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ABSTRACT

The cell type-specific expression of key transcription factors is central to development and disease.
Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation;
however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we
identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using
transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling
notochord enhancers, 73, C, and /, in human, mouse, and marsupial genomes. Acting as Brachyury-
responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes
Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects
without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved
beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of
jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression
through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis
development.
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INTRODUCTION

The defining feature of the chordate body plan is the notochord, a principal structure formed by the axial or
chorda mesoderm that provides stability and rigidity along the body axis'2. As mammals form an ossified
spine, their notochord progressively regresses and its remnants form the nucleus pulposus within the
intervertebral discs®’. Notochord precursors emerge from the initial organizer and form in a stereotypical
rostral-to-caudal trajectory as gastrulation proceeds, manifesting among the earliest visible structures in
chordate embryos'8. The deeply conserved T-box transcription factor gene Brachyury (also called T or
TBXT) is a key regulator of notochord formation. Originally identified as dominant mutation T that caused
short tails in mice, Brachyury expression and function has been linked to notochord emergence across
chordates®'®. In addition to its central role in notochord fate specification, the function of vertebrate
Brachyury is required for proper primitive streak formation, tailbud specification, and subsequent
neuromesodermal progenitor control'®-'®. However, how the expression of this central developmental
transcription factor is selectively regulated to achieve its notochord activity in mammals remains unresolved.

The central contribution of the notochord and the tailbud to different morphological adaptions and
locomotion strategies shows in the diversification of axial structures across vertebrates'®. Gain and loss of
gene copies and of their associated gene-regulatory elements are major drivers of evolutionary innovation,
and the Brachyury gene family itself is a prime example of this process. Brachyury predates the origin of, and
was present as, a single copy gene in the chordate ancestor?%2", Following two whole genome duplications
in early vertebrates and the subsequent loss of one of four Brachyury paralogs, three gene paralogs were
present in the jawed vertebrate ancestor: Thxta, Tbxtb, and Tbx19'. Tbxta became subsequently lost within
the tetrapod lineage, resulting in mammals and birds ultimately only retaining Thxtb (commonly called
Brachyuryl TITBXT in tetrapods including humans)?2. In contrast, ray-finned fishes retained both tbxta/ntla
and tbxtb/ntlb, the latter being the ortholog of the remaining human Brachyury/T/TBXT (de facto TBXTB)
gene'”.

Curiously, tbxta/ntla has become the predominant functional Brachyury/TITBXT gene in zebrafish, as
documented in classic mutants for ntla (no tail a) that fail to form a tail and notochord’®'%. While no mutant
for zebrafish tbxtb/ntlb has been reported to date, morpholino-based knockdown studies indicate that tbxtb
function adds minimally to the dominant role of zebrafish tbxta'’. This variable copy number of Brachyury
genes across vertebrates came along with selection and divergence of regulatory elements controlling
Brachyury gene expression during distinct developmental timepoints and cell types. Promoter-proximal
regions of Brachyury in the Ciona Brachyury gene and in the zebrafish tbxta gene drive early organizer and
notochord activity %23, In contrast, the promoter-proximal region called Tstreak of Brachyury/T/Tbxtb in
mouse, human, and Xenopus has previously been found to drive primitive streak expression in response to
canonical Wnt/beta-catenin signaling, yet lacks any notochord-driving activity?*-26. Further, recent work
documented that deleting a large 37 kb-spanning region upstream of mouse Brachyury/T/Tbxtb leads to
mutant phenotypes consistent with a selective loss of Brachyury notochord expression?’. A small element
termed TNE in the 37 kb interval was sufficient to drive specific notochord expression in mouse reporter
assays, yet its deletion showed mild to no phenotypic consequences?’. These pioneering data show that
additional regulatory element(s) in addition to Tstreak and TNE contribute to Brachyury/Tbxtb expression
specifically in the notochord. Uncovering the regulation of the vertebrate Brachyury notochord enhancer(s)
will expand our understanding of the evolutionary history of this key developmental regulator and of the
mechanisms leading to notochord formation. In particular, comparison to the Ciona Brachyury locus
containing two upstream shadow enhancers with well-defined regulatory grammar?®2° may inform cis-
regulatory adaptations at the onset of vertebrate emergence.

Uncovering the regulatory elements responsible for its notochord expression also promises to shed light
onto the role of Brachyury in adult human spine health and in chordoma tumors, a rare sarcoma of the spine
that is hypothesized to arise from notochord remnants3%-32. Several familial chordomas harbor duplications
or further complex amplifications of the Brachyury/T/TBXTB locus that possibly convey chordoma
susceptibility to carriers33-3%. These findings suggest that chordoma-associated Brachyury/T/TBXTB locus
amplifications contain, or hijack the action of, cis-regulatory elements to possibly drive Brachyury/T/TBXTB
expression in chordoma, potentially with Brachyury controlling its own expression as suggested by ChIP-seq
findings3®.

Here, we identify the complement of three auto-regulated shadow enhancers T3, C, and [/ in the
Brachyury/T/Tbxtb locus that convey notochord activity. We combined i) genomic data from human chordoma
tumor cell lines, human embryonic stem cells, and mouse embryonic stem cells; ii) non-coding element
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conservation across mammals (human, mouse, Monodelphis) and all vertebrates; iii) transgenic reporter
assays in zebrafish, mouse, axolotl, and Ciona; iv) and enhancer knockouts in mice. In triple enhancer
knockout mice, we document the selective absence of Brachyury protein in the notochord and subsequent
neural tube and trunk defects as linked to notochord perturbations. Using comparative genomics, we uncover
that the location and activity of the enhancers T3, C, and / is conserved within the Brachyury/tbxtb loci across
jawed vertebrates. Our data uncover a deep conservation of shadow enhancers regulating Brachyury
expression in the notochord, one of the most prominent developmental structures of the vertebrate body and
involved in spine and neural tube defects.

RESULTS
Defining a region for human Brachyury notochord expression

To identify enhancer elements with notochord activity in the human Brachyury/ TITBXTB locus, we analyzed
the Brachyury/T/TBXTB locus to narrow down a minimally required genomic region around the Brachyury
gene body. Familial and sporadic chordoma feature duplications and/or complex amplifications of
Brachyury3:3437:38 suggesting that essential cis-regulatory elements for notochord expression lie within the
commonly amplified region. Available genomic patient data outlined a minimally amplified region of
approximately 50 kb surrounding the human Brachyury gene body, with individual tumors extending their
amplifications proximal or distal of this minimal region®*3° (Fig. 1A). Within this minimal interval and its
vicinity, we uncovered several regions that have been charted as open chromatin in the chordoma cell lines
U-CH2 and MUGCHOR using ATAC-seq*®*!, indicating potential regulatory elements in accessible
chromatin, including a super-enhancer region previously proposed to be active in chordoma®® (Fig. 1A).
Further, mammalian Brachyury has been postulated to control its own notochord expression?’-42. Using
BrachyurylT ChlP-seq data from the human chordoma tumor cell line U-CH1 and human ES-derived
mesoderm progenitor cells*!43 we found discrete Brachyury binding events within the minimal amplification
interval and its vicinity (Fig. 1A). Genome alignment of human versus other mammalian species indicated
candidate enhancer regions (conserved non-coding elements; CNEs) through non-coding sequence
conservation in mouse and the more distant marsupial Monodelphis domestica** (Fig. 1A).

From our combined locus analysis, we identified the six initial candidates T3, K, J, C, I, and L as putative
notochord enhancer elements in the vicinity of the human Brachyury gene (Fig. 1A, Supplementary Data 1;
all Supplementary Data is included in the Supplementary Information file). While K and J represent conserved
sequence to other mammalian genomes, candidates / and L notably lie in the annotated chordoma super-
enhancer region*®. From this combined analysis, we hypothesized that individual or combined elements
among the six enhancer candidates could convey notochord activity to the human Brachyury gene.

Brachyury enhancers have autonomous notochord activity

Given the evolutionarily conserved notochord expression of vertebrate Brachyury genes, we hypothesized
that the human enhancers may be correctly interpreted in a model vertebrate. We initially tested all six
enhancer candidates in zebrafish that allows for highly efficient reporter gene activity screening in developing
embryos. To test their activity within a broad evolutionary framework, we cloned the human enhancer element
candidates T3, K, J, C, I, and L into reporter vectors coupled with the mouse betaE-globin minimal promoter
to express the blue fluorophore mCerulean for enhancer testing in zebrafish embryos*. Upon co-injection
into one cell-stage zebrafish embryos together with ubi:mCherry as injection control, the human hs_T3, hs_C,
and hs_I elements resulted in mCerulean expression in the developing zebrafish notochord during early
somitogenesis, followed by strong, selective notochord activity in injected embryos at 24 hours post-
fertilization (hpf) (n=32/61, n=155/227, n=76/117; mCerulean-positive notochord/total mCherry-positive
embryos) (Fig. 1B-D, Supplementary Data 2). Zebrafish embryos injected with hs_T3, hs_C, and hs_|/
reporters maintained notochord-specific mCerulean expression throughout our observations until 5 days
post-fertilization (dpf). In contrast, we did not observe any specific mCerulean reporter expression at any
timepoint with elements hs_K, hs_J, and hs_L (n=0/68, n=0/63, n=0/254) (Supplementary Data 2). Notably,
hs_C was still active when further trimming the sequence 5’ and 3’ (hs_Cshort, n=55/103) (Supplementary
Fig. 1A-C, Supplementary Data 2). Germline-transmitted, stable transgenic integrations for mCerulean
reporters based on hs T3, hs C, and hs_ I recapitulated the transient reporter results and consistently
showed selective notochord expression, with minimal variability across independent transgenic insertions for
each enhancer reporter (followed to at least F3 generation) (Fig. 1E-G). Together, these data indicate that
the three enhancer elements hs T3, hs_C, and hs_/ within the human Brachyury/T/TBXTB locus convey
notochord activity when tested in zebrafish.

Next, we tested the activity of hs_T3, hs_C, and hs_/ in axolotl (Ambystoma mexicanum) as a representative
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amphibian species*®4”. Upon microinjection, reporters based on hs_T3, hs_C, and hs_I enhancer elements
showed consistent reporter expression in the notochord of axolotl embryos (n=23/47, n=14/16, n=3/3)
throughout tailbud stages (st. 30-41) and beyond (Fig. 1H-J, Supplementary Fig. 1D-M, Supplementary
Data 2). Notably, 50% of hs_T3-positive FO animals had additional expression in other mesodermal tissues
such as trunk muscles. In contrast, 80% and 100% of positive hs_C and hs_I/ FO animals, respectively,
showed expression exclusively in the notochord. In addition, hs C and hs_| reporter expression was
distributed along the entire rostral-caudal axis in all observed embryos, while hs_T3 reporter expression was
frequently restricted to more caudal portions of the notochord. Combined, these results indicate that the
human enhancers hs_T3, hs_C, and hs_/ also integrate regulatory input for driving notochord activity in
amphibians.

We next tested if human enhancers hs_T3, hs_C and hs_I also drive notochord-specific reporter activity in
mouse embryos. For increased specificity and reproducibility, we used a site-directed transgenic integration
strategy at the H71 locus (enSERT)*® to generate mouse embryos harboring enhancer-LacZ reporter
transgenes. As observed in zebrafish and axolotl, hs T3, hs_C and hs_I elements exhibited specific and
selective notochord expression in mouse embryos at E9.5 (n=3/3, n=2/2 and n=5/5) (Fig. 1 K,M,O,
Supplementary Data 2). Of note, hs_T3 reporter activity appeared predominantly confined to the posterior
notochord compared to hs C or hs I, which showed reporter activity in the entire mouse notochord.
Histological analysis of Nuclear Fast Red-stained transversal sections from transgenic mouse embryos
further confirmed reproducible, notochord-specific activity for human notochord enhancer elements hs_T3,
hs _C, and hs_I (Fig. 1L, N, P).

Taken together, we identified three enhancer candidates in the human Brachyury/T/TBXTB locus, that all
display notochord enhancer activity as transgenic reporters when tested in teleost fish, amphibian, and rodent
embryos, suggesting pan-bony vertebrate activity and function.

Dependence of human Brachyury enhancers on T-box motifs

Published ChlP-seq data indicated Brachyury binding at hs T3, hs _C, and hs_I (Fig. 1A), suggesting that
notochord expression of the Brachyury/ T/ Tbxtb gene might be auto-regulated by Brachyury itself?”42. We
investigated if the three human notochord enhancer elements contained a TBXT binding motif (short T-box,
Fig. 2A) using FIMO*®. We found that enhancer element hs_T3 contained two low p-value T-box motifs,
enhancer element hs_/I contained one low p-value T-box motif, whereas enhancer element hs_C contained
two possibly degenerate T-box motifs that we only identified when significantly increasing the p-value (Fig.
2B), with two additional T-box motifs with even higher p-values that we did not further pursue in this work
(Supplementary Fig. 2A,B). We then generated the reporter constructs hs T3ATbox:mApple,
hs_CshortATbox:mApple, and hs _IATbox:mApple in which we deleted the respective T-box motifs in the
enhancer elements, as well as constructs containing the wildtype enhancer elements in an identical backbone
(Fig. 2C). The reporter constructs further harbored the transgenesis marker exorh:EGFP (expression in the
pineal gland, Fig. 2D-l) for precise quantification of reporter activity*®. After injection into zebrafish embryos
and in line with the enhancer element activity at 24 hpf (Fig. 1B-D), we observed continued and reproducible
notochord expression at 48 hpf with all three wildtype enhancer element reporters hs T3:mApple,
hs_C:mApple, and hs_I:mApple (n=42/58, n=39/57 and n=62/79; mCerulean-positive notochord/total EGFP
pineal gland-positive embryos) (Fig. 2D,F,H, Supplementary Data 2). However, we observed a complete
loss of specific notochord reporter activity in zebrafish embryos injected with the deletion constructs
hs_T3ATbox:mApple, hs_CshortATbox:mApple, and hs_IATbox:mApple (n=6/113, n=7/53, n=1/41), with
positive embryos containing few labelled notochord cells (Fig. 2E,G,l, Supplementary Data 2). In contrast,
individual deletion of the high p-value T-box motifs in enhancer element hs_C did not result in significant loss
of reporter activity (n=28/50, n=15/63, Supplementary Fig. 2C,D).

Together, we conclude that the T-box motifs in the notochord enhancers hs_T3, hs_C, and hs_I are critical
to the activity of these regulatory elements in our reporter assays. These data support the model in which
Brachyury/T/TBXTB auto-regulates its own expression in the notochord through a defined motif in its
notochord regulatory elements?7-42.

Brachyury notochord enhancers are conserved across mammals

We next sought to determine if other mammalian genomes harbor orthologous T3, C, and / enhancer
regions in their Brachyury/T/Tbxtb loci. Here, we focused on the orthologous T3, C, and / enhancer candidate
regions from mouse (Fig. 3A). As in the human Brachyury/T/TBXTB locus, we found open chromatin and
Brachyury protein binding events at the mouse orthologs of the putative enhancer elements T3, C, and /, as
well as the well-characterized murine Brachyury/T/Tbxtb promoter Tstreak (Fig. 3A).
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When transiently tested in zebrafish, both mouse enhancer mm_T3 and mm_I showed reporter activity
emerging arbitrarily throughout the gastrulating embryo at around 6 hpf (50% epiboly, shield stage)
(Supplementary Fig. 3A-D), before expression became restricted to the developing notochord (n=46/67,
n=61/66) at 24 hpf (Fig. 3B,D, Supplementary Data 2). Of note, our mouse enhancer mm_T3 contains the
previously identified element TNE, which has been established to act as autonomous notochord enhancer
when tested in mouse embryos and gastruloid cultures?’. In contrast, mouse enhancer mm_C failed to drive
any reporter expression in the zebrafish notochord (n=0/88) (Fig. 3C, Supplementary Data 2). Imaging
transgenic zebrafish carrying mouse mm_/ as stable reporter documented robust notochord expression,
again with little variability across independent transgenic insertions (Supplementary Fig. 3E). In contrast,
the murine Brachyury/T/Tbxtb promoter region Tstreak?®*~26 showed transient, variable reporter expression
in the zebrafish shield at around 6 hpf, with no reporter activity upon somitogenesis (n=79/102)
(Supplementary Data 2). We further tested the mouse ortholog of enhancer candidate mm_J, as well as the
two lesser conserved elements mm_T1 and mm_T5, none of which showed reporter activity in zebrafish
embryos up to 5 dpf (n=0/98, n=0/98, n=0/79) (Supplementary Data 2).

Tested with site-directed reporter transgenesis at H11, mm_T3 and mm_I conveyed specific notochord
activity in mouse embryos at E9.5 (n=2/2, n=4/4) (Fig. 3E,G, Supplementary Data 2). In contrast, and
consistent with our observations in zebrafish reporter assays, mm_C did not show any detectable reporter
activity in the notochord in mouse embryos at E9.5 (n=0/2) (Fig. 3F, Supplementary Data 2).

While humans and mice diverged approximately 90 million years ago, marsupials split from eutherians
(placental mammals) approximately 160 million years ago**%%-%3, The opossum Monodelphis domestica is a
representative marsupial species and provides a more distant comparative species to human and mouse
(Supplementary Fig. 4A). Detailed sequence alignments documented dispersed conserved regions along
the entire sequences for all three enhancer candidates in Monodelphis (Fig. 4A). When injected into zebrafish
embryos as mCerulean reporters, the Monodelphis-derived md_T3, md_C, and md_| enhancer element
candidates all conveyed specific notochord activity at 24 hpf (n=47/62, n=142/184, n=74/97) (Fig. 4B-D,
Supplementary Data 2). Similar to the mouse elements, md_T3 transiently started reporter expression at
around 6 hpf (Supplementary Fig. 4B,C), whereas md _C and md_| started to be active at early
somitogenesis, similar to the human ones. In addition to the notochord activity, md_C reporter-injected
zebrafish embryos showed transient reporter expression in the heart whereas md | reporter-injected
embryos showed transient expression in the brain and spinal cord neurons (Fig. 4C,D).

Given the mammalian sequence conservation and differential responses in reporter assays, we next tested
the notochord enhancer element candidates in the tunicate Ciona intestinalis as non-vertebrate outgroup. As
a chordate, Ciona forms a bona fide notochord®*. Testing T3, C, and / of human, mouse, and Monodelphis
by reporter gene assays in Ciona, we found that only Monodelphis-derived md_C showed specific and robust
reporter activity in the notochord (n=119/150) compared to all other eight elements (n=0/150) and minimal
promoter only control (n=0/150) (Fig. 4E,F, Supplementary Data 2).

Taken together, and extending previous work on the mouse TNE element?’, our data indicate that three
distant elements in the mammalian Brachyury/T/Tbxtb locus with differential activity converge on providing
notochord-specific activity in reporter assays across chordates.

Enhancer deletions cause selective loss of Brachyury in mice

While especially enhancer element C seems to have diverged in activity (or is sensitive to the specific trans
environment it was tested in), all three elements T3, C, and | remain conserved and detectable at the
sequence level throughout the mammalian clade. In mice, homozygous Brachyury/T/Tbxtb mutations in the
gene body cause post-implantation defects leading to embryonic lethality between E9.5 and E10.5%-57,
Previous work established that deletion of mouse enhancer TNE does not cause a fully penetrant loss of
Brachyury/T/Tbxtb expression in the developing notochord, indicating the presence of additional shadow
elements interacting with, or compensating for, TNE?’. To functionally test if the three enhancer elements
are involved in Brachyury/T/Tbxtb expression in the mouse notochord, we generated a series of knockout
alleles targeting the three mouse enhancer elements T3, C, and / (Fig. 5A).

We employed CRISPR-Cas9 genome editing using target sites flanking the enhancers and established
heterozygous and homozygous mice carrying individual and combined enhancer deletions (Fig. 5A,
Supplementary Fig. 5A). Compared to E9.5 wildtype control embryos (Fig. 5B) (n=14/14), neither
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homozygous deletion of mouse C (TA%AC) (n=7/7) or | (TA"A) (n=7/7) alone, nor heterozygous (T*AC/)
(n=12/12), heterozygous (T*273) (n=7/7) (Supplementary Fig. 5B-F) or homozygous deletion of both C and
| (TACkACH (n=9/9) (Fig. 5C) altered Brachyury/T/Tbxtb expression in the notochord as determined by
Brachyury/T antibody staining.

In contrast, we observed reduced Brachyury/T/Tbxtb expression in the notochord of E9.5 embryos in a
dose-dependent manner when we combined AT3 with AC,/ deletions. E9.5 embryos heterozygous for the
triple knockout chromosome carrying AT3,C,/ (T7AT3C)) in cis appeared normal (n=14/14) (Supplementary
Fig. 5F). In contrast, in trans-heterozygous E9.5 embryos carrying AC,/ and AT3,C,/ alleles (TAGYATS.CH) we
documented reduced Brachyury/T/Tbxtb protein in the caudal portion of the notochord in all embryos
(n=18/18) with individual embryos also displaying reduced or lost Brachyury/T/Tbxtb protein in the trunk and
rostral portion (n=6/18) (Fig. 5D). Similarly, in E9.5 embryos homozygous for AT3 (TAT¥A73) (n=5/5) (Fig. 5E),
we observed reduced Brachyury/T/Tbxtb protein levels, as previously reported for homozygous TNE
embryos?’. Brachyury/T/Tbxtb protein levels were even further reduced or lost in the entire notochord of
trans-heterozygous for AT3 and AT3,C,/ alleles (TAT¥A73C/) (n=10/10) (Fig. 5F). These data are consistent
with, and expand upon, previous observations that the severity of Brachyury/T/Thxtb phenotypes correlate
with gene dosage®’. Importantly, the TAT¥AT3.C/ genotype with severely reduced Brachyury/T/Tbxtb protein
levels is consistent with the loss of Brachyury/T/Tbxtb protein in the notochord in mice trans-heterozygous
for the TNE deletion and a large, locus-spanning Brachyury/T/Tbxtb deletion that includes elements C and
I?7, revealing the actual relevant enhancer regions (Fig. 1,3,4) and motifs (Fig. 2). Finally, E9.5 homozygous
triple knockout AT3,C,/ embryos (TAT3.CVATS.Cly showed a complete absence of Brachyury/T/Tbxtb protein in
the entire notochord region (n=5/5) yet all embryos retained Brachyury/T/Tbxtb protein in the tailbud (n=5/5)
(Fig. 5G). Taken together, our data establish the notochord-specific Brachyury/T/Tbxtb loss-of-function
mutant in mice by means of deleting three conserved enhancer elements in cis.

Next, we examined phenotypic defects resulting from perturbed Brachyury/T/Tbxtb expression using
various allele combinations involving AC,/ and AT3,C,l. Consistent with the phenotypes at E9.5 (Fig. 5B-G),
we observed a gradual increase of phenotype severity with deletion of the three different enhancer elements
at E12.5 (Fig. 5H-E’). Wildtype control (n=25/25) (Fig. 5H,N), homozygous TA¢"AC! embryos (n=24/24) (Fig.
51,0), heterozygous T*AC! (n=5/5), heterozygous T*AT3 (n=23/23) and T*273C! embryos (n=23/23)
(Supplementary Fig. 5G-l) appeared grossly normal. In contrast, we observed rudimentary tails with
additional enhancer deletions. Rudimentary tails appeared in trans-heterozygous TAC/AT3.C/ embryos in 4.7
% (n=2/43) (Fig. 5J,P) and were fully penetrant in homozygous T27¥A™3 (n=12/12) (Fig. 5K,Q) similar to
homozygous TNE embryos?’, and trans-heterozygous TAT¥AT3.C! embryos (n=14/14) (Fig. 5L,R), as well as
in triple homozygous TAT3C/AT3C1 embryos (n=18/18) (Fig. 5M,S). In addition, homozygous T27¥A73 embryos
(n=11/12) (Fig. 5Q) seemed to display defects in neural tube closure very close to the tail, comparable to
spina bifida; upon sectioning however, we identified this region to be very small and not a fully developed
spina bifida phenotype (Fig. 5Q). In comparison, trans-heterozygous TA7¥A73C/ embryos displayed caudal
spina bifida with 100% penetrance (n=14/14) (Fig. 5R). Finally, triple-homozygous TAT3CVATSCI embryos
lacking all three enhancers displayed spina bifida along 3/4 of the spine (n=18/18) (Fig. 5S), reminiscent of
previous observations using Brachyury/T/Tbxtb-targeting RNAi in mouse embryos®8%°. These results provide
compelling phenotypic evidence of the impact of cumulative enhancer deletions on Brachyury/T/Tbxtb
expression in the notochord.

We further validated these phenotypes with immunohistochemistry and histology. We visualized
Brachyury/T/Tbxtb protein in transversal sections of E12.5 embryos together with the neural plate marker
Sox2: compared to wildtype (Fig. 5T), heterozygous T+AC! T+ATS T+AT3C! (Supplementary Fig. 5J-L) as
well as homozygous TA%"AC! (Fig. 5U) embryos that were all grossly normal, we found decreased Brachyury
protein in the notochord of TAC/ATSC/ (Fig. 5V) and TAT¥AT3 (Fig. 5W) embryos. Strikingly, we observed a
complete absence of Brachyury protein in TA™A73.C/ embryos (Fig. 5X) and TAT3.CVATSC! (Fig. 5Y) embryos.
In contrast, Sox2 expression was comparable in all embryos (Fig. 5T-Y, Supplementary Fig, 5J-L), even in
TATS.CVATS.Cl embryos that clearly displayed spina bifida along the entire spine (Fig. 5Y). Compared to wildtype
embryos (Fig. 5Z), additional histology assessed by H&E staining confirmed wildtype-looking notochords in
TACI T+ATS T+AT3.C1 - and homozygous TASYAC) embryos (Supplementary Fig. 5M-O, Fig. 5A’), smaller (in
diameter) notochords in TAGYAT3C! (Fig. 5B’) and TA™2T3 (Fig. 5C’) embryos, and absent notochords in
TATYATS,Cl gnd TAT3.CAT3.Cl embryos (Fig. 5D’-E’).

We found that the two most severe enhancer mutants are not viable as adults since we did not recover
homozygous triple TATSCYAT3CI (n=0/59) or trans-heterozygote TAT¥AT3C/ (n=0/31) animals at term
(Supplementary Fig. 5P), indicating lethality prior to or shortly after birth. In contrast, homozygous TAT¥473
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animals were born, but died within 14 days after birth, with one exception where we identified one
homozygous TA7T¥AT3 (n=1/34) animal without a tail that survived until adulthood (Supplementary Fig. 5P).
In contrast, TAGYAT3.C! (n=46) trans-heterozygotes and homozygous T2¢¥AC! (n=100) animals survived to
adulthood (Supplementary Fig. 5P). Notably, a variable percentage of TAC/ACI TACIATS.Cl gnd T*+AT3 animals
presented with kinked tails (Supplementary Fig. 5Q), with two TAC/AT3C/ animals displaying a small tail
(Supplementary Fig. 5R), reminiscent of hypomorphic Brachyury/T/Tbxtb mutants and in vivo
Brachyury/T/Tbxtb knockdown by siRNAZ?7-58-60 Taken together, our data are consistent with the correlation
of Brachyury/T/Tbxtb-mutant phenotypes and gene dosage controlled by enhancer activity, as revealed by
increasing phenotype severity with an increasing number of combined enhancer deletions in
Brachyury/T/Thxt.

In summary, our data establishes that the combined activity of the enhancers T3, C, and / in the mouse
Brachyury/T/Tbxtb locus are necessary to convey notochord expression of Brachyury/T/Tbxtb. Upon
combined loss of these enhancers, the notochord is lost.

T3, C and | are conserved among jawed vertebrates

The evolutionary trajectory of chordate Brachyury control in the notochord remains unresolved. The
notochord-regulatory elements driving Brachyury expression in Ciona are promoter-proximal®1061, Zebrafish
tbxta/ntla harbors a -2.1 kb upstream notochord element containing the two smaller elements E7 and E223.
In contrast, zebrafish tbxtb descended from the same ancestral Brachyury gene as the single mammalian
Tbxtb gene. Further, while zebrafish tbxtb remains expressed in the notochord?'-%2, its regulatory elements
have not been reported. Using direct sequence comparisons of mammalian 73, C, and / to the zebrafish
genome, we did not find any sequences of significant sequence similarity (Fig. 1A).

Identifying non-coding sequence conservation across vertebrate lineages, whether from human or other
tetrapods to the fast-evolving teleost fishes like zebrafish, remains notoriously challenging. Species with slow
rates of molecular evolution can help as “genomic bridges” to provide sequence connectivity across distant
vertebrate groups®364. The spotted gar (Lepisosteus oculatus) is a slowly evolving ray-finned fish that has
diverged from zebrafish and other teleosts before a teleost-specific whole-genome duplication, providing a
bridge species for genomic comparisons between tetrapods and teleosts®3. Using BLAST searches, we found
sequence similarity between human T3, C, and / and regions of the spotted gar tbxtb locus with equivalent
positions relative to the gar tbxtb gene body compared to mammals (Fig. 6A). Next, we used these spotted
gar T3, C, and I regions as BLAST queries to bridge to the genomes of zebrafish and other fish lineages
(Supplementary Data 4). This approach uncovered candidate regions for 73 and /, but not C, within the
zebrafish tbxtb locus (Fig. 6A).

Analogous to our tests with mammalian enhancer candidates, we cloned reporter transgenes coupled with
the betaE-globin:mCerulean cassette using the T3, C, and | enhancer elements from the spotted gar tbxtb
locus. Upon injection into zebrafish embryos, both spotted gar lo T3 and /o | displayed specific and
reproducible notochord reporter activity (n=39/54, n=82/122) (Fig. 6B,D, Supplementary Data 2). In
contrast, and akin to the mouse mm_C enhancer element, spotted gar element /lo_C did not convey any
notochord reporter activity in zebrafish embryos (n=0/92) (Fig. 6C, Supplementary Data 2). The zebrafish-
derived dr_T3 and dr_/ also showed selective notochord activity when tested in zebrafish transgenic reporter
assays (n=122/160, n=81/117) (Fig. 6E,F, Supplementary Data 2). Further confirming our results, we found
robust reporter activity in the notochord of stable transgenic zebrafish lines based on dr_T3 and dr_I (Fig.
6G,H). All fish enhancer elements started to express the mCerulean reporter during early somitogenesis,
similar to the human elements.

Using the three gar elements as queries, in addition to clupeocephalan teleosts (e.g. zebrafish), we found
T3 and / also in the other two major teleost lineages elopomorphs (e.g. eel) and osteoglossomorphs (e.g.
arowana). However, we did not detect any equivalent sequence for C in any teleosts, indicating that this
element has been lost or diverged beyond recognition in the teleost lineage (Fig. 61). However, we detected
orthologs of all three elements, including C, at expected locations around the tbxtb genes in additional non-
teleost ray-finned fishes (e.g. bowfin, sturgeon, reedfish) as well as in the more basally diverging cartilaginous
fishes (e.g. sharks, skate) (Supplementary Data 4); in contrast, we only detected 73 and / in the lobe-finned
coelacanth (Fig. 6l). To explore the presence of the three enhancer elements among tetrapods, we used the
painted turtle, characterized by a slow genomic evolutionary rate®66 as an additional bridge species within
tetrapods. We found all three elements in the turtle Brachyury/T/Tbxtb locus and through use of the painted
turtle as reference also in other reptiles and birds, as well as in amphibians (e.g. axolotl) (Fig. 6l,
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Supplementary Data 4), but did not detect any of the three elements in the jawless cyclostome (e.g. lamprey,
hagfish) genomes. Furthermore, we found that the human T-box motifs, which we identified using FIMO (Fig.
2) in our enhancers, are conserved across tetrapods and fishes as distantly related as ghost shark based on
sequence alignments (Supplementary Fig. 6A-C) as well as multi-species FIMO analyses (Supplementary
Data 7). Cross-species sequence conservation centers at the T-box motifs (Supplementary Fig. 6A-C)
which supports both their functional importance as well as their evolutionary ancestry since at least the last
common ancestor of jawed vertebrates.

Taken together, our observations provide strong evidence that notochord enhancers T3, /, and C are deeply
conserved cis-regulatory elements of the Brachyury/T/Tbxtb gene that were already present in the last
common ancestor of jawed vertebrates over 430 million years ago.

DISCUSSION

How the Brachyury/T/Tbxtb gene is controlled during notochord development is fundamental to our
understanding of how basic concepts of body plan formation remain conserved or have diverged across
species. Shadow enhancers, seemingly redundant transcriptional cis-regulatory elements that regulate the
same gene and drive overlapping expression patterns, are a pervasive feature of developmental gene
regulation®’. The concept of enhancer redundancy through one or more shadow enhancers acting on the
same gene in addition to primary enhancer has been established for numerous loci®’~72. Shadow enhancers
are thought to provide robustness to gene expression and buffer against genetic and environmental
variations®”73, a hypothesis validated in mammals’'-"2.

Here, we discovered a deeply conserved set of three notochord-specific shadow enhancers within the
human TBXT locus as ancient cis-regulatory elements. While we cannot draw conclusions about reporter
initiation or early reporter expression patterns, cross-species enhancer testing reveals that the cis-regulatory
grammar of the three human enhancers T3, C, and /, is correctly interpreted in vertebrates including mice,
salamanders, and zebrafish, but not in the invertebrate chordate Ciona. The three notochord enhancers
described here are not the only non-coding conserved elements across mammalian Brachyury/T/Tbxtb loci
(Fig. 1A, 3A, 4A). Even though our zebrafish reporter assays did not reveal any notochord activity in three
out of the six tested human enhancer elements (K, J, and L), we cannot rule out synergistic or interdependent
notochord activity conveyed by additional elements. Further, our reporter assays indicate that not all three
Brachyury/T/Tbxtb notochord enhancers T3, C, and | have equal potency. Enhancer element C shows
variable activity and remains unrecognized in teleost fishes and Coelacanth. Compared to human C with
reproducible notochord activity in all tested models (Fig. 1C,F,I,M) and Monodelphis C that is active in
zebrafish and uniquely in Ciona (Fig. 4C,E), mouse C showed no discernible activity in any assay including
in mouse embryos (Fig. 3C,G) despite significant sequence conservation. We speculate that while mouse C
is not active in isolation, it may contribute together with 73 and / to Brachyury activity in the notochord. This
model is consistent with the impact of TNE deletions when combined with larger deletions that include TNE
and C in mouse trans-heterozygotes?” (Fig. 5). The potential auto-regulation of Brachyury/T/Tbxtb by its
protein product via in part conserved T-box motifs in enhancers T3 and / might contribute to the enhancer
redundancy and divergent activity of element C when tested in isolation (Fig. 2). Our data propose that
enhancer C is an auxiliary element to T3 and might contribute to duration, expression levels, or other features
that differ among Brachyury/T/Tbxtb notochord expression across vertebrates. Our combined data proposes
a model in which notochord expression of vertebrate Brachyury/T/Tbxtb is cumulatively or cooperatively
driven by enhancers T3, C, and /. In this model, sequence variants of T3, C, and / that modulate their
individual potency became selected for modulating Brachyury/T levels to species-specific requirements.

The conservation of gene order (micro-synteny) between species can be indicative of the presence of cis-
regulatory elements, which are crucial for controlling expression of the physically linked genes’. The finding
of functionally relevant distant enhancers 5’ and 3’ of the Brachyury/T/Tbxtb gene body is further supported
by the conserved gene linkage Sftd2-(Prr18)-Brachyury/T/Tbxtb-Pde10a across the entire jawed vertebrate
phylogeny. In agreement with a distinct gene linkage surrounding Brachyury/T/Tbxtb in agnathans (Fig. 6l),
we were unable to identify any of the three distant enhancers in two species representing this clade. Likewise,
a distinct gene linkage associates with Thxta, the second Thxtb paralog in fish, which apparently lacks any
of the three notochord enhancers described here. tbxta/ntla expression is instead controlled by two
mesoderm/notochord enhancers located close to the gene promoter (Harvey et al., 2010), a possible
example of evolutionary novelty following ancestral gene duplication. In contrast, the functionally less
impactful zebrafish tbxtb/ntlb gene retained the regulation of the Tbhxtb gene from the jawed vertebrate
ancestor (Fig. 6). We did not find any evidence for sequence conservation of the Tbxtb T3, I, or C regions
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within vertebrate Tbxta loci or any other genomic regions. Future detailed studies across vertebrate Thxt
paralogs are needed to evaluate whether or not the three Tbxtb regulatory elements identified here were
already part of the single Thxt gene in a vertebrate ancestor. Notably, zebrafish mutants of tbxta/ntla have
been widely studied as model for Brachyury function in notochord formation'31575, while the seemingly less
impactful tbxtb has retained ancestral regulation. Why zebrafish, and possibly other fish lineages, use tbxta
as their main functional Brachyury paralog, and how the regulatory balance between T3, C, and / plays out
across individual vertebrate lineages, warrants future efforts.

We found that Brachyury/T/Tbxtb notochord enhancers T3 and /, and possibly further supported by
enhancer C, represent a shadow enhancer combination that contributes to the robust Brachyury/T/Tbxt
expression in mammals. In mice, neither deletion of enhancer T3/TNE??, nor deletion of enhancer C, I, or C
and I, resulted in a discernable notochord phenotype (Fig. 5). Nonetheless, by combining deletions of all
three notochord enhancer elements, we showed a dose response for Brachyury/T expression in the
notochord. In particular, in embryos where AT3 is combined with a chromosome harboring AT3,C,/ as trans-
heterozygotes (TA7¥AT3C/) or in triple homozygous knock-out embryos (TA73C/ATSCHy we observed loss of
Brachyury/T protein in the notochord as well as notochord-specific phenotypes, such as spina bifida (Fig. 5).
The neural tube closure defects are similar to phenotypes observed in Brachyury/T/Tbxtb knockdown
embryos58-59 or hypomorphic Brachyury/T/Tbxtb mutants 80. These results assign an essential, combinatorial
role to the enhancer elements T3/TNE, C and / in regulating Brachyury/T/Tbxtb in the notochord. Notably,
previous work’®’” has described the T2 mutant caused by a large viral integration 5' of the mouse
Brachyuryl/ Tbxt locus that i) is recessive lethal with phenotypes reminiscent of Brachyury loss, and ii) does
complement loss-of-function alleles for Brachyury. T2 has been hypothesized to encode a short protein off a
long mRNA’®77_ The described genomic position of the viral integration in T2 places it in the vicinity and
upstream of enhancer element C. We note that various vertebrate Brachyury/tbxtb loci feature annotated
long non-coding RNAs upstream of the main gene body that are reminiscent of enhancer RNAs (Fig. 3A,
6A). We therefore hypothesize that the T2 mutation is caused by a disruption of the gene-regulatory
landscape of the mouse Brachyury/Tbxt gene by the viral integration, changing the interaction of distant
enhancer elements with the promoter. Inspection of the chromatin landscape of the Brachyury/Thxt locus,
also in T2 mutants, could shed light on the architecture of the locus during notochord development.

The significance of Brachyury/T/Tbxtb regulation in the notochord translates to chordoma tumors that
feature expression of this T-box transcription factor as key diagnostic readout®?7879. Both sporadic and
familial chordoma are hypothesized to derive from notochord remnants in the spine that do not convert to
nucleus pulposus tissue3280-81 Native Brachyury-expressing cells in the nucleus pulposus decrease in
number with age along with a concomitant increase in cartilage-like cells*8284 What role these long-lasting
Brachyury-positive cells play in the adult spine, if they progressively differentiate into cartilage, and how
Brachyury gene activity is sustained, remains unknown. Detection of Brachyury protein is a diagnostic marker
for chordoma®?, yet the functional contribution of its re-activated or persistent expression in the tumor remains
unknown®?8%-87  Our analysis of reported familial and sporadic chordoma amplifications indicate that
amplifications invariantly retain the notochord enhancer |/ together with the gene body including the
promoter3*37. Enhancer / lies within a super-enhancer region identified in chordoma cell lines*°, further
implicating its transcriptional engagement in chordoma. Amplifications occurring in tandem with the original
locus propose a scenario where the retained enhancer / could synergize with C and T3 from the original locus
on the newly amplified gene copies, potentially resulting in increased Brachyury/T/TBXTB expression (Fig.
1A). Beyond chordoma, changes in enhancer sequence or relative distance to the Brachyury/T/TBXTB gene
body could also impact spine formation and health by altering the robustness of Brachyury expression in the
notochord and subsequent nucleus pulposus.

Tremendous progress in in vitro differentiation regimens have resulted in stem cell-derived models for body
segmentation and different organ structures -1, However, notochord formation has only been reported in
more complex systems that recapitulate major hallmarks of embryo patterning®?-4. Reporters based on our
isolated enhancers could potentially provide potent readouts to screen for differentiation regimens that result
in notochord fates. Together, our uncovered set of shadow enhancers in Brachyury/T/TBXTB advance our
concepts of how this key contributor to notochord formation is regulated and de-regulated in development
and disease.
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METHODS

Ethical regulations
All research within this manuscript complies with all relevant ethical regulations that are described and named
individually in each paragraph.

Brachyury locus annotations

The UCSC genome browser was used to identify and visualize enhancer elements in the human, mouse,
and Monodelphis Brachyury locus. *.bed files were generated with the approximate genomic location of
human Brachyury amplifications in chordoma tumors from different patients3437. Previously published ATAC
sequencing data of U-CH2 cells and MUGCHOR cells*?, as well as Brachyury/T ChIP sequencing data of
human embryonic stem cells (RESCs)*3 and U-CH1 cells*' were added. Further, the repeat masker track,
ENCODE cCREs, layered H3K27ac, and the conservation track for mouse and Monodelphis were added.
Ultimately, using this strategy, the human enhancer element candidates 73, K, J, C, /, and L were identified.
For detailed information, see Supplementary Data 1 and 3.

The same strategy was applied to find the corresponding mouse enhancer elements. Published ATAC-seq
data of mouse ESCs® and Brachyury/T-positive fluorescence-activated cell sorted cells from the caudal ends
of wild-type mouse embryos (TS12/8 dpc and TS13/8.5 dpc)®, as well as Brachyury/T ChIP sequencing data
of mouse ESCs*?% were used. Again, the repeat masker track, the ENCODE Candidate Cis-Regulatory
Elements (cCREs, combined from all cell types) track, tracks containing H3K27ac, H3K4me, DNase signals
from E11.5 neural tube as it likely contains notochord tissue as well due to extraction®’, and the Vertebrate
Multiz Alignment & Conservation track to check for conservation in human, Monodelphis, and zebrafish, were
added. This approach identified the mouse enhancer element candidates T71, T2, T3, J, C2/next to C, C,
Tstreak, I, T4, T5, and T6, of which T1, T3, J, C, Tstreak, |, and T5 were pursued and tested (Supplementary
Data 3 and 5).

To find the corresponding Monodelphis elements, the repeat masker and 9-Way Multiz Alignment &
Conservation track were included to identify T3, C, and / (Supplementary Data 3 and 5).

Cloning of the enhancer element reporter plasmids

Each Brachyury enhancer element candidate was amplified from either human, mouse, Monodelphis,
spotted gar, or zebrafish genomic DNA using the Expand Hi-Fidelity PCR System (11732641001, Roche).
Exact coordinates are listed in Supplementary Data 3. Each enhancer candidate was TOPO-cloned into the
PENTR5'-TOPO plasmid (K59120, Invitrogen) using halt-volume reactions according to the manufacturer’s
instructions (half-volume reactions). Subsequent Multisite Gateway cloning (half-volume reactions) were
performed using LR Clonase Il Plus (12538120, Invitrogen) according to the manufacturer’s instructions (half-
volume reactions) and recommended reaction calculations®. 5’ entry plasmids containing the different
enhancer elements were assembled into reporter expression plasmids together with the middle entry plasmid
(pPME) containing the mouse betaE-globin minimal promoter expressing mCerulean (pSN007) as well as
mApple (pCK068), the 3’plasmid #302 (p3E_SV40polyA), and the destination plasmid pDESTTol2A2
containing crybb1:mKate2 (pCB59) and pDESTexorh:EGFP containing EGFP expression in the pineal gland
(pCKO017) as transgenesis markers*®. Assembled vectors were verified using restriction digest and Sanger
sequencing using standard sequencing primers for Multisite Gateway assemblies*>%.

Zebrafish husbandry, transgenic reporter assays and stable transgenic lines

Zebrafish animal care and procedures were carried out in accordance with the IACUC of the University of
Colorado Anschutz Medical Campus (protocol # 00979), Aurora, Colorado. Adult AB and TU wildtype
zebrafish were obtained from the Zebrafish International Resource Center (ZIRC) and maintained as per
standard husbandry procedures®.

To test the transient activity of the putative enhancer elements, 25 ng/uL To/2 mRNA, 12.5 ng/uL reporter
expression plasmid DNA, and 12.5 ng/uL ubi:mCherry plasmid'® as injection control were co-injected into
one-cell stage wild type zebrafish embryos*’. At 24 hpf, embryos were anesthetized with 0.016% Tricaine-S
(MS-222, Pentair Aquatic Ecosystems Inc.) in E3 embryo medium and embedded in E3 with 1% low-melting-
point agarose (A9045, Sigma Aldrich).

To generate stable transgenic lines, 25ng/uL Tol2 mRNA were co-injected with 25ng/pL reporter
expression plasmid DNA'01:102 Multiple FO founders were screened for specific mCerulean and mKate?2
expression, raised to adulthood, and screened for germline transmission. Resulting F1 single-insertion
transgenic strains were established and verified through screening for a 50% germline transmission rate
outcrosses in the subsequent generations as per our previously outlined procedures'%?. Tg(drl:mCherry) was
used as a marker for lateral plate mesoderm derivatives*.
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For imaging, embryos were mounted laterally on glass bottom culture dishes (627861, Greiner Bio-One)
and confocal images were acquired with a Zeiss LSM880 using a x10/0.8 air-objective lens. Fluorescence
channels were acquired sequentially with maximum speed in bidirectional mode in 3 uM slices. The range of
detection for each channel was adapted to avoid any crosstalk between the channels. Images of acquired Z-
stacks were reconstructed with ImageJ/Fiji as a maximum intensity projections.

Axolotl husbandry, transgenic reporter assays and immunostaining

Procedures for care and manipulation of all animals used in this study were performed in compliance with
the laws and regulations of the State of Saxony, Germany. Axolotl husbandry and experiments (non-free
feeding stages) were performed at the Center for Regenerative Therapies Dresden (CRTD), Dresden,
Germany. Adult axolotls (Ambystoma mexicanum) were obtained from the axolotl facility at the Technische
Universitat Dresden (TUD)/CRTD Center for Regenerative Therapies Dresden. Animals were maintained in
individual aquaria at ~18-20 °C'%, Axolotls of the white (d/d) strain were used in all experiments.

Transgenic axolotl embryos were generated using Tol2 transposase following standard protocols'%4. For
live imaging, the embryos were anaesthetized by bathing in 0.01% benzocaine and imaged on an Olympus
SZX16 fluorescence stereomicroscope. Embryos were staged as described previously'%°.

For immunostaining, axolotl embryos were fixed in MEMFA at 4 °C overnight, washed in PBS, embedded
in 2% low-melting temperature agarose, and sectioned by vibratome into 200 pm-thick sections. Fibronectin
was detected using mouse anti-Fibronectin (ab6328, Abcam; dilution 1:400) and donkey anti-mouse Alexa
Fluor™ 568 (A-10037, Invitrogen; dilution 1:600). After staining, sections were mounted with Mowiol (81381,
Millipore Sigma). Confocal images were acquired on a Zeiss LSM780-FCS inverted microscope.

Transgenic mouse reporter assays

Research was conducted at the E.O. Lawrence Berkeley National Laboratory (LBNL) and performed under
U.S. Department of Energy Contract DE-AC02-05CH11231, University of California (UC). Transgenic mouse
assays were performed in Mus musculus FVB mice (obtained from The Jackson Laboratory), animal protocol
number 290003; reviewed and approved by the Animal Welfare and Research Committee at Lawrence
Berkeley National Laboratory).

For comprehensive analysis of species-specific T3, C and /, enSERT enhancer analysis was used, allowing
for site-directed insertion of transgenic constructs at the H71 safe-harbor locus'%6-1%7 EnSERT is based on
co-injection of Cas9 protein and H717-targeted sgRNA in the pronucleus of FVB single cell-stage mouse
embryos (E0.5) with the targeting vector encoding a candidate enhancer element upstream of the Shh-
promoter-LacZ reporter cassette*®. Enhancer elements were PCR-amplified from human, mouse and
Monodelphis genomic DNA and cloned into the respective LacZ expression vector'®. Embryos were
excluded from further analysis if they did not contain a reporter transgene in tandem. CD-1 females (The
Jackson Laboratory) served as pseudo-pregnant recipients for embryo transfer to produce transgenic
embryos which were collected at E9.5 and stained with X-gal using standard methods'08.

Histological analysis of Nuclear Fast Red-stained sections from transgenic mouse embryos

After LacZ staining, E9.5 transgenic mouse embryos were dehydrated in serial alcohols (1x 70%, 1x 80%,
1x 90%, 2x 96%, 2x 100% ethanol, followed by 1x 100% isopropanol for 20 minutes each) and cleared twice
for 30 minutes with Histo-Clear Il (HS-202, National Diagnostics) for paraffin wax embedding. 10 um-thick
transverse sections were obtained with a Leica Biosystems RM2245 Semi-Automated Rotary Microtome.
Sections were de-waxed, rehydrated, and stained with Nuclear Fast Red (R5463200, Ricca Chemical) for
two minutes. After staining, sections were dehydrated and mounted with Omnimount (HS-110, National
Diagnostics). Images were obtained using a Leica M205 FA stereo microscope.

Ciona reporter assays

Ciona experiments were performed at UCSD as described previously?%1%9. Adult Ciona intestinalis type A
aka Ciona robusta (obtained from M-Rep) were maintained under constant illumination in seawater (obtained
from Reliant Aquariums) at 18 °C. Briefly, human, mouse and Monodelphis enhancer elements 73, C and /
were subcloned into appropriate plasmids suited for expression in Ciona, upstream of a basal Ciona
Forkhead promoter driving GFP?8110_ Ciona embryos were electroporated with 70 ug of each plasmid as
previously described''" and reporter expression was counted blind in 50 embryos per biological repeat. Al
constructs were electroporated in three biological replicates. Images were taken of representative embryos
with an Olympus FV3000 microscope using a 40X objective.

Deletion of mouse enhancer elements T3, C and /
All mouse experimental procedures and animal care were approved by the Animal Care Committee of the
Institute of Molecular Genetics (IMG), Czech Academy of Sciences, Prague, Czech Republic, and covered
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under protocol permission number 357/2021. Experiments were performed in compliance with the European
Communities Council Directive of November 24, 1986 (86/609/EEC), as well as national and institutional
guidelines.

For this study, inbred C57BL/6N mice (The Jackson Laboratory) were used. Mice carrying deletions of
enhancer elements T3, C, and | were generated using CRISPR-Cas9 technology. The cRNAs (purchased
from Integrated DNA technologies, IDT) were designed to target the 5’ and 3’ ends of the mouse enhancer
elements T3, C and / to delete the genomic regions in between. For genomic location and sequence of the
selected target sites, as well as genomic coordinates of the deleted enhancer element sequences, see
Supplementary Data 5.

A ribonucleoprotein (RNP) complex of crRNA/TRACR (1072532, IDT) and SpCas9 protein (1081058, IDT)
was electroporated into fertilized zygotes isolated from C57BL/6N mice. Zygote electroporation and transfer
into pseudo-pregnant foster females was performed as previously described''?. Founder animals from
multiple embryo transfers were genotyped from tail biopsies using PCR and Sanger sequencing and the
positive animals were backcrossed to C57BL/6N mice.

Independent knockout lines for enhancer element C (AC) and / (A/) were generated. Heterozygous AC and
Al (TA¢ and T*2') and homozygous AC and Al (TA%AC and T 272!y embryos were investigated for potential
overall phenotypes, but appeared phenotypically normal. Pups were born normally and grew up into fertile
adults.

To generate a double knockout AC,/ strain, homozygous T 4%AC¢ mice were used for electroporation of
CRISPR-Cas9 RNP complexes deleting enhancer element /. Pups homozygous for AC,[ (TAS¥AC!y were born
phenotypically normal and developed into fertile adults; however, around 20% of the animals had a kinked
tail (Supplementary Fig. 5M,N).

To generate a triple knockout AT3,C,/ mouse strain, heterozygous AC,/ (T*2%!) mice were used for
electroporation of CRISPR-Cas9 RNP complexes deleting enhancer element T3 (AT3). Heterozygous
T¥AT3Cl or trans-heterozygous TA™¥4C/ embryos were phenotypically normal and grew up into fertile adults.
To establish a single knockout line for enhancer element T3 (AT3), TAT¥AC! animals were outcrossed to
establish T+4T3,

TACVATS.CI gnimals were generated by mating AC,/ (T2CYACH and AT3,C,I (T7AT3C/) strains and TAT¥AT3.C/
by mating AT3 (T *A73) and AT3,C,/ (TAT3C/) strains, respectively. Finally, homozygous TAT3C/AT3.C1 animals
were generated by mating trans-heterozygous AC,I/AT3,C,| (TACVAT3.Cl) animals.

Around 60% of TACYAT3CI pups were born with a tail defect and adult animals displayed a kinked tail, with
around 2% of the TAGYAT3.CI pups displaying a small tail. In contrast, adult trans-heterozygous TA7A73.C/ and
homozygous TAT3CVATS.CI gnimals were never recovered likely due to lethality at around birth or during early
postnatal life.

The deletion breakpoints in the individual enhancer alleles were determined by Sanger sequencing. Mice
were genotyped using PCR with dedicated primer sets (Supplementary Data 5). Mouse embryos of the
given stage were harvested from timed pregnant mice. The day of plug was counted as embryonic day 0.5
(E0.5).

E9.5 whole mount immunostaining and imaging

E9.5 mouse embryos were collected and whole mount immunostaining was done as previously
described''3. Brachyury/T/Tbxt expression in E9.5 embryos was visualized using rabbit anti-Brachyury
(ab209665, Abcam; dilution 1:2000) and donkey anti-rabbit Alexa Fluor™ 594 (A-21207, Invitrogen, dilution
1:500). Images were obtained using a Zeiss AxioZoom V16 macroscope with Apotome with a Zeiss Axiocam
512 mono camera. A qualitative analysis of all investigated embryos can be found in Supplementary Data
6.

E12.5 embryo preparation, immunostaining and imaging

E12.5 mouse embryos were collected and fixed overnight in 4% paraformaldehyde. Whole embryo images
were acquired using a Olympus SZX9 stereo microscope with a Olympus DP72 camera. Afterwards, embryos
were embedded in paraffin, and 9 uym-thick transverse sections were obtained using a Microtome Leica
RM2255. Sections were deparaffinized, rehydrated, and stained with hematoxylin & eosin (H-3502,
Vectorlabs) for histology, or rabbit anti-Brachyury (ab209665, Abcam; dilution 1:2000) and donkey anti-rabbit
Alexa Fluor™ 594 (A- 21207, Invitrogen, dilution 1:500), or goat anti-Sox2 Y-17 (sc-17320, Santa Cruz;
dilution 1:400) and donkey anti-goat Alexa Fluor™ 488 (A-11055, Invitrogen, dilution 1:500) together with
DAPI (10236276001, Roche Diagnostics) according to the manufacturer's instructions. After staining,
sections were mounted with Mowiol (81381, Millipore Sigma). Images of sections were obtained using a Leica
DM6000 widefield fluorescence microscope with a Leica DFC 9000 camera.

Gar and turtle bridge alignment



710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

To establish genomic connectivity across distant vertebrate lineages, a bridging approach that leverages
species with slowly evolving genomic sequences, such as spotted gar within ray-finned fishes®® and painted
turtle within tetrapods''4, was used. Using human T3, C, and / as queries, BLASTN searches at
ensembl.org'® (search sensitivity: distant homologies) against the bridge species genomes were performed.
Candidate BLAST hit regions were manually inspected for their location in relation to the Tbxtb gene locus
for further consideration. Core regions based on the initial BLAST hits in both bridge species were expanded
in both directions up to the next annotated repeat element. Once the three elements were established in the
bridge species, their sequences were used for as queries for BLASTN searches with genomes representative
species across all major vertebrate lineages as targets (see Supplementary Data 4 for species list, genome
assemblies, and enhancer element coordinates). Further BLASTN chaining through additional species was
performed as needed (e.g., human->gar->goldfish->zebrafish for T3 and /). All BLAST hits were manually
inspected for proximity to the Tbxtb gene. Multi-species alignments of the three elements were generated
with MAFFT version 1.5.0"16.

Identifying T-box motifs

The presence of T-box motifs in the individual species was established with FIMO version 5.5.4""7 at
https://meme-suite.org/meme/tools/fimo  using as input sequence the human TBXT motif
TBXT_MA0009.2.meme obtained from JASPAR 20228 at https://jaspar.genereg.net/.

Statistics and Reproducibility

The authors declare that key measures of statistics and reproducibility are built into the work throughout.
For the zebrafish, axolotl, mouse, and Ciona reporter assays, as well as the mouse knockout studies,
sufficient embryos were analyzed to achieve statistical significance based on previous experience in
transgenic reporter assays and mouse knockout studies. Experimental sample sizes were chosen by
common standards in the field and in accordance with solid phenotype designation''®-'?2, For the mouse
reporter assays, sample sizes were selected empirically for >3,000 total putative enhancers (VISTA Enhancer
Browser, https://enhancer.Ibl.gov/)'23.

All  transgenic reporter assays, as well as the knockout experiments, were treated with identical
experimental conditions across species and performed at least twice or more times in the majority of
instances. All attempts at replication were successful.

No data were excluded in the zebrafish, axolotl, mouse or Ciona reporter assays, as well as the mouse
knockout studies.

Data analyses of the transgenic reporter quantification was based on injections into zebrafish, axolotl, and
mouse embryos/electroporation into Ciona embryos, and knockout quantification was based on defined
genotypes of mouse embryos from crosses. No other randomizations were applicable.

Data collection for transgenic and knockout analyses was unblinded as it required reporter activity and
phenotype assessment as well as genotyping analysis to confirm transgenic or mutant versus wildtype.

Zebrafish and axolotl embryos were not selected by gender as sex determination happens later in
development. Ciona are hermaphroditic, therefore there is only one possible sex for individuals. Mouse
embryos of both sexes were used in transgenic and knockout analyses and no differences in gender were
observed in those experiments.

Data Availability

The authors declare that all the data supporting the findings of this study are available within the paper and
its supplementary information files.
The genome tracks using published data are deposited in a publicly accessible repository (UCSC browser).

The hg38 UCSC browser session can be found here: https://genome.ucsc.edu/cgi-
bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMo
de=0&nonVirtPosition=&position=chr6%3A166055376%2D166285375&hgsid=1668196600_TyrXKpANjNul
eK9hJyKBgwmyA2yA

The hg19 UCSC browser session can be found here: https://genome.ucsc.edu/cgi-
bin/hgTracks?db=hg19&lastVirtMode Type=default&lastVirtModeExtraState=&virtMode Type=default&virtMo
de=0&nonVirtPosition=&position=chr6%3A166464129%2D166694128&hgsid=1668176188_UwkZBA1qkT
eo3E3sOlYoMYI3FJC3

The mouse (mm10) UCSC browser session can be found here: https://genome.ucsc.edu/cgi-
bin/hgTracks?db=mm10&lastVirtModeType=default&lastVirtModeExtraState=&virtMode Type=default&virtM
ode=0&nonVirtPosition=&position=chr17%3A8368806%2D8468805&hgsid=1670749280_ioGLIAfZ5ZfCw
VzWxcAwM4s0PHxk
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The Monodelphis (monDom5) UCSC browser session can be found here: https://genome.ucsc.edu/cgi-
bin/hgTracks?db=monDomb5&lastVirtModeType=default&lastVirtModeExtraState=&virtMode Type=default&
virtMode=0&nonVirtPosition=&position=chr2%3A449921917%2D450073916&hgsid=1668178122_ QQzeb4
abeiOPVFBlo1AeXQ56AAQr

The spotted gar (GCF_000242695.1) UCSC browser session can be found here:
https://genome.ucsc.edu/cgi-
bin/hgTracks?db=hub_2243239_ GCF_000242695.1&lastVirtModeType=default&lastVirtModeExtraState=&
virtModeType=default&virtMode=0&nonVirtPosition=&position=chrLG16%3A15070915%2D15148914&hgsi
d=1668181420_WCqDJoX4D50WvtOW5P70YAFrAjcN

The zebrafish (danRer11) UCSC browser session can be found here: https://genome.ucsc.edu/cgi-
bin/hgTracks?db=danRer11&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&v
irtMode=0&nonVirtPosition=&position=chr13%3A4394240%2D4472239&hgsid=1668178552_e2IT5z0IZFk
3BhQoKpdOyek6naG5

Plasmids, stable transgenic zebrafish lines, and mouse knockout lines are available from the corresponding
authors upon reasonable request.
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Figure 1: Human Brachyury enhancer elements T3, C and / are active in different species.

(A) Human Brachyury/T/TBXTB locus with surrounding gene loci adapted from UCSC genome browser.
Repeats marked in black using the RepeatMasker track; additional tracks include the ENCODE conserved
cis-regulatory elements (cCREs) and layered H3K27ac signals. Further annotated are approximate
amplifications (light orange) and the minimally amplified region (dark orange) in chordoma tumors. ATAC-
sequencing (light blue peaks) and T ChIP-sequencing (dark blue lines) suggest enhancer elements (light
pink highlight, not active; light blue highlight, active) that are conserved in mouse and the marsupial
Monodelphis domestica.

(B,C,D) Representative FO zebrafish embryos injected with the human enhancer elements hs T3 (B), hs C
(C), and hs_I (D) showing mosaic mCerulean reporter expression in the notochord at 24 hpf and expression
of ubi:mCherry as injection control. N represents the number of animals expressing mCerulean in the
notochord relative to the total number of animals expressing mCherry. Scale bar in B: 0.5 mm, applies to B-
C.

(E,F,G) Representative images of stable transgenic F2 embryos at 48 hpf for each of the human enhancer
elements hs_T3, hs_C, and hs_I crossed to Tg(dr:mCherry) that labels lateral plate mesoderm and later
cardiovascular lineages. Transgenic F2 embryos recapitulate the FO expression pattern in the notochord,
with hs_T3 (E) additionally expressing cerulean in the pharyngeal arches and fin, and hs_/ (G) in the proximal
kidney close to the anal pore. Enhancer element hs C (F) stable transgenic lines have lower relative
notochord reporter activity than hs_T3 and hs_I. Scale bar in E: 0.5 mm, applies to E-G.

(H,1,J) Representative FO axolotl embryos at peri-hatching stages expressing mCerulean from the human
enhancers hs_T3 (G), hs_C (H), hs_I (I). N represent the number of animals expressing mCerulean in the
notochord relative to the total number of animals showing any mCerulean expression. Scale bar in H: 1 mm,
applies to H-J.

(K,M,0) Representative images of transgenic E9.5 mouse embryos expressing lacZ (encoding beta-
galactosidase) under the human enhancers hs_T3 (K), hs_C (M), and hs_/ (O) visualized with X-gal whole-
mount staining. While hs_C and hs_I express beta-galactosidase in the entire notochord, beta-galactosidase
expression from hs T3 is restricted to the posterior notochord. Black asterisk marks absence of beta-
galactosidase in the anterior notochord. N represent the number of animals expressing beta-galactosidase
in the notochord relative to the total number of animals with tandem integrations at H77. Dotted lines
represent the sectioning plane. Scale bar in K: 0.5 mm, applies to K,M,0.

(L,N,P) Representative images of Fast Red-stained cross sections from embryos shown on the left, hs T3
(L), hs_C (N), and hs_I (P). Black arrowheads point at notochord, and inserts show notochords at 2x higher
magnification. Scale bar in L: 0.25 mm, applies to L,N,P. The species silhouettes were adapted from the
PhyloPic database (www.phylopic.org).

Figure 2: Identified TBXT binding sites in the enhancer elements are essential for reporter activity.
(A) Sequence of the human TBXT binding site (T-box) using JASPAR.

(B) FIMO output with location of the T-box, statistical significance, and matched sequence within the
enhancer elements. P values were calculated by FIMO which computes a log-likelihood ratio score for each
position in the sequence, then converts this score to a P value, and then applies false discovery rate analysis
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to estimate a Q value for each position.

(C) Schematic depiction of the wildtype human enhancer elements with the TBXT binding site/T-box (pink,
red, purple boxes) and the enhancer elements without the respective T-box sites (ATbox). The human
enhancer elements are depicted in the reverse complement direction. Tbox130-145, Tbox277-292, Tbox309-
324: p < 0.00008, Tbox184-199: p <0.005, Tbox201-216: p < 0.008.

(D-l) Injection of the wildtype enhancer elements hs T3 (D), hs Cshort (F), and hs_ | (H) as reporter
constructs results in mApple fluorophore expression in the notochord at 48 hpf, whereas injection of
hs_T3AThox (E), hs_CshortATbox (G), and hs_IATbhox (I) show complete loss of notochord expression
(asterisks in E,G,I). Arrowheads (D-lI) mark EGFP expression in the pineal gland from the transgenesis
marker exorh:EGFP. Scale bar in D: 0.5 mm, applies to D-I.

Figure 3: Mouse Brachyury enhancer elements are active in different species.

(A) Mouse Brachyury/T/TBXTB locus adapted from the UCSC genome browser. Repeats marked in black
using the RepeatMasker track; additional tracks include the ENCODE cCREs, H3K27ac (yellow), H3K4me
(red) and DNase (green) signals. ATAC-sequencing (light blue peaks) and T ChIP-sequencing (dark blue
lines) indicate enhancer elements (light pink highlight, not active; light blue highlight, active) that are
conserved in human and Monodelphis.

(B,C,D) Representative FO zebrafish embryos injected with the mouse enhancer elements mm_T3 (B),
mm_C (C), and mm_I (D). mm_T3 and mm_I show mosaic mCerulean reporter expression in the notochord
at 24 hpf and mosaic ubi:mCherry expression as injection control. Mouse enhancer element mm_C is not
active in the zebrafish notochord (asterisk in C). N represent the number of animals expressing mCerulean
in the notochord relative to the total number of animals expressing mCherry. Scale bar in B: 0.5 mm, applies
to B-D.

(E,G,lI) Representative images of transgenic E9.5 mouse embryos expressing lacZ (encoding beta-
galactosidase) under the mouse enhancer elements mm_T3 (E), mm_C (G) and mm_/ (l) visualized with X-
gal whole mount staining. While mm_T3 and mm_| express beta-galactosidase in the entire notochord, beta-
galactosidase expression from mouse mm_C is absent (asterisk in G). N represent the number of animals
expressing beta-galactosidase in the notochord relative to the total number of animals with tandem
integrations at H71. Dotted lines represent the sectioning plane. Scale bar in E: 0.5 mm, applies to E,G,l.
(F,H,J) Representative images of Fast Red-stained cross sections from embryos shown on the left, mm_T3
(F), mm_C (H), and mm_I (J). Black arrowheads point at notochord, and inserts show notochords at 2x higher
magnification. Scale bar in F: 0.25 mm, applies to F,H,J. The species silhouettes were adapted from the
PhyloPic database (www.phylopic.org).

Figure 4: Monodelphis Brachyury enhancer elements are active in different species.

(A) Monodelphis Brachyury/T/TBXTB locus adapted from the UCSC genome browser. Repeats are marked
in black using the RepeatMasker track. Further annotated are tracks containing N-SCAN gene predictions
and 9 Species Conservation. The light blue highlighted boxes mark the Monodelphis enhancer elements T3,
C and I and their conservation in other species.

(B,C,D) Representative FO zebrafish embryos injected with the Monodelphis enhancer elements md_T3 (B),
md_C (C), and md_I (D) showing mosaic mCerulean reporter expression in the zebrafish notochord at 24
hpf. ubi:mCherry was used as injection control. N represent the number of animals expressing mCerulean in
the notochord relative to the total number of animals expressing mCherry. Scale bar in B: 0.5 mm, applies to
B-C.

(E,F) Representative images of Ciona embryos electroporated with Monodelphis enhancer element md_C
(E), and minimal forkhead promoter (fkh) only as control (F). Monodelphis enhancer element md_C
expresses EGFP throughout the entire Ciona notochord, compared to minimal fkh promoter only which does
not express EGFP at all (asterisk in F). N represent the number of animals expressing EGFP in the notochord
relative to the total number of animals. Inserts on the top right represent bright field images of respective
embryos. Scale bar in E: 0.05 mm, applies to E,F. The species silhouettes were adapted from the PhyloPic
database (www.phylopic.org).

Figure 5: Deletion of the three enhancer elements T3, C and / results in selective loss of Brachyury
protein expression in the notochord at E9.5 and posterior defects at E12.5.

(A) Overview of wildtype mouse Brachyury/T/TBXTB locus adapted from the UCSC genome browser and
deletion alleles generated with CRISPR-Cas9 genome editing. Exact coordinates and sequences of target
sites, deletions, and genotyping primer sequences can be found in Supplementary Data 5.
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(B-G) Brachyury/T antibody staining (red) of E9.5 embryos. White dashed square in panels represents
location of right bottom inserts with 2x magnification. Brachyury/T protein expression in the notochord is
dose-dependent on the three enhancer elements. Asterisks in D-G mark absent notochord in rostral portion
of the embryo. Scale bar in B: 1 mm, applies to panels B-G.

(H-M) Overall morphology of E12.5 embryos with different genotypes. Blue lines indicate the location of
immunofluorescence and H&E sections. Spina bifida and tail defects are dose-dependent. Arrowheads mark
rudimentary tails. White lines mark spina bifida. Scale bar in H: 1 mm, applies to panels H-M.

(N-S) Dorsal view of embryos (sectioned at blue line in H-M). White lines mark areas of spina bifida.
Arrowheads mark rudimentary tails compared to tails in wildtype control and double knock-out allele. Scale
bar in N: 2.5 mm, applies to panels N-S.

(T-Y) Immunofluorescence of mouse transverse sections. Anti-Sox2 labels the neural plate, anti-Tbxt the
notochord, and DAPI marks nuclei. Sox2 expression is comparable amongst all genotypes, even in the
genotypes with spina bifida, while there is loss of Brachyury/T staining in the notochord with increased loss
of the enhancers. Arrowheads point to notochord. Asterisks mark absent notochord. Scale bar in T: 0.2 mm,
applies to panels T-Y.

(Z-E’) H&E staining of transverse sections confirm the dose-dependent loss of the notochord and spina bifida.
Arrowheads point to notochord. Asterisks mark absent notochord. Scale bar in Z: 0.2 mm, applies to panels
Z-E’.

Figure 6: Bridge species establish the presence of Tbhxtb enhancers across jawed vertebrates.

(A) Location of the enhancer elements in the human (top), gar (middle), and zebrafish (bottom)
Brachyury/T/Tbxtb loci, adapted from the UCSC browser as established through the “gar bridge”.

(B,C,D) Representative FO zebrafish embryos injected with the gar enhancer elements lo_T3 (B), lo_C (C),
and /o_I (D). T3 and |/ show mosaic mCerulean reporter expression in the notochord at 24 hpf compared to
gar element C with is not active in the zebrafish notochord (asterisk). N represent the number of animals
expressing mCerulean in the notochord relative to the total number of animals expressing mosaic
ubi:mCherry as injection control. Scale bar in B: 0.5 mm, applies to B-F.

(E,F) Representative FO zebrafish embryos injected with the conserved zebrafish enhancer elements dr_T3
(E)and dr_I (F). T3 and I show mosaic mCerulean reporter expression in the notochord at 24 hpf. N represent
the number of animals expressing mCerulean in the notochord relative to the total number of animals
expressing mosaic ubi:mCherry as injection control.

(G,H) Representative images of stable F1 embryos at 2 dpf of zebrafish enhancer elements T3 and |/
recapitulate the FO expression pattern in the notochord, with dr_T3 (E) additionally expressing mCerulean in
the brain, heart, and fin, and dr_I (G) in the proximal kidney close to the anal pore, pharyngeal arches, heart,
fin, and spinal cord neurons. Scale bar in G: 0.5 mm, applies to G,H.

(I) Phylogenetic representation of species investigated using the bridging approach with spotted gar and
painted turtle as anchor species within ray-finned fish and tetrapod lineages. Arrows indicate informative
phylogenetic comparisons to uncover conservation of enhancer elements T3, /, and C. The species
silhouettes were adapted from the PhyloPic database (www.phylopic.org).
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Supplementary Information to the manuscript: Conserved enhancers control notochord
expression of vertebrate Brachyury by Kemmler et al.



This Supplementary Information contains information about the Supplementary Data 1-7, as well as
Supplementary Figures 1-6. Supplementary Data 1-6 are excel tables, Supplementary Data 7 are
MAFFT alignments and sequence files compiled as a .zip file.

Supplementary Data 1: Genomic features of the human enhancer elements.

Summary table listing the genomic features of the human enhancer elements, including length, location
relative to transcription start (TS) site, ATAC- or T ChlP-seq peaks, conservation in mouse and Monodelphis,
H3K27ac, and ENCODE cCREs.

Supplementary Data 2: Reporter activity across animal models.
All numbers from the enhancer reporter experiments in zebrafish, axolotl, mouse, and Ciona.

Supplementary Data 3: Coordinates of all cloned enhancer elements.

Summary table displaying the genomic coordinates of all enhancer elements from different species, as well
as primer sequences used to amplify them, length, and reporter activity of the enhancers in the different
species.

Supplementary Data 4: Thxtb enhancer element conservation across vertebrates.

Genomic location and genome versions are provided for each species. BLAST bridging chain is indicated
with -> showing BLAST hits from Tbxtb loci of one species to another and -x indicating lack chaining. (2x)
indicate tetraploid species with up to two tbxtb loci.

Supplementary Data 5: Enhancer element deletions and primer sequences for genotyping.
Summary table with genomic coordinates and sequences of the used target sites, primer, and sequences of
the three enhancer deletions.

Supplementary Data 6: Qualitative evaluation of Brachyury antibody staining in E9.5 embryos.
Summary table of qualitative evaluation of anti-Brachyury/T staining in E9.5 embryos.

Supplementary Data 7: Sequence and alignment files of 73, C, and / for Fig. 6 and Supplementary Fig. 6
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Supplementary Figure 1: Human enhancer element Cshort in zebrafish and time course of human
enhancer element C in axolotl.
(A) Schematic representation of human enhancer element C and Cshort.
(B,C) Representative FO transgenic zebrafish embryo expressing hs_Cshort:mCerulean in the notochord at
2 dpf. Images shown are a merge of bright field and fluorescence (B) and fluorescence only (C). Scale bar
in B: 0.5 mm, applies to B,C.
(D-l) Live images of representative FO transgenic axolotl embryos expressing hs_C:mCerulean at stages 14
(D), 27 (E), 36 (F), 37 (G), 43 (H) and close up of H from the blue outline (1). (D) dorsal view. (D,E) A, anterior,
P, posterior. Images shown are a merge of bright field and fluorescence. Scale bar in D: 1 mm; applies to
panels D-H. Scale bar in I: 0.5 mm.
(J-M) Confocal images of horizontal (J,L) and cross (K,M) sections through the axolotl embryo (stage 43)
show mCerulean fluorescence in the notochord in transgenic hs_C:mCerulean embryos (J,K) compared to
wildtype embryos (L,M), but not in the surrounding muscle which is highlighted by immunostaining of

fibronectin in red. Scale bars in J-M: 0.5 mm. The species silhouettes were adapted from the PhyloPic
database (www.phylopic.org).
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hs Cshort Tbox 201-216 Thox 218-233
- Tbox p<0.04 mmm

B
Motif ID Name Input Length Start Stop Strand Score P value Q value Matched sequence
MA0009.2 TBXT hs C 415bp 153 168  + -20.2115 0.0341 1 TCATCCACATCTGCAA
MA0009.2 TBXT hs C 415bp 153 168 - 8.5 0.00532 0.995 TTGCAGATGTGGATGA
MA0009.2 TBXT hs C 415bp 218 233  + -10.0577 0.00709 0.995 AAGCAAACACAGGAGA
MA0009.2 TBXT hs C 415bp 218 233 - 21.1154 0.0385 1 TCTCCTGTGTTTGCTT

FO, 48 hpf FO, 48 hpf
n=28/50 n=15/63

sexorh:EGFP ;exorh:EGFP

Supplementary Figure 2: Additional identified TBXT binding sites in enhancer C.

(A) Schematic depiction of the human enhancer element hs_Cshort including the four TBXT binding sites/T-
box motifs with different p-values; reverse complement direction. P values were calculated by FIMO.

(B) FIMO output with location of the T-box motifs, statistical significance, and matched sequence within the
enhancer elements.

(C,D) Injection of the enhancer element hs_Cshort with individual deleted T-box motifs hs_CshortATbox(184-
199) (C) and hs_CshortATbox(201-216) (D) as reporter constructs results in maintained reporter activity.
Arrowheads (C,D) mark EGFP expression in the pineal gland from the transgenesis marker exorh:EGFP.
Scale bar in C: 0.5 mm, applies to C,D.
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Tg(mm_Il):mCerulean

Supplementary Figure 3: Mouse enhancer elements T3 and / at 80% epiboly in zebrafish and mouse
enhancer element / stable zebrafish line.

(A-D) Mouse enhancer element mm_T3 and mm_I in zebrafish at 80% epiboly. Live images of representative
FO transgenic zebrafish embryos expressing mm_T3:mCerulean in the zebrafish embryo at 80% epiboly.
Images shown are a merge of bright field and fluorescence (A) and fluorescence only (B). Further, live images
of a representative FO transgenic zebrafish embryo expressing mm_I:mCerulean in the zebrafish embryo at
80% epiboly. Images shown are a merge of bright field and fluorescence (C) and fluorescence only (D). Scale
bars in A,C: 0.5 mm, applies to A,B and C,D. Asterisks in A, C mark the shield.

(E) Representative image of a F2 embryo at 2 dpf from F1 stable line for mouse enhancer element / crossed
to Tg(drl:mCherry) stable line labelling lateral plate mesoderm lineages. Transgenic F2 embryo recapitulates
the FO expression pattern in the notochord. Scale bar in E: 0.5 mm. The species silhouettes were adapted
from the PhyloPic database (www.phylopic.org).
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Supplementary Figure 4: Additional data to Monodelphis domestica enhancer elements.

(A) Mammalian phylogeny outlining the split into Marsupials and Eutherians.

(B,C) Monodelphis enhancer element md_T3 in zebrafish at 80% epiboly. Live images of representative FO
transgenic zebrafish embryos expressing md_T3:mCerulean and ubi:mCherry in the zebrafish embryo at
80% epiboly. Images shown are a merge of bright field and fluorescence (B) and fluorescence only (C). Scale
bar in B: 0.5 mm, applies to C. Asterisk in B marks the shield. The species silhouettes were adapted from
the PhyloPic database (www.phylopic.org).
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Supplementary Figure 5: Additional data to deletion of the three enhancer elements.

(A) Mouse Brachyury/T/TBXTB locus adapted from UCSC browser and annotation of single knockout alleles
AC and Al.

(B-F) E9.5 homozygous AC (B), homozygous Al embryos (C), heterozygous +/AC,I (D), heterozygous +/AT3
(E), and heterozygous +/AT3,C,I embryos (F) display normal Brachyury/T protein expression (red) in the
notochord as depicted by anti-T immunofluorescence. White dashed square in panels represents location of
right bottom inserts with 2x magnification. Scale bar in B: 1 mm, applies to panels B-F.

(G-l) Overall morphology of E12.5 embryos with different genotypes. Inserts in the left upper corner represent



anterior view of the trunk and tails. Blue lines indicate the location of immunofluorescence and H&E sections.
Inserts in the top left indicate wildtype looking tails. Scale bar in G: 1 mm, applies to panels G-I.

(J-L) Immunofluorescence of mouse transverse sections. Anti-Sox2 labels the neural plate, anti-Tbxt the
notochord, and DAPI marks nuclei. Sox2 and Brachyury/T expression is comparable amongst the shown
genotypes. Scale bar in J: 0.2 mm, applies to J-L.

(M-0) H&E staining of transverse sections confirm normal notochords. Arrowheads point to notochord. Scale
bar in M: 0.2 mm, applies to M-O.

(P) Percentage of adult animals with tail phenotypes.

(Q,R) Representative images of the kinked and small tail phenotype in TAS"AT™C! trans-heterozygous adult
animals.
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Supplementary Figure 6: Conservation of the enhancers T3, C, and / with their respective T-boxes.
(A-C) Conservation of the enhancers T3 (A), C (B), and / (C) and respective T-box motifs in different species.
T-box motifs with low p-value are marked in pink (see Fig. 2) and T-box motifs with higher p-value are marked
in violet (see Supplementary Fig. 2).



Supplementary Data 1: Genomic features of the human enhancer elements.

Summary table listing the genomic features of the human enhancer elements, including length, location
relative to transcription start (TS) site, ATAC- or T ChlP-seq peaks, conservation in mouse and Monodelphis,
H3K27ac, and ENCODE cCREs.

Supplementary Data 2: Reporter activity across animal models.
All numbers from the enhancer reporter experiments in zebrafish, axolotl, mouse, and Ciona.

Supplementary Data 3: Coordinates of all cloned enhancer elements.

Summary table displaying the genomic coordinates of all enhancer elements from different species, as well
as primer sequences used to amplify them, length, and reporter activity of the enhancers in the different
species.

Supplementary Data 4: Thxtb enhancer element conservation across vertebrates.

Genomic location and genome versions are provided for each species. BLAST bridging chain is indicated
with -> showing BLAST hits from Tbxtb loci of one species to another and -x indicating lack chaining. (2x)
indicate tetraploid species with up to two tbxtb loci.

Supplementary Data 5: Enhancer element deletions and primer sequences for genotyping.
Summary table with genomic coordinates and sequences of the used target sites, primer, and sequences of
the three enhancer deletions.

Supplementary Data 6: Qualitative evaluation of Brachyury antibody staining in E9.5 embryos.
Summary table of qualitative evaluation of anti-Brachyury/T staining in E9.5 embryos.

Supplementary Data 7: Sequence and alignment files of 73, C, and / for Fig. 6 and Supplementary Fig. 6
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