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ABSTRACT ARTICLE HISTORY
Improving the interpretability of geospatial artificial intelligence Received 8 September 2022
(GeoAl) models has become critically important to open the ‘black Accepted 12 March 2023
box’ of complex Al models, such as deep learning. This paper
compares popular saliency map generation techniques and their
strengths and weaknesses in interpreting GeoAl and deep learn-
ing models’ reasoning behaviors, particularly when applied to
geospatial analysis and image processing tasks. We surveyed two
broad classes of model explanation methods: perturbation-based
and gradient-based methods. The former identifies important
image areas, which help machines make predictions by modifying
a localized area of the input image. The latter evaluates the con-
tribution of every single pixel of the input image to the model’s
prediction results through gradient backpropagation. In this study,
three algorithms—the occlusion method, the integrated gradients
method, and the class activation map method—are examined for
a natural feature detection task using deep learning. The algo-
rithms’ strengths and weaknesses are discussed, and the consist-
ency between model-learned and human-understandable
concepts for object recognition is also compared. The experi-
ments used two GeoAl-ready datasets to demonstrate the gener-
alizability of the research findings.
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1. Introduction

Geospatial artificial intelligence (GeoAl) is an exciting and rapidly growing transdiscipli-
nary research area that fuses Al with geographical laws and principles for solving geo-
spatial problems in a data-driven manner (Li 2020). Recent breakthroughs in deep
learning technologies (e.g. convolutional neural networks [CNNs], recurrent neural net-
works, transformers, and deep reinforcement learning) have led to a flourishing of
their applications in geographic information science (GlScience), such as terrain feature
detection (Buscombe and Ritchie 2018, Helber et al. 2019, Li and Hsu 2020, Wang and
Li 2021, Hsu et al. 2021), weather forecasting and nowcasting (Zhang et al. 2019),
extreme climate event detection (Kurth et al. 2018), and neighborhood property
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quantification and change monitoring (Gebru et al. 2017, Koo et al. 2022, Li 2022a).
Although a wide variety of methods have been developed to support image analysis
and machine vision, CNNs remain the most widely used type of deep learning model,
achieving state-of-the-art performance (Li and Hsu 2022, Li et al. 2022a). By stacking
multiple convolutional layers together, a CNN has the ability to hierarchically extract
the prominent features of the target objects within an image scene for classification,
detection, or segmentation purposes.

Although CNNs have a well-defined model structure and reproducible parameters,
their reasoning process remains a black box and is difficult to interpret due to the
complex, non-linear nature of the model. The opaque decision-making process raises
concerns about the scientific trustworthiness of the model’s prediction results (Li and
Arundel 2022, Kedron et al. 2021). The lack of model explainability may further hinder
the replicability of research using GeoAl (Goodchild and Li 2021). Hence, besides aim-
ing to achieve outstanding performance in big data analytics in relation to aspects
such as detection and prediction, it is also important to develop algorithms that
increase our understanding of the knowledge-derivation process of an Al machine. To
address this issue, the Al and GeoAl communities have been developing model
explanation methods and tools to support the visual examination of model behavior
and to connect this to the cognitive concepts used by humans when making deci-
sions. For instance, feature attribution is a commonly used approach to explain a mod-
el's predictions by attributing a decision to the input data. Based on different
implementation mechanisms, the attribution can be identified at the pixel level, fea-
ture level, instance level, and concept level (Lundberg and Lee 2017). As the deep
CNN models normally employ more complicated interaction strategies among the
neural network layers, the most recent feature attribution methods have focused on
identifying attribution at the first three levels (Simonyan et al. 2014, Zeiler and Fergus
2014, Fong et al. 2019, Selvaraju et al. 2020).

In the field of geography, efforts have also been made to enhance the interpretabil-
ity and explainability of GeoAl. For instance, Li et al. (2022b) employs an explainable
Al (XAl) package, called SHapley Additive exPlanations (SHAP) to compare the spatial
effects extracted by a machine learning-based regression model (i.e. XGBoost) with
those of more traditional statistical approaches, such as the spatial lag model and
multi-scale geographically weighted regression (MGWR) model. The research found
that XGBoost has the ability to excerpt local spatial effects similar to those of classic
models. This research shed new lights on using machine learning techniques for mod-
elling spatial processes. Xing and Sieber (2021) also used SHAP, within a land-use clas-
sification case, to understand which areas in the input data positively or negatively
influenced a CNN model’s prediction result. Two example images were provided and
the importance of feature maps at different stages of the convolution process were
visualized. The authors argued that although the XAl tool can provide some level of
explanation, it is difficult to link this explanation to a semantic or geographic concept.
They therefore called for a deeper integration of XAl and GeoAl to understand how
location and geographic attributes (e.g. those adhering to Tobler’s First Law of
Geography) play a role in GeoAl modelling and decision making (Li et al. 2021).
Another interesting work was published by Duckham et al. (2022), who described an
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explainable spatiotemporal reasoning software framework for GeoAl applications.
Different from the above works, this research adopted a top-down approach, using
ontology and rule-based reasoning to derive new information.

To further advance the field of explainable geospatial artificial intelligence (GeoAl),
particularly as it relates to making deep learning models (e.g. CNNs) more explainable,
this paper surveys and compares popular model explanation approaches from com-
puter vision. It uses a GeoAl-ready natural feature dataset used in Li and Hsu (2020) as
an example to discuss the strengths and weaknesses of each method, catalog the fea-
ture types each method finds, and examine whether they agree with human-under-
standable concepts for characterizing a natural feature. To demonstrate our
conclusions’ generalizability, the experiments were also conducted on GeoNat v1.0—
another natural feature training dataset (Arundel et al. 2020). The remainder of this
article is organized as follows: Section 2 presents a review of the literature. Section 3
introduces the feature attribution methods for XAl Section 4 presents a series of
experiments that identify the characteristics of each method and uses them to com-
pare the model-learned features and human-understandable concepts for the image
classification of natural features. Section 5 summarizes the findings and discusses the
generalizability of the research findings. Section 6 concludes the paper and identifies
future research directions.

2. Literature review

Recently, deep learning techniques have shown outstanding predictive performance in
image analysis and computer vision. However, they yield a lower level of explainability
than other Al methods due to model complexity (Gunning and Aha 2019, Li and
Arundel 2022). An initial attempt to observe and explain a deep learning model’s deci-
sion-making process was through visualizing various model components, such as filters
and feature maps, but the information gained from this exercise can hardly be
mapped to meaningful concepts (Li et al. 2017). Recent XAl developments for deep
learning models have shown two trends: developing global and per-decision explain-
able Al algorithms (Phillips et al. 2020). A global, explainable Al algorithm treats a
deep learning model as a black box that can be queried and develops an algorithm
approximation to explain the model. Testing with concept activation vectors (TCAV;
Kim et al. 2018) is one such global algorithm. It tests a model’s decision sensitivity to
various pre-defined concepts, such as color, texture, and some specific patterns, from
which it draws a conclusion about important decision factors for the model.
Conversely, a per-decision explainable Al algorithm aims to determine why the model
made a particular decision. Unlike the global algorithm, a per-decision algorithm does
not require predefining or generating hypotheses about which concepts are important
to the model. Instead, it distills evidence from each individual decision, allowing for
the discovery of potentially unknown patterns and concepts to improve the under-
standing of a model’s learning process. We will mainly examine algorithms belonging
to the second category in our research.

A very popular technique for deriving per-decision explanation is through the gen-
eration of a saliency map that visualizes the importance of different regions in the
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input image that factored into the final decision (i.e. classification or object detection).
As known, deep CNN models stack multiple convolutional layers together to perform
feature extraction from the original input image. During this process, downsampling is
often applied to the input image and the feature maps generated from each convolu-
tional layer. After the prominent image features are extracted, the feature maps are
sent to fully connected layers for image classification. The model training process
involves learning a set of model parameters, also called weights, to make a prediction
as close to the ground truth as possible. The learning process is iterative by nature
and contains forward propagation (i.e. forward pass) and backward propagation (i.e.
backward pass). During the forward pass, the classification result is generated and
compared with the ground-truth to calculate the loss. The loss is propagated back to
each weight through backpropagation, which is a way to compute the partial deriva-
tive of the loss with respect to the weights such that a model learns how to adjust
each weight and improve its predictability. The set of values capturing partial deriva-
tives is called the gradient and the weight adjustment process is called the gradient
descent because the weights are adjusted to minimize the loss.

The saliency map generation techniques leveraged to explain CNN model behaviors
visually and quantitatively can be categorized into two broad classes: perturbation-
based methods (Zeiler and Fergus 2014, Ribeiro et al. 2016, Fong and Vedaldi 2017,
Sundararajan et al. 2017, Petsiuk et al. 2018, Hesse et al. 2021) and gradient-based
methods (Simonyan et al. 2014, Zeiler and Fergus 2014, Springenberg et al. 2015,
Zhou et al. 2016, Selvaraju et al. 2020).

Perturbation-based methods systematically modify different portions of the input
image and analyze the output sensitivity. They reveal which image regions contribute
more and are likely more important to the model’s prediction results. Zeiler and
Fergus (2014) developed an approach to perturb images with a gray patch sliding
across the images and monitor result changes in both the classifier's output and the
feature maps. We call this an occlusion approach. Perturbation-based methods that
involve strategies other than occluding images by raster scanning have also been
introduced, such as one involving random masking using Monte Carlo sampling
(Petsiuk et al. 2018) and another using superpixel masking (Ribeiro et al. 2016). Here
superpixels represent a continuous patch of pixels with similar intensities. Fong and
Vedaldi (2017) further proposed an optimization approach to identify a mask that min-
imizes the prediction score of a certain class; this mask would contain much of the
information responsible for a classifier's decision about an object class. In these per-
turbation-based techniques, the masks may consist of constant values, noise, or a blur-
ring effect. Although perturbation-based methods have been proven to be effective in
removing key information from the original image (Fong and Vedaldi 2017), there is
concern about whether these methods would also introduce spurious structures in the
input image and therefore produce unexpected outputs (Nguyen et al. 2015, Kurth
et al. 2018).

Another family of methods for generating saliency maps is gradient-based methods.
Unlike perturbation-based methods, which measure the influence of local areas on the
prediction results, gradient-based methods measure the contribution of each individ-
ual pixel. These methods also answer the question of how much the prediction results
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would change if variation were introduced in a single given pixel. If pixels are viewed
as variables and the output as a function of them, these methods are essentially com-
puting the partial derivative of the output with respect to a given pixel.
Backpropagation facilitates the calculation of partial derivatives, and the results can
also be called the gradient, which can then be visualized as a saliency map. It is for
this reason that these types of CNN visualizations are called gradient-based methods.
Some recent methods calculate gradients at the input space (Simonyan et al. 2014,
Zeiler and Fergus 2014, Springenberg et al. 2015), while others need only gradients at
the middle layers (Zhou et al. 2016, Selvaraju et al. 2020). For methods calculating gra-
dients at the input space, the major difference is the way they handle backpropaga-
tion through the non-linear layers (e.g. Rectified Linear Unit [ReLU]). Different
treatments will result in different saliency maps. Simonyan et al. (2014) adopted vanilla
backpropagation by which, at the non-linear layers, locations with negative values dur-
ing the forward pass are recorded while gradients at those locations during the back-
ward pass are suppressed. The deconvolution network (DeconvNet; Zeiler and Fergus
2014) only propagates positive gradients and suppresses negative gradients. Finally,
guided backpropagation (Springenberg et al. 2015) combines both the DeconvNet and
the vanilla backpropagation, only propagating positive gradients at the locations with
positive values during the forward pass.

For the methods that need only gradients at a given middle convolutional layer,
the gradients can be used as weights to combine feature maps at different channels
and generate a saliency map. Because the feature maps are downsampled from the
input image, this saliency map is considered as a downsampled version of the saliency
map at the input space. To improve the visual effect, the saliency map is then
upsampled to the same dimension as the input space. Zhou et al. (2016) developed a
Class Activation Map (CAM) by applying global average pooling (GAP; Lin et al. 2014)
on the last convolutional layer and identifying the weights of feature maps from the
following fully connected layer. Selvaraju et al. (2020) proposed a generalization of a
CAM called gradient-weighted CAM (Grad-CAM), which is applicable to different CNN
models without using a GAP layer. The idea is to use gradient signals at the target
layer as weights and prove them to be mathematically equal to the weights in CAM.
In this way, Grad-CAM can derive the saliency map without needing to modify and
retrain the CNN models. Methods that have followed up Grad-CAM include Grad-
CAM++ (Chattopadhay et al. 2018) for the localization of multi-objects belonging to
the same class and Score-CAM (Wang et al. 2020), which obtains weights for corre-
sponding feature maps without gradient calculation.

These gradient-based methods require only one forward-backward pass and are
computationally efficient compared to the perturbation-based methods. However, the
nonlinearity of the fully connected layers may cause gradient saturation or undesirable
artifacts during backpropagation (Shrikumar et al. 2017). Recent works have developed
new strategies to address this issue. For example, Sundararajan et al. (2017) developed
an integrated gradient method to aggregate the gradients over an entire image as it
goes through continuous modifications, to avoid gradient saturation and unexpected
artifacts. The entire image is gradually altered from the original image to an all-black
image (i.e. baseline). The result is an aggregation of all the intermediate results after
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each alternation. This method can be considered as a combination of perturbation-
based and gradient-based methods and has shown promising results in many tasks
(Sundararajan et al. 2017). However, as inferred from the algorithm strategy, the com-
putation of integrated gradients requires repeated calculation over multiple iterations.
To reduce computational cost, Hesse et al. (2021) proposed a special class of CNNs to
compute the result of integrated gradients with only one forward-backward pass. As a
result, the saliency map itself can be used as an effective tool; for example, it can be
integrated into regular training as priors (Erion et al. 2021, Rieger et al. 2020).

Each of the discussed methods has its own strengths and weaknesses. For
example, the perturbation-based method may underestimate the importance of fea-
tures because other features already saturate the output (Shrikumar et al. 2017).
Gradient-based methods may generate the same results using an untrained model
as those from a trained model, indicating that the method demonstrates only gen-
eral model characteristics (Adebayo et al. 2018). Although CAM methods can gener-
ate a saliency map by passing through fewer non-linear layers and potentially suffer
from fewer issues, they may predict inaccurate object locations due to the coarse
resolution of the saliency map. In this paper, we explore the characteristics of differ-
ent ‘feature attribution-based’ model explanation approaches and use two GeoAl-
ready natural feature datasets in an image classification task to compare model-
learned features with human-understandable features. In addition to interpreting a
model’s reasoning process, we compare the strengths and weaknesses of these
popular approaches and discuss ways to improve them within the growing field of
explainable GeoAl.

3. Methods

Suppose we have a function F:R"*h — R™, which represents a CNN network for
image classification. The input is an image x € R"*" with width w and height h. The
output is a vector of length m, representing the probability distribution P over m
classes. P¢ stands for the classification probability of the class ¢ to the image x. For
any given class ¢, we could generate an image y where y;; (i.e. pixel [i, j] in image y) is
the contribution of x;; (i.e. pixel [i, jl in image x) to the prediction of the image class c.
We call this image y a saliency map. In this section, we describe in greater detail the
three different methodologies adopted to generate a saliency map.

3.1. Perturbation-based saliency map generation (i.e. occlusion method)

To generate a perturbation-based saliency map, we adopt the occlusion method from
the work by Zeiler and Fergus (2014). Given the function F and an input image x, we
calculate the output probability distribution P. P¢ represents the output probability for
the class c. Next, we create a black patch at a given size. The patch slides through the
image x in a row-prime scan order with a stride step of 1. At each step, a new image
x'(i,j) is generated by replacing a portion of the image x with the black patch. The
center of the patch is located at the pixel (i,j). The new image x'(i,j) is then fed into
the model F, and the new probability distribution P'(i,j) is calculated. P'c(i,j)
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represents the new probability of the class c. The difference between the two proba-
bilities, P© and P'c(i,j), shows the importance of the information in the black patch to
the model’s prediction of the class c:

Occlusionﬁj = P — P'c(ij) M

Finally, by calculating Occlusionﬁj over all pixels, we can generate the saliency map

indicating which pixels or pixel regions are more or less important for predicting the
existence of the class ¢ in image x.

3.2. CAM-series saliency map generation with Grad-CAM

The idea of Grad-CAM (Selvaraju et al. 2020) is to calculate the gradient at the last
convolutional layer in the network from a given class-prediction score, together with
the feature maps at this layer, to generate a coarse saliency map (i.e. a CAM) high-
lighting important areas for predicting the class. Grad-CAM can be directly applied to
a trained CNN network to derive a saliency map mathematically. It allows for the gen-
eralization of a regular CAM (Zhou et al. 2016) without the need to add a GAP (Global
Average Pooling) layer to the network and retrain the CNN model. The process of gen-
erating a saliency map with a regular CAM is as follows. Given the function F and an
input image x, Af-fj can be used to represent the value at location (i,j) of the kth fea-
ture map resulting from the last convolutional layer. Further, g« is the output of GAP,
the function of which can be written as:

1

k k

g _—2 Ai,j (2)
’lj

where Z is the total number of pixels in feature map AX.
Next, let S¢ represent the prediction score of the class c. S can be derived by calcu-
lating the composited value from g*, as follows:

¢ — Z chgk (3)
k

where w is the relative weight of g to 5. Accordingly, w can indicate the import-
ance of g* to the prediction of the class ¢ because the bigger w is, the more weight
that g requires to derive the class c. The probability of an image being the class ¢,
P<, is derived by applying softmax to score S over all classes. Softmax is a normaliza-
tion function to transfer the prediction scores to a probability distribution over the
predicted classes. The higher S¢ (i.e. class prediction score) is, the higher P will be.
Next, by substituting g~ in Equation 3 with its definition in Equation 2, we can derive
the following:

1 1
_ ck k __ ck ak
SC_Zk:W z“Ai’j_ZZZW A 4)
7 7] k
Further, by making
Mi; = WAl (5)
k
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we have
1
s =y, Q
ilj

Because 5¢ is the prediction score for the class ¢, M;; directly indicates the import-
ance of the location (j,j) in the last feature map (i.e. by aggregating information from
all channels) to the class c. Therefore, if we calculate M,fj over all locations, we can
derive a saliency map indicating the important areas for making predictions about the
class c.

However, to generate M;; (in Equation (5)) over all locations, we need both A,’fj and
weight w at the pixel level. In a regular CAM approach (Zhou et al. 2016), w is gener-
ated through GAP, which requires changes to the CNN model architecture. In Grad-CAM
(Selvaraju et al. 2020), however, a generalization of the CAM is achieved through the
mathematical transformation of the gradient calculations. The gradients are the partial
derivatives of the target class score S¢ with respect to the feature map k).
Mathematically, it can be written as follows. First, by taking partial derivatives of S¢ with
respect to g" from Equation (3) and combining information from Equation (2), we can
derive

0S¢ 4 0s¢ A a5

—_ W f— - —_— .
agk OA, 0gk oA,

(7)

<k, its relation to a given pixel at (i,j) in feature map A can be

For the weight w
identified using
0S¢

WCk — Z . 7[{
0A;

(8)

If we calculate the summation of w™ overall pixels, it can be expressed as
os¢ os¢
POIAED DTS gl o
k k
i o oAl w7 oAl
At the same time, the weight is not a function of the location (i,j), so the summa-
tion can also be expressed as

de‘ =7 w* (10)
irj
Combining Equations (9) and (10), the weight w* can be mathematically derived
from the partial derivatives of 5¢ with respect to all pixels at feature map A¥, as follows:
os¢

irj
Equation (11) indicates a way to calculate w without using a GAP layer. Therefore,
we can replace w in Equation (5) with Equation (11), giving

GradCAMS; = M, = ZZW-AU (12)
k ij hJ
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which provides the importance of a pixel at a given location (i,j) to the prediction of
the class ¢ based on the class prediction score S¢ and the final feature map A at each
channel k. This way, no architecture changes to the model are required. Because the
generated saliency map is a coarse map with a resolution smaller than the original
input image, it can also be upsampled to obtain a better visual effect.

3.3. Gradient-based saliency map generation with integrated gradients

The motivation of integrated gradients (Sundararajan et al. 2017) is to solve the chal-
lenge of separating actual errors from misbehavior of the model and errors caused by
the model explanation method. The authors identified two axioms in order to evaluate
the validity of different attribution methods: sensitivity and implementation invariance.
The sensitivity axiom indicates that a pixel should be given a non-zero contribution if
two input images have different predictions but only differ in that pixel. The imple-
mentation invariance axiom indicates that the saliency maps are always identical for
two functionally equivalent models. Functionally equivalent models are those yielding
the same output given any input, despite their different implementations. By satisfying
the two axioms, errors introduced by the saliency map generation method can be dis-
regarded. Using the two axioms, a new method—the integrated gradients method—
was developed (Sundararajan et al. 2017). One key concept of the integrated gradients
method is the use of a baseline image. The idea of a baseline image is implicitly used
in previously derived methods because, when assigning credit to a pixel or a sub-
region of an image, we actually consider the image without the pixel or the sub-
region as a baseline image with which to compare the difference in outputs. In the
integrated gradients method, however, the baseline image is explicitly used, taking
the form of a black image (i.e. all zeros) for a classification task. Given the classification
function F, an input image x, and a baseline image x/, the integrated gradients
method defines the contribution of a pixel x;; to the prediction of a class ¢ as

s

i C f— PRrp—
Integrated Gradients;; = (x;; — X;; o
=0 Xi,j

do. (13)

Equation (13) demonstrates why this method is named after integrated gradients, as
it computes and integrates gradients of the final output with respect to pixel x;; from
the baseline image x’ to the original input image x. In other words, it identifies the
‘path integrals’ of gradients along the linear path from x’ to x. Within the fundamental
theorem of path integrals, if the function F is differentiable almost everywhere, the
summation of Equation (13) over all pixels can be written as

Z Integrated Gradients;; = F(x)" — F(x)‘ (14)

i
In our experiment, we assume the black baseline image would make the prediction
score near zero—that is, F(x’)‘ ~ 0. Therefore, the prediction of image x being the
class ¢ (F(x)‘) equals the summation of the contributions from all pixels. This confirms
the accuracy of Equation (13) in calculating an individual pixel’s contribution to the
final prediction. The integrated gradients method also satisfies the aforementioned axi-
oms. In terms of sensitivity, assuming that only one given pixel is different between
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the input image x and the baseline x’, from Equation (13), we know that all of the
integrated gradients would be zero except for those of the given pixel. From Equation
(14), the contribution of this given pixel becomes the difference between the outputs
of F(x)° and F(x'). Therefore, if F(x) and F(x') are different, the contribution is non-
zero. In terms of implementation invariance, because Equation (13) only considers the
gradients of the model, it is invariant to different architectures. To compute integrated
gradients more efficiently, instead of calculating the integrals from Equation (13), we
can also add the gradients at sufficiently small intervals from the baseline image x’ to
the original image x. An approximation via summation can be achieved as
m ! k /\\€
Integrated Gradients; / = (x;; — x;,j) X kZaF(X +g)'(i(jx —x)) A
—1 p

(15)

where m is the number of intervals. The authors (Sundararajan et al. 2017) suggested
that a number between 20 and 300 steps is sufficient to approximate the integral (at
a 95% accuracy).

4, Experimental results

To understand how the CNN models make decisions in image analysis tasks specific-
ally when inspecting the different types of terrain features in an image, we adopted
the same dataset used in the work by Li and Hsu (2020). The terrain dataset contained
826 natural features of eight types (i.e. crater, meander, river, hill, lake, volcano, ice-
berg tongue, and sand dune). Each category had 100 to 108 images. Figure 1 shows
examples of training images containing features of each type. Briefly, a crater is ‘a cir-
cular-shaped depression on the surface of the land’ (McEwen et al. 1983). A river is ‘a
natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, or

(a) Crater (b) River (c) Meander (d) Iceberg tongue

(e) Lake (f) Volcano (g) Hill (h) Sand dunes

Figure 1. Sample dataset images. The bounding boxes are labels indicating object locations. (a)
Crater. (b) River. (c) Meander. (d) Iceberg tongue. (e) Lake. (f) Volcano. (g) Hill. (h) Sand dunes.
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another river’ (Wikipedia 2022b). A meander is ‘a winding curve or bend in a river
(Wikipedia 2022a). An iceberg tongue is ‘a seaward extension of a glacier tongue,
which consists of floating glacier ice that is still connected [to the glacier] and extends
to the sea or ocean from a glacier’ (Herzfeld 2004). A lake is ‘an area of land that is
filled with water’ (Purcell 2018). A volcano is ‘a rupture in the crust of a planetary-
mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape
from a magma chamber below the surface’ (Wikipedia 2022c). A hill is ‘a naturally
raised area of land, not as high or craggy as a mountain’ (National Geographic 2022).
A sand dune is ‘a small ridge of hill of sand found in a desert or on top of a beach’
(EarthEclipse 2022).

The dataset was originally used for object detection tasks, and here, we adopted it
for image-level classification using only the class labels (i.e. without the bounding-box
labels) for model training and prediction. The dataset was randomly separated into
70% for training and 30% for testing. The classification model was trained using a pre-
trained VGG16 CNN (Simonyan and Zisserman 2015). The final training accuracy was
99.83%, and the testing accuracy was 88.05%. All experiments were conducted on the
Amazon EC2 platform. The g4dn.xlarge instance, with a NVIDIA T4 graphics processing
unit (GPU) that had a 16GB memory, was used to run the experiments.

In each experiment, we applied three model explanation techniques—including
occlusion sensitivity by Zeiler and Fergus (2014), Grad-CAM by Selvaraju et al. (2020),
and the integrated gradients method by Sundararajan et al. (2017)—to explain the
model’s decision-making process. The three methods were all applied to a trained
model, and the generation of the saliency maps is detailed in Section 3. By comparing
the results, we aimed to examine the characteristics of each method, cross-validate
their findings, and, most importantly, use them jointly to explain the model’s classifica-
tion results in image analysis and natural feature recognition. Figures 2-7, below, pro-
vide the results. In these figures, the first column displays the original image, with the
targeted feature(s) highlighted in a rectangle. The ground-truth label of the object
class and the model’s prediction results, with a confidence score, are listed below the
image. The second column lists the saliency maps generated from the three model
explanation methods. The last column shows the blending result of the saliency map
on top of the original image to make observing highlighted regions easier. For each
saliency map, higher values (indicated in red) represent the pixels or image areas that
are more important to the prediction results. After cross-validating the saliency maps,
we found that the findings of each method showed distinct characteristics due to the
methods’ unique model interpretation strategies.

4.1. Ability to identify multiple objects of the same type

Figure 2 presents an image with multiple occurrences of objects belonging to the
same class (i.e. volcanoes). According to the generated saliency maps, both Grad-
CAM and integrated gradients were able to highlight multiple objects belonging to
the same class, while the occlusion method highlighted only a single object. This is
due to the limitations of the occlusion method in generating accurate visual results.
Occlusion continuously replaces part of the input image with a black patch and
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Label: volcano (1.00)
Prediction: volcano (1.00)

(c) Integrated Gradients

Figure 2. Saliency maps showing important image areas identified by the deep learning model.
First column: original image with ground-truth and model prediction results. Second column: sali-
ency map generated from (a) the occlusion method, (b) Grad-CAM, and (c) integrated gradients
(red/dark color: high value, blue/light color: low value). Third column: saliency map overlaid on the
original image.

calculates the change of the output probability. However, if there are multiple
objects belonging to the same class in the image and one of them already saturates
the output, the blocking of other recessive objects will not change the output prob-
ability. This result shows that the occlusion method cannot fully reflect how the
model processes images containing multiple objects of the same class. Compared to
the occlusion method, Grad-CAM combines multiple feature maps, wherein each
map could contain features from different objects. The integrated gradients method
adopts pixel-wise evaluation and integrates all results from the baseline image to
the input image to avoid output saturation by a certain object. The results also illus-
trate the importance and value of using joint evaluation instead of a single
approach.
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Label: meander (1.00)
Prediction: meander (1.00)

(c) Integrated Gradients

Figure 3. Ability of the saliency maps to identify multiple prominent features of the same object.
Figure layout is the same as that in Figure 2. (a) Occlusion. (b) Grad-CAM. (c) Integrated gradients.
Label: meander (1.00). Prediction: meander (1.00).

4.2. Ability to identify multiple prominent features of the same object

Figure 3 shows the generated saliency maps for detecting meanders in images. A
meander is defined as ‘a river [that] flows back and forth across the landscape to form
a series of sinuous curves’ (Charlton 2007). Hence, meanders are objects with multiple
prominent features (i.e. curving parts). Similar to the detection of multiple objects
(Figure 2), the results related to the detection of multiple prominent features of the
same object showed that Grad-CAM (Figure 3(b)) and integrated gradients (Figure
3(c)) could highlight multiple prominent features that characterize a meander. In con-
trast, the results from the occlusion method showed that the classification depends
mainly on the detection of a single curve. Even though the occlusion method
detected two curving parts of the meander (Figure 3(a)), the curve near the center of
the image received the most attention and garnered much more importance than did
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Label: crater (1.00)
Prediction: crater (1.00)

(¢) Integratéd Gradients

Figure 4. Accuracy of the saliency maps in highlighting the shape of the target objects. Figure lay-
out is the same as that in Figure 2. (a) Occlusion. (b) Grad-CAM. (c) Integrated gradients. Label: cra-
ter (1.00). Prediction: crater (1.00).

the curve near the right-side edge of the image (Figure 3(a)). This is because, in the
occlusion method, one prominent part of the object dominantly influences the result
and saturates the output probability.

4.3. Ability to accurately capture object shape

Figure 4 shows a comparison of the different methods in correctly highlighting the
shape of an oval shaped crater. Both the occlusion (Figure 4(a)) and the integrated
gradients (Figure 4(c)) methods can generate highlights that match the actual shapes
of the target (i.e. a crater with an oval shape, shown in Figure 4(a)) because they both
calculate the importance of image regions at the pixel-level of the input image. As
pixel values near the edges of the objects often have shape changes, the pixel-based
saliency map generation process can relatively accurately capture the border pixels
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% , s ]
Label: dunes (1.00)
Prediction: dunes (1.00)

(b) Grad-CAM

(c) Integrated Gradients

Figure 5. Accuracy of the saliency maps in highlighting important image areas containing the tar-
get objects. Figure layout is the same as that in Figure 2. (a) Occlusion. (b) Grad-CAM. (c)
Integrated gradients. Label: dunes (1.00). Prediction: dunes (1.00).

and, hence, the shape of the target. Grad-CAM, however, may generate mismatching
shapes between the highlighted image areas and the target shape in its visualization.
As shown in Figure 4(b), a circular region was generated by Grad-CAM when interpret-
ing the oval-shaped crater. This is because Grad-CAM combines feature maps from the
last convolutional layer—which has a much lower resolution than does the original
image—to generate the saliency map, the resolution of which is therefore lower than
that generated by the other two methods. This coarse saliency map is often
upsampled to the same size as the input image to gain a better visual effect.
However, the upsampling may cause information loss, and some subtle differences
(e.g. between a circular shaped area vs. an oval-shaped area) at a coarse resolution
may become more substantial after upsampling, resulting in location and shape
mismatches.
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Label: volcano (1.00) i
Prediction: volcano (1.00)

(c) Integrated Gradients

Figure 6. Comparison of the saliency maps in generating clear attention when multiple high-con-
trast areas exist. Figure layout is the same as that in Figure 2. (a) Occlusion. (b) Grad-CAM. (c)
Integrated gradients. Label: volcano (1.00). Prediction: volcano (1.00).

4.4. Ability to correctly highlight important image regions

Figure 5 shows a comparison of the three methods in terms of their ability to correctly
highlight important image regions in the resultant saliency maps. For this test, the
object to detect was sand dunes. Results indicate that both the occlusion and the
integrated gradients methods were able to highlight the targets correctly, and their
results were similar. However, Grad-CAM highlighted surrounding areas of the target
instead of the target itself. Analyzing the algorithm behaviors, we note that the large
differences between the results generated by Grad-CAM and the other two methods
may be caused by the issue of gradient discontinuity, a non-linear function used in
the Grad-CAM model. As does ReLU, it introduces discontinuous gradients when they
are non-differentiable at some locations of the function curves. Grad-CAM computes
partial derivatives of the classification score with respect to each pixel at the last con-
volutional layer, and the discontinuity may transfer to some artifacts in the saliency
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(a) Occlusion

T

Label: iceberg tongue (1.00)
Prediction: iceberg tongue
(1.00)

(c) Integrated Gradients

Figure 7. Comparison of the saliency maps in generating clear attention when the contrast
between the foreground and background is low. Figure layout is the same as that in Figure 2. (a)
Occlusion. (b) Grad-CAM. (c) Integrated gradients. Label: iceberg tongue (1.00). Prediction: iceberg
tongue (1.00).

map. Unlike Grad-CAM, the occlusion and integrated gradients methods do not suffer
from this issue. The occlusion method takes an image as the input and observes the
output probability change in the forward pass, while the integrated gradients method
computes and integrates all gradients from the baseline image to the input image to
avoid the effect of discontinuous gradients. The results in Figure 5 further illustrate
the advantages of using a joint analysis approach to avoid the possible pitfalls of
using a single method.

4.5. Ability to generate clear areas of attention due to the existence of multiple
high-contrast areas

Figure 6 shows the saliency maps generated by different methods when there are
multiple high-contrast areas presented in an image. In this figure, an erupting volcano
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was the target feature to detect. In addition to the volcano, the image contained
erupted gases forming a unique linear shape, which had a high level of contrast with
the background. Meanwhile, the coastline in the image also presented a high level of
contrast, forming the division between the water and the land. Because the integrated
gradients approach uses per-pixel computation to generate pixel-wise highlights, it
can more easily distinguish edges and even thin linear features, such as ridges or
shorelines. For the case presented in Figure 6, the integrated gradients method high-
lighted multiple areas with such characteristics (Figure 6(c)). However, this result
makes it difficult to examine which are the most distinctive image regions that guided
the model to detect the target of interest (i.e. volcano). The occlusion and Grad-CAM
approaches, in comparison, can more confidently and clearly highlight the most
important image regions that the model relies on to make a correct prediction (i.e.
the mouth of the volcano). This issue of the integrated gradients approach is also
found in processing images when there is a low level of contrast between the target
and the background, such as in the detection of an iceberg tongue in an image of a
glacier.

4.6. Ability to generate clear attention due to low contrast between the
foreground and background

Figure 7 further illustrates the contrast-related issues of the integrated gradients
method, which results in unclear patterns when the contrast between the foreground
(i.e. the target) and the background of an image is low. As discussed, the integrated
gradients approach can generate a saliency map at the pixel level, providing a fine-
grained view of the important pixels and image subareas identified by a model when
making decisions. However, under some conditions, the highlighted pixels could
spread across the image, making the explanation of the model’s decision process diffi-
cult to achieve. For instance, Figure 7 presents an iceberg tongue feature within a gla-
cier region. Because an iceberg tongue is often a part of a glacier, and they are both
white, there tends to be a low level of contrast between the two features. The inte-
grated gradients approach generates pixel-level highlights based on the existence of
shades, which may be randomly distributed in the image. Accordingly, even though
the iceberg tongue area has been highlighted in the result (Figure 7(c)), other areas
are also highlighted, making it difficult to understand and explain the model’s learning
process. In comparison, the occlusion and the Grad-CAM methods create saliency
maps with region-based patterns containing less noise, providing a clearer view on
the important feature and contextual information that helps the model with its
prediction.

5. Research findings
5.1. A Summary analysis of CNN model explanation methods

Table 1 summarizes the capabilities of the model explanation methods. We also gener-
ate the statistics (Table 2) based on the entire training set by counting the number of
saliency maps generated by these methods that can meet an explanation goal. The
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Table 1. Summary analysis of the capabilities of the CNN model explanation methods.

Model explanation goals Occlusion approach Grad-CAM Integrated gradients

Ability to identify multiple objects of the same type Often no Often yes Often yes

Ability to identify multiple prominent features of a Often no Often yes Often yes
single object

Ability to accurately detect object shape Often yes Sometimes no Often yes

Ability to correctly highlight important image Often yes Sometimes no Often yes
regions

Ability to generate clear attentions for an image Often yes Often yes Sometimes no
with multiple high-contrast areas

Ability to generate clear attentions for an image Often yes Often yes Sometimes no

when the contrast between the target and the

background is low
Computational efficiency Low High Low
Need to retrain the model No No No

Table 2. Statistics on percentage of saliency maps generated by different methods that can meet
an explanation goal.

Occlusion Grad-CAM Integrated

Model explanation goals approach (%) (%) gradients (%) Total

Ability to identify multiple objects of the same type 30 71 79 73

Ability to identify multiple prominent features of a single 31 81 89 214
object

Ability to accurately detect object shape 76 44 79 826

Ability to correctly highlight important image regions 81 58 87 826

Ability to generate clear attentions for an image with multiple 86 87 53 207
high-contrast areas

Ability to generate clear attentions for an image when the 82 78 50 152

contrast between the target and the background is low

‘Total’ means number of images in the dataset that supports the corresponding criterion listed in each row.

cells in Table 1 are labelled as ‘Often Yes’ when a method (e.g. Grad-CAM) meets the
goal in most cases; they are labelled as ‘Often No’ when a method does not meet an
explanation goal in most testing cases. A 100% ‘Yes' case does not exist due to the
inherent uncertainties in the model explanation process for calculating attributed fea-
tures and the inconsistency between model perception and human perception.

In summary, Grad-CAM can highlight multiples of the same type of object and mul-
tiple prominent features of a single object. It can also generate clear attention by
highlighting important image regions when there are multiple high-contrast areas in
an image or when the contrast between the foreground (i.e. the target) and back-
ground is low. However, it sometimes cannot accurately reveal the object shape due
to the saliency map’s low resolution. Comparatively, the occlusion and integrated
gradient approaches can better reveal an object’s actual shape as they generate the
saliency map at the input images’ resolutions. The pixel-based computation adopted
in the integrated gradient approach makes it capable to identify multiple objects or
multiple prominent features of an object. However, when an image has multiple high-
contrast areas, this method may highlight all of them, generating noise in the saliency
map. Although the occlusion approach avoids highlighting multiple high-contrast
areas if they belong to different object classes, the gradient saturation issue makes
it favor only one of multiple objects of the same class or one prominent feature of
an object.
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The Grad-CAM method has the advantage of greater computational efficiency
because it requires only a single forward and partial backward computation per image.
In contrast, the occlusion and the integrated gradients methods need multiple forward
and backward calculations. Their computation efforts depend on corresponding hyper-
parameters, which incur a trade-off between saliency map quality and computation
time. Compared to methods such as CAM (Zhou et al. 2016), none of the methods
studied in this paper require network architecture changes; therefore, there is no need
to retrain the deep learning models.

5.2. Results generalizability

To demonstrate the generalizability of our results, we adopted another Al-ready nat-
ural feature dataset—GeoNat v1.0 (Arundel et al. 2020). This dataset contains 10 types
of natural features (basin, bay, bend, crater, gap, gut, island, lake, ridge, and valley),
and we selected five (bay, bend, crater, island, and lake) features and a total of 540
images for the experiments. Some features were not selected because they are
uncommon (e.g. gap and gut), and some (e.g. basin, valley, and ridge) are extremely
difficult to be visually inspected using optical remote sensing images alone due to
their limited color representations. This five-category GeoNat dataset is trained using
the same experimental setting as the first dataset. The saliency maps are generated
on a trained VGG model with 98.89% training accuracy and 82.52% testing accuracy.
The results reported in Appendix Table A1 show that despite small differences, the
findings about the GeoAl models’ characteristics using the two datasets are quite con-
sistent. This further supports the conclusion drawn in Table 1.

6. Conclusion

As Al becomes an important tool for high-stakes decision-making, its explainability—
the articulation of an Al's algorithm'’s rationale in deriving an answer—has become a
critical research topic because it can help open the black box and help users gain the
confidence and trust to adopt Al in real-world decision-making processes (Phillips
et al. 2020). However, little research has assessed the capabilities of existing Al model
explanation methods and their applicability in geospatial applications. This paper fills
this knowledge gap by providing an in-depth analysis of existing methods’ mecha-
nisms, especially those aiming to explain a deep learning model by capturing the
‘visual attention’ of a machine in a saliency map. Multiple methods, including occlu-
sion, Grad-CAM, and integrated gradients, were implemented and applied to a deep
learning model for image classification tasks. By examining the decisions the model
made for every single image of the training dataset (indicated in the saliency maps),
we derived and summarized a number of model explanation goals (e.g. the ability to
identify multiple objects of the same type) and assessed each method’s ability to
meet such goals. The experiments used two natural feature datasets, and the results
derived from these datasets are highly consistent, demonstrating good generalizability
of the research findings in natural feature analysis.
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The results in Table 1 show that no single Al explanation method can achieve all
the explanation goals in a geospatial task. Therefore, simultaneously applying multiple
methods when attempting to explain a GeoAl model is important so that the results
can be cross-validated and uncertainties can be removed. The term ‘uncertainty’ is
used to describe situations where a saliency map contains artifacts that do not reflect
the model’s learned knowledge but are instead caused by the inherent limitations of
the model explanation methods (e.g. gradient saturation). Furthermore, while two
datasets were used in the experiments to demonstrate the generalizability of our
research findings, we cannot conclusively establish their universal generalizability with-
out conducting more systematic experiments. This limitation underscores the need for
further improvement in this area of research.

In the future, in addition to increasing the results accuracy of the GeoAl explanation
methods, we will work to combine the global and per-decision model explanation
algorithms and develop new strategies to support the automatic extraction of seman-
tically meaningful concepts from saliency maps to further enhance the human under-
standing of machine learning processes. We will compare the consistency between
human-understandable concepts defined in domain knowledge graphs ((Li et al. 2023,
Janowicz et al. 2022, Li et al. 2012)) and the machine-learned features to further
improve the explainability of the machine learning process. We will also use these
methods to analyze the failure cases and understand why a GeoAl model makes a
wrong decision. As discussed, detection of some natural features—especially those
existing in hilly terrains, such as ridges and valleys—is often difficult to achieve using
satellite images alone. This task can benefit from the use of additional data sources,
such as digital elevation models (DEMs) data (Wang and Li 2021, Li et al. 2022b).
Hence, our future work will also include extending the application of deep learning
model explanation algorithms to a multisource learning framework. Finally, more
experiments will be conducted to further verify the generalizability of our research
findings using additional, more diverse datasets, including both natural and artificial
features.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work is supported in part by the National Science Foundation under [awards 2120943,
2230034, 1853864].

Notes on contributors

Chia-Yu Hsu is a research professional at Arizona State University. His research interests include
artificial intelligence, computer vision, spatiotemporal data analysis, and their applications in cli-
mate change and terrain research.

Wenwen Li is a professor in geographic information science at Arizona State University (ASU).
Her research interests are cyberinfrastructure, big data, GeoAl and their applications in data-



984 (&) C-Y.HSU AND W. LI

and computation-intensive environmental and social sciences. At ASU, she directs the
Cyberinfrastructure and Computational Intelligence Lab (http://cici.lab.asu.edu/) and serves as
the Research Director for the Spatial Analysis Research Center.

Data and codes availability statement

The data and codes that support the findings of this study are available at
https://github.com/ASUcicilab/explainable-geoai. Instructions on how to use the data and codes
are provided in the README file.

References

Adebayo, J., et al, 2018. Sanity checks for saliency maps. Advances in Neural Information
Processing Systems, 31, 9525-9536.

Arundel, S.T., Li, W., and Wang, S., 2020. Geonat v1. 0: A dataset for natural feature mapping
with artificial intelligence and supervised learning. Transactions in GIS, 24 (3), 556-572.

Buscombe, D., and Ritchie, A.C.,, 2018. Landscape classification with deep neural networks.
Geosciences, 8 (7), 244.

Charlton, R., 2007. Fundamentals of fluvial geomorphology. New York, NY: Routledge.

Chattopadhay, A, et al., 2018. Grad-cam++: Generalized gradient-based visual explanations for
deep convolutional networks. In: A. Hoogs, S. McCloskey and G. Medioni, eds. 2078
IEEE winter conference on applications of computer vision (WACV). New York, NY: IEEE, 839-
847. doi: 10.1109/WACV.2018.00097.

Duckham, M,, et al., 2022. Explainable spatiotemporal reasoning for geospatial intelligence appli-
cations. Transactions in GIS, 26 (6), 2455-2479.

EarthEclipse. 2022. What is a sand dune: formation and types of sand dunes. Available from:
https://eartheclipse.com/science/geology/sand-dune-formation-types.html.

Erion, G., et al., 2021. Improving performance of deep learning models with axiomatic attribution
priors and expected gradients. Nature Machine Intelligence, 3 (7), 620-631.

Fong, R., and Vedaldi, A., 2017. Interpretable explanations of Black Boxes by meaningful perturb-
ation. In: K. M. Lee, et al., eds. 2017 IEEE international conference on computer vision (ICCV).
New York, NY, 3449-3457.

Fong, R., Patrick, M., and Vedaldi, A., 2019. Understanding deep networks via extremal perturba-
tions and smooth masks. In: 2019 IEEE/CVF international conference on computer vision (ICCV),
October. Seoul, Korea (South): IEEE, 2950-2958.

Gebru, T, et al., 2017. Using deep learning and Google Street View to estimate the demographic
makeup of neighborhoods across the United States. Proceedings of the National Academy of
Sciences, 114 (50), 13108-13113.

Goodchild, M.F., and Li, W., 2021. Replication across space and time must be weak in the social
and environmental sciences. Proceedings of the National Academy of Sciences, 118 (35),
e2015759118.

Gunning, D. and Aha, D.A, 2019. Darpa’s explainable artificial intelligence program. Al
Magazine, 40 (2), 44.

Helber, P., et al., 2019. Eurosat: a novel dataset and deep learning benchmark for land use and
land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 12 (7), 2217-2226.

Herzfeld, U.C., 2004. Atlas of antarctica: Topographic maps from geostatistical analysis of satellite
radar altimeter data: with 169 figures. Heidelberg, Germany: Springer Science & Business
Media.

Hesse, R., Schaub-Meyer, S., and Roth, S., 2021. Fast axiomatic attribution for neural networks.
Advances in Neural Information Processing Systems, 34 (2021), 19513-19524.

Hsu, C.Y., Li, W, and Wang, S., 2021. Knowledge-driven GeoAl: Integrating spatial knowledge
into multi-scale deep learning for mars crater detection. Remote Sensing, 13 (11), 2116.


http://cici.lab.asu.edu/
https://doi.org/10.1109/WACV.2018.00097
https://eartheclipse.com/science/geology/sand-dune-formation-types.html.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 985

Janowicz, K, et al, 2022. Know, know where, knowwheregraph: a densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. Al Magazine, 43 (1), 30-39.

Kedron, P., et al, 2021. Reproducibility and replicability: opportunities and challenges for geo-
spatial research. International Journal of Geographical Information Science, 35 (3), 427-445.

Kim, B., et al., 2018. Interpretability beyond feature attribution: quantitative testing with concept
activation vectors (TCAV). In: J. Dy and A. Krause, eds. International conference on machine
learning. Stockholm, Sweden: PMLR, 2668-2677.

Koo, B.W., Guhathakurta, S., and Botchwey, N., 2022. How are neighborhood and street-level
walkability factors associated with walking behaviors? A big data approach using street view
images. Environment and Behavior, 54 (1), 211-241.

Kurth, T., et al, 2018. Exascale deep learning for climate analytics. In: R.A. McEldowney. T.
Damkroger and M. Taufer, eds. SC18: International conference for high performance computing,
networking, storage and analysis. Dallas, TX: IEEE, 649-660.

Li, W., 2020. GeoAl: Where machine learning and big data converge in GlScience. Journal of
Spatial Information Science, 2020 (20), 71-77.

Li, W., 2022a. GeoAl in social science. In: S. Rey and R. Franklin, eds. Handbook of spatial analysis
in the social sciences. Cheltenham, UK: Edward Elgar, 291-304.

Li, W., et al., 2017. Recognizing terrain features on terrestrial surface using a deep learning
model: An example with crater detection. In: H. Mao, et al, eds. Proceedings of the
1st workshop on artificial intelligence and deep learning for geographic knowledge discovery.
New York, NY: ACM, 33-36.

Li, W., et al, 2022a. Real-time GeoAl for high-resolution mapping and segmentation of arctic
permafrost features: the case of ice-wedge polygons. In: D. Lunga and S. Newsam, eds.
Proceedings of the 5th ACM SIGSPATIAL international workshop on Al for geographic knowledge
discovery. New York, NY: ACM, 62-65.

Li, W., et al., 2022b. GeolmageNet: a multi-source natural feature benchmark dataset for GeoAl
and supervised machine learning. Geolnformatica, 2022, 1-22.

Li, W., et al., 2023. Geographvis: a knowledge graph and geovisualization empowered cyberin-
frastructure to support disaster response and humanitarian aid. ISPRS International Journal of
Geo-Information, 12 (3), 112.

Li, Z., 2022b. Extracting spatial effects from machine learning model using local interpretation
method: an example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96,
101845.

Li, W., and Arundel, S.T., 2022. GeoAl and the future of spatial analytics. In: B. Li, et al., eds. New
thinking in giscience. Singapore: Springer, 151-158.

Li, W, and Hsu, CY. 2020. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information Science,
34 (4), 637-660.

Li, W., and Hsu, C.Y., 2022. GeoAl for large-scale image analysis and machine vision: recent pro-
gress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11
(7), 385.

Li, W., Hsu, C.Y., and Hu, M., 2021. Tobler’s first law in GeoAl: a spatially explicit deep learning
model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887-1905.

Li, W., Raskin, R., and Goodchild, M.F., 2012. Semantic similarity measurement based on know-
ledge mining: an artificial neural net approach. International Journal of Geographical
Information Science, 26 (8), 1415-1435.

Lin, M., Chen, Q.,, and Yan, S., 2014. Network in network. In: Y. Bengio and Y. LeCun, eds. 2nd
International conference on learning representations, ICLR 2014, conference track proceedings,
April 14-16, 2014. Banff, AB, Canada. https://sites.google.com/site/representationlearning2014/
program-details/publication-model

Lundberg, S.M., and Lee, S.., 2017. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems, 30 (2017), 4768-4777.


https://sites.google.com/site/representationlearning2014/program-details/publication-model
https://sites.google.com/site/representationlearning2014/program-details/publication-model

986 (&) C-Y.HSU AND W. LI

McEwen, R.B., Witmer, R.E.,, and Ramey, B.S., 1983. USGS digital cartographic data standards. vol.
2. Rolla, MO: US Department of the Interior, Geological Survey.

National Geographic. 2022. Hill. Available from: https://education.nationalgeographic.org/
resource/hill.

Nguyen, A., Yosinski, J.,, and Clune, J., 2015. Deep neural networks are easily fooled: high confi-
dence predictions for unrecognizable images. In: 2015 IEEE conference on computer vision and
pattern recognition (CVPR), June. Boston, MA, USA: |IEEE, 427-436.

Petsiuk, V., Das, A. and Saenko, K., 2018. RISE: randomized input sampling for explanation of
black-box models. In: L. Shao, H.P.H. Shum and T. Hospedales, eds. British machine vision con-
ference 2018, BMVC 2018, September 3-6, 2018. Newcastle, UK, 151. http://bmvc2018.org/
index.html

Phillips, P.J., et al., 2020. Four principles of explainable artificial intelligence. Gaithersburg,
Maryland: NIST.

Purcell, A., 2018. Basic biology: An introduction. Cambridge, New Zealand: Basic Biology Ltd.

Ribeiro, M.T., Singh, S., and Guestrin, C., 2016. “Why should | trust you?”: explaining the predic-
tions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, August. San Francisco, California, USA: ACM, 1135-1144.

Rieger, L., et al., 2020. Interpretations are useful: penalizing explanations to align neural net-
works with prior knowledge. In: L. Rieger, et al., eds. International conference on machine
learning. PMLR, 8116-8126. http://proceedings.mlr.press/v119/rieger20a.html

Selvaraju, RR., et al, 2020. Grad-CAM: visual explanations from deep networks via gradient-
based localization. International Journal of Computer Vision, 128 (2), 336-359.

Shrikumar, A., Greenside, P., and Kundaje, A., 2017. Learning important features through propa-
gating activation differences. In: D. Precup and Y. W. Teh, eds. Proceedings of the
34th international conference on machine learning, July. PMLR, 3145-3153. https://proceedings.
mlr.press/v70/

Simonyan, K., and Zisserman, A., 2015. Very deep convolutional networks for large-scale image
recognition. In: Y. Bengio and Y. LeCun, eds. International conference on learning representa-
tions. San Diego, CA, USA. https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.
html

Simonyan, K., Vedaldi, A, and Zisserman, A. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: A. Couville, R. Fergus and B.
Kingsbury, eds. Workshop at international conference on learning representations. Citeseer.
https://sites.google.com/site/representationlearning2014/workshop-proceedings

Springenberg, J.T., et al., 2015. Striving for simplicity: the all convolutional net. In: Y. Bengio and
Y. LeCun, eds. 3rd International conference on learning representations, ICLR 2015, workshop
track proceedings, May 7-9, 2015. San Diego, CA, USA. https://dblp.org/db/conf/iclr/iclr2015.
htm

Sundararajan, M., Taly, A, and Yan, Q. 2017. Axiomatic attribution for deep networks. In: D.
Precup and Y.W. Teh, eds. Proceedings of the 34th international conference on machine learn-
ing, July. PMLR, 3319-3328. https://proceedings.mlr.press/v70/

Wang, H., et al., 2020. Score-CAM: score-weighted visual explanations for convolutional neural
networks. In: T. Boult, G. Medioni and R. Zabih, eds. Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops. New York, NY: IEEE, 24-25.

Wang, S., and Li, W.,, 2021. GeoAl in terrain analysis: enabling multi-source deep learning and
data fusion for natural feature detection. Computers, Environment and Urban Systems, 90,
101715.

Wikipedia, 2022a. Meander—Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=Meander&oldid=1121852800 [Online; accessed 22 Nov 2022].

Wikipedia, 2022b. River—Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?ti-
tle=River&oldid=1123171885 [Online; accessed 22 Nov 2022].


https://education.nationalgeographic.org/resource/hill.
https://education.nationalgeographic.org/resource/hill.
http://bmvc2018.org/index.html
http://bmvc2018.org/index.html
http://proceedings.mlr.press/v119/rieger20a.html
https://proceedings.mlr.press/v70/
https://proceedings.mlr.press/v70/
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://sites.google.com/site/representationlearning2014/workshop-proceedings
https://dblp.org/db/conf/iclr/iclr2015.htm
https://dblp.org/db/conf/iclr/iclr2015.htm
https://proceedings.mlr.press/v70/
http://en.wikipedia.org/w/index.php?title=Meander&oldid=1121852800
http://en.wikipedia.org/w/index.php?title=Meander&oldid=1121852800
http://en.wikipedia.org/w/index.php?title=River&oldid=1123171885
http://en.wikipedia.org/w/index.php?title=River&oldid=1123171885

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 987

Wikipedia, 2022c. Volcano—Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=Volcano&oldid=1121909395 [Online; accessed 22 Nov 2022].

Xing, J., and Sieber, R.,, 2021. Integrating XAl and GeoAl. In: K. Janowicz and J.A. Verstegen, eds.
GlScience 2021 short paper proceedings. 11th International conference on geographic informa-
tion science, September 27-30, 2021. Poznan, Poland. Wadern, Germany: ACM.

Zeiler, M.D., and Fergus, R., 2014. Visualizing and understanding convolutional networks. In: D.
Fleet, et al., European conference on computer vision. New York, NY: Springer, 818-833.

Zhang, W., et al., 2019. Application of multi-channel 3D-cube successive convolution network for
convective storm nowcasting. In: R. Barga and C. Zaniolo, eds. 2019 IEEE international confer-
ence on big data (big data). New York, NY: IEEE, 1705-1710.

Zhou, B., et al, 2016. Learning deep features for discriminative localization. In: 2016 IEEE
conference on computer vision and pattern recognition (CVPR), June. Las Vegas, NV, USA: IEEE,
2921-2929.

Appendix

Table A1. Statistics on percentage of saliency maps generated by different methods that can
meet an explanation goal.

Occlusion Grad-CAM Integrated

Model explanation goals approach (%) (%) gradients (%) Total

Ability to identify multiple objects of the same type 29 74 81 119

Ability to identify multiple prominent features of a single 32 86 94 142
object

Ability to accurately detect object shape 78 48 81 540

Ability to correctly highlight important image regions 84 60 89 540

Ability to generate clear attentions for an image with multiple 89 82 52 132
high-contrast areas

Ability to generate clear attentions for an image when the 84 81 52 204.

contrast between the target and the background is low

‘Total’ means number of images in the GeoNat v1.0 dateset (Arundel et al. 2020) that supports the corresponding
criterion listed in each row.
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