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Abstract

The evolution of eusociality requires that individuals forgo some or all their own reproduction to assist the reproduc-
tion of others in their group, such as a primary egg-laying queen. A major open question is how genes and genetic
pathways sculpt the evolution of eusociality, especially in rudimentary forms of sociality—those with smaller co-
operative nests when compared with species such as honeybees that possess large societies. We lack comprehensive
comparative studies examining shared patterns and processes across multiple social lineages. Here we examine the
mechanisms of molecular convergence across two lineages of bees and wasps exhibiting such rudimentary societies.
These societies consist of few individuals and their life histories range from facultative to obligately social. Using six
species across four independent origins of sociality, we conduct a comparative meta-analysis of publicly available
transcriptomes. Standard methods detected little similarity in patterns of differential gene expression in brain tran-
scriptomes among reproductive and non-reproductive individuals across species. By contrast, both supervised ma-
chine learning and consensus co-expression network approaches uncovered sets of genes with conserved
expression patterns among reproductive and non-reproductive phenotypes across species. These sets overlap sub-
stantially, and may comprise a shared genetic “toolkit” for sociality across the distantly related taxa of bees and
wasps and independently evolved lineages of sociality. We also found many lineage-specific genes and co-expression
modules associated with social phenotypes and possible signatures of shared life-history traits. These results reveal
how taxon-specific molecular mechanisms complement a core toolkit of molecular processes in sculpting traits re-
lated to the evolution of eusociality.
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Significance

Insects societies range from simplicity—as two totipotent females caring for few offspring, to complexity—as a commit-
ted honeybee queen supported by thousands of partially sterile workers. Understanding how social behaviors are regu-
lated in rudimentary forms of sociality is fundamental for uncovering the foundations of social evolution. Yet, we lack a
standardized test of this across independent social lineages at the molecular level. Using a combination of machine
learning and co-expression analyses applied in a standardized manner across multiple datasets, we uncover a core gen-
etic toolkit for social behavior that is shared across a range of lineages. Our continuing quest to understand the emer-
gence of rudimentary sociality must capture and account for the contributions of evolutionary history and life-history to

the building blocks of social life.

Introduction

Sociality fascinated and flummoxed Darwin (Darwin 1859;
Ratnieks et al. 2011)—how can evolution produce indivi-
duals who sacrifice reproduction to promote the reproduc-
tion of others? Inclusive fitness theory is widely invoked to
delineate how altruistic, non-reproductive individuals can
evolve by passing on their genes via relatives who are dedi-
cated reproductives (Hamilton 1964; Bourke and Franks
1995; West et al. 2015). In recent years, there has been a
shift in focus to understand the proximate machinery by
which the genome of a single species can give rise to the al-
ternative social phenotypes—reproductives (queens) and
non-reproductives (workers) (Strassmann et al. 1989;
Bourke and Franks 1995; Crozier et al. 1996; Rittschof
and Robinson 2016; Toth and Rehan 2017; Kapheim
2018). It is remarkable that these same phenotypic solu-
tions to social living have evolved at least eight times inde-
pendently within the Hymenoptera (bees, wasps, and ants)
(Hughes et al. 2008). Studies on the molecular basis of so-
cial phenotypes in these insects have shown how over evo-
lutionary time genotypes have been co-opted, adapted,
evolved, and/or converged to produce alternative pheno-
typic expressions of shared genomes (Evans and Wheeler
2001; Hunt et al. 2013; Simola et al. 2013; Berens et al.
2015; Toth and Rehan 2017; Weitekamp et al. 2017;
Warner et al. 2019). Despite the multitude of data, our abil-
ity to search for common or contrasting patterns of molecu-
lar machinery across different datasets is limited by
incompatibilities between datasets, arising from the rapidly
changing methods in molecular biology; moreover, the in-
fluence of ecology, life-history, lineage, and level of social
complexity (Wilson 1971) have been largely overlooked.
Sociality pervades the tree of life in all shapes and sizes,
from the emblematic social insects to the enigmatic slime
molds. In many cases, the social group is temporary and
ephemeral: group members retain autonomy and have
the power to exercise different gene-propagation strat-
egies as non-reproductives or reproductives and they can
change what they do over time, depending on intrinsic or
extrinsic factors. These traits describe rudimentary societies,
and can be found amongst the Dictyostelium slime molds,

Polistes paper wasps and some Ceratina small carpenter
bees. Some may have the option to choose between the so-
cial option and living alone; such as mongooses, halictid
bees, and stenogastrine wasps. Other types of societies,
less rudimentary, have become groups of specialists, with
each unit component becoming committed to a specific re-
productive or non-reproductive role, and being mutually
dependent on each other; so complex are these societies
that they constitute a major transition to a new level of in-
dividuality in their own right (Szathmary and Smith 1995).
These complex societies are epitomized in Hymenoptera
by honeybees, vespine wasps, most ants.

A comprehensive understanding of how altruists and
their beneficiaries can arise from the same genome remains
elusive, especially given the 200 Myr of Hymenoptera evo-
lution into a large diversity of biological complexities, en-
hanced by a proportioned research effort producing far
more datasets from complex societies than simpler societies
(Branstetter et al. 2018). Genomic and transcriptomic ana-
lyses of reproductive and non-reproductive phenotypes
(hereafter named social phenotypes) in Hymenoptera pro-
vide emerging evidence for two overarching, but contrast-
ing, patterns on the evolutionary nature of the machinery
that makes social phenotypes. The most prominent pattern
is that evolution appears to often co-opt the same aspects
of the genome to generate social phenotypes, suggesting
an important role for a so-called “genetic toolkit” for soci-
ality (Toth and Robinson 2007). The toolkits include specific
genes that are shared across species and differentially ex-
pressed between social phenotypes; for example, genes re-
lated to core metabolic and reproductive processes (e.g.,
the egg-yolk protein Vitellogenin (Amsalem et al. 2014;
Morandin et al. 2019)), possible “master” regulatory genes
(e.g., zinc finger transcription factor family [Rehan et al.
2018]), and genes related to neural and sensory processing
(e.g., neuroparsin-A-like [Qiu et al. 2018]). Signs of a toolkit
for sociality are also evident at the functional level, with nu-
merous studies uncovering shared gene pathways (Berens
et al. 2015), networks (Patalano et al. 2015; Morandin
et al. 2016), and molecular and cellular processes at the
mRNA level between queen and worker social phenotypes
(Wyatt et al. 2020; Shell and Rehan 2022). Genes
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upregulated in reproductives may relate to epigenetic mod-
ifications (Shell and Rehan 2019) or conserved functions
such as transcription or biosynthetic processes associated
with basic functions (Taylor et al. 2021). Along-side genetic
toolkits for sociality are signs that evolution sometimes uses
taxon-specific mechanisms that may have evolved de novo
to produce alternative phenotypes (Sumner 2014). For
example, genes that are evolutionarily younger (or taxo-
nomically restricted to specific taxa), have been found to
be frequently associated with caste-related gene expression
(Johnson and Tsutsui 2011; Ferreira et al. 2013; Feldmeyer
etal. 2014; Berens et al. 2015; Rehan and Toth 2015; Shell
et al. 2021). Comparative sociogenomics across independ-
ent lineages to date have compared across levels of social
complexity, for example rudimentary Polistes societies ver-
sus highly derived Apis mellifera societies (Patalano et al.
2015) or within a single origin of sociality (Wyatt et al.
2020; Shell et al. 2021). However, we have yet to under-
stand the extent to which there are shared patterns asso-
ciated with social phenotypes in rudimentary societies of
bees and wasps, using comparable methods of analyses.
This information is critical to develop a comprehensive
mechanistic scenario, on a molecular level, of how eusoci-
ality can evolve.

Here, we conducted a meta-analysis of existing transcrip-
tomic data for social phenotypes from six species of bees and
wasps, representing independent origins of rudimentary
forms of sociality, thus providing a much-needed standar-
dized cross-species assessment of the molecular basis
of alternative social phenotypes (reproductives and non-
reproductives). We focus our efforts on species exhibiting
rudimentary societies—including both facultatively and
obligately social species; thus, they vary in level of social com-
plexity, but they all share the trait of alternative female social
phenotypes (or rudimentary “castes”) which exploit differ-
ent reproductive roles. These types of societies are likely to
be the most informative for understanding how altruism
might emerge when social groups first form from a solitary
ancestor; although these species do not necessarily re-
present the first societies to evolve, their phylogenetic place-
ment and life history traits make them a useful proxy among
extant species (Rehan and Toth 2015). Comparisons of brain
transcriptomic data for these six species, therefore, allow us
to test the extent to which a conserved genetic toolkit may
be related to the evolution of altruism in bees and wasps
(Hypothesis 1: reproductive phenotype). Support for the
toolkit hypothesis predicts significant similarity in expression
across all six species at the gene and/or gene module level,
specifically for some of deeply conserved genes and path-
ways related to reproduction and regulation of core forms
of behavior (Amsalem et al. 2014; Qiu et al. 2018; Rehan
et al. 2018; Morandin et al. 2019).

Our six species also represent four independent origins
of sociality—two in the bees (~100 Ma between

Megalopta genalis and Ceratina spp. [Peters et al. 2017])
and two in the wasps (~166 Ma between Liostenogaster
flavolineata and Polistes spp. [Huang et al. 2019]) (fig. 1).
We include congeners in each group; these permit testing
of how social lineage and phylogenetic relatedness influ-
ences the degree to which molecular processes are shared.
Given the possible importance of taxonomically restricted
genes in caste determination, we predict that patterns of
gene expression in more closely related species (e.g., conge-
ners; family, or social lineage) may more closely mirror each
other than those with more distant evolutionary relationships
(Hypothesis 2: phylogenetic clade). Accordingly, these six spe-
cies offer the opportunity for a rigorous test of the extent to
which there is a shared set of proximate molecular processes
regulating altruistic behaviors, taking account of the level of
phenotypic specialism and commitment shown by altruists,
and account of lineage, ecology, and life history (fig. 1,
supplementary Table S2, Supplementary Material online).

Results

Using publicly available datasets, we compared head or
brain transcriptomes of reproductives and non-
reproductive phenotypes from each of the following six
species: the halictid bee M. genalis (Jones et al. 2017),
the xylocopine bees Ceratina australensis (Rehan et al.
2018), and Ceratina calcarata (Shell and Rehan 2019), the
stenogastrine wasp L. flavolineata (Taylor et al. 2022),
and the polistine wasps Polistes canadensis (Patalano
et al. 2015) and Polistes dominula (Taylor et al. 2021) (sam-
pling details in supplementary Table S4, Supplementary
Material online). The quality and completeness of the
mapped RNAseq reads are comparable across the six spe-
cies, despite variation in the level of replication across the
species (n=6-24 RNAseq samples per species,
supplementary Table S5, Supplementary Material online).
We identified 3,718 nearly single-copy orthologs across
the two clades (supplementary Table S6, Supplementary
Material online). Within clades we identified 5,787 nearly
single-copy orthologs across the three bee species, and
6,983 across the three wasps. All subsequent analyses fo-
cused on orthologous gene sets, unless named otherwise
as species-specific.

Overall Patterns of Gene Expression Cluster by
Phylogeny Rather Than by Social Phenotype

To first examine whether overall brain gene expression clus-
ters more by phylogeny than by reproductive phenotype
(Hypothesis 1), we performed a Principal Component
Analysis (PCA) on the species-aware Variance-Stabilized
Transformed (VST—see Methods) raw RNAseq counts for
the 3,718 nearly single-copy orthogroups identified across
all six species. We identified 81 principal components, and
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Fic. 2.—PCA shows that gene expression clusters by phylogeny rather than by reproductive phenotype.

the first five principal components explained 96.88% of the

variance in gene expression.

We tested whether these PCs were significantly
associated with phylogenetic clade or with reproductive
phenotype. We found that across the first five principal
components, phylogeny at the clade- and species-levels

was significantly correlated with gene expression, account-

ing for 96.9% and 61.2% of the total variance in gene ex-

pression, respectively (fig. 2A and 2B). We also found PC9
and PC10 to be significantly correlated with reproductive
phenotype (fig. 2B and 2C). PC9 was negatively correlated
with the reproductive phenotypes (r=-0.44, P<0.001),
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whereas PC10 was positively correlated with the reproduct-
ive phenotypes (r=0.37, P<0.001). However, these princi-
pal components only explained 0.30% the total variance.
This suggests that while there may be a detectable repro-
ductive phenotype-biased pattern of gene expression com-
mon to these species, the pattern is less robust than the
effect of phylogenetic clade and may pertain to only a small
fraction of genes in the transcriptome. When the first two
principal components for the transformed expression values
for each species were plotted, we found some species have
more distinct expression patterns (e.g., Ce. australensis) than
other species (e.g., Polistes canadensis) (supplementary fig.
S1, Supplementary Material online). We find that the percent
of variation in gene expression is explained predominantly by
phylogeny, supporting Hypothesis 2. Given the limitations of
PCA, namely the variables supported by the first PCs not
being related to the phenotypes, we next took a three-
pronged analytical approach to independently assess the
strength of shared patterns of gene expression by clade
and by reproductive phenotype, described below. This ap-
proach included gene differential expression (DE) analyses,
a Support Vector Machine (SVM) machine learning method,
and a weighted gene co-expression analysis (WGCNA).

All three panels use the 3,718 nearly single-copy ortho-
logs across the six species. Species-aware VST RNAseq
counts (which serve to normalize the data across species
making them comparable) were used to find the principal
components. (A) The first (PC1) and second (PC2) principal
components, which cumulatively explain 51.67% of vari-
ance in gene expression. Gene expression clusters tightly
by species but not necessarily by clade (bee vs. wasp).
Polygons have been drawn around the two phenotypes in
each species to show the lack of overlap. (B) The eigenvalue
correlations of the principal components with respect to
clade, species, and reproductive phenotypes were calcu-
lated using a Pearson correlation coefficient. Shown are
the correlations for the top ten PCs. Color shading indicates
the strength of the correlation, and asterisks indicate level
of significance after Benjamini-Hochberg (Benjamini and
Hochberg 1995) correction with *P<0.05, **P<0.01,
and ***P<0.001. (C) PC9 and P10 were significantly cor-
related with reproductive phenotype. The points represent
the individual RNAseq samples of the six species (n =81 to-
tal) separated by phenotype. PC9 was negatively correlated
with reproductive phenotype, whereas PC10 was positively
correlated. Note that the clustering of the genes in those
principal components overlap. Polygons are drawn around
the clouds of points to show the degree of overlap.

Genes with Large Fold-change Expression Differences do
not Identify Social Phenotype-biased Patterns

Previous analyses of each species’ dataset had revealed ex-
pression differences between reproductives and non-

reproductives (Patalano et al. 2015; Jones et al. 2017,
Rehan et al. 2018; Shell and Rehan 2019; Taylor et al.
2021). We took a two-pronged approach where we first
looked for common differentially expressed (DE) genes be-
tween reproductive and non-reproductive phenotypes
across the six species of bees and wasps, restricting our ana-
lysis to the 3,718 nearly single-copy orthologs. We found
197 orthologs that overlapped among two or more of the
six species after controlling for species-specific expression
variance (supplementary Table S19, Supplementary
Material online). Notably, there were no DE orthologs
found common to all six species (maximum four species).
Our second approach intended to assess whether there
were any functional annotations common across the six
species, thereby not restricting our analysis to orthologs.
We found no overlap in gene function across all six species
(supplementary Table S19, Supplementary Material online).
Given that DE gene analyses does not provide higher levels
of gene associations, such as regulatory network and co-
expressed gene networks, we then tested our hypotheses
using analyses measuring subtle changes in gene expres-
sion (SVM) and gene network analyses (WGCNA).

SVM ldentifies Correlated Sets of Genes that Predict
Social Phenotype Across all Species

Using a leave-one-species-out SVM Learning approach, we
identified a different set of 127 genes with consistent
shared patterns of DE among the social phenotypes of all
six species of bees and wasps (fig. 3A, supplementary
Tables S7-S9, Supplementary Material online). SVM rank
of each gene (i.e., how strongly an orthogroup predicts re-
productive phenotype) did not cluster species according to
lineage (fig. 3B).

Instead, each species is unique in its prediction strength
of gene expression, and branches off on its own in the hier-
archical clustering, except for the two Ceratina bee species
(sister taxa in fig. 3B). This could reflect the noise from all
3,718 genes, thus we focused next only on the predictor
orthogroups.

Gene ontology (GO) terms associated with these 127
orthogroups included histone H3-K27 methylation
(GO:0070734), sensory organ precursor cell fate determin-
ation (G0O:0016360) and hormone biosynthetic process
(GO:0042446) (supplementary Table S8, Supplementary
Material online), although none were significantly enriched
(Benjamini and Hochberg 1995). BLAST comparisons of
predictor genes against protein sequences from honeybee,
A. mellifera, revealed high similarity scores to the histone
demethylase UTY, the Vitellogenin precursor gene, and a
zinc finger transcription factor (supplementary Table S94,
Supplementary Material online). We found no significant
over-representation of transcription factors among the pre-
dictor genes. Overall, the SVM results suggest the presence
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cieties across all six species A) Overlapping analysis of leave-one-out SVM results, after testing one species on a training set made of the five other species. In the
upper part, the bar plot shows the frequency of orthogroups (n = 3,718) that are significantly predicting phenotypes (reproductives vs. non-reproductives) in
selected overlapping sets of leave-one-out SVM results. In the lower part, the relationship matrix shows filled circles for the species (top rows: wasps; bottom
rows: bees) sharing predictor genes sets (columns). For instance, 127 orthogroups are common predictor genes to all six species (left bar), and a total of 299 are
common predictor genes to at least five species (total of the first seven bars on the left). B) Orthogroup ranking in each SVM analysis clustered by Euclidean
distances of 3,718 orthogroups (in rows) and six species (in columns). The darker the shade, the more important this orthogroup is in predicting phenotype
(i.e., higher rank). The darker section in the vertical column on the left indicates the 127 orthogroups that are significantly predictor of phenotypes and com-

mon to all species.

of a shared genetic toolkit, albeit consisting of a small (3%)
number of genes (Hypothesis 1: reproductive phenotype).

We additionally explored lineage-specific SVMs to test
if closely related species presented similar patterns
(Hypothesis 2a: phylogenetic clade; i.e., among bees-only
and among wasps-only data, supplementary Table S7,
Supplementary Material online). Given the structural smal-
ler training datasets due to the inherent number of samples
in each lineage, we expect to find less predicting genes than
in our whole analysis. We found 56 predictor genes com-
mon to all three species of bees (18% overlap with 127
SVM predictor genes), including Krueppel-like protein,
and 148 predictor genes common to all three species of
wasps (52% overlap with 127 SVM predictor genes), in-
cluding zinc finger family genes (supplementary Tables
S10 and S11, Supplementary Material online, respectively).
Enriched GO terms included regulation of cell fate specifi-
cation (GO:0042659), sex differentiation (GO:0007548)

for bees; and chromatin organization involved in regulation
of transcription (GO:0034401), regulation of cell fate speci-
fication (G0O:0042659) for wasps (supplementary Tables
S10 and S11, Supplementary Material online, respectively),
although none were significantly enriched based on 5%
False Discovery Rate.

Gene Network Analyses Identify Common Modules of
Genes that are Associated With Social Phenotype

To test whether patterns of co-expressed genes are con-
served across our six species of bees and wasps
(Hypothesis 1) or within each clade (Hypothesis 2), we con-
structed a multispecies co-expression network combining
the data from all species and social phenotypes. We looked
for the presence of a conserved network and determined
whether modules within this bee +wasp gene network
are significantly associated with social phenotype.
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We found a conserved network across all six species
and within clade (fig. 4A, supplementary Table S12A,
Supplementary Material online). Using a minimum module
size of 30 for bees + wasps combined, we found five consen-
sus modules across the nearly single-copy orthogroups that
contain a mean of 182 (ranging from 105 to 342) genes
per module and mean connectivity (kME) of 0.0044
(+0.0747 SD). Of the five consensus modules identified for
bees +wasps, one module (blue) was significantly associated
with reproductive phenotype (supplementary Table S13,
Supplementary Material online). Of the 568 genes in blue

module, 137 were independently significantly associated
with  reproductive and non-reproductive phenotype
(meta-analysis of trait association, (Langfelder and Horvath
2008) supplementary Table S13, Supplementary Material
online). We further ascertained that these 137 genes signifi-
cantly associated with the consensus modules were not a re-
sult of random chance by employing a resampling approach
(P=0.001, supplementary Table S13, Supplementary
Material online, see also Supplemental Methods & Results).
This suggests that the significantly trait-associated orthologs
identified in consensus modules are robust, as they did not
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meet null expectations (supplementary Table S13A-C,
Supplementary Material online).

We additionally conducted a deeper WGCNA analysis by
lowering the module size (i.e., the threshold number of genes
included in a given module), effectively focusing on smaller co-
expression signals which are more likely to describe the evolu-
tionary mechanisms across lineages and origins of sociality
(Warner et al. 2019). We employed a novel iterative relaxation
by steps of module size=10 to allow for smaller modules
of co-expressed genes containing overall more genes
(Supplemental Methods, Supplementary Material online). At
the smallest module size of 10, we found 39 modules
with a mean size of N=31 genes (ranging from 12 to 104
genes) and a mean connectivity of 0.0061 (+0.08 SD,
supplementary Table S13A4, Supplementary Material online),
including 12 modules significantly associated with reproduct-
ive phenotype for a total of 1,468 genes. These phenotype-
associated genes were significantly enriched for GO
terms associated with chromatin such as regulation of chro-
matin assembly or disassembly (GO:0001672), RSC-type
complex (GO:0016586), brahma complex (GO:0035060)
(supplementary Table S14, Supplementary Material online).
Interestingly, one of the orthogroups in the significant mod-
ules contributes to the top 10% loadings of PC9 and PC10
(fig. 2C), with a sequence similar to Drosophila melanogaster's
small bristles gene associated with binding activity. In sum-
mary, we found multiple genes—notably chromatin regula-
tion—under a common co-expression pattern associated
with social phenotypes across bee and wasp lineages.

Comparing Methods Provides Robust Evidence of
Shared Genetic Toolkit at the Functional Level

We compared the sets of phenotype-informative genes
identified across the three methods of analyses (fig. 4:

Table 1

Functions of the Core Genetic Toolkit Genes as Identified by GO Analyses

WGCNA (panel A & B); DESeq (panel C) and SVM (Panel
D) to assess level of overlap and assemble a robust list of pu-
tative toolkit genes for sociality. Of these, 17 (13.4%) DEGs
overlapped with the significant phenotype-associated
genes from consensus WGCNA and only three (2.4%) over-
lapped with the 127 SVM predictor genes (supplementary
Table S17, Supplementary Material online). Only two genes
overlapped among all three methods: these were an
orthogroup nearly matching a chitin deacetylase isoform
in Apis laboriosa (OG0000706, BLAST nr, 99.4% identity)
involved in molting and pupation in insects (Li et al.
2021), and an uncharacterized protein in honeybee
(0OG0001935, supplementary Table S9, Supplementary
Material online). Given the small gene overlap across all
three methods, we narrowed our gene set to the overall be-
tween SVM and WGCNA results.

There are 71 orthologous genes identified as significantly
associated with reproductive status across all six species (fig.
4, supplementary Table S13, Supplementary Material on-
line), present in both the SVM predictor gene set (out of
127 genes) and the consensus WGCNA (out of 1,468 genes
in size-10 modules). We propose this shared gene set as a
putative genetic “toolkit” for rudimentary sociality in bees
and wasps. GO terms in the genetic toolkit include imaginal
disc-derived wing margin morphogenesis (GO:0008587),
sensory organ boundary specification (GO:0008052), neuro-
genesis (GO:0008052). The sequences in the genetic toolkit
match honey bee annotated proteins: zinc finger protein
ubi-d4 A isoform X1 (XP_395098.4), early growth response
protein 1 (XP_006560759.1, also upregulated in bee for-
aging (Singh et al. 2018)), and an isoform of tankyrase
(XP_026301139.1) involved in telomere length regulation
(Bonasio et al. 2012) (supplementary Table 521,
Supplementary Material online). We also looked at the
UniProt functions of those 71 genes; notably four categories

Number of
Toolkit Genes

Summary of Functions

Notable examples and overlap with prior studies

AT-rich interactive domain-containing protein 2 isoform: Differentially expressed between

nurses and foragers in B. terrestris and stingless T. angustula (Araujo and Arias 2021)

early growth response protein 1: Upregulated in honeybee foraging (Singh et al. 2018)
tankyrase isoform: Conserved differentially methylated gene between queens and workers

in the ants Ca. floridanus and H. saltator (Bonasio et al. 2012)

thyroid receptor-interacting protein 11 isoform: Differentially methylated gene between
honeybee castes (\Wang et al. 2020)
Examples: transport of ion (sodium channel protein 60E isoform X1), lipid (nose resistant to

fluoxetine protein 6 isoform X2), protein (exportin-7 isoform); carbohydrate and glucose
metabolic processes (beta-galactosidase)

7 Chromatin binding

9 DNA binding

1 Regulation of telomere length

1 Delivery of cellular proteins
responding to a signal

12 Cellular functions

3 Developmental processes

Examples: anatomical structure morphogenesis (carboxypeptidase M isoform), regulation
of developmental processes (ubiquitin carboxyl-terminal hydrolase 34)

19 Basic processes Non-exhaustive list: Protein modification (kelch-like protein diablo); RNA binding (poly(A)
RNA polymerase gld-2 homolog A isoform); Cell cycle (tetratricopeptide repeat protein
28 isoform); Uncharacterized proteins (n=12)
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that have been previously associated with caste differenti-
ation in social insects: chromatin binding (de Araujo and
Arias 2021), DNA binding (Singh et al. 2018), telomere
length regulation (Bonasio et al. 2012), and signal-based
protein delivery (Wang et al. 2020) (Table 1 and
supplementary Table S21, Supplementary Material online).

We further conducted a semantic similarity search of the
enriched GO Terms that were overlapping between the
genes identified using WGCNA and SVM, using Revigo's
semantic similarity index (Supek et al. 2011). Shared GO
terms were related to chromatin, such as supramolecular fi-
ber organization; telomeres, such as nucleotide catabolic
process; and caste differentiation, such as cell fate deter-
mination (fig. 5).

Revigo Semantic-similarity-based multidimensional scal-
ing of Biological Processes enriched GO Terms common to
consensus WGCNA and species-normalized SVM. Each
point represents a GO Term with a dispensability score be-
low 0.15. The darker the point is, the more semantically un-
igue the GO term is. A larger point represents a GO Term
common to a large number of genes in the shared genetic
toolkit.

Summary description of the genes that are common to
the SVM predictor list and to the WGCNA modules asso-
ciated with reproductive status (52 are characterized, 19
are uncharacterized; see full report in supplementary
Table S21, Supplementary Material online).

Discussion

Deciphering the building blocks of social behaviors in the
rudimentary societies offers novel insights into the proxim-
ate and ultimate processes of social evolution (Berens et al.
2015; West et al. 2015). Despite enormous interest in the
behavior, ecology and evolution of bees and wasps that ex-
hibit such rudimentary styles of sociality (Patalano et al.
2015; Shell et al. 2021), data on their lives in molecular
terms have been sorely lacking. The last few years have
seen some redress to this, but comparisons across datasets
have proved challenging and limited largely to comparisons
of gene lists (Kapheim et al. 2020; de Araujo and Arias
2021; Korb et al. 2021). The current study sought to
move beyond this, to conduct a controlled, comparative
meta-analysis of six species with rudimentary sociality,
spanning multiple taxonomic lineages (bees and wasps)
and origins of sociality. Using a combination of several ana-
lytical approaches, this study presents the most compre-
hensive and robust test to date of the contributions of
shared molecular mechanisms to shaping social pheno-
types in the early stages of social evolution.

Previous analyses were limited to post-hoc comparisons
of gene lists derived from datasets that have been analysed
using different pipelines and methods. However, such
comparative studies also present several challenges.

Comparisons between datasets are rarely quantitative
meta-analyses where collated data from different studies
are reprocessed and reanalyzed in a standardized manner.
This is especially important for transcriptomic datasets as
sequencing methodologies have changed substantially
over the last few years (Todd et al. 2016); the quality
(e.g., coverage), type of data (e.g., length of reads) and tis-
sue type (e.g., brain vs. whole head or body) may influence
the robustness of the comparisons being made. Even more
challenging is that the integrity of bioinformatic methods
has changed greatly over time, from upstream pipelines
that deal with the raw sequencing data, assembly programs
and annotation databases, to down-stream computational
methods that compare levels of gene expression, functional
enrichment and how genes relate in networks.

Our analysis utilized transcriptomic datasets of three
wasp and three bee species, displaying a variety of rudi-
mentary forms of social organization, but all characterized
by being comprised a small number of non-reproductive
adults nesting with one reproductive. In addition to trad-
itional analyses (differentially expression), we employed
co-expressed gene network and unsupervised statistical
machine learning methods (SVM), and successfully unveil
a common set of genes and molecular functions for this
cluster of species at the emergence of social group living.
We found that traditional methods (using statistical cut-
offs of significance based on DE) failed to identify cross-
species similarities; this suggests a more nuanced and
sensitive approach is needed to identify gene expression
similarities across such a wide evolutionary distance. The
application of machine learning methods is relatively
new to analyses of non-medical genomic data (Wyatt
et al 2020; Taylor et al 2021); using SVMs we were able
to identify a set of 127 genes that consistently performed
well in the classification of social phenotypes from their
gene expression across all six species. A comparison of
this trio of analytical methods allowed us to identify a con-
served set of genes related to reproductive and non-
reproductive social phenotypes in rudimentary societies
across lineages and life histories. This represents a putative
shared genetic toolkit for the early stages in the evolution
of a reproductive division of labor—a hallmark of
eusociality.

Social phenotypes were not the only factor explaining
patterns of brain transcription: we found a strong phylo-
genetic signal, whereby each bee and wasp lineage showed
taxon-specific patterns of brain gene expression. In fact, the
primary factor clustering differentially expressed genes
among our samples was taxonomic group (fig. 2). This is
not surprising given that these species represent 200 Myr
of divergence, and various degrees and forms of social or-
ganization across species (fig. 1); although, some of these
patterns could be due to differences in diet as bees are pol-
len collectors whilst wasps are predators. The impact of
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lineage-specific selection pressures, associated with both
independent evolution of social organization and emergence
of novel genes, has previously been highlighted in compara-
tive transcriptomics analyses between Hymenoptera lineages
(Berens et al. 2015; Warner et al. 2019; Kapheim et al. 2020).

The genetic toolkit empirical hypothesis for the evolution
of sociality posits there is an evolutionarily conserved
mechanistic trajectory to social organization across taxa
and social origins. It predicts deeply conserved common in-
dividual genes, or shared co-expressed gene network mod-
ules to be found as differentially expressed in convergent
social forms across taxa. The null hypothesis proposes no
detectable similarity in the expression of genes or modules
related to alternative social phenotypes shared across rudi-
mentary social species. The core set of genes differentially
expressed between alternative social phenotypes we iden-
tified here through multiple methods suggest that there
may be similar molecular functional changes across rudi-
mentary social insect societies. We identified conserved
functions in chromatin binding, which has been observed
differentially expressed between nurses and foragers
in the eusocial bees Bombus terrestris and stingless
Tetragonisca angustula (Araujo and Arias 2021) (Table 1).
We also identified conserved functions in DNA binding,
which is upregulated in honeybee foragers (Singh et al.
2018), and regulation of telomere length, which has been
shown to be differentially methylated between queens

and workers in ants Camponotus floridanus and
Harpegnathos saltator (Bonasio et al. 2012). Lastly, we
see genes related to reproduction (e.g., yolk protein vitello-
genin) and gene functions related to metabolism (e.g.,
carbohydrate and lipid metabolism), which have been con-
sistently implicated as key players in a conserved genetic
toolkit for sociality (Toth and Robinson 2007; Amsalem
et al. 2014; Berens et al. 2015; Morandin et al. 2019).
These results—71 core genes—are within the same range
as other studies on conserved expressed genes between:
ant slave-making species and host species (n=62 genes
shared across 162 Ma of divergence [Feldmeyer et al.
2022]); animal behavior after social challenge (n=6 genes
shared across 680 Ma of divergence [Saul et al. 2019]).
Overall, the emerging picture from our and these studies
is that there are conserved gene modules recruited during
eusocial evolution for the regulation of convergent social
traits (e.g., castes), but few genes are individually predictive
of a given trait. The involvement of suites of interacting
gene modules is not unexpected, given the complexity of
social traits (i.e., castes involve coordinated suites of behav-
ioral, physiological, and developmental differences). Thus,
unlike the classic evo-devo toolkit, the molecular toolkit
for insect sociality may be more “loosely” structured
around gene modules and functions, and thus detectable
with more nuanced approaches such as the machine learn-
ing approach used here.
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To conclude, this study used a robust multi-pronged
meta-analysis, to identify a core set of genes that are con-
sistently associated with the social phenotypes typical of ru-
dimentary group living in the Hymenoptera. These are a
putative genetic toolkit for the early stages of social evolu-
tion, laying the foundations for the emergence of a key hall-
mark of eusociality—a reproductive division of labor. This
toolkit has been hypothesized to form the mechanistic basis
upon which more derived forms of eusociality may have
arisen through evolution (Toth and Rehan 2017; Wyatt
et al. 2020). We encourage adoption of such multi-
pronged analytical approaches in future studies that
include more origins of sociality, a wider range of forms
of social living, and across larger genomic datasets. Such
studies will allow us to understand whether the genetic
toolkit uncovered here is also related to the elaboration
of sociality and the development of superorganismality.

Materials and Methods

Datasets

Datasets and phenotypic comparisons for the three bee
species (Ce. australensis, Ce. calcarata, M. genalis) and
three wasp species (Polistes canadensis, P. dominula,
L. flavolineata) are given in supplementary Table S2,
Supplementary Material online. RNAseq raw reads were
downloaded from NCBI (supplementary Table S3,
Supplementary Material online). For the reproductive and
non-reproductive phenotypes, sample sizes ranged from
three to 12 individual whole-brains (except for Ce. calcara-
ta, which were individual whole heads). Raw read depth per
sample ranged from 17,453,576 to 96,115,726 (mean
32,514,855.6 +13,571,313.98 SD) (supplementary
Table S2, Supplementary Material online). All scripts are
available on GitHub: https:/github.com/EmelineFavreau/
MajorTransitionScripts/tree/master/comparative-
transcriptomics.

Orthogroup Identification

Prior to orthogroup identification, we assessed completeness
of the predicted genes and longest-isoform protein sequences
for each of the six species with BUSCO using the Arthropoda
and Hymenoptera lineage reference datasets, respectively
(supplementary Tables S2 and 3, Supplementary Material on-
line) (Simao et al. 2015). We then obtained orthologous gene
sets using OrthoFinder v. 2.4.0 (Emms and Kelly 2019) using
A. mellifera (honeybee) as an outgroup. Because bees and
wasps diverged nearly 200 Ma (Peters et al. 2017), and diver-
gence times within the bees and wasps are 90-100 Ma
and 145-167 Ma (Branstetter et al. 2017; Peters et al.
2017), respectively, we used a relaxed filtering approach for
orthogroup identification. We allowed between one and
three gene copies per species and for an orthogroup to be

absent in up to one species (supplementary Table S6,
Supplementary Material online).

Brain Transcriptome Read Mapping

We reprocessed all RNAseq raw reads in a standardized way
using the publicly available Nextflow wrapper nf-core/ra-
seqv.1.4.2 (di Tommaso et al. 2017). In short, for each da-
taset, we trimmed raw RNAseq reads with TrimGalore!
(Krueger et al. 2021), mapped the reads to their respective
genome with STAR (Dobin et al. 2013), and obtained GFF
(gene_id) feature read counts with FeatureCounts (Liao
et al. 2014) (supplementary Table S5, Supplementary
Material online). Read directions were adjusted as needed
per experiment. We assessed mapping quality to ensure
similarity across the six species’ datasets (Supplemental
Methods and Results). Throughout, we refer to annotated
features from the GFFs as “genes’.

Pre-processing Transformation of Data

Fair comparison of features between species, such as DEGs
and SVM, requires degrees of pre-processing transforma-
tions. We employed three methods: variance stabilization,
species normalization ('species awareness’), and data scal-
ing, which we describe here. Prior to all analyses, combined
raw read counts of all species and samples were trans-
formed by variance stabilization using the VST function in
DESeq2 (Love et al. 2014). This generated constant var-
jances within the matrix of all read counts (i.e., a homosce-
dastic dataset). Where the experimental design called for
“species awareness’, that is controlling for the effect of
species on gene expression, we included species as an ex-
planatory variable in the model when constructing the ma-
trix of VST read counts. This generated species-aware data.
Finally, SVM analyses require center-scaled data to make
each sample comparable to another. This was accom-
plished by setting the mean of the species-aware VST
counts to zero.

Principal Component Analysis

We conducted a PCA to examine whether overall brain
gene expression clusters more by phylogeny than by repro-
ductive division of labor as hypothesized. We performed
the PCA using the PCAtools package in R (Blighe and Lun
2021) on the VST (Love et al. 2014) raw RNAseq counts
for 3,718 nearly single-copy orthogroups identified across
the six species. We favored PCA over clustering methods
such as cancer single-cell RNAseq autoencoders (Eraslan
etal. 2019), because our sample size is smaller than typical
cancer single-cell RNAseq. A PCA is an unsupervised meth-
od used to reduce the dimensionality in large datasets by
taking linear combinations of data—here gene expression
—to define a new set of uncorrelated variables, called prin-
cipal components. PCs are ordered to capture the

Genome Biol. Evol. 15(1)  https://doi.org/10.1093/gbe/evac174 Advance Access publication 17 December 2022 11

£20Z 1890190 8| U0 Jasn Ajsianiun uesayinT ouoed Aq 6949269/t L 9BAS/1L/S | /a[onie/aqB/wod dnotolwapeoe//:sdny woJl papeojumoq


http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
https://github.com/EmelineFavreau/MajorTransitionScripts/tree/master/comparative-transcriptomics
https://github.com/EmelineFavreau/MajorTransitionScripts/tree/master/comparative-transcriptomics
https://github.com/EmelineFavreau/MajorTransitionScripts/tree/master/comparative-transcriptomics
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
https://doi.org/10.1093/gbe/evac174

Favreau et al.

GBE

maximum variance explained, and thereby can be used to
automatically define PCs that explain the most variation
possible in gene expression. We took the top five PCs and
tested individual eigenvalues for correlations with our traits
of interest: clade, species, and reproductive phenotype. We
then used PC biplots to infer the distances between sam-
ples based on their gene expression.

We also repeated each PCA on each species for all genes
with an RNAseq transcript > 1, separating samples by whether
they come from reproductive versus non-reproductive sam-
ples (supplementary fig. S1, Supplementary Material online)
and found that gene expression patterns are, in some species
more than in others, distinct between alternative social
phenotypes. Finally, we ran randomized PCA by shuffling
the attributed phenotypes and confirmed that the subtle dif-
ferences between gene expression cannot be solely measured
by PCA (supplementary fig. S23, Supplementary Material
online).

Machine Learning Analyses with SVM

SVM (Cortes and Vapnik 1995) is a supervised classification
algorithm that can be used to predict phenotypes on the
basis of data classification such as morphological measure-
ments or expression patterns. It has been used to distin-
guish subtle differences in human cancer subtypes (Yuan
et al. 2020), to find non-expressed yet cancer-associated
genes (Ghanat Bari et al. 2017) and to explore microbiome
(Dhungel et al. 2021); as well as to contrast behavioral phe-
notypes in social Damaraland mole-rats (Johnston et al.
2021), in honeybees (Liang et al. 2014), and paper wasp
P. dominula (Taylor et al. 2021). SVM is a complementary
approach to conventional differential gene expression ana-
lysis such as DESeq2. It has proven successful classification
accuracy in benchmarks study against other methods such
Random Forest (Zararsz et al. 2017) and Naive Bayes
Classifier (Ramdaniah et al. 2019) and has proven equally
successful as Random Forest in predicting waggle dance
genes (Veiner et al. 2022).

SVMs identify the hyperplane between classes such that
the distance between the hyperplane and the nearest point
of the classes has been maximized. Even when there is no
separating hyperplane, SVM produces classifiers by allow-
ing some classification error up to a constant and maximiz-
ing the margin between the hyperplane and the nearest
point. This may further make it a suitable choice for distin-
guishing subtle differences in gene expression that may be
less likely to be detected by conventional DE methods due
to either low sample sizes or noisier expression patterns,
as seen in plastic phenotypes (Taylor et al. 2021) or in-silico
pooled data containing both septic and non-septic patient
samples (Schaack et al. 2021).

We use a Train/Test Split approach, in which we test the
data of each species against a model that has been trained

on the other five species’ datasets (see schematic in
supplementary fig. S21, Supplementary Material online).
The result is a list of the 3,718 nearly single-copy ortholo-
gous genes predicted by the SVM as differentially expressed
between reproductive (coded as 7) and non-reproductive
(coded as 0) phenotypes.

In short, the raw read counts of the 3,718 orthologous
genes in reproductive and non-reproductive samples from
the six species (82 samples in total) were first transformed
by variance stabilization with use of the full experimental
design (i.e., within species normalization) in the DESeg2 R
package (Love et al. 2014; R Core Team 2014). The data
matrix was then center-scaled. To identify the appropriate
kernel function, we calculated accuracy rates from SVM
models run on each dataset using the e1071 R package
(Meyer et al. 2015) with linear and radial kernels and the
following parameters: formula = phenotype ~ read counts,
type = C-classification. Radial kernel consistently led to bet-
ter prediction accuracy (i.e., higher accuracy rate for radial
kernel than linear kernel, see confusion matrices in
supplementary Table S7, Supplementary Material online
and Receiver Operating Characteristics curves in
supplementary fig. S20, Supplementary Material online).
Thus, all subsequent models were fit using this kernel and
a grid search of gamma between 10" and 107> and cost
between 23 and 2°. Next, for each of the six species, we
constructed a full model with a k= 3-fold cross validation,
in which a random third of the training samples is tested
against the remaining training samples. Next, for each of
the six species, we constructed a full model with a k=
3-fold cross validation, in which a random third of the sam-
ples for that species is tested against the remaining all spe-
cies' samples as training data. K-fold Cross-Validation
technigue was recently benchmarked the best for sample
size range of 20-100 (Vabalas et al. 2019). We thus ob-
tained a full-model prediction error rate for each species
based on the predicted phenotype versus the actual pheno-
type. Error rate is the performance measure of the predic-
tion, specifically the mean squared error rate for
regression (from the e1071 R package tune function): the
smaller the error rate is, the better the SVM predicts the
phenotype based on the read counts.

We then opted for feature selection (i.e., filtering for the
genes that best predict the phenotype) as an embedded
method in the SVM iterations, because it is fast, better per-
forming than univariate filter techniques (Saeys et al. 2007),
and widely used in detection of loci associated with cancer
(Abeel et al. 2010), plant drought-resistance (Liang et al.
2011), honey bee waggle dance (Veiner et al. 2022). We
performed a leave-one-species-out iterative process, in
which one species was chosen as the test dataset and the
remaining five were used as the training set. Over 20 itera-
tions, SVYM models were run while fine-tuning the para-
meters of gamma and cost. The resulting model with the

12 Genome Biol. Evol. 15(1) https://doi.org/10.1093/gbe/evac174 Advance Access publication 17 December 2022

£20Z 1890190 8| U0 Jasn Ajsianiun uesayinT ouoed Aq 6949269/t L 9BAS/1L/S | /a[onie/aqB/wod dnotolwapeoe//:sdny woJl papeojumoq


http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
https://doi.org/10.1093/gbe/evac174

Core Genetic Toolkit for Reproductive Division of Labour in Rudimentary Insect Societies

GBE

lowest error rate was used to assign weights to each of the
3,718 genes, where a higher weight meant that the gene
was better at predicting the reproductive phenotype (coded
as 7). Feature weights were calculated by taking the matrix
product of the coefficients for the model with its support
vectors. We then performed recursive feature elimination,
where at each step the gene with the lowest weight was re-
moved, and the resulting model was again tuned using the
remaining genes. This remove-one-gene cycle was iterated
until the input dataset contained 100 genes only, when the
error rate trend increases as seen in a previous study (Taylor
etal. 2021). We selected the optimized model with the low-
est error rate amongst these 3,618 best-performing mod-
els. To validate the models, we ran additional
randomization tests in which focal species’ phenotypes
were shuffled prior to be tested by the trained SVM model.
We ran this randomization 100 times for each focal species,
and assessed the true error rate against the distribution of
error rates from randomized tests (supplementary fig.
S22, Supplementary Material online). Lastly, a final SVM
model was run using the parameters and the gene predic-
tors of the optimized model. This resulted in a set of gene
predictors that represent DE genes between the reproduct-
ive and non-reproductive phenotypes for each of the six
species. We then further filtered these predictor genes for
those that overlap (1) across all six species and (2) overlap
within just the bees or just the wasps. We also ran SVMs
within a given lineage: testing a bee against the two other
bees, and a wasp against the two other wasps.

Weighted Gene Co-expression Network Analysis

We used two conceptual frameworks to compare gene co-
expression network conservation across all six species of
bees and wasps, as well as within each clade. First, a multi-
species co-expression network was constructed using near-
ly single-copy orthogroups to provide an overarching view
of network structure for the species compared (i.e.,
orthology-dependent). We used this to ask whether a con-
served network of gene expression exists, and whether any
modules within that network were significantly associated
with social phenotype across all species compared.
Second, an individual species network was constructed
from all genes with sufficient expression for that species, re-
gardless of orthology (i.e., orthology-independent). All ana-
lyses were performed using the “wgcna” package
(Langfelder and Horvath 2008) on variance-stabilized
(Love et al. 2014) read counts after removing genes with
zero expression or without variance across samples.

First, we constructed consensus co-expression networks
using variance-stabilized read counts with Weighted Gene
Co-expression Network Analysis (WGCNA). We manually
constructed consensus networks using the nearly single-
copy orthogroups shared across the species in the

comparison. The resulting consensus network modules
are based on the co-expression distance after hierarchical
clustering. We then performed a meta-analysis testing for
significance of network modules with reproductive pheno-
type and report those genes with significant membership in
the phenotype-correlated modules and which show signifi-
cant correlation with the phenotype themselves. We calcu-
late a Z-score to test the module preservation relative to our
phenotypes of interest, as well as to test whether specific
genes are significantly correlated across all species with
(a) phenotype-associated modules and (b) reproductive sta-
tus regardless of module status (Langfelder et al. 2013). We
further tested whether significantly trait-associated ortho-
logs were a result of random chance and small sample sizes
by testing whether they deviate from a null expectation. To
do this, we shuffled the reproductive status labels before
constructing the network, and resampled the network k=
1000 times. We calculated the proportion of point esti-
mated genes found in a given resampling event, and de-
rived a two-tailed P-value as the number of times this
proportion was more extreme than 50%, the null expect-
ation, divided by k resampling events.

Note that the topology of the network is highly depend-
ent on the minimum module size set in WGCNA; therefore,
we also took an iterative approach to the minimum module
size parameter. We report results for a minimum module size
of 30 and 10, as 10 was found to be robust for module pres-
ervation in a benchmarking study (Li et al. 2015).

Second, we constructed individual co-expression net-
works from variance-stabilized read counts of all genes
with minimal expression regardless of homology. The genes
that were significantly correlated with reproductive and
non-reproductive phenotypes were then used to test for
common functional enrichment among the species.

Differential Gene Expression Analysis

To compare with the results of the SVM, differentially
expressed genes were called between reproductive and
non-reproductive phenotypes in two ways: orthology-
dependent and orthology-independent. The orthology-
dependent analyses were intended to compare the results
of DE gene calling to those of the SVM. We also opted
for an orthology-independent analysis to identify possible
non-orthologous differentially expressed (DE) genes. For
example, a common toolkit across these six species might
not be conserved genes but instead conserved functions.
For the orthology-dependent analysis, for each species
we used DESeq?2 (Love et al. 2014) to call DE genes between
reproductive and non-reproductive phenotypes. In this
method, we applied the DESeq function to the raw read
counts for the nearly single-copy orthogroups for the spe-
cies comparisons being made (all six species, bees only,
wasps only). Significant differential gene expression was
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determined using an FDR-adjusted P-value of 0.05 as the
threshold. For the orthology-independent analysis, the
raw read counts for all genes for each species in the com-
parison were used. We also employed a permutation-
testing approach to ensure that there was no difference
in the numbers of DE genes obtained from DESeq2 due
to uneven sample sizes among our  species
(supplementary Table S6, Supplementary Material online).
The DESeq function was applied only once using a model
that included a term for clade in addition to phenotype,
and significant DE genes were called using an
FDR-adjusted P-value of 0.05. This was to allow us to iden-
tify any genes with a sufficiently strong signal of DE across
all species in the comparison after accounting for
phylogeny.

For the orthology-independent analysis, we took all raw
read counts for each species without filtering for
orthogroups. For each species, we identified which genes
are significantly DE between the reproductive phenotypes
using an FDR-adjusted P-value of 0.05. We once again em-
ployed a permutation approach to correct for differences
between the species in the number of samples.

Functional Interpretation of Candidate Genes

We performed GO Term enrichment analysis for genes that
are significantly DE. We first obtained the best similarity hits
against D. melanogaster's protein set using BLASTp
V.2.2.30 (Altschul et al. 1990) for each species’ protein
set. We then obtained enriched GO Terms using R
biomaRt v. 2.42.1 (Durinck et al. 2005) and TopGO
v. 2.38.1 (Alexa and Rahnenfuhrer 2010) with the follow-
ing parameters: terms with at least five annotated genes,
classic algorithm, Fisher statistics. We find between 39
and 206 enriched Biological Processes GO Terms per spe-
cies, between 18 and 72 enriched Molecular Function GO
Terms, between 4 and 68 enriched Cellular Components
GO Terms (Table ST9). Only a few GO Terms are common
to several species, the largest set is 15 GO Terms common
to Ce. australensis and L. flavolineata. We also performed
GO Term enrichment analysis for WGCNA genes
(supplementary Table S10, Supplementary Material online)
and SVM predictor genes (supplementary Tables S4, S16,
and S17, Supplementary Material online).

We performed a REVIGO analysis of the enriched GO
terms from 127 SVM predictor genes (parameters: medium
resulting list, species: Drosophila melanogaster, SimRel
measure [Supek et al. 2011]), reducing the GO Term list
to less redundant Terms (fig. 3).
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