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Abstract: In the context of the full line Schrodinger equation, we revisit the binary
Darboux transformation (double commutation method) which inserts or removes any
number of positive eigenvalues embedded into the absolutely continuous spectrum with-
out altering the rest of scattering data. We then show that embedded eigenvalues produce
an additional explicit term in the KdV solution. This term looks similar to multi-soliton
solution and describes waves traveling in the direction opposite to solitons. It also re-
sembles the known formula for (singular) multi-positon solutions but remains bounded,
which answers in the affirmative Matveev’s question about existence of bounded posi-
tons.

1. Introduction

We are concerned with the inverse scattering problem for the full line Schrodinger
operator L, = —8,% + g (x) in the presence of embedded eigenvalues (i.e. positive
eigenvalues in the continuous spectrum) and understanding how such eigenvalues affect
solutions to the initial value problem for the Korteweg-de Vries (KdV) equation

8,u—6u8xu+8fu:O,—oo<x<oo,tzO, (1.1

u(x,0)=gqx). '
Ifg(x)=0 (le_z_g) as x — =oo (short-range) then the classical inverse scattering
transform (IST) yields essentially all the information about the solution one could ask
for. However, if ¢ (x) = O (le_z) then the classical IST is no longer well-defined in
general as the standard scattering data no longer define the potential uniquely [1]. Note
thatifg (x) = O (|x | _2_8) at +oo but quite arbitrary at —oo then a “right sided” IST still
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works! allowing to study KdV solutions with such initial data (see our recent [ 19] and the
literature cited therein). As it was shown by Naboko [26] slower than g (x) = O (|x |~ l)
may produce dense singular spectrum filling (0, oo) leaving any hope that a suitable
IST can include such a situation. The main concern of our note is to develop the IST for
those cases of Wigner-von Neumann type of initial data

g (x) = (A/x)sin2w0x + O (x—2) . x| = oo, (1.2)

that produce only finitely many embedded bound states (and no other positive singular
spectrum). It is important that Wigner-von Neumann potentials are in L2 and due to the
seminal Bourgain’s result [3] (1.1) remains well-posed.

In our recent work [28] we use L? well-posedness to treat a specific case of Wigner-
von Neumann type of initial data that gives a hint for how IST may be extended shading
some light on Vladimir Matveev’s proposal [8]: "A very interesting unsolved problem
is to study the large time behavior of the solutions to the KAV equation corresponding to
the smooth initial data like cx ! sin 2kx, ¢ € R", "The related inverse scattering problem
is not yet solved and the study of the related large times evolution is a very challenging
problem".

We recall that Wigner-von Neumann potentials were introduced as examples of quan-
tum mechanical potentials that produce embedded eigenvalues (i.e. embedded into con-
tinuous spectrum). In the present paper, we concentrate on understanding the general
effect of embedded eigenvalues on inverse scattering problem and KdV solutions. We
show that to restore well-posedness of IST the classical scattering data need to be sup-
plemented with embedded bound state data which are similar to that of negative bound
states but come from a different type of singularity, embedded real poles of Jost solu-
tions (also known as resonances or spectral singularities). The main new feature is an
(explicit) extra term in the KdV solution that accounts for embedded eigenvalues and
resembles the well-known multisoliton solution [23] (see also [29]). In the literature (see
e.g. [25]) such solutions are commonly referred to as posifon (since they correspond to
positive eigenvalues) but only singular (double pole) positons are currently known. In
fact, Matveev has repeatedly asked [25] if bounded (non-singular) positons exist. We
offer an explicit construction of such solutions which should yield precise description of
how positons interact with each other, as well as with solitons and the background. Our
analysis is based on the binary Darboux transformation (see e.g. [20,24]), also known
as the double commutation method (see e.g. [9,15]), but we rely on the new approach
to it put forward in our recent [29] which is particularly well-suited to the IST setting.
We refer the reader to Sect.3 for more discussions, historical comments, and literature
accounts.

We emphasize that we deal with a new type of coherent KdV structure associated
with initial data that support zero transmission at positive energies.” Such a point gives
rise to a spectral singularity which order determines main features of the KdV solution.
In our recent paper [17] we show that if its order is less than 1/2 then, in fact, there
are no interesting features to report on. In the context of Wigner-von Neumann initial
data (1.2) it is the case when the ratio y := |A| /4w < 1/2. In this paper we consider
order 1 spectral singularities. Such singularities are generated, for example, by (1.2) with
y = 1. (Recall that such singularities are also referred to as resonances.) We are still far
from the complete solution of Matveev’s problem. But we now have a tool to turn an

! Thisisa strong manifestation of the unidirectional nature of KdV.
2 Atsuch points the reflection coefficient is unimodular (full reflection).
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order one singularity into an embedded eigenvalue and show that the new initial profile
does generate a new distinct feature, a (bounded) positon. On the other hand, it is well-
known that an embedded eigenvalue (bound state) is the result of a very complicated
process of coherent reflections causing its instability (see e.g. [5]). For this reason there
is unfortunately no easy (if any) way to tell initially a resonances from an embedded
eigenvalue. However, under the KdV flow, over time, an embedded eigenvalue reveals
itself (as a soliton does). The quantitative analysis of this phenomenon is very nontrivial
and still work in progress.

Through the paper, we make the following notational agreement. The bar denotes
the complex conjugate. Matrices (including rows and columns) are denoted by boldface
letters. For instance, X = (x;,) is the row with entries x,,. Prime stands for the x-derivative
and W (f, g) = fg' — f'g is the Wronskian. We write f (x) ~ g (x), x — xq (finite or
infinite) if f (x) — g (x) — 0, x — xp. The only function space we need is the standard
L? (S) with p = 1,2 with the convention L? := L? (R), L? (£o0) = L? (a, 00)
with any finite a. If f (z) is analytic in some domain D of the complex plane, we call
a boundary point zo an embedded simple pole if z( is a non-isolated singularity and
(z — zo) f (z) tends to a finite limit ¢ # 0 as z — zp non-tangentially. We then denote
¢ = Res,, f. Continuity at a point means continuity in some neighborhood of the point.
Finally, Im f (z9) = (Im f) (z9) and the same agreement of course applies to the real
part Re.

The paper is organized as follows. In Sect. 2 we fix our terminology and introduce our
main ingredients. In Sect.3 we state and prove the theorem on embedding eigenvalues
into continuous spectrum and discuss how it addresses some open problems. In Sect. 4
we give our theorem on paring embedded bound states. In the final Sect.5 we work out
an explicit example illustrating our main results.

2. Our Framework and Main Ingredients

In this section we briefly review the necessary material and introduce our main ingredi-
ents. Let

Ly = =8 +q (x) .1)

denote the full line Schrodinger operator with a real potential g (x). That is, we assume
that I; can be defined as a selfadjoint operator on L%. We agree to retain the same
notation L, for a differential expression defined by (2.1). Occasionally we also consider
half-line versions of L. Through the rest of the paper we assume the following basic
conditions:

Hypothesis 2.1. g is a real locally integrable function on R subject to
(1) the operator Ly is semibounded below;
(2) the equation Lyu = k*u has a solution  (x, k) subject for a.e. Imk = 0 to

W (x, k) ~ eyl (x, k) ~ ke, x — +oo. (right Jost solution)  (2.2)

Hypothesis 2.1 covers a large class of step-type potentials, i.e. potentials decaying
(but not necessarily short-range) at +oc but essentially arbitrary at —oo. In our [18,19]
we develop the IST for the KdV equation assuming a short range decay at +00 in place
of condition (2). (See also Sects.2.1 and 2.2.)
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2.1. Weyl solution. Since some of the material of this subsection is not quite mainstream
in the integrable systems community, for the reader’s convenience we go over some basics
of Titchmarsh-Weyl theory. We follow a modern exposition of this theory given in [31,
Chapter 9] adapting it to our setting.

Definition 2.2 (Weyl solution). A real locally integrable potential ¢ (x) is said to be Weyl
limit point at o0 if the Schrodinger equation

Loyu=—u"+q x)u=2xu, xeR, (2.3)

has a unique (up to a multiplicative constant) solution that is in L2 (+00) foreach A € C*.
Solutions W4 (x, A) are called the right/left Weyl solution respectively.

The concept of a Weyl solution is fundamental to the spectral theory of Schrodinger
(Sturm-Liouville) operators in dimension one due to the fact that its uniqueness is equiva-
lent to the selfadjointness of IL,; on L? (a, +00) with a Dirichlet (or any other selfadjoint)
boundary condition at x = a £ 0, a is any finite number.

There is no criterion for the limit point case in terms of g but there are convenient
sufficient conditions which are typically satisfied in realistic situations. For instance, if
q is essentially bounded below,

a+l
sup/ max {—q (x), 0} dx < oo,
aeR Ja

then it is in the limit point case at both £00. Thus, L, with such ¢ is selfadjoint on L.
In fact, if the quadratic form (]Lq L ) > c||f||*> with some finite ¢ for any f from a
dense subset of L? then L, is selfadjoint and its spectrum SpeclL, is bounded below
by c. Hence L, is also in the limit point case at both oc. Thus, the condition 1 of
Hypothesis 2.1 implies that g is limit point at both =co. Also, if ¢ obeys the condition
2 of Hypothesis 2.1 then the right Weyl solution W, (x, 1) can be chosen to satisfy
v, (x, k2) = Y (x, k), where i is the right Jost solution (2.2). Note that W, (x, A) isa
function of energy A whereas v (x, k) is a function of momentum k (A = k?).

In this connection we emphasize that the Weyl solution is a family of solutions
different by a multiple o (1). The logarithmic derivative though

W, (a+0,1)

)\., ==+ )
m (a) = £ T

L e CH, (2.4)
is clearly independent of the choice of W, and is known as the right/left Tirchmarsh-Weyl
m-function (or just m-function for short).

It should be quite apparent that without loss of generality we can discuss only the
right half-line case. Unless otherwise stated for the rest of the subsection we conveniently
abbreviate

U=wv, m@Q) =my(r,0).

The function m (1) is analytic mapping C* to C* (a Herglotz function) and hence
admits the Herglotz representation

1 s
m()»):c+/]R(s_)L— 1+S2>d,u(s), c eR,
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< o0. It is a fundamental fact

. .. . du (s)
with some positive measure p subject to >
rR1+s

of Titchmarsh-Weyl theory that  coincides with the spectral measure of L2, the

Schrodinger operator on L? (R,) with a Dirichlet boundary condition u (+0) = 0. Note
that E is an eigenvalue of ]LqD iff m (E +ie) has a pole type singularity as ¢ — +0.

The m-function m introduced by (3) is also known as Dirichlet or principal. However
we will also need the Neumann m-function m defined by

mo (k) = =W (0,2) /W (0,2) = —1/m(%). (2.5)
It is a Heglotz function and its representing measure is the spectral measure of .Y, the
Schrodinger operator on L? (R,) with a Neumann boundary condition u’ (+0) = 0. If
we normalize W to satisfy

W x,A)=c(x,A)+mog(A)s (x,A), (2.6)
where ¢ (x, 1), s (x, A) are solutions of L,u = Au on R, satisfying
c(0,2)=1,¢(0,1) =0;5s0,1) =0,5"(0,1) =1,

then (see e.g. [31, Lemma 9.14]) for A € C*

/()Oo|\ll(x,k)|2dx = W 2.7)

We now have all ingredients to prove the following important statement.

Lemma 2.3. Let 1L, be selfadjoint on L% and W (x, 1) a right Weyl solution. If E is a
real number such that:

(1) E > inf SpeclLy;

(2) equation ILyu = Eu has a real solution ug (x) square integrable at +00;

(3) limg— 1o ¥ (x, E +1i¢) =: ¥ (x, E +10) exists and finite;

then ug (x) and V (x, E +10) are linearly dependent.

Proof. Condition 1 implies that ufg (x) has at least one zero (the Sturm comparison
theorem). Without loss of generality we assume that it is 0. That is u g (0) = 0. Due to
Condition 2, ur € L? (R,) and hence E is an eigenvalue of ]Lé) on L2 (R,). This means
that the Dirichlet m-function m (E +i¢) has a pole type singularity as ¢ — +0 and
hence, due to (2.5), the Neumann m-function mq (E + i¢) vanishes linearly as ¢ — +0.
Let Wy denote the Weyl solution subject to (2.6). It follows from (2.7) that

Immg (E +ig)

oo
/ Wy (x, E +ig)|>dx =
0 I

Therefore, we must have
o0
/ W (x, E +ig)?dx ~C >0, &— +0. (2.8)
0

But since ¢ (x, A), s (x, 1) are entire functions in A and mg (1) has (nontangentional)
boundary values a.e. on R, it follows from (2.6) that boundary values of ¥ are well-
defined and

Yo (x, E+10) = ¢ (x, E +10) + mg (E +10) 5 (x, E +10)
c(x,E).
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By the Fatou lemma we conclude that
o oo
/ Wy (x, E +1i0)|* dx =/ lc (x, E)|*dx < C.
0 0

Thus Wy (x, E +i0) € L* (R,). By the well-known (and easily verifiable) Wronskian
identity:

W' (fos fu) = O = 1) fifu (2.9)
where f; denotes a solution to L,u = Au, one has
o0
W (Yo (x, E +ie), ug (x)) =—18/ o (s, E +ie)ug (s)ds. (2.10)
x
By taking in (2.10) ¢ — +0, one immediately concludes from that that
W o (x, E+i0),up (x)) =0

if we show that the integral in (2.10) stays bounded. The latter follows from

00 2
lim / W (s, E+ie)ug (s)ds
e—>+0 | J
o0 o0
< lim W (s,E+is)|2ds./ ug ()% ds
e—>+0 Jy X
oo oo
< lim [Wo (s,E+ie)|2ds-[ ug (s)>ds
e—>+0 Jo 0
< OQ.

It remains to notice that, as Weyl solutions, W and Wy differ by a multiple « (A). That
is, ¥ (x, A) = a (A) Yo (x, A) for any x and hence

a(A)=w(@0,1) /¥ 0,1) =¥ (0,1),

as by (2.6) Wy (0, A) = 1. Since, by Condition 3, ¥ (x, E +10) is well-defined, so is
o (E +10). Thus

WV (x, E+10),ug (x)) = (E+i0) W (W (x, E +10) , ug (x)) =0,

which concludes the proof. O

In what follows E is a priori embedded into continuous spectrum and hence Condition
1 will be satisfied.
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2.2. Reflection coefficient [18]. From now on, we assume Hypothesis 2.1 which lets us
take the right Jost solution ¥ (x, k) defined by (2.2) as the right Weyl solution W, (x, k2)
suitable for us. Namely, we set

Wy (4, 2) = i (6 k) = ¥ (3, K).

We choose the left Weyl solution W_ (x, k?), denote it by ¢ (x, k), to satisfy

o, k) =Y, k)+ R(k)Y(x, k), (basic scattering relation) 2.11)

for a.e. real k with some R (k) called the (right) reflection coefficient. Equation (2.11) is
explained below. Thus

W_ (x, k2> =@ (x,k)

where ¢ is subject to (2.11).
Note that condition (2) of Hypothesis 2.1 assumes some decay at +oo and implies
two important facts:

(1) As it immediately follows from (2.2),
W (x, k), ¥ (x, k) = 2ik (2.12)

and hence the pair {1, 1/} forms a fundamental set for (2.3). This means that (2.11)
is nothing but an elementary fact saying that any solution is a linear combination of
fundamental solutions.

(2) It follows form (2.11) that

W(p (x,k), ¥ (x,k))

RO = o w . v o 0)

(2.13)

is well-defined for a.e. real k and R (—k) = R (k), |R (k)| < 1.

2.3. Diagonal Green’s function [31]. If g € L' (+00) then the Jost solution exists for
any k # 0. Slower decay may give rise to real singularities of ¥ (x, k). The adequate
object to deal with such singularities is the diagonal Green’s function of IL,; defined as

(2.14)

g<k2 )C): w+(ka)w*(xsk) :_(p(x,k)llf(x,k)
’ W (s (x, k), - (x. k) 2ik ’
the last equation being due to (2.12). The importance of g is due to

(1) it is analytic in k> from C* to C*;
(2) its poles (necessarily real), both isolated and embedded, are eigenvalues of L ;
(3) the potential g (x) can be found from

g (—Kz,x) ~1—gqg(x) /2/(2, K — +00. (2.15)
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2.4. Norming constants. Recall that if (2.3) also has a left Jost solution v (x, k) (i.e.,
subject to ¥_ (x, k) ~ e ) then ¢ (x, k) = T (k) ¥_ (x, k) where T (k) is called the
transmission coefficient. It follows from (2.11) that T (k) =2 ik/W (Y —, ¥) meanlng
that 7' (k) is meromorphic in C* with simple poles (if any) {ix,,} , x, > 0, and k? /cn
are the isolated poles of g (kz, ), i.e. negative bound states of I;. Since R (k) in general
is only defined on the real line, one needs to include pole information in the set of
scattering data. It can be done via the relation

Resy—ic, ¢ (x, k) = iciw (x,1ky) , (isolated pole condition ) (2.16)

2 , must be

where positive c , called the (right) norming constant of bound state —«;,
specified.

As was discussed, slower decay of g at +0co0 may give rise to resonances (also known
as spectral singularities), i.e. real points +w, where ¥ (x, k), the other factor in (2.14),
shows a blow up behavior. To the best of own knowledge only Wigner-von Neumann
resonances are relatively well-understood [21]. In general i (x, k) may blow up to any

order. We however restrict our attention to the case ¢ (x, k) = O ((k — a),,)’l), k — wy,
i.e. w, is an embedded simple pole.> Since g (kz, x) may only have a simple embedded

pole, ¢ (x, w,) is then well-defined. If ¢ (x, w,) # O then a),% is an embedded bound
state. As we show in [28], the reflection coefficient R (k) alone can not tell if a resonance
is a bound state or not. Therefore an extra condition is required. Using (2.16) as a pattern
to follow, we set

'2
R(n)

with some a2 > 0 which we call the norming constant of embedded bound state w?.
The reason for putting an extra R (w,,) will be clear later. We shall see that (2.17) indeed
works.

Resi—w, ¥ (x, k) =

¢ (x, w,) (embedded pole condition ) 2.17)

2.5. Gauge transformation. This is our last (but not least) ingredient.

Lemma 2.4. (on gauge transformation) If ¢ (x, k) and  (x, k) are related by (2.11)
then so are

FO,k) =00, k) + Y an (X)W (@, k), fu (x, k)

~ ! 2.18)
V(e k) = (e k) + ) an ()W ( (x, k), fo (x, K)) (

for any real a,, (x) and f, (x, k) real for real k.

The proof is by a direct consequence of the bi-linearity of the Wronskian and com-
pletely trivial. We will apply this lemma with a very specific choice of f;, (x, k). The name
gauge’ (but not the transformation) is taken from the recent [2] where such transfor-
mations are crucially used in the context of matrix Riemann-Hilbert problem associated
with the focusing NLS. We however learned about them from the recent [16] where it
is used in a way similar to [2] but in the mKdV setting. Note that the form (2.18) is very
different from those of [2,16].

3 The case of arbitrary order singularities is technically more difficult and is still work in progress.
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3. Inserting Embedded Eigenvalues

In this section we state, prove, and discuss the following

Theorem 3.1 (turning resonances into embedded eigenvalues). Assume Hypothesis 2.1
and suppose that

1. (Resonance condition) for a)ﬁ >0,1<n <N <oo Lju= a)gu has a unique (up
to a scalar multiple) L* (—oo) solution;

2. (Continuity condition) the (right) Jost solution  (x, k) and the (right) reflection
R (k) coefficient are continuous at each k = w,,. Let

A= (o) =(aror...ay)

be a row-vector of arbitrary real nonzero numbers (norming constants) and*

O (W) i= @ (1), ¢ () i=2Re[R@)y xw)]. G

Then

e ¢, (x) € L? (—o0) (hence ® (x) € L? (—00)) and therefore
e the (square) matrix Gy (x) given by

G:(x):=A [ / ' @ (s)" ®(s) ds:| AT (the Gram matrix) (3.2)

—00

is well-defined and (clearly) positive semi-definite;
e the potential

g+n (x) = g (x) — 297 logdet (1 + G4 (x)) , (3.3)

supports embedded bound states (eigenvalues) at w,% (1 <n < N);

e the associated (orthogonal in L? ) eigenfunctions (y, (x)) can be (uniquely) found
from the linear system

YIA+Gy(x) = —-AT®(x),y = (). (3.4)

Before proceeding with the proof, note that the class of potentials satisfying the
conditions of Theorem 3.1 is quite large. Indeed, as was discussed above, Hypothesis
2.1 requires only mild decay at +oo and general behavior at —oco. Condition 1 is readily
satisfied if on the left half line g (x) behaves as a sum of N Wigner-von Neumann type
potentials (1.2) with all y’s greater than 1/2. This is a classical fact known since at
least the earlier 50s (see, e.g. [9]). Condition 2 is a bit more subtle. In Sect.5 we give
specific examples with y = 1 that produce analyticity (not just continuity) in condition
2. These examples and some considerations of [21] suggest a broad class of (long-range)
potentials that guarantees condition 2 (work in progress).

4 Where the root is chosen with a cut along (—o0, 0)
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Proof. We start with constructing a suitable pair ¢ (x, k) , ¥ (x, k) of Weyl solutions
for the original potential g at Froo respectively. The candidate for ¥ (x, k) is obvious,
the right Jost solution. As in Sect. 2.2 we define the Weyl solution at —oo by (2.11). It
follows from (2.13) and (2.4) that for any x

m_ (kz, x) +my (kz, x)
m_ (kz, x) +my (kz, x) '

IR (k)| =

Using the same arguments as in the proof of Lemma 2.3, from condition 1 we conclude
that for each k2 = a),% there is a point x = a, such that m_ (kz, an) has an embedded
simple pole at a)ﬁ This immediately implies that |R (w,)| = 1. In other words, a plane

wave coming from —oo with energy a),2z is completely reflected from ¢. Due to condition
2, it follows from (2.11) that

R (@) (x, 0n) = R (00)' 29 (x. @) + R (00)'* ¥ (x, @)
=2Re R (w,)"* ¥ (x, ),
where the root is chosen with the argument in (—m, 7 ]. Since R (a)n)_l/2 o(x,k)isa

Weyl solution that has a finite boundary value at w,, by Lemma 2.3, from condition 1
we conclude that

$n (X) = R (0)""? (x, @) = 2Re R (@) "/ ¥ (x, y) (3.5)
is a real L% (—oo) solution of Lyju = a),zlu and the first bullet item is proven. Since
¥ (x, wy) ~ '@t at +00, (3.5) also yields

¢n (x) ~ 2cos (w,,x + % arg R (a)n)> , X — +00. (3.6)

We are ready now to present our candidates for a new pair ¢4y (x, k), ¥4y (x, k)
which is a suitable gauge transformation of ¢ (x, k), ¥ (x, k). Taking in (2.18)

an (X) = apyn (x), fu(x, k) = k(fn_()ZZ

with some real (y,) to be determined, we have

N
w k), b
ViN (x,k)z(p(x,k”zamym x) (¢ (x, k), 9 (x))’

> o (3.7)
al W k), b
ow () = ¥ (6, )+ 3y (1) Y 5; _)wf ) (38)

m=1

Consider ¢, y first. Since ¢, ¢, € L? (—o0) (¢ is a Weyl solution at —oo), it follows
from (2.9) that

W(‘p(xak)a¢n(x)) Z/X

k? — w? o

¢ (s, k)¢, (s)ds, Imk > 0. 3.9)
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By Lemma 2.3 and (3.5) for any m, n one has

W (g (x, k), ¢n (x))
k? — 2

= R (w)"/? / Gn (5) b (5) ds.

k=wy

Thus ¢,y is continuous at each w, and it follows from (3.7) that

N X
QN (x, @) = R ()" {% @)+ Y tmym (¥) / b (5) dm (5) ds} . (3.10)

m=1

Turn to ¥4 now. One can see that it has an embedded simple pole at each w;,. Let us
compute its residue. Since ¥ is Jost at +00, it follows from (2.11) that

W@ (x, k), @ (x, k) = W (x, k), ¥ (x, k) = —2ik (.11)
and therefore by (3.5)
W (¥ (X, 0n)  hn (X)) = R (@) 2 W (¥ (x, 00) . @ (x, 0p)) = —2i0, R ().
Thus, from (3.8) one obtains

W (x, wn) , P (X))

2wy,
172y, (x). (3.12)

Resi—q, Yan (x, k) = apy, (x)
= —iou R (w,)~

We choose now (y,) to satisfy our embedded pole condition (2.17):

i 2

10
Resk—w, Yun (x, k) = R (a’)' e (x, wn) . (3.13)
n

Substituting (4.2) and (4.1) in (3.13) we have

—ioy R (a)n)_l/2 Yn

N X
R (o)'? (¢n (X)+ ) cmYm / b (5) b (s)ds).

m=1

io?
R (wn)

R (w,) drops out® and we immediately arrive at the linear system

N X
30+ Ym0 [ 6) @ 0) ds =~y (1) G4

m=1

in y,,. In matrix form this system coincides with (3.4) which is nonsingular. Indeed,

G, (x) = (/ (@mbm (5)) (@np (5)) ds) = (am [/ D (5) G () ds] an)

:AI:/X <I>(s)T<I>(s)ds]AT =/x [Q(S)AT]T[<1>(S)AT] ds.

—00 —00

5 This was the reason for putting it in (2.17).
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Therefore, I+ G (x) is positive definite and the system (3.14) has a unique solution (y,)
for any real o, and x. Its main feature is that y, € L? (R). Indeed, since ¢, € L? (—o0)
we conclude ||G4 (x)|| = o (1), x — —o0, and y, (X) ~ —anp, (x) € L% (—00).
To show that y, € L2 (+00) we observe first that (3.6) implies that for each entry of
G, (x) we have g, (x) = O (x), gun (x) = O (1), m # n, as x — +oo. Therefore,
@+ G (x)7' =0 (x7!),as x — +00, and s0 y, (x) = O (1/x) € L* (+00).

Show now that g,y (x,k) € L?(—00), Yun (x,k) € L?*(+o00) for Imk > 0.
Substituting (3.9) into (3.7) yields

N X
PN (X, K) =@ (6, k) + Yy (x)/ ¢ (5, k) pn (5) ds.

n=1

Since ¢ (x, k) is (as a left Weyl solution) in L2 (—00) for Imk > 0, and (as is already
proven) y, € L?, and ¢, € L? (—00), one concludes that ¢,y (x, k) € L? (—o0) for
Imk > 0.

Turn to Y4y (x, k). Since ¥ (x, k) is Jost at +oo and due to (3.6), one has
WO (x,k),¢pp(x)) = O(), x - +00, Imk > 0. Therefore, (3.8) and (3.7) im-

ply
Vv (x, k) =¥ (x, k) + O (1/x) ,Imk > 0, x — +00, (3.15)

which proves that ¥, n (x, k) behaves like a Jost solution at +oo and hence ¥4y (x, k) €
L? (+00) for Imk > 0. By Lemma 2.4

PN (x, k) = Yy (x, k) + R (k) Yy (x, k)
holds for a.e. Im & = 0, which together with (3.15) yields

W(pen (x, k) Yan (x, k) = W(Wn (x, k), Yan (x, k)
= lim Wy (x, k), Yy (v, k) = 2ik. (3.16)

Assume for the time being that ¢,y (x, k), ¥4y (x, k) also solve the Schrodinger
equation with some potential g, (x). Thus, we have constructed an ansatz ¢.x (x, k) ,
Yen (x, k) with desirable properties: ¢,y (x, k) is a left Weyl solution and i (x, k) is a
right Weyl solution (i.e. for Imk > 0 ¢4y (x, k) € L? (—00), YN (x, k) € L2 (4+00))
and therefore (see e.g. [31])

2y (kz x) _ N (R Yy (k)
AT W (gsn (x, k), Yan (x, k)
N (6 K) Yy (x, )

- o (by (3.16)).

is the diagonal Green’s function associated with g,y (x). Since by the construction
Y4n (x, k) has an embedded simple pole at each k2 = a),zl (but ¢4 does not identically
vanish there) we conclude that g (kz, x) also has embedded simple poles at k* = a),%
and thus all w,% are embedded eigenvalues of g,y (x) which is, in turn, can be computed
from (2.15). There is a simpler alternative way to compute g,y (x) based on

[o0]

W (x, k) o ek* <1 ~ 57 q (s)ds), k — oo, Imk > 0. (3.17)
1 X
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Since

W (Y, ¢n) ~ e (¢, — ikgn), k — oo,

we have: as k — 00

T Yy =) (k) ~ =Yy () 8 (¥) s
1 1
~ = e (6) (@ () = —y (1) p (1)
ik - ik

1
=790 A+G, N te)T,

where y := (y,), ¢ := (on¢,). But by Jacobi’s formula on differentiation of determi-

nants, we have (suppressing x)

adj I+ Gy) o

det I+ Gy)

(adJ (I + G+))mn _ (adJ (I + G+))mn /

- Z Tdet(di Gy PP = 2 et (I+G,) omn
adj I+G4) | _ (det I+Gy))

detM+Gy) | detd+Gy)

= (logdet I+ Gy))',

$A+G) "¢ =¢

=1r {(I + G+)/

(where as before g, stands for the (m, n) entry of G;) and thus

e (Yn — ¥) (x, k) ~ —%ax logdet (I+ G (x)) .

By (3.17),

e M (Yun — ) (x, k)N——/ (g+n — q) (s)ds, k — oo,

and hence
gen (¥) — g (x) = =207 log det (I + G, (x))

and (3.3) follows. By a direct verification (routinely performed for Darboux transfor-
mations), functions ¢,n (x, k), ¥4n (x, k) indeed solve the Schrodinger equation with
the potential g4y . (See also the proof of Corollary 3.5).

As we have shown, yn (x) € L? (R) is, due to (4.2), proportional to Resi—,, V+n,
which, in turn, solves —u” + g4y (x) u = a) -u and we conclude that y, (x) is an eigen-
function of L, , . This concludes the proof. |

Following the standard terminology [24], the transformation (¢, ¥) — (¢+n, ¥+N)
constructed in the proof of Theorem 3.1 is directly related, as was mentioned in Intro-
duction, to the binary Darboux transformation (double commutation method). As the
very name (given by Deift [6] in 1978) suggests, the method rests on applying twice a
commutation formula from operator theory. Note that basic formulas which the double
commutation produces had been known to Gelfand and Levitan [10] already in 1951 in
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the context of their ground breaking study of the inverse spectral problem for Sturm-
Liouville operators (although no commutation arguments were used). The full treatment
of the double commutation method is given by Gesztesy et al [11], [12], [13], [14], [15]
in the 19905 (see also the extensive literature cited therein). The double commutation
method was introduced to study the effect of inserting/removing eigenvalues in spectral
gaps on spectral properties of the underlying 1D Schrodinger operators while the binary
Darboux transformation has been primarily a tool to produce explicit solutions. This is
likely a reason why we could not find the literature where the two would be linked.® The
double commutation method can also be applied to inserting/removing bound states into
absolutely continuous spectra. In fact, in the half-line case it was first done (well before
the term was coined) by Gelfand and Levitan [22, Section 6.6] and revisited in [9, Section
4] from the double commutation point of view. The formula derived in [9, Section 4]
for the half-line case coincides with (3.3) for N = 1 but no formula for N > 1 is given.
In [15] it is mentioned that the approach of [15] can yield such a formula in the full
line case but to the best of our knowledge it has not been explicitly done. We emphasize
however that our approach is unrelated to double commutation arguments and instead
stems from the Riemann-Hilbert problem approach to the Darboux transformation put
recently forward in [29]. The latter comes directly from inverse scattering and that is
why it is much more suited for the IST (see Corollary 3.2 below).
Theorem 3.1 has some important corollaries.

Corollary 3.2. Assume that q (x) in Theorem 3.1 is short-range at +oo and has the scat-
teringdata S (q) = {R k), (—/{3, cﬁ)} Then S (g+n) = S (q)U{(a)ﬁ, 01,21) ,1<n< N}
is the scattering data for q.y.

Proof. We only need to show that our binary Dabroux transformation preserves the
discrete spectrum data (—K,%, c,%) To this end it suffices to show that

Resi, s (X, k) = ic2 ¢y (X, iKy) - (3.18)

Indeed, since Res;,, ¢ (x, k) = icﬁl// (x, iky) it immediately follows from (3.7) and (3.8)
that

(Resi, @ (x. k), ¢ (x))

N w
Resic, 94w (X, k) = Resic, @ (¥, k) + Yty (¥) pER—
m

m=1

N
=icy 1P (X, k) + D omym (¥) 2 — ol

m=1 m

.2 .
= lcn 1»0-+]V (-xa lKl’l) .

W (¥ (X, iKn) b (X)) }

O

Rowan Killip asked the author if embedded bound states require norming constants.
Corollary 3.2 answers his question in the affirmative: (a,%) play the role of norming
constants of embedded bound states.

E. g. the book [20] pays much of attention to binary Darboux transformations but double commutation is
not mentioned. The recent [30] briefly mentiones [20] and [15] but without discussing connections.

7 Thatis xq (x) € L! (+00).
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Remark 3.3. In particular, for one embedded eigenvalue w? we have
X
e (¥) = g (x) — 287 log (1 +a? / ¢ (5)* ds) : (3.19)
—00

¢ (s) = 2Re [R (@)"2 (s, a))] .

In this case || y|| = 1. To get to g+n (x) we can break our binary Darboux transformation
into the chain of iterated transformations Yy ,—1) (X, k) — ¥4, (x,k),1 <n < N,
resulting in building g4y (x) by the simple recurrence formula

qin (x) = q+(n—1) (x)
X
— 2% log (1 +4a3/ Re? [ R (@) Yrum1) (5, on) | ds), (3.20)
—00

each step being easy to control.

Remark 3.4. 1t follows from (3.5) and (3.6) that g (x) — g+ (x) is continuous, in
L' (—o0) and O (1/x),x — +o0. Le., as expected g;+n (x) is no longer short-range
at +oo even if g (x) is. More specifically, the discrepancy is

T An
q(x) = qsy (x) ~ Y = sin Qux +8,) , x — +00, (3.21)
X

n=1

with some A, §,. Due to (3.20), it suffices to demonstrate (3.21) for N = 1. It follows
from (3.6) that

T (x) = 1 +4a? /x Re? [R (@)"2y (s, a))] ds

= l+4a2/x $(s)>ds = O (x), x — +00,
which, due to (3.19) and (3.6), impIioeos that
g (x) — g1 (1) =202 log T (x) = 7" () /T () — [7' (0) /7 ()]
= 8% () ' () /7 (1) — [4029 (02 /7 ()]
~ ?sin Qwx +arg R (»)), x — +00,

with some constant A. These elementary arguments do not readily yield the coefficients
in (3.21) though. As in the case of negative bound states (solitons) totally different
arguments are needed to evaluate the coefficients (work in progress).

Corollary 3.5 (bounded positons). Assume the conditions of Corollary 3.2. If q (x,t)
solves KdV with data S (q) then

sy (x.1) = q (x.1) — 207 logdet (I + Gy (x, 1)) , (3.22)
where Gy (x, t) is obtained from (3.2) by replacing ¢, (x) with

b (r,1) = 2Re[ R (@) P2y (x, 1, 0]

solves KdV with data S (q+n). Moreover, embedded bound states (a)ﬁ) are preserved
under the KdV flow.
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Proof. Well-posedness of KdV under conditions of Corollary 3.2 is proven in [19], the
time evolution of the scattering data S (¢g) being the same as in the short-range case. For
this reason, the main part of the proof goes along the same lines with that of Theorem
3.1. In particular, the embedded poles of ¥,y (x, ¢, k) by the very construction remain
w? and hence the time evolved diagonal Green’s function has embedded poles at w?.
One then concludes that embedded bound states (a),%) are indeed preserved under the
KdV flow. The only extra step required is to verify that ¥,y (x, #, k) solves the temporal
part of the Lax pair equation. Such computations are performed in the literature for
Darboux dressing. One can however check it independently. The simplest way to do
it is, as always, to break our binary Darboux transformation into a chain of iterated
transformations (3.20) that, adjusted for the time evolution, reads

G+n (X, 1) = g+(n—1) (x, 1)

X .
—29log <1 +4a3/ Re? [R ()2 0 ) (s, t,a)n)] ds> .

—00
O

In the KdV context, Matveev posed in [25] the following question: “The interest-
ing question whether nonsingular positon solutions exists in the continuous integrable
models remains open as yet.” Corollary 3.5 answers his question in the affirmative (for
one positon it was answer in our recent [28]). Matveev also conjectured that there may
exist bounded positon solutions with a trivial scattering matrix (i.e. R (k) = 0 and
T (k) = 1). Apparently Theorem 3.1 does not allow us to construct such solutions with
a zero reflection coefficient.

Dmitry Pelinovsky asked the author "1) if the embedded eigenvalue disappears in the
time evolution for # > 0 and 2) if there is any impact of the embedded eigenvalues in
the time evolution of KdV, e.g. propagation of an “embedded soliton" in the direction
of linear dispersive waves?” One concludes from Corollary 3.5 that 1) the embedded
eigenvalue does not disappear over time and 2) the effect of “embedded soliton” is
manifested in the second log-derivative term of (3.22) which says that propagation of
the ensemble of positons is determined by 4a),311 + w,x which is indeed in the direction
of linear dispersive waves. Furthermore, we can show that there is a direct analog of
(3.22) for (regular) solitons if we replace G (x, t) with the matrix

00
(Cn1cn68(K%+Kg)[ / W (s, b k) W (s, 85 iKy) dS) .
X

Here, as before, (—K},%) are negative bound states and (cg) are associated norming con-

stants. Thus both formulas are similar in nature and it is reasonable to expect that each
soliton property has its positon counterpart. The main difference between the two is
in-built in the profoundly different behavior of ¥ (x, ¢; ik,,) and ¥ (x, ¢, wy): the former
has finitely many zeros (n to be precise) while the latter has infinitely many zeros for
any n.

Pelinovsky also asked “Does the “embedded solitons” disperse away in the time evo-
lution?”” Addressing this question amounts to understanding the behavior of ¥ (x, ¢, wy)
in the asymptotic regime around the “positon characteristic” x = —12a)ﬁt ast — 0o
(see our [28] for more detail). The main challenge is that |R (w,)| = 1 and the power-
ful nonlinear steepest descend method due to Deift-Zhou needs a serious modification,
which to the best of our knowledge is only available in the case when |R (0)| = 1 but
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less than 1 otherwise [7]. Note that in the NLS context and by totally different from [7]
methods a treatment of the case |R (w)| = 1 was recently offered by Budylin [4]. A
KdV adaptation of his techniques should yield the answer to the question if embedded
solitons (bounded positons) will disperse away or not (i.e. present a KdV breather).

Remark 3.6. Embedded bound states may not be created on a short-range background.
Indeed we must have at least one real point @ 7 0 where |R (w)| = 1.

Remark 3.7. If g also has a Jost solution at —oo for a.e. Im k = 0 then the transmission
coefficient T (k) is well-defined. It can be easily shown that

Tin (k) =T (k).

L.e., our binary Darboux transformation preserve both R and 7. It follows from the
conservation laws then that

o0 o0
/ g+n (x,1)dx =/ q (x,1)dx,
—00 —00

o0 o0
/ gen (x, 1) dx =/ q (x,1)? dx.
—0o0 —00

4. Removing Embedded Bound States

In this section we show that we can as well remove (or rather pare) embedded bound
states.

Theorem 4.1 (paring embedded eigenvalues). Assume Hypothesis 2.1. Let D be the set
of embedded bound states of Ly and Dy = {a),%, 1<n<N< oo} be its subset such that

a)ﬁ are simple and R (k) defined by (2.13) and (k — wy,) ¥ (x, k) are functions continuous
inImk =0 at wy,. If {p,, | <n < NY}isan orthonormal set of real eigenfunction then
the set of embedded eigenvalues of the potential

g-n (¥) = g (x) — 207 logdet (1 — G_ (x))

where G_ is the Gram matrix defined by
X
= (/ Gn (5) dm (5) dS>,
—00

Proof. Our arguments go along the same lines with those in the proof of Theorem 3.1.
Consider

coincides with D\ Dy.

W (‘P (-xv k) ’ ¢}’L (-x))
k? — n 7
W (x, k), pn (X))

2
k? — »?

N
o-N (¥, k) =@ (6, k) + )y ()

n=1

Yoy @ k) =y (x, k)+Zyn( )

n=1
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where ¢, ¥ are some Weyl solutions at o0 and yj, are real functions to be determined.
By the Wronskian identity (2.9) Im k > 0)

N X
N (x, k) :=<p(x,k)+Zyn (x)/ @ (s, k) pn (s)ds, 4.1
n=1 —o
N 00
Von (x, k) =9 (x, k) — Zyn (X)/ Y (s, k) ¢n (s) ds. (4.2)

n=1

As before, ¥ (x, k) is chosen to be a Jost solution at +00 and

@ (x, k) =4 (x, k) + R (k) ¢ (x, k) (4.3)

defines a Weyl solution at —oo for a.e. Imk = 0. Since w? is a bound state of L, we

conclude that the product ¢ (x, k) ¥ (x, k) has an embedded simple pole at w,,. On the
other hand, since ¥ (x, k) also has a embedded simple pole at w,, it follows from (4.3)
and continuity that ¢ (x, k +10) must be well defined at w,, and different from zero. Since
a)% is a simple eigenvalue, by Lemma 2.3 ¢ (x, w, +10) and ¢, are linearly dependent

and thus ¢_y (x, k) is well-defined at w;,.
Turn to ¥ _ . From (4.2) one has

N 00
Resy, Y-n (4, k) i= Y (X) = D vm (X)/ Un () Pn (5) ds,

m=1

where
Y (x) := ReSg=p, ¥ (x, k),

is also an L? eigenfunction associated with w% Since we want ¥_y (x, k) to be regular
at wy,, it follows that

N o0
> v () f Y (5) B (5) ds = Py (x).

m=1
Since a)ﬁ is a simple eigenvalue, v, is proportional to ¢, and we arrive at the linear
system
N o0
Z)’m (X)/ Gm (5) Pn (5) ds = ¢ (x) (4.4)
m=1 x

in (y,). Its matrix

(/ ¢m(S)¢n(S)dS>=I—</ ¢m(S)¢>n(S)dS)

is Gram (in fact, positive definite) and hence the system has a unique solution for any
finite x. Thus we have constructed two solutions ¢_y (x, k), ¥_n (x, k) which are Weyl
at oo respectively and are regular at w, and hence so is the diagonal Green’s function.
Therefore, a),% is no longer an embedded bound state. O

Remark 4.2. As is well-known, embedded bound states are unstable and may turn into
resonances under an arbitrarily small perturbation [5]. Theorem 4.1 offers an explicit
perturbation that purges only targeted embedded bound states.
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5. Explicit Examples

In this section we work out an explicit example that clearly demonstrates how Theorems
3.1 and 4.1 apply shading, at the same time, some light on the nature of the conditions.
We only consider the case of a single resonance w. Without loss of generality, we can
set w = 1. Our example is based on a construction from our [28]. Let

qo (x) = =287 log T (x), (5.1)

where (called the Hirota tau-function)
|x]
T(x)=1+ 2,0/ sin®s ds = 1 + px — (p/2) sin 2x (5.2)
0

with some p > 0, and consider

q(x)={q°éf)’fc§8. (5.3)

One can easily see that g (x) is continuous (but not continuously differentiable) and

4sin2x

q(x)~— X — —00. 5.4

X
Thus, ¢ (x) is not short-range at —oo but in L? and it is certainly subject to Hypothesis
2.1. The main feature of ¢ (x) is that I,; admits explicit spectral and scattering theories.

In particular, for the transmission 7" and right/left reflection R, L coefficients we have
[28]

P (k) —ip

T®O =507 FO= 5o+~

L (k), (5.5)

where P (k) := k> — k. The right Jost solution (recalling our agreement to drop + sing)
is apparently

¥ (x, k) =" x> 0. (5.6)

For the left Jost solution we have [28]

e ik Dx  mitk=Dx\ ) gin ¢
x <0, 5.7

_ a—ikx _
V- k) =e < k+1 k—1 ) T

where 7 (x) is given by (5.2). Apparently, ¥ (x, k) and R (k) are analytic at k = 1 and
hence condition 2 of Theorem 3.1 is satisfied. Since (k — 1) ¥— (x, k) is also a solution,
we immediately conclude from (5.7) that

sin x sin x

T 1+2,0fo‘x| sin?s ds

x <0, (5.8)

is clearly an L? (—0o0) solution and therefore condition 1 of Theorem 3.1 is also satisfied.
Thus, Theorem 3.1 applies to our ¢ (x). We do not need to know ¢ (x) forx > 0yet (will
be explicitly found later) but it is clear already that +1 is not a positive eigenvalue since
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a linear combination of plane waves e*'* is never in L? (+00). Thus +1 is a resonance

of IL;. This should also explain why we call condition 1 in Theorem 3.1 resonance.

Observe that ¢g (0) = 0 and hence +1 is a positive bound state of LqD on L2 (R.)
with a Dirichlet condition at 0.
Let us now apply Theorem 3.1 to our g (x). Equation (3.19) reads

qs1 (¥) = g (x) — 207 log (1 +ao / ) ¢(s>2ds), (5.9)

where ¢ (s) = —Re [R ()72 v (s, 1)]. Note that we chose minus sign for convenience.
Evaluate

¢ (s) = — limRe [R k)2 (s,k)] k> 1, Imk=0.
It follows from (5.6) and (5.5) that for s > 0
6 (s) = —Re (ieis) —sins, s> 0. (5.10)

The case s < 0 needs some work as we do not know v (s, k) on R_ yet. We compute it
from the left basic scattering relation (cf. (2.11))

T (k)Y (s, k) = ¥ (s, k) + L (k) ¥ (s, k), Imk =0.

It follows from (5.5) that L (k) = T (k) — 1 and hence

1 -
Y(s, k) = T [V— (s, k) + (T (k) = 1) — (5, k)]

_ Y (s, k) —¥— (s, k)

- Ip* (S,k)+ T(k)

P k) +i
— (s, k) + % VG — v (5. b))
Thus
Vs k) = Yo (s, 0 + PZ(’;C) Imy_ (s.k), s <0. (5.11)

Observe that it is not clear why (5.11) is regular at k = 1 where P (k) vanishes (but
the general theory says that it is the case). It is an amusing exercise to demonstrate it
directly. Since we only need the real part of it our computation will be easy:

Re [R M2 (s, 1)]

Re R (k)'/?

= lim Re | R (k)2 y_ 20 li
fad! e[ ®y (s’k)]+ P TP ()

Iim Imy— (s, 1). (5.12)
k—1
Evaluate each of these limits separately. We start with the observation that as k — 1

RK) =—1—py~—1-2 k-1,
p p
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and hence along the real line

k—1 k—1
ReR(k)1/2~c0s <z——> = sin , k— 1.
2 p P

We now immediately see that

ReR (k)2 1
fim ReRO7E_ 1 (5.13)
k—1 P (k) P

It follows from (5.7) and (5.8) that for s < O

oy = e b o—ilk+D)s ~ o—itk—D)s o)
o k+1 k—1

and we then have
Imy_(s,1) = —sins — g (2s — sin2s) @g (s) (5.8) and (5.2)

sin s

:—sins—£(2s—sin2s) -
2 1 — ps+(p/2)sin2s

sin s

= — = — s O
T ps+(p/2)sinas G 5=
Thus Im ¥ _ (s, 1) is continuous at k = 1 and
Imy_(s,1) =—¢p(s), s <O, (5.14)

which also implies that for the first limit on the right hand side of (5.12) one must have
lim Re [R 2y G, k)] —0. (5.15)
Substituting (5.13)-(5.15) into (5.12), we arrive at

Re [R D2y (s, 1)] — —go(s), s<0. (5.16)

Combining (5.16) with (5.16) we finally have
sins, s >0"

¢ (s) =—2Re [R(1)1/2¢(s, 1)] 22{900(5), s <0

Thus, ¢ is a solution that square integrable at —oo and proportional to the sine function
on R;. We are now able to find g4 (x) explicitly by (5.9). Indeed, for x < 0

I(x):= /x ¢(s)2ds=4/x @o (s)* ds (5.17)
_/x 4sin’ s ds B 2fx dr(s) 2 1

—oo (1420 fy sinrdr) P e () et

Note that, in particular,

0 2
/ b (s)>ds = =.
—00 P
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Forx >0

I (x)

0 X
/ ¢(s)2ds+4/ sin s ds (5.18)
—00 0

2 T, 2
—1+2p sin“sds ) =—1t(x).
o 0 o

Substituting (5.18) and (5.18) into (5.9) yields

g1 (¥) = g () = 207 log (1+021 (1))

202 (1 0
st (14T 5)

This formula can be simplified nicely if we recall what our seed potential g (x) is. Indeed,
from (5.1)-(5.3) we have forx < 0

g+1 (x) = =207 logT (x) — 20 log | 1 + —1/7 (x)
P
P
— —28%log (1 4T (x))
and for x > 0
gs1 (x) = =207 log (1+1/7 (x))

2 2
—292log (1 + 2 (x)) ,
o

which can be conveniently put in one formula

0 +1
g+ (x) = —28? log (1 + (m) T (x)) , x>0,
Jx|
T(x) = 1+2,0/ sin? sds. (5.19)
0

By Theorem 3.1, the Schrodinger operator with the potential given by (5.19) has an
embedded eigenvalue +1.
There is a point in analyzing (5.19).

e One easily sees that

sin 2x

g+1 (x) ~ —4 , |x] — oo.

Thus, all g+ share same large x asymptotics. Recall, that the seed potential ¢ has
this asymptotic behavior only at —oo and thus ¢ is long-range at +oo as well. This
agrees, of course, with (3.21) with A = —4 and § = 0.

e By Corollary 3.2, the family of potentials given by (5.19) share the same scattering
quantities (5.5) providing yet another example of the failure of the classical inverse
scattering in the long-range setting. Recall, that in the short-range scattering | R (k)| <
1 for k # 0, which is clearly violated in our example as R (1) = —1.
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e The function (5.19) is even if and only if p = 2. In this case,

|x|
qflym x) = —28)% log (1 + p/ sin’ sds) , (5.20)
0

which is the main example of an explicit Wigner-von Neumann type potential studied
in [28] that has an embedded bound state +1. Note that there is no value of « that
produces odd g4 (x).

e Turn now to the eigenfunction of +1. The system (3.4) simplifies to the single

equation
(1 +a2/x ¢)(s)2ds> y=ag¢ (x)

for the eigenfunction y:

ag (x)

L+a2 [* ¢ (s)*ds’ (5:21)

y(x) =

which, as one can easily compute, has L? norm 1. It is worth noticing that as apposed
to the right Jost solution v (x, k) corresponding to the seed potential g (x), by (3.8)
the transformed Jost solution

Va1 (x, k) (5.22)

= elkx 1+(eix — e_ix> a2¢(x) x>0
k+1  k—=1)1+a2[* _¢()?ds| =~ =7

indeed has a simple poles at k = +1, as expected. It follows from (4.2) that®

o = [[Resg=1¥41 ¢, D)l . (5.23)

Recall that for the right norming constant of a negative bound state —« 2 of a generic
potential we have

c= G i)™,

Comparing this with (5.23) suggests a new definition for a right norming constant of
an embedded bound state (at least in the case of a single embedded bound state).
e Let us now briefly discuss how Theorem 4.1, removing embedded bound states,

applies to our example. For simplicity, we consider qﬁm (x) defined by (5.20) that
has an embedded bound state +1. Check the conditions of Theorem 4.1. It follows
from the general theory of Winger-von Neumann type potentials (see e.g. [9]) that
+1 is necessarily simple eigenvalue. Indeed, for k = 1 the Schrodinger equation has
only one decaying solution (the other solution is increasing). It follows from (2.13)
and (5.22) that R (k) and (k — 1) ¥4 (x, k) are both continuous (in fact, analytic) at

k = %1. Therefore, 4.1 applies to our qfi]m (x). Performing computation similar to
given above, one concludes that the transformed potential g_; (x) indeed coincides
with g (x) given by (5.3).

8 Without loss of generality we can always assume that > 0.
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e Finally, we turn to the time evolution g4 (x, ) of g4+ (x) under the KdV flow.
Unfortunately, we no longer have an explicit formula and it is unreasonable to expect
one.” Equation (3.22) in our case reads

gs1 (x, 1) =g (x,1) — 8% log <1+oz2 /x ¢>(s,t)2ds>, (5.24)

¢ (s, 1) =2Im [e4i’¢ (5.1, 1)] .

Since g (x) is supported on R_ and clearly bounded below, the results of our [18, 19,
27] apply and we have

q (x,1) = —02logdet (I +H (x, 1)), (5.25)

where H (x, t) is a trace class singular integral operator (in fact, Hankel) defined on
the Hardy space H? of the upper half plane by

Dyr (s) f(s) ds 2
H (x, t ky=—-| —————, e H",
.0 7 &) /R s+k+i0 4x2 !
where the entire function ®, ; is given by
(.3

R (Z) el(SZ’t+2zx) _110
Qs () 1= / — 4z, R@Q=—m7—F
Im z=b z—3 z(2=1)+ip

Here the line of integration Im z = b is chosen above the (only one) imaginary pole
of R (z). The determinant in (5.25) is infinite for # > 0 and so (5.25) is only explicit
at t = 0, where it returns the initial profile (5.3). The right Jost solution for ¢ (x, )
can then be found by

U (x 1, k) = ek {1 — (I +H . 1) H (x. 1) 1},

where

) d
H(x,t)lz—/ L(S)_s’
R S +k+i0 472

which is well-defined even and in H? (though 1 is not in H?). This step requires an
inversion of the operator 7 + H (x, ¢), which does not come with an explicit formula.
The KdV solution g4 (x, t) is then computed by (5.24). For qflym (x) a different
derivation of (5.24) is obtained by different means in our [28]. The first term in
(5.24), is nothing but the classical Dyson formula. It looks exactly like the one in
the short-range case but of course ¢ (x, 0) = ¢ (x) is not a short range potential at
—oo. Thus ¢q (x, ) comes from data with the missing embedded eigenvalue. On the
other other hand, the second term in (5.24) takes into account the bound state +1. It
resembles the (singular) positon solution

Gpos (X, 1) = =202 1og {1+ x + 12t — (1/2) sin2 (x +41)} . (5.26)

Such solutions seem to have appeared first in the late 70's earlier 80 s but a systematic
approach was developed a decade later by V. Matveev (see his 2002 survey [25]).

9 Recall that for singular positons such a formula does exist [25]
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Equation (5.26) readily yields basic properties of one-positon solutions considered in
[25]. As a function of the spatial variable gpos (x, ) has a double pole real singularity
which oscillates in the 1/2 neighborhood of the moving point x = —12¢ — 1, and for
afixedt >0

in2 (x + 4t
dpos (6, 1) ~ —4SMZCHAD e (5.27)
X

Observe that
Gpos (x,0) = —28)% log (1 +x — (1/2) sin 2x)

coincides on R, with our

g™ (x) = =202 log (1 + (p/2) x — — (p/4) sin 2x) ,

for p = 2. But, of course, qflym (x) is bounded on R_ while gpos (x, 0) is not. Note
also that the positon is somewhat similar to the soliton given by

gsol (x. 1) = —202 log cosh (x — 41) (5.28)

but its double pole singularity moves in the opposite direction (i.e. to —oo) three times
as fast. We note that multi-positon as well as soliton-positon solutions have been
studied in great detail (see [25] the references cited therein). We can also construct
an explicit example of bounded multi-positon solutions to demonstrate Theorem 3.1
for any N. We hope to do this elsewhere.
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