €
[0, L] x [a,b] x C, where C denotes the support of Z. In addition, the conditional density
function g(v|z,t) of V given (Z,T) = (z,t) is bounded away from 0 and oo uniformly in
(t,v,2) €[0,L] x [a,b] x C.

Condition 4. inf ,, ;e Amin (Ar(v)) > 0, where Ayin(-) denotes the minimum eigenvalue of
a matrix, and

Ar(v) = E[ZZ" exp(ZT B (v)) f(exp(Z 57 (v)), 0| Z)].
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Condition 5. The kernel function K (z) is symmetric with support [—1, 1], and has bounded
variation satisfying [ K (u)du = 1.

Condition 6. The bandwidth satisfies nh? — oo and nh® — 0.

Conditions 1-4 are standard assumptions for quantile regression methods in the context of
survival analysis, which are analogous to those in Peng & Huang (2008) and Qian & Peng (2010).
Conditions 2 and 3 are needed for the uniform consistency and the asymptotic normality of
B3+ (v). Condition 4 is the assumption to ensure the identifiability of 5*(v). Conditions 5 and 6 are
standard assumption for kernel smoothing techniques. The uniform consistency and asymptotic
normality of BT(U) are given in the following two theorems.

THEOREM 1. Suppose that Conditions 1-6 hold. Then ||3,(v) — 8 (v)| = op(1) uniformly in
(v,7) € B.

THEOREM 2. Suppose that Conditions 1-6 hold. Then (nh)Y/2{3,(v) — B*(v)} converges in
distribution to a zero-mean normal random vector with covariance matrix Q2 (v) for (v, T) € B,

where Qr(v) = A (v) "' D(v, 7)Ar (v) 7,
D(v,7) =wE[2Z H{logT < Z" B;(v)}G(T) ' 9(v] 2, T)],
and vy = [ K (u)*du.

In order to estimate §2-(v), we need to estimate A(v) and D~ (v, 7). First, by checking the
proofs of Theorems 1 and 2, we can consistently estimate A.(v) by

A n A ZTB (U)—logt
Rk / / WAty Ky (u —v)N;(dt, du),
v ; o Jo G(t)v { (nh)—1/2+; } n( )G ( )

where ¢(z) is the density function of the standard normal distribution. In addition, we can con-
sistently estimate D(v, ) by

D(Uv T) = n_lh Z ﬁi(vv T)ﬁi(vv T)T7
=1

where
1 /L X .
ni(v,7) = Z; [/ / I{logt < Z' B, (v)} Kp,(u — v)G(t) LNy (dt, du) — 7.
0o Jo

Thus, - (v) can be consistently estimated by €2, (v), where
Q,(v) = A-(v) " D(v, 7)Ar(v) 7. 2)

Remark 1. Theorem 2 implies that the covariance matrix of BT(U) is not affected asymptoti-
cally by G(t). One intuitive explanation is that G(¢) is irrelevant to the mark in estimating 3, (v),
and the former converges at a faster rate. Similar results have also been obtained by Zhang et al.
(2022) for quantile regression models, where the inference on the parameters of interest is not
affected asymptotically by the estimation of nuisance parameters.

Remark 2. As suggested in Brown & Wang (2007), we can also apply an iterative procedure to
solve S, {B-(v)} = 0, which can simultaneously estimate 5*(v) and the asymptotic covariance

matrix. Specifically, define ﬁgk) (v) as the estimate of 5 (v) at the kth iteration.
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Step 0. Choose an initial estimate 5" (v) by using the solution to S,{A,(v)} =0 with
I'7(v) =I,41, and let k = 0.
Step 1. Update T'-(v) = [ng) (v)]"/2, where ng)(v) is obtained by replacing 3, (v) with
") () in 0, (v) defined by (2)
Step 2. Obtain 8% (v) by solving S, {8 (v)} = 0 with T, (v) = [Q(k)( )}1/2.
Step 3. Set k = k + 1. Repeat Steps 1 and 2 until convergence of both BT ( ) and W (v) is

achieved to a specified tolerance.
However, this procedure is very time-consuming for estimating 3 (v) with respect to v and 7.

Remark 3. Our proposed method can be extended to other link functions for @, (7|Z). A more
general approach is to generalize model (1) to

Qu(712) = H{Z" p;(v)},

where H () > 0is a known monotone link function (Sun et al., 2012; Peng & Fine, 2009). Under
this setting, the estimating equation takes the form

S R

Let A3 (v) = B[ZZTH(ZTB;(v)) f(H(ZT B;(v)), ] Z)], and

D*(v,7) = wE[ZZ"I{H N(T) < Z"B:(v)}G(T)'q(v|Z,T)],

where H (z) denotes the first derivative of H (z). Then Theorems 1 and 2 still hold by replacing
A (v) and D(v, 7) with A%(v) and D*(v, 7), respectively.

Let B(v f BE(u)du denote the cumulative regression coefficient, which can be esti-
matedbyB =/ By (u)du. DeﬁnewT(s u) E[ZI(s <T < exp{ZTB(u)})g(u|Z,T)],
y()—P(th),andMC() f Y (s)dAY (s), where NC(t) = [(X <t,A =0),

Y(t) =I(X >1t),and AC(t) is the cumulatlve hazards function of the censoring time. The fol-
lowing theorem establishes the weak convergence of B, (v).

THEOREM 3. Suppose that Conditions 1-6 hold. Then n'/?{B,(v) — B*(v)} converges
weakly on la,b] X [t0, 7] to a (p+ 1)-dimensional Gaussian process with mean zero
and covariance matrix V(vy, vy, 71, 72) = E{p1(v1, 71)01(v2, 72) T + 02 (v1, 1) p2(v2, 72) T}
at (v1,11) and (va, T2), where

7) :[/v /LAT(u)_ll{logtg ZTﬁji(u)} dt d“ / Ar( ldu]Z
(v,7) / / A1)~ (5, u)y (s)—ldMC(s)du,

and o1 (v, T) and p2(v, T) are independent to each other.

The covariance function W(vy, v, 71, 72) can be consistently estimated by

n

Z {82711‘(7)177'1)@1@‘(0277'2)T + poi(v1, 1) Pai(v2, ) T |,
i1

U (vy,v9,71,T9) =

S|
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where
L o Nidbdw) T
&1i(v, T) [/ / A( ) I {logt < Z; BT(u)}C;(t)—T/a A (u) du]Zz,
putv,r) = [ [ Ao ) ),
- I(s <t < exp{ZT B (0) ) K (u — v) Vil 40
ng/ /0 2t <1 < {2 50D K- o) MG |
Y(s)=n"t30" I(X; >s), ME(s) = I[(X; < s, - I3 u)dAC (u) and A(s) is

the Nelson-Aalen estimator of A“ (s).

2.3.  Tuning parameters selection

We provide some practical guidance on how to select the tuning parameters, including the
bandwidth parameter used in induced smoothing, the range of quantile levels and the range of V.
Bandwidth selection is often a critical part of nonparametric regression. Here we use an M -fold
cross-validation method to choose the bandwidth parameter (Tian et al., 2005). Specifically, we
randomly divide the data into M roughly equal-sized groups. Let Dj, denote the kth subgroup
of data, and Bﬁ"“) (v) be an estimate of 5*(v) using the data from all subgroups other than Dj,.
Under model (1), we have

B [ [T 1] [ et 2T =

Thus, the kth prediction error can be given by

PE;(h Z/ / [/ / I{logS<ZTfT O WY N (ds, du) — v * dvdr.

1€ Dy,

The optimal bandwidth can be obtained by

M
hopt = arg min Z PE(h)

k=1
In practice, however, the cross-validation method may be time-consuming. Alternatively, we
could choose the bandwidth h = wadyn,, 1/4 by using the rule of thumb bandwidth, where 6y is
the estimated standard error of the observed marks, ng is the number of observed failure times,
and w > 0 is a prespecified constant (Sun et al., 2009; Han et al., 2017). Simulation results
presented in Section 4 show that the bandwidth /. leads to smaller estimated standard deviation
in estimation and higher power for the tests.

For the range of quantile levels, the lower and upper quantiles, 79 and 77, are required
to satisfy the conditions that there is no censoring below the mgth quantile, and 7y <
min, , max; F,(t|Z = z). In practice, 79 can be chosen to be close to 0 if censoring oc-
curs at early stages (He et al., 2022). The upper quantile 7;; can be chosen such that 7y <
min,, , max; F,(t|Z = z), where F,(t|Z = z) is an estimate of F,(t|Z = z). For a discrete co-
variate Z or a stratified version based on Z, F,(t|Z = z) can be estimated by

E,(t)1Z = 2) Z/ / Kp(u —v)Ny(ds, du).
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By plotting the mark-specific cumulative incidence function estimates stratified on covariates as
in Fig. 1, for example, we can choose 7 such that all estimated curves exceed it in the right tails.
For the range of V, as discussed in Sun et al. (2009), we assume that the mark variable V' has
a known and bounded support, and that without loss of generality, this support is taken to be
[0, 1], rescaling V' if necessary (Sun et al., 2009). In practice, the range of V' can be taken to be
(Vmina Vmax) and [a7 b] - (Vmim Vmax)a where Viyin = mini:éizl Vi and Vipax = maxi.s,=1 Vi.

3. INFERENCE FOR VACCINE EFFICACY

The confidence bands for the regression coefficients and the mark-specific quantile-type vac-
cine efficacy are provided in the Supplementary Material. Here we consider to test the mark-
specific quantile-type vaccine efficacy. If the vaccine has no efficacy, then the vaccine will
provide no protection against any infecting strain of virus. As a result, the 7th mark-specific
quantiles should have no significant difference between the vaccine and placebo groups for all
v € [a,b] and T € [19, Ty]. That is, QVE,(v) = 0 for all (v, 7) € B. Thus, it is interested in test-
ing the efficacy over a range of v and 7 to assess the overall clinical/public health benefit of the
vaccine. The first set of hypotheses is

Hyp : QVE-(v) =0 forall (v,7) € B
versus Hyp : QVE,(v) # 0 for some (v,7) € B

or His : for each given 7, QVE,(v) > 0 with strict inequality for at least some v.

To test Hyg, we consider the following statistics:

b
Ti1 = sup /n{mT(v)}2/§OT(v)dv and

TE€[T0,7U]
Tia(r) = n'/2CQVE, (b) /&3 (b),

where (o, (v) = n~! Y27, 92, (7, v) with
Doi(1,v) = —/ exp{Bir(u)}e] Ar(u)~! [¢1i(v,7) + Pai(v, 7)) du 3)

and e; = (0,1,0,... ,0)T € RPT!. The test statistic 773 captures general departures H;1, while
T12(7) is sensitive to the alternative Hj2, which is likely to be positive when Hio holds. The
statistics 711 and 772 are close to zero when QVE.(v) = 0, and hence we shall reject Hyq if 711 >
c11(a) and Ti2(7) > c12(a), where ¢11 () and ¢12(«v) are the critical values. By some arguments
similar to Section 2.2, we have that under Hyo, n'/ QWT(’L)) is asymptotically equivalent to
nTl/23yn Doi(1,v), where Jo; (7, v) is defined in (3). Thus, ¢12(c) can be taken as the upper
a-quantile z,, of the standard normal distribution. To obtain the critical value c;1 («), we consider
a resampling technique (Lin et al., 1993). Let

b ” . 2 .
T = sup / {n_l/QZVViﬁOi(ij)} /Cor(v)dv,
e i=1

T€[70,70]

where W; (i = 1,...,n) are independent standard normal variables and are independent of the
observed data. According to the arguments of Lin et al. (1993), the null distribution of 77; can
be approximated by the conditional distribution of 7;% given the observed data, which can be
obtained by repeatedly generating the normal random sample W; (i = 1,...,n) while fixing
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the observed data. Thus, the critical values c11(«) can be taken as the (1 — «)-percentile of the
conditional distributions of 7.

When the null Hij is rejected, one may wish to test whether the quantile-type vaccine efficacy
varies with respect to v and 7. In addition, if the vaccine is effective, then the vaccine will
afford protection against the infecting strain of virus, and the vaccine efficacy will decrease as v
increases (Sun et al., 2009). This leads to QVE. (v) decreasing with v for each given 7. Thus, we
consider the following set of hypotheses:

Hy : QVE.(v) =1 forall (v,7) € B
versus Hyp : QVE,(v) # v for some (v,7) € B
or Hyy : for each given 7, QVE,(v) decreases as v increases,
where ¢ is some unspecified constant.

Let a1 and 7 be two specified constants such that a < a1 < band 79 < 75 < 7. To test Hop,
we propose the following test statistics:

CCQVE,(v) CCQVE,, 12,
Tor(1,v) = n1/2{ - }
(7] e B
and
b —
_ L 1/2 CQVE,(v)  CQVE-(b) ) 212
Too(T) =n /al{ g —_ /Czr (v)dv,
. CCQVE f CQVE, (v)ds, élv(v) =n"t Sy 19%2-(7',1)) and CAQT(U) =
n~ty 29%2-(7'). Here, 2912(7', v) and ’192i(7) are defined as
. T Doi(s,v)ds U 90 (s, b)ds
V(T v) = S Voi(5v) _ Jzy Poi(s,0) 7
(v—a)(t—7) (b—a)(tu —70)
and
b (4 5
Voi(T) = / {1901(7,1)) _ Yo, b) }dv.
al v—a b —a
We further define

To1 = sup sup |T21(7,v)|.

v€lar,b] TE[T U]

When QVE.(v) is a constant function, 72; and 7a2(7) are likely to be zero. The statistic
To1 captures general departure Hoqp, while T22(7) is sensitive to monotone alternative Hoo,
which is likely to be positive when Has holds. Hence, we will reject Hoq if T21 > co1(cr) and
To2(T) > caa(ar), where c21(r) and coo(cv) are the critical values. Under Hog, T22(7) is asymp-
totically standard normal, and c92(cr) can be taken as the upper a-quantile z, of the standard
normal distribution. The critical value c2; () can be obtained through the following resampling
technique. Let

To;= sup sup |n 1/22W1912 (T, U)/Cl/z( )|-

v€la,b] TE[T U] i—1
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Then the null distribution of 73; can be approximated by the conditional distribution of 7}
given the observed data, and the critical value c2; () can be taken as the (1 — «)-percentile of
the conditional distribution of 7.

4. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate the finite sample performance of
the proposed method. We first generate Z* = (Z7, Z3) from a multivariate normal distribution
with mean 0, variance 1 and correlation 0.5. Then let Z; = I(Z;{ > 0) and Zo = ®(Z3). Under
these settings, Z, follows a Bernoulli distribution with success probability 0.5, Z, follows a
uniform distribution U (0, 1), and Z, is related to Zo. The conditional density of V equals 1 if
le = 0 and is 2v otherwise, where p is a constant given below. The failure time 7' satisfies
P(T < t|V,Z) = ®(logt — (V)" Z), where y(v) = (71(v),72(v))". Let Z = (1, Z7) T with
Z = (Z 1 ZQ)T. Under the preceding settings, the underlying quantile regression model takes the
form

log{Qu(7]2)} = ®~1(7) + [71 (v) + M{qu (%) _ qu(r)H 71 + 72(v) Zs.

Here, we set 1 (v) = 11 + 120 and Yo (v) = 0.5(1 + v?2). In the study, four models are consid-
ered:

(Ml) : (Ha’Yll)rle) — (05 05 0)7 (Mz) : (M,’Ylla’YlQ) — (Oa 0470)7
M3) = (1,711, 712) = (1,0.43,0); M4) = (p, 711, 72) = (1,0.9, —-0.6).

Model (M1) is considered for the null hypothesis H1g of no vaccine efficacy, and models (M2)-
(M4) are considered for the alternative hypotheses Hi; and His. The departure from Hig in-
creases as the model moves from (M2) to (M4). Model (M2) is also considered for the null
hypothesis Hag of constant vaccine efficacy, while (M3)-(M4) are considered for the alternatives
Hy1 and Hos. The departure from Hyg increases as the model moves from (M3) to (M4). The
censoring time C is generated from an exponential distribution with mean ¢, where c is chosen
to give censoring rate of about 40% under models (M1)-(M4).

Set [a, b] = [0.3,0.8] and [0, 7] = [0.1,0.4]. For the calculations of CQVE,(v) and the tests
studied in Section 3, we take the grid of 50 evenly spaced points in [a,b] and [y, 7¢/]. In the
test statistics 721 and T22(7), the parameters a; and 7 are taken as 0.35 and 0.15, respectively.
The kernel function is set to be the Epanechnikov kernel function, that is, K (z) = 0.75(1 —
22)I(]z| < 1). The bandwidth A is chosen using 5-fold cross-validation method, and the optimal
bandwidth is denoted by hp. For a sensitivity analysis, we also consider 2=0.15 or 0.2 by using
the rule of thumb bandwidth. The critical values are calculated using the resampling method
with 1000 simulated realizations. The results presented below are based on 1000 replications
with sample sizes n = 1000 and 1500.

Tabs. 1 and S1-S3 in the Supplementary Material report the empirical biases (Bias), the empir-
ical standard deviations (SD), the average of the estimated standard deviations (ESD) of Q/\ﬁif(v)
and WT(U), and the coverage probabilities (CP) of the pointwise 95% confidence bands for
QVE,(v) and CQVE,(v). The results suggest that the proposed estimators perform reasonably
well. Specifically, the proposed estimators are nearly unbiased, the estimated standard deviations
agree well with the empirical standard deviations, and the coverage probabilities of the pointwise
95% confidence bands are close to the nominal level. The performance of the proposed estima-
tors becomes better when the sample size increases from 1000 to 1500. In addition, the optimal
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bandwidth hp leads to smaller estimated standard deviations for CQVE, (v) and QVE,(v) than
h =0.15and 0.2.

Figs. S2-S5 in the Supplementary Material further display the estimated curves of QVE.,(v)
and CQVE,(v) with the pointwise and simultaneous confidence bands under models M1-M4 for
hope and m = 1000. It can be seen that the estimated curves are close to their true curves and
the confidence bands cover the entire true curves. The results for other settings are similar to
those in Figs. S2-S5. In addition, Figs. S6-S9 in the Supplementary Material also display the
estimated curves of 5] (v) and 5_(v) with the pointwise confidence intervals under models
M1-M4 for hop and n = 1000. The results suggest that the estimators Bh. (v) and BQT(v) are
nearly unbiased, and the confidence intervals also cover the entire true curves.

To investigate the performance of the test procedures, we also provide the empirical sizes and
powers of the test statistics 711, T12(7), T21 and Ta2(7) at the significance level of 0.05. The
results are reported in Tab. 2. We see that the empirical sizes of all tests are close to the nominal
level 5%, and all tests have reasonable powers to detect deviations from the null hypothesis.
The powers of all tests increase as the simulation model moves from (M2) to (M4). In addition,
the tests with the optimal bandwidth achieve higher powers than those with & = 0.15 and 0.2.
Furthermore, we observe that the ESD of mT(v) with A = 0.2 is smaller than that with h =
0.15, which suggests that the empirical powers of the tests increase as the bandwidth varies
from 0.15 to 0.2. This is because that a larger bandwidth usually leads to a smaller ESD of
mT(v), but the biases retain approximately the same, resulting in increased power for the
larger bandwidth. Such phenomenon was also observed by Sun et al. (2009) under the mark-
specific proportional hazards model, which may be associated with the convergence rate of the
normalized CQVE, (v) to a Gaussian process.

5. REAL DATA ANALYSIS

For illustration purposes, we applied the proposed method to a dataset from the first HIV
vaccine efficacy trial. The trial was carried out in North America and The Netherlands, and 5403
HIV-negative volunteers at risk were enrolled for acquiring HIV infection (Flynn et al., 2005).
Volunteers were randomly assigned to receive either a recombinant glycoprotein 120 vaccine
(AIDSVAX) or placebo in a 2:1 ratio, and were monitored for HIV infection at semi-annual HIV
testing visits for 36 months. The vaccine may only provide protection for HIV strains genetically
similar to the HIV virus or viruses represented in the vaccine. The similarity between the infecting
virus and the virus contained in the vaccine construct was measured by the genetic distance,
which was defined as the percent mismatch of amino acids between two aligned HIV sequences.
Since the HIV-gp120 region contained neutralizing epitopes that potentially induced anti-HIV
antibody responses that prevented HIV infection (Wyatt et al., 1998), we defined the mark V' as
the percent mismatch of amino acids in the whole gp120 region (581 amino acids long), where
all possible mismatches of particular pairs of amino acids (e.g., A versus C) were weighted by the
estimated probability of interchange (Nickle et al., 2005). During the trial, 368 individuals were
infected with HIV, but 32 individuals had missing marks. Since our proposed method cannot be
directly applied to handle missing data, we removed the 32 individuals with missing mark, and
focused on the analysis of the remaining 336 samples, as in Sun et al. (2009) and Han et al.
(2017). Each of the remaining 336 samples (217 vaccine and 119 placebo) had a unique mark,
and the mark V' ranged from 0.059 to 0.261.

Following Sun et al. (2009) and Han et al. (2017), we considered three covariates: treatment
indictor (Z1, taking value 1 if the volunteer was in the vaccine group and 0 otherwise), age
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at the enrollment (Zs, ranging 18-62 years with median of 36), and behavioral risk score (Z3,
taking values 0-7) as defined in Flynn et al. (2005). According to the preliminary analysis as in
Fig. 1, we assumed that the data can be described by model (1) on |79, 7¢7] = [0.05,0.15] and
[a,b] = [0.1,0.2]. We used the Epanechnikov kernel, and the grid points were taken the same as
those in the simulation studies. We used the 5-fold cross-validation method to select the optimal
bandwidth, and the optimal bandwidth /1oy = 0.04 as shown in Fig. S10 of the Supplementary
Material.

The estimated curves for 57 (v), 85, (v) and 5 (v) with 7 = 0.05,0.1 and 0.15 and their
pointwise confidence bands are given in Figs. S11-S13 of the Supplementary Material. We found
that age and behavior risk score had significant effects on the risk of infection, but the vaccine
did not seem to be significantly related to the risk of HIV infection. For examples, age had a
significant negative effect for the mark larger than 0.14 at 7 = 0.05, but was nonsignificant over
the whole mark interval for 7 = 0.1 and 0.15. Behavior risk score had a negative decreasing
effects over the whole mark interval at 7 = 0.05, while it showed a negative inverted U-shaped
pattern for 7 = 0.1 and 0.15. For comparison, we also analyzed the data with the method of Peng
& Huang (2008) that does not consider the mark, and the comparison results are given in Figure
S14 of the Supplementary Material. It can be seen that the curves estimated by Peng and Huang’s
method were very different from ours. In particular, Peng and Huang’s method showed that the
covariate effects did not change with the quantiles (for example, the estimated values for 5. (v)
were between 0.01991462 and 0.01991494), while our method indicated that the covariate effects
were varying with the quantiles.

The test statistic 711 for Hyg versus Hy; yielded a p-value of 0.193. The p-value of 712(7) was
larger than 0.798 for testing H1o against H12. These results suggested that the vaccine had no
significant efficacy against HIV; see Fig. 2 for the plots of QVE, (v) and CQVE, (v). In addition,
we conducted the tests to evaluate whether the vaccine efficacy varied with the mark. The p-value
for testing Hoq versus Hop was 0.728 for 731, while the p-value for testing against Hy; was larger
than 0.793 for 722(7). This indicated that the vaccine efficacy had no varying tendency on the
considered mark interval. These results were consistent with those obtained by Han et al. (2017).

ACKNOWLEDGEMENT

The authors thank the Editor, Professor Paul Fearnhead, an Associate Editor and two reviewers
for their constructive and insightful comments and suggestions that greatly improve the article.
The authors gratefully acknowledge Global Solutions for Infectious Diseases (GSID), Dr. Faruk
Sinangil and Dr. Peter Gilbert for providing data from the phase 3 HIV vaccine trial VAX004.
Liangiang Qu’s research was partly supported by the National Natural Science Foundation of
China (No. 12001219). Liuquan Sun’s research was partly supported by the National Natural
Science Foundation of China (No. 12171463). Yanqing Sun’s research was partly supported
by the NIAID NIH award number R37AI054165 and the National Science Foundation grant
DMS1915829.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Theorems 1-
3, confidence bands for vaccine efficacy, a discussion on multivariate continuous marks, and
additional simulation and application results.



Quantile regression model 15

REFERENCES

AHN, K. W. & K1M, S. (2018). Variable selection with group structure in competing risks quantile regression. Statist.
Med., 37, 1577-1586.

BROWN, B. M. & WANG, Y.-G. (2007). Induced smoothing for rank regression with censored survival times. Statist.
Med., 26, 828-836.

CHoOL, S., KANG, S. & HUANG, X. (2018). Smoothed quantile regression analysis of competing risks. Biom. J. 60,
934-946.

DE BACKER, M., EL GHOUCH, A. & VAN KEILEGOM, I. (2019). An adapted loss function for censored quantile
regression. J. Amer. Statist. Assoc. 114, 1126-1137.

FARCOMENI, A. & GERACI, M. (2020). Multistate quantile regression models. Statist. Med. 39, 45-56.

FLYNN, N. M., FORTHAL, D. N., HARRO, C. D., JUDSON, F. N., MAYER, K. H., PARA, M. F. & THE RGP120
HIV VACCINE STUDY GROUP (2005). Placebocontrolled phase 3 trial of a recombinant glycoprotein 120 vaccine
to prevent HIV-1 infection. J. Infect. Dis. 191, 654—665.

GILBERT, P. B., MCKEAGUE, 1. W. & SUN, Y. (2008). The 2-sample problem for failure rates depending on a
continuous mark: an application to vaccine efficacy. Biostatistics 9, 263-276.

HAN, D., SuNn, L., SuUN, Y. & Q1, L. (2017). Mark-specific additive hazards regression with continuous marks.
Lifetime Data Anal. 23, 467-494.

HE, X., PAN X., TAN, K. M. & ZHOU, W.-X. (2022). Scalable estimation and inference for censored quantile
regression process. Ann. Statist. 50, 2899-2924.

KM, M.-0. (2007). Quantile regression with varying coefficients. Ann. Statist. 35, 92—-108.

KOENKER, R. & BASSETT, G. (1978). Regression quantiles. Econometrica 46, 33-50.

LEE, M. & HAN, J. (2016). Covariate-adjusted quantile inference with competing risks. Comput. Stat. Data Anal.
101, 57-63.

LIN, D. Y., WEL L. J., & YING, Z. (1993). Checking the Cox model with cumulative sums of martingale-based
residuals. Biometrika 80, 557-572.

NICKLE, D. C., HEATH, L., JENSEN, M. A., GILBERT, P. B., KOSAKOVSKY POND, S. L. K. & MULLINS, J. I.
(2005). Amino acid substitution matrices for HIV-1 subtype B. Technical report, Univ. Washington.

PENG, L., & FINE, J. P. (2007). Nonparametric quantile inference with competing risks. Biometrika 94, 735-744.

PENG, L., & FINE, J. P. (2009). Competing risks quantile regression. J. Amer. Statist. Assoc. 104, 1440-1453.

PENG, L., & HUANG, Y. (2008). Survival analysis based on quantile regression models. J. Amer: Statist. Assoc. 103,
637-649.

PORTNOY, S. (2003). Censored regression quantiles. J. Amer: Statist. Assoc. 98, 1001-1012.

POWELL, J. (1984). Least absolute deviations estimation for the censored regression model. J. Econometrics 25,
303-325.

POWELL, J. (1986). Censored regression quantiles. J. Econometrics 32, 143-155.

QIAN, J. & PENG, L. (2010). Censored quantile regression with partially functional effects. Biometrika 97, 839—-850.

SUN, Y., GILBERT, P. B. & MCKEAGUE, I. W. (2009). Proportional hazards models with continuous marks. Ann.
Statist. 37, 394-426.

SUN, Y., L1, M. & GILBERT, P. B. (2013). Mark-specific proportional hazards model with multivariate continuous
marks and its application to HIV vaccine efficacy trials. Biostatistics 14, 60-74.

SUN, Y., QL L., HENG, F. & GILBERT, P. B. (2020). A hybrid approach for the stratified mark-specific proportional
hazards models with missing covariates and missing marks, with applications to dengue vaccine efficacy trials. J.
R. Stat. Soc. Ser. C 69, 791-814.

SUN, Y., WANG, H. & GILBERT, P. B. (2012). Quantile regression for competing risks data with missing cause of
failure. Statist. Sinica 22, 703-728.

TIAN, L., ZUCKER, D & WEI, L. J. (2005). On the Cox model with time-varying regression coefficients. J. Amer.
Statist. Assoc. 100, 172-183.

WYATT, R., KWONG, P. D., DESJARDINS, E., SWEET, R. W., ROBINSON, J., HENDRICKSON, W. A. & So-
DROSKI, J. G. (1998). The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705-711.
ZHANG, Y., WANG, H. J. & ZHU, Z. (2022). Single-index thresholding in quantile regression. J. Amer. Statist.

Assoc. 117, 2222-2237.

505

510

515

520

525

530

535

540

545

550

555



16

0.1

0.3

L. Qu, L. SUN AND Y. SUN

Table 1. Simulation results for QVE,(v) and CQVE, (v) under model M1

0.6

0.8

0.6

0.8

h
0.15

0.2
Topt
0.15
0.2
Topt
0.15
0.2
Topt
0.15
0.2

hopl

n
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500
1000
1500

QVE (v)

Bias
0.031
0.020
0.021
0.003
0.014
0.004
0.015
0.019
0.012
0.012
0.016
0.018
0.022
0.014
0.012
0.014
0.007
0.001
0.005
0.021
0.002
0.014
0.002
0.008

ESD
0.274
0.220
0.231
0.185
0.198
0.175
0.270
0.220
0.236
0.189
0.212
0.175
0.238
0.194
0.200
0.165
0.171
0.149
0.238
0.199
0.202
0.166
0.177
0.154

SD
0.259
0.213
0.218
0.176
0.188
0.153
0.249
0.211
0.212
0.178
0.195
0.165
0.235
0.185
0.198
0.154
0.167
0.140
0.240
0.188
0.198
0.162
0.176
0.146

CP
0.926
0.932
0.930
0.925
0.932
0.952
0.937
0.930
0.934
0.916
0.922
0.926
0.938
0.930
0.935
0.941
0.942
0.946
0.927
0.939
0.935
0.948
0.924
0.956

Bias
0.007
0.006
0.006
0.002
0.004
0.003
0.012
0.010
0.009
0.004
0.006
0.005
0.005
0.004
0.004
0.004
0.003
0.001
0.008
0.007
0.005
0.006
0.003
0.002

CQUVE, (v)
ESD
0.062
0.051
0.058
0.047
0.053
0.046
0.085
0.069
0.081
0.066
0.077
0.065
0.055
0.044
0.051
0.042
0.047
0.039
0.073
0.060
0.069
0.057
0.066
0.055

SD
0.058
0.049
0.055
0.046
0.051
0.042
0.079
0.067
0.076
0.063
0.073
0.058
0.051
0.045
0.048
0.041
0.043
0.037
0.069
0.059
0.066
0.055
0.063
0.051

CP
0.942
0.935
0.939
0.932
0.938
0.946
0.958
0.946
0.958
0.942
0.952
0.954
0.945
0.938
0.952
0.951
0.962
0.942
0.959
0.940
0.958
0.948
0.950
0.962
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Table 2. Empirical sizes and powers of the tests Ti1, Ti2(7), T21 and Ta2(T) at the nominal
level 0.05. The reported values are in percentages.

M1 0.15 1000 8.0 2.7 2.7 34 39 43 34 32
1500 7.6 4.0 32 3.6 4.2 3.7 35 35
0.2 1000 8.3 3.0 2.7 33 4.4 4.1 4.0 33
1500 7.4 35 4.2 42 5.1 5.2 3.7 3.6
hopr 1000 7.0 3.8 2.6 34 5.8 3.6 4.0 3.6
1500 7.2 22 3.4 2.2 3.8 4.2 4.6 5.0
M2 0.15 1000 532 73.1 82.0 82.2 3.1 5.6 44 4.1
1500 76.1 89.4 94.5 95.1 2.9 4.4 5.5 54
02 1000 61.7 74.0 84.8 85.9 29 4.4 42 4.9
1500 86.1 90.9 96.6 96.9 4.7 6.0 5.7 5.1
hope 1000 73.6 76.4 85.8 90.0 3.0 52 44 5.0
1500 88.4 92.4 97.6 97.0 3.6 5.4 6.4 6.0
M3 0.15 1000 75.1 74.3 824 82.1 13.4 26.9 41.2 47.8
1500 95.1 90.6 95.4 96.5 31.5 39.2 57.1 68.0
0.2 1000 89.0 71.6 89.9 91.5 31.9 32.6 55.0 65.4
1500  99.1 92.2 97.9 98.4 57.1 46.6 72.5 82.9
hope 1000 96.2 82.6 91.4 94.0 53.0 422 67.2 71.8
1500 994 95.0 99.2 98.5 69.2 56.8 80.2 88.6
M4 0.15 1000 98.1 94.0 98.7 97.1 31.5 49.8 69.0 72.6
1500 100 98.5 100 99.9 61.7 68.3 85.6 91.0
0.2 1000 99.6 95.6 99.1 98.7 57.1 58.6 78.8 84.9
1500 100 98.7 99.9 99.9 82.8 79.7 93.1 97.1
hope 1000 99.8 96.8 99.3 99.8 69.2 73.5 90.3 94.7
1500 100 99.2 100 100 91.0 85.4 96.2 98.6
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Fig. 2. Vaccine trial data analysis: The estimated curves of QVE, (v) and CQVE, (v) with 7 = 0.05,0.1 and 0.15. The sold
lines are the estimated functions, the dashed lines are the pointwise 95% confidence intervals, and the dash-dotted lines are
the simultaneous 95% confidence bands.



