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A well-known result of Verstraëte [23] shows that for each 
integer k ≥ 2 every graph G with average degree at least 8k

contains cycles of k consecutive even lengths, the shortest of 
which is of length at most twice the radius of G. We establish 
two extensions of Verstraëte’s result for linear cycles in linear 
r-uniform hypergraphs.
We show that for any fixed integers r ≥ 3 and k ≥ 2, 
there exist constants c1 = c1(r) and c2 = c2(r), such that 
every n-vertex linear r-uniform hypergraph G with average 
degree d(G) ≥ c1k contains linear cycles of k consecutive 
even lengths, the shortest of which is of length at most 
2� log n

log(d(G)/k)−c2
�. In particular, as an immediate corollary, we 

retrieve the current best known upper bound on the linear 
Turán number of Cr

2k with improved coefficients.
Furthermore, we show that for any fixed integers r ≥ 3
and k ≥ 2, there exist constants c3 = c3(r) and c4 =
c4(r) such that every n-vertex linear r-uniform hypergraph 
with average degree d(G) ≥ c3k, contains linear cycles of k

consecutive lengths, the shortest of which has length at most 
6� log n

log(d(G)/k)−c4
� + 6. In both cases for given average degree 
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d, the length of the shortest cycles cannot be improved up to 
the constant factors c2, c4.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

For r ≥ 2, an r-uniform hypergraph (henceforth, r-graph) is linear if any two edges 

share at most one vertex. For r = 2, linear r-graphs are just the usual simple graphs. 

An r-uniform linear cycle of length k, denoted by Cr
k , is a linear r-graph on (r − 1)k

vertices whose edges can be ordered as e1, e2, ..., ek such that |ei ∩ ej | = 1 if j = i ± 1

(indices taken modulo k) and |ei ∩ ej | = 0 otherwise. Motivated by known results for 

graphs, we study sufficient conditions for the existence of linear cycles of given lengths 

in linear r-graphs for r ≥ 3. Our results apply to linear r-graphs of broad edge density, 

covering both sparse and dense hypergraphs.

1.1. History

The line of research about the distribution of cycle lengths in graphs was initiated 

by Burr and Erdős (see [7]) who conjectured that for every odd number k, there is a 

constant ck such that for every natural number m, every graph of average degree at 

least ck contains a cycle of length m modulo k. This conjecture was confirmed in its full 

generality by Bollobás [1] for ck = 2((k +1)k −1)/k, although earlier partial results were 

obtained by Erdős and Burr [7] and Robertson [7]. The constant ck was improved to 8k

by Verstraëte [23]. Thomassen [21,22] strengthened the result of Bollobás by proving that 

for every k (not necessarily odd), every graph with minimum degree at least 4k(k + 1)

contains cycles of all even lengths modulo k.

On a similar note, Bondy and Vince [3] proved a conjecture of Erdős in a strong 

form showing that any graph with minimum degree at least three contains two cycles 

whose lengths differ by one or two. Since then there has been extensive research (such as 

[13,10,20,17,16]) on the general problem of finding k cycles of consecutive (even or odd) 

lengths under minimum degree or average degree conditions in graphs. Very recently, the 

optimal minimum degree condition assuring the existence of such k cycles was proved 

in [12].

The problem of finding consecutive length cycles in r-graphs is related to another 

classical problem in extremal graph theory, namely Turán numbers for cycles in graphs 

and hypergraphs. For r ≥ 2, the Turán number ex(n, F) of a family F of r-graphs 

is the maximum number of edges in an n-vertex r-graph which does not contain any 

member of F as its subgraph. If F consists of a single graph F , we write ex(n, F ) for 

ex(n, {F}). A well-known result of Erdős (unpublished) and independently of Bondy 

and Simonovits [2] states that for any integer k ≥ 2, there exists some absolute constant 
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c > 0 such that ex(n, C2k) ≤ ckn1+1/k. The value of c was further improved by the 

results of Verstraëte [23] and Pikhurko [18], and the current best known upper bound is 

ex(n, C2k) ≤ 80
√

k log kn1+1/k + O(n), due to Bukh and Jiang [4,5]. Verstraëte’s main 

result from [23] is as follows.

Theorem 1.1 (Verstraëte, [23]). Let k ≥ 2 be an integer and G a bipartite graph of 

average degree at least 4k and girth g. Then there exist cycles of (g/2 − 1)k consecutive 

even lengths in G, the shortest of which has length at most twice the radius of G.

In Theorem 1.1, in addition to finding k cycles of consecutive even lengths Verstraëte 

also gave a tight upper bound on the length of the shortest cycle among these which 

in turn immediately yields ex(n, C2k) ≤ 8kn1+1/k, thus improving the coefficients in 

the theorems of Erdős and of Bondy-Simonovits. Notice that Verstraëte’s theorem is 

applicable to both sparse and dense host graphs while arguments establishing bounds on 

ex(n, F ) directly usually address relatively dense host graphs. For example, for F = C2k, 

these would typically be graphs with average degree at least Ω(n1/k).

For hypergraphs, Verstraëte [24] conjectured that for r ≥ 3 any r-graph with average 

degree Ω(kr−1) contains Berge cycles of k consecutive lengths where an r-uniform Berge 

cycle of length k is a hypergraph containing k vertices v1, ..., vk and k distinct edges 

e1, ..., ek such that {vi, vi+1} ⊆ ei for each i, where the indices are taken modulo k. This 

conjecture was confirmed by Jiang and Ma in [14]. As an intermediate step, they proved 

the following result.

Theorem 1.2 (Jiang and Ma, [14]). For all r ≥ 3, any linear r-graph with average degree 

at least 7r(k + 1) contains Berge cycles of k consecutive lengths.

One of the two main results of this paper strengthens this result by replacing Berge 

cycles by linear cycles, and also obtaining optimal bounds (up to a constant factor) on 

the length of the shortest cycle. The study of the emergence of linear cycles in linear 

host hypergraphs is related to so-called linear Turán numbers. The linear Turán number

exL(n, H) of a linear r-graph H is the maximum number of edges in an n-vertex linear 

r-graph G that does not contain H as a subgraph. Collier-Cartaino, Graber, and Jiang 

[6] proved that for all integers r, k ≥ 2 there exist positive constants c(r, k) and d(r, k)

such that exL(n, Cr
2k) ≤ c(r, k)n1+1/k and exL(n, Cr

2k+1) ≤ d(r, k)n1+1/k. For fixed r, 

the constants c(r, k) and d(r, k) they establish are exponential in k. As a corollary, one 

of the main results we prove, Theorem 1.3 implies that c(r, k) can be taken linear in k, 

improving the results in [6]. Note that these results on linear Turán numbers of linear even 

cycles can be viewed as a generalization of the Bondy-Simonovits’ even cycle theorem, 

while the result on linear odd cycles demonstrates a phenomenon that is very different 

from the graph case.
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1.2. Our results

We establish two extensions of Theorem 1.1 for linear cycles in linear r-uniform hy-

pergraphs. First, we give a generalization of Theorem 1.1 for even linear cycles in linear 

r-graphs along with a near optimal control on the shortest length of the even cycles 

obtained.

Theorem 1.3. Let r ≥ 3 and k ≥ 2 be integers, define c1 = 180r2r+2 and c2 =

log(64r2r+2). If G is an n-vertex linear r-graph with average degree d(G) ≥ c1k then 

G contains linear cycles of k consecutive even lengths, the shortest of which is at most

2

⌈

log n

log(d(G)/k) − c2

⌉

.

Theorem 1.3 implies an improved upper bound on the linear Turán number of Cr
2k

which previously was exL(n, Cr
2k) ≤ cn1+1/k for some c exponential in k [6]. We now 

prove that c can be taken to be linear in k.

Corollary 1.4. Let r ≥ 3 and k ≥ 2 be integers, denote c = 180r2r+1. For all positive 

integers n, we have

exL(n, Cr
2k) ≤ ckn1+1/k.

Our next main result shows that under analogous degree conditions as in Theorem 1.3, 

we can in fact ensure the existence of linear cycles of k consecutive lengths (even and 

odd both included). Furthermore, the length of the shortest cycle in the collection is 

within a constant factor of being optimal. Note that such a phenomenon can only exist 

in r-graphs with r ≥ 3, as for graphs, one needs more than n2/4 edges in an n-vertex 

graph just to ensure the existence of any odd cycle.

Theorem 1.5. Let r ≥ 3 and k ≥ 1 be integers. There exist constants c1, c2 depending on 

r such that if G is an n-vertex linear r-graph with average degree d(G) ≥ c1k then G

contains linear cycles of k consecutive lengths, the shortest of which is at most

6

⌈

log n

log(d(G)/k) − c2

⌉

+ 6.

When viewed as a result on the average degree needed to ensure the existence of cycles 

of consecutive lengths, Theorem 1.5 is a substantial strengthening of both Theorem 1.2

and Theorem 1.3. However, the upper bound on the shortest length of a cycle in the 

collection is weaker than the one in Theorem 1.3 by roughly a factor of 3. As a result, 

while Theorem 1.3 yields exL(n, Cr
2k) = O(n1+1/k), Theorem 1.5 would only give us 

ex(n, Cr
2k+1) = O(n1+3/k), and hence it does not imply the bound on exL(n, Cr

2k+1)

given in [6].
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Finally, note that the shortest lengths of linear cycles that we find in Theorem 1.3

and Theorem 1.5 are within a constant factor of being optimal, due to the following 

proposition which can be proved using a standard deletion argument. We delay its proof 

to the appendix.

Proposition 1.6. Let r ≥ 2 be an integer. For sufficiently large n and all d satisfying 

(2r)
1

ε2 ≤ d ≤ n/2r, there exists an n-vertex linear r-graph with average degree at least d

and containing no linear cycles of length at most �(1 − ε) logd n�.

The rest of the paper is organized as follows. In Section 2, we introduce some notation. 

In Section 3, we prove Theorem 1.5. In Section 4, we prove Theorem 1.3, whose proof 

is more involved than that of Theorem 1.5 due to the tighter control on the shortest 

lengths of the cycles. In Section 5, we conclude with some remarks and problems for 

future study on related topics.

2. Notation

Let r ≥ 2 be an integer. Given an r-graph G, we use δ(G) and d(G) to denote the 

minimum degree and the average degree of G, respectively. Given a graph G and a set S, 

an edge-colouring of G using subsets of S is a function χ : E(G) → 2S . We say that χ is 

strongly proper if V (G) ∩ S = ∅ and whenever e, f are two distinct edges in G that share 

an endpoint we have χ(e) ∩ χ(f) = ∅. We say that χ is strongly rainbow if V (G) ∩ S = ∅
and whenever e, f are distinct edges of G we have χ(e) ∩ χ(f) = ∅.

For r ≥ 2, an r-graph G is r-partite if there exists a partition of V (G) into r subsets 

A1, A2 . . . , Ar such that each edge of G contains exactly one vertex from each Ai; we 

call such (A1, . . . , Ar) an r-partition of G. For any 1 ≤ i �= j ≤ r, we define the (Ai, Aj)-

projection of G, denoted by PAi,Aj
(G) to be the graph with edge set {e ∩ (Ai ∪ Aj)| e ∈

E(G)}. It is easy to see that for linear r-partite r-graphs the following mapping f :

E(G) → E(PAi,Aj
(G)) defined by f(e) = e ∩ (Ai ∪ Aj) is bijective.

In this paper, logarithms are base 2 and [k] denotes the set {1, 2, ..., k} for all positive 

integers k.

3. Linear cycles of consecutive lengths

In this section, we prove Theorem 1.5. Given a linear r-graph G and two vertices x, y

in G, we define the distance dG(x, y) to be the length of a shortest linear path between 

x and y. We drop the index G whenever the context is clear. For any vertex x ∈ V (G), 

we define SG
0 (x) = {x} and for all i ≥ 1 define

SG
i (x) = {y ∈ V (G) : dG(x, y) = i}.

When G is clear from the context we will drop the superscript.
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We first prove some auxiliary lemmas that are used in the proof of Theorem 1.5. Our 

first lemma is folklore.

Lemma 3.1. Let r ≥ 2 be an integer and d > 0 a real. Every r-graph G of average degree 

d contains a subgraph of minimum degree at least d/r.

Lemma 3.2. Let r ≥ 3 be an integer. Let G be a linear r-graph. Let d be a real satisfying 

1 ≤ d ≤ δ(G)/2. Let x ∈ V (G). Then there exist a positive integer m ≤ � log n
log(δ(G)/d)� and 

a subgraph H of G satisfying

(A1) H has average degree at least d/4, and

(A2) each edge of H contains at least one vertex in Sm(x) and no vertex from 
⋃

j<m Sj(x).

Proof. For each i ≥ 0, let Si = Si(x). By the definition of the Si’s, for each e ∈ E(G), 

there exists j ≥ 0 such that e ⊆ Sj ∪ Sj+1. For each i ≥ 1 let Gi be the subgraph of G

induced by the edges that contain some vertex in Si. Then V (Gi) ⊆ Si−1 ∪ Si ∪ Si+1. 

Let t = � log n
log(δ(G)/d)�. First we show that for some i ∈ [t], Gi has average degree at least 

d/2. Suppose for contradiction that for each i ∈ [t], Gi has average less than d/2. Then 

for each i ∈ [t], e(Gi) < (d/2)|V (Gi)|/r ≤ (d/2r)(|Si−1| + |Si| + |Si+1|). On the other 

hand, by minimum degree condition we have e(Gi) ≥ δ(G)|Si|/r. Combining the two 

inequalities, we get

|Si−1| + |Si| + |Si+1| ≥ 2δ(G)

d
|Si|. (1)

Claim 3.3. For each i ∈ [t], we have |Si| > (δ(G)/d)|Si−1|.

Proof. The claim holds for i = 1 since |S1| ≥ δ(G) and |S0| = 1. Let 1 ≤ j < t and 

suppose the claim holds for i = j. We prove the claim for i = j + 1. By (1) and the 

induction hypothesis that |Sj−1| ≤ (d/δ(G))|Sj |, we have

d

δ(G)
|Sj | + |Sj | + |Sj+1| ≥ 2δ(G)

d
|Sj |.

Hence

|Sj+1| ≥
(

2δ(G)

d
− d

δ(G)
− 1

)

|Sj | >
δ(G)

d
|Sj |,

where the last inequality uses d ≤ δ(G)/2. �

By the claim, |St| > (δ(G)/d)
t ≥ n, which is a contradiction. So there exists i ∈ [t]

such that Gi has average degree at least d/2. By our earlier discussion, each edge of Gi
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contains a vertex in Si and lies inside Si−1 ∪ Si ∪ Si+1. If at least half of the edges of Gi

contain some vertex in Si−1 then let H be the subgraph of Gi consisting of these edges 

and let m = i − 1. Otherwise, let H be the subgraph of Gi consisting of edges that do 

not contain vertices of Si−1 and let m = i. In either case, H and m satisfy (A1) and 

(A2). �

Lemma 3.4. Let r ≥ 3. Let G be a linear r-graph. Let d be a real satisfying 1 ≤ d ≤
δ(G)/2. Let x ∈ V (G). For each v ∈ V (G), let Pv be a fixed shortest (x, v)-path in G

and let P = {Pv : v ∈ V (G)}. Then there exist a positive integer m ≤ � log n
log(δ(G)/d)�, 

A ⊆ Sm(x) and a subgraph F of G such that the following hold:

(A3) δ(F ) ≥ d/r23r+2,

(A4) each edge of F contains exactly one vertex from A and no vertex from the set 
⋃

j<m Sj(x),

(A5) for each v ∈ V (F ) ∩ A, Pv intersects V (F ) only in v.

Proof. By Lemma 3.2, there exist a subgraph H of G and a positive integer m ≤
� log n

log(δ(G)/d)� satisfying properties (A1)-(A2). So, in particular, d(H) ≥ d/4. For any ver-

tex v ∈ Sm(x), let ev be the edge in the path Pv which contains v. For every f ∈ E(H), 

we know that |f ∩ Sm(x)| ≥ 1. Let vf be one of these vertices in f ∩ Sm(x).

Now randomly colour the vertices of Sm(x) with three colours as follows; the colour 

of a vertex is red or blue each with probability p, and it is green with probability 1 − 2p. 

We call an edge f ∈ E(H) good if vf is coloured green, all vertices in f ∩Sm(x) \{vf } are 

red, and all other vertices in evf
∩ Sm(x) are blue. It is easy to see that the probability 

of f being good is exactly

(1 − 2p)p|f∩Sm(x)|−1p|evf
∩Sm(x)|−1 ≥ (1 − 2p)p2r−2.

For our purposes it is enough to choose p = 2/5, however, a more optimal choice is 

possible, which will give better constants. So in expectation, there are at least

e(H)

5

(

2

5

)2r−2

≥ e(H)

23r

many good edges. Fix such a colouring and let H ′ ⊆ H be induced by all the good edges, 

and let A to be the collection of all vf , for which f is good. Now it is easy to check that 

both (A4) and (A5) are satisfied. The first one is very easy to check; notice that every 

f good has a unique green vertex, vf , all the other vertices are red. But by definition, 

all the vertices in A have green colour so f cannot intersect A in more than one vertex. 

As for (A5), notice that Pv for any v ∈ A can intersect V (F ) only in the vertices of 

ev. However, if v ∈ A then all the vertices of ev except v are coloured blue. But all the 

vertices in A have colour green since they are all of form vf for some f good, so Pv

cannot intersect V (F ) except at the vertex v. Finally, by Lemma 3.1, H ′ has a subgraph 
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F of minimum degree at least d(H ′)/r ≥ d(H)/r23r ≥ d/r23r+2. Notice that A and F

satisfy (A3)-(A5). �

Lemma 3.5. Let r ≥ 3, k ≥ 1 be integers. Let F be a linear r-graph and A ⊂ V (F )

be such that each edge of F contains exactly one vertex of A. If δ(F ) ≥ rk + 1 then 

F contains a linear path P of length k + 2 such that P intersects A only at degree one 

vertices of P .

Proof. Let P be a longest linear path in F with the property that P intersects A only at 

degree one vertices of P . The length of P is at least one. Let e be the last edge of P . There 

exists a vertex v ∈ e \ A that has degree one in P since |e ∩ A| = 1. There are at least 

δ(G) ≥ rk +1 edges of G containing v. Since G is linear, there are at most |V (P )| −r +1

edges in G that contain v and another vertex of P . Suppose |V (P )| − r + 1 ≤ rk. Then 

there is an edge f in G that contains v and no other vertex of P . But now P ∪ f is a 

longer linear path than P and each vertex in (V (P ) ∪ f) ∩ A has degree one in P ∪ f , 

contradicting our choice of P . Hence |V (P )| ≥ rk + r, which implies |P | ≥ k + 2. �

Lemma 3.6. Let r ≥ 3, k ≥ 1 and d = kr223r+1. Let F be a linear r-graph with δ(F ) ≥
2d and x be any vertex in F . Then there exist edges e and f and some integer t ≤
� log n

log(δ(F )/d)� such that for each i ∈ [k], there is a linear path of length t + 2 + i starting 

at x and having e and f as its last two edges.

Proof. For each vertex v in F , let Pv be a shortest (x, v)-linear path in F . By Lemma 3.4

(with F playing the role of G) there exist a positive integer t ≤ � log n
log(δ(F )/d)�, a subset 

A ⊆ St(x) and a subgraph F ′ of F that satisfy (A3)-(A5). In particular, δ(F ′) ≥ d/r23r =

2rk ≥ rk + 1. Applying Lemma 3.5 to F ′, we obtain a linear path P of length k + 2

in F ′ such that each vertex in V (P ) ∩ A has degree one in P . Suppose the edges of P

are ordered as e1, . . . , ek, e, f . For each i ∈ [k], let vi be the unique vertex in ei ∩ A. For 

each i ∈ [k] since Pvi
intersects V (F ′) only in vi, Pvi

∪ {ei, . . . , ek, e, f} is a linear path 

of length (k + 2) − (i − 1) + t that starts at x and ends with e, f . Since this holds for 

each i = 1, . . . , k, the claim follows. �

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We will show the statement holds for c1 = 26r+6r4, c3 = 26r+4r4

and c2 = log(c3). Let G be an n-vertex linear r-graph with d(G) ≥ c1k. By Lemma 3.1

G contains a subgraph G′ with δ(G′) ≥ d(G)/r. Set δ = d(G)/r. Then δ(G′) ≥ δ. Set

d′ = kr223r+1, d = r3/223r+2
√

δk.

Note that when k, r are fixed, d′ is a constant, but d = Θ(
√

d(G)). Our d is chosen to 

approximately optimize the upper bound we obtain later on the lengths of the cycles. As 

δ = d(G)/r ≥ c1k/r = 26r+6r3k, we have d = r3/223r+2
√

δk ≥ kr326r+5 ≥ r23r+3 · 2d′.
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Let x0 be any vertex in G′. We apply Lemma 3.4 to G′. For this one needs to check that 

δ(G′) ≥ δ ≥ 2d which holds by the choice of c1. Thus there exist m ≤ � log n
log(δ(G′)/d) � ≤

� log n
log(δ/d) �, a subset A ⊆ Sm(x0) and a subgraph F of G′ such that

(P1) δ(F ) ≥ d
r23r+2 ,

(P2) each edge of F contains exactly one vertex in A but no vertex in 
⋃

j<m Sj(x0), and

(P3) for each v ∈ V (F ) ∩ A, Pv intersects V (F ) only in v.

Now let x be any vertex in V (F ) ∩ A. Since δ(F ) ≥ d/r23r+2 ≥ 2d′, by Lemma 3.6, 

there exist two edges e and f in F and some integer t ≤ � log n
log(δ(F )/d′) � such that for each 

i ∈ {t + 3, t + 4, . . . , t + k + 2} there is a linear path Qi in F of length i which starts at 

x and has e and f as the last two edges.

Let y be the unique vertex in A ∩ f . By (P3), Px and Py intersect V (F ) only in x and 

y, respectively. Therefore, Px ∪ Py must contain a linear (x, y)-path of length q ≤ 2m

that intersects V (F ) only in x and y. Let us denote this subpath by Pxy.

If y /∈ e ∩ f , then Pxy ∪ Q1, . . . , Pxy ∪ Qk are linear cycles of lengths q + t + 3, . . . , q +

t +k +2, respectively. If y ∈ e ∩f then Pxy ∪ (Q1 \f), . . . , Pxy ∪{Qk \f) are linear cycles 

of lengths q + t + 2, . . . , q + t + k + 1, respectively. In either case we find linear cycles of 

k consecutive lengths, the shortest of which has length at most

q + t + 3 ≤ 2m + t + 3 ≤ 2

⌈

log n

log(δ/d)

⌉

+

⌈

log n

log(δ(F )/d′)

⌉

+ 3 ≤ 3

⌈

log n

log(δ/d)

⌉

+ 3,

where the last inequality holds since δ(F )/d′ ≥ d/kr326r+3 ≥ δ/d. By our choice of d

and c3, we can check that δ/d ≥ (d(G)/kc3)1/2. Hence, the above upper bound is at 

most

3

⌈

log n

(1/2) log(d(G)/c3k)

⌉

+ 3 ≤ 3

⌈

2 log n

log(d(G)/k) − c2

⌉

+ 3 ≤ 6 log n

log(d(G)/k) − c2
+ 6.

This completes the proof of Theorem 1.5. �

4. Sharper results for linear cycles of even consecutive lengths

For linear cycles of even consecutive lengths, we obtain much tighter control on the 

shortest length of a cycle in the collection, which as a byproduct also gives us an improve-

ment on the current best known upper bound on the linear Turán number exL(n, Cr
2k)

of an r-uniform linear cycle of a given even length 2k. The previous best known upper 

bound is cr,kn1+1/k, where cr,k is exponential in k for fixed r. For fixed r, we are now 

able to improve the bound on cr,k to a linear function of k.
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4.1. A useful lemma on long paths with special features

One of the key ingredients of our proof of the main result in this section is Lemma 4.2. 

The lemma is about the existence of a long path with special features in a properly 

edge-coloured graph with high average degree. It may be viewed a strengthening of two 

lemmas used in [14] (Lemma 2.6 and Lemma 2.7).

Lemma 4.1. Let G be an n-vertex graph with average degree at least 2d, for d ≥ 1. Then 

there exists a linear ordering σ of V (G) as x1 < x2 < · · · < xn and some 0 ≤ m < n

such that for each 1 ≤ i ≤ m |NG(xi) ∩ {xi+1, . . . , xn}| < d and that the subgraph F of 

G induced by {xm+1, . . . , xn} has minimum degree at least d.

Proof. As long as G contains a vertex whose degree in the remaining subgraph is less 

than d we delete it from G. We continue until no such vertex exists. Let F denote the 

remaining subgraph. Suppose this terminates after m steps. Then we have deleted at 

most dm ≤ d(n − 1) < e(G) edges. Hence F is nonempty. Let x1 < x2 < · · · < xm be 

the vertices deleted in that order. Let xm+1 < . . . < xn be an arbitrary linear ordering 

of the remaining vertices. Then the ordering σ := x1 < . . . < xn and F satisfy the 

requirements. �

The following lemma is written in terms of colourings of graphs, but in our appli-

cations the graph H will be some (Ai, Aj)-projection of an r-partite r-graph G where 

the colouring is obtained by colouring the edge e ∩ (Ai ∪ Aj) in H by the (r − 2)-set 

e \ (Ai ∪ Aj) for each e ∈ E(G).

Lemma 4.2. Let r ≥ 3 and � ≥ 2. Let H be a connected graph with minimum degree at 

least 4r�. Let χ be a strongly proper edge-colouring of H using (r − 2)-sets. Let E1, E2 be 

any partition of E(H) into two nonempty sets such that |E1| ≤ |E2|. Then there exists 

a strongly rainbow path of length at least � in H such that the first edge of P is in E1

and all the other edges are in E2.

Proof. Let us call a strongly rainbow path P in H a good path if it can be ordered such 

that its first edge is in E1, and all the other edges are in E2, if the path is of length at 

least two. To prove the lemma, we need to show that H has a good path of length at 

least �.

For i = 1, 2, let Hi be the subgraph of H induced by the edge set Ei. Note that 

d(H2) ≥ 2r�. Let L be a connected component of H2 with d(L) ≥ 2r�. Let us denote 

nL = |V (L)|. We can apply Lemma 4.1 to L and obtain that there exist some integer 

0 ≤ m < nL and a linear ordering σ := x1 < x2 < · · · < xnL
of V (L) such that for each 

1 ≤ i ≤ m, |NL(xi) ∩ {xi+1, . . . xnL
}| < r� and that the subgraph F of L induced by 

{xm+1, . . . , xnL
} has minimum degree at least r�.
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Claim 4.3. For any edge e which has an endpoint in F there exists a strongly rainbow 

path P of length � whose first edge is e and P \ e ⊆ F .

Proof. Suppose e = uv1, where v1 ∈ V (F ). Note that u may or may not be in F . 

Let P = uv1v2 . . . vj be a longest strongly rainbow path such that vi ∈ V (F ), for all 

2 ≤ i ≤ j. For contradiction, assume that j ≤ � − 1. Since δ(F ) ≥ r�, there are at least 

r� edges of F incident to vj . Among these edges, more than �r − j > �(r − 1) of them 

join vj to a vertex outside V (P ). Since the colouring χ is strongly proper, the colours of 

these edges form a matching of (r − 2)-sets of size more than �(r − 1). For any subgraph 

H ′ of H, denote

C(H ′) =
⋃

e∈E(H′)

{c|c ∈ χ(e)}.

Note that |C(P )| ≤ j(r − 2) < �(r − 2). Recall that by the definition of strongly proper 

colouring we have C(H) ∩ V (H) = ∅ thus there must exist a vertex vj+1 ∈ V (F ) \ V (P )

such that χ(vjvj+1) ∩ C(P ) = ∅. Now P ∪ vjvj+1 is a longer strongly rainbow path than 

P , a contradiction. �

Case 1: m = 0. In this case, L = F . If nL = |v(H)| then since E1 is not empty there 

must be an edge e ∈ E1 going between two vertices of V (H) = V (L). If nL < |v(H)|
then since L is a connected component of H2, all the edges leaving L to V (H) \ V (L)

must be from E1. And there must be at least one such edge f ∈ E1 since H itself is 

connected. In both cases, e or f have at least one endpoint in F . Thus we can apply 

Claim 4.3 to either the edge e or f and obtain a good path of length � whose first edge 

is either e or f .

Case 2: m ≥ 1. Let P be the collection of all strongly rainbow paths of length � such 

that their first vertex is among {x1, x2, . . . , xm}, and all the edges along the path belong 

to E2. We may assume P �= ∅. Indeed, since L is connected, there is an edge e going 

across {x1, x2, . . . , xm} to F . By Claim 4.3, we can extend e via a strongly rainbow path 

P of length � such that P \ e ⊆ F . If e ∈ E1, P will be the desired good path of length 

�. So we may assume e ∈ E2. Thus, P ∈ P.

Among all the paths in P, let P = xj1
xj2

. . . xj�
be such that j1 is minimum. By 

our assumption, j1 ∈ [m] and so |NL(xj1
) ∩ {xj1+1, . . . , xnL

}| < r�. If |NL(xj1
) ∩

{x1, . . . , xj1−1}| > �(r − 2) then by a similar argument as in the proof of Claim 4.3 we 

can find j0 < j1 such that χ(xj0
xj1

) is disjoint from C(P ) and xj0
xj1

∈ L. In this case, 

xj0
xj1

. . . xj�−1
would contradict to our choice of P . Hence, |NL(xj1

) ∩{x1, . . . , xj1−1}| ≤
�(r − 2). This shows that dL(xj1

) < �(r − 2) + r�. Since δH(xj1
) ≥ 4r�, xj1

is incident to 

more than 4�r − �r − �(r − 2) = 2�(r + 1) many edges in E1. Among them, more than 

2�r + � of them join xj1
to a vertex outside V (P ). Since χ is strongly proper, the colours 

on these edges form a matching of size more than 2�r + �. Since |C(P )| < �r, there 

must exist at least one edge of E1 that joins xj1
to a vertex xj0

outside V (P ) such that 

χ(xj0
xj1

) is disjoint from C(P ). Then xj0
xj1

. . . xj�
is a good path of length � + 1. �
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Fig. 1. H = H1 ∪ H2 ∪ H3 and the corresponding tree T .

The following cleaning lemma is similar to part of Lemma 3.4.

Lemma 4.4. Let H be a linear r-partite r-graph with an r-partition (A1, · · · , Ar). Let M

be an (r − 1)-uniform matching where for each f ∈ M , f contains one vertex of each of 

A2, . . . , Ar. Then there exists a subgraph H ′ ⊆ H such that

(1) e(H ′) ≥ [1/(r − 1)]r−1e(H),

(2) each edge of M intersects V (H ′) in at most one vertex.

Proof. Let us independently colour each edge of M using a colour in {2, . . . , r} chosen 

uniformly at random. Denote the colouring c. For each i ∈ {2, . . . , r}, let Mi = {f ∈
M : c(f) = i} and let Bi = {f ∩ Ai : f ∈ Mi}. Let H ′ be the subgraph of H induced by 

the edge set {e ∈ E(H) : e ∩ V (M) ⊆ B2 ∪ · · · ∪ Br}. By definition, H ′ satisfies (2), it 

remains to show (1) holds.

We claim that for any edge e in H, the probability that e is in H ′ is at least [1/(r −
1)]r−1. Let s = |e ∩V (M)|. If s = 0 then e is in H ′ with probability 1. So we may assume 

that 1 ≤ s ≤ r−1. Without loss of generality, suppose e ∩V (M) = {a2, . . . , as+1}, where 

ai ∈ Ai for each i = 2, . . . , s + 1. Since M is matching, for each i = 2, . . . , s + 1, there is 

a unique edge fi ∈ M that contains ai. The probability that ai ∈ Bi is the probability 

that fi is coloured i, which is 1/(r − 1). Hence, the probability that ai ∈ Bi for each 

i ∈ {2, . . . , s + 1} is [1/(r − 1)]s. In other words, the probability that e is in H ′ is [1/(r −
1)]s ≥ [1/(r−1)]r−1, as claimed. So the expectation of e(H ′) is at least [1/(r−1)]r−1e(H). 

Therefore, there exists a colouring c for which e(H ′) ≥ [1/(r − 1)]r−1e(H). �

4.2. Rooted expanded trees and linear cycles of consecutive even lengths

In this subsection, we introduce some of the key notions we use, in particular, a variant 

of a breadth-first-search tree in a linear r-partite r-graph G, and prove some auxiliary 

results we need for the proof of the main theorem (see Fig. 1 for the representation of 

H = H1 ∪ H2 ∪ H3 and the corresponding tree T ).
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Definition 4.5. Let r ≥ 3 be an integer. Let G be a graph. Let χ be any edge-colouring of 

G χ : E(G) → C(r−2), where the set C is the colour set and disjoint from V (G). Given 

such χ, we define the (χ, r)-expansion of G, denoted by Gχ, to be the r-graph on vertex 

set V (G) ∪ C obtained from G by expanding each edge e of G into the r-set e ∪ χ(e).

Note that if χ is a strongly rainbow, then (χ, r)-expansion is isomorphic to what is 

known in the literature, as the r-expansion of G, defined as follows. The r-expansion Gr

of G is an r-graph obtained from G by expanding each edge e of G into an r-set using 

pairwise distinct (r − 2)-sets disjoint from V (G). Note that the (r − 2)-sets used for the 

r-expansion naturally define a strongly rainbow edge-colouring on G.

Algorithm 4.6 (Maximal expanded rooted tree - MERT).

Input: A linear r-partite r-graph G with a fixed r-partition (A1, . . . , Ar) and a vertex 

x in A1.

Output: A triple (H, T, χ) where H is some subgraph of G, T is a tree with V (T ) ⊆
V (H), rooted at x, such that H is the r-expansion of T and furthermore, for each i ≥ 0, 

there exists some j ∈ [r] such that Li(x) ⊆ Aj , where Li(x) is the ith level in T , and χ

is a strongly rainbow edge-colouring of T , such that χ : E(T ) → [V (G) \ V (T )](r−2) and 

H = T χ.

We will also obtain a collection of trees T0 ⊆ T1 ⊆ T2 ⊆ Tm = T , subgraphs of H, 

{Hi}m
i=0 where each Hi is called the ith segment of H and a collection of (r − 1)-uniform 

matchings {Mi}m−1
i=1 where V (Mi) = V (Hi+1) \V (Hi) and Mi is called the ith matching 

of H, these are described further below.

Initialization: Let H0 be the r-graph with the single vertex x and T0 the tree with the 

single vertex x. Let L0 = {x}. Let H1 be the subgraph of G consisting of all edges of G

containing x. For every v ∈ V (H1) \ {x}, let pv = {x}.

Iteration - i ≥ 1: Let Ei denote the set of edges in G that contain exactly one vertex 

in V (Hi) and no vertices in ∪j<iV (Hj).

If Ei = ∅ then let Li = (V (Hi) \ V (Hi−1)) ∩ Aj , where Aj is any part of (A1, . . . , Ar)

that doesn’t contain Li−1. Let Ti be the tree obtained from Ti−1 by joining every v ∈ Li

to pv ∈ Li−1. Let H = ∪0≤j≤iHi, T = Ti and terminate.

If Ei �= ∅ then do the following. Suppose Li−1 ⊆ A�. For each j ∈ [r] \ {�}, let Ej
i

be the set of edges in e ∈ Ei such that the unique vertex in e ∩ (V (Hi) \ V (Hi−1)) lies 

in Aj . Then Ei =
⋃

j∈[r]\{�} Ej
i . Let s(i) be some j ∈ [r] \ {�} that maximizes |Ej

i |. Let 

Li = E
s(i)
i ∩ As(i). Let Ti be the tree obtained from Ti−1 by joining every v ∈ Li to 

pv ∈ Li−1. Let Mi be a largest matching of (r − 1)-tuples in {e \ Li : e ∈ E
s(i)
i }. For 

each I ∈ Mi we do the following. Since the graph G is linear, there is a unique vI ∈ Li

such that I ∪ vI ∈ E
s(i)
i . For each u ∈ I, we define pu to be vI and call it the parent of 

u in H. (Note that while u may not belong to V (T ), pu ∈ Li ⊆ V (T ).) Let Hi+1 be the 

subgraph of G induced by the edge set {I ∪ vI |I ∈ Mi}. Increase i by one and repeat.

Termination: Suppose the algorithm stopped after m steps then we call m the height

of H. Note that m is also the height of the tree T . Let χ be the following colouring on 
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E(T ): For every edge uv ∈ E(T ) there is a unique (r−2)-tuple I such that uv∪I ∈ E(H), 

we let χ(uv) = I. By construction of H, χ is strongly rainbow. We will interchangeably 

call both H and the triple (H, T, χ) an MERT of G rooted at x of height m. �

Lemma 4.7. Let r ≥ 3 and k ≥ 1 be integers. Let G be an r-partite r-graph with an 

r-partition (A1, A2, . . . , Ar). Let x be a vertex in G. Let (H, T, χ) be an MERT of G

rooted at x of height m. Fix some integer t ≤ m, and let Li be the ith level of T . Let D

be the subgraph of G consisting of all the edges in G that contain a vertex in Lt−1, at 

least one vertex in V (Ht) \ Lt−1 and no vertices from 
(

⋃

j<t V (Hj)
)

\ Lt−1. If e(D) ≥
8kr(r −1)(|Lt−1| + |Lt|) then G contains linear cycles of lengths 2� +2, 2� +4, . . . , 2� +2k

for some � ≤ t − 1.

Proof. By definition of MERT, without loss of generality we may suppose Lt−1 ⊆ A1. 

Since A2 ∩ V (Ht), A3 ∩ V (Ht), . . . , Ar ∩ V (Ht) partition V (Ht) \ Lt−1, by the pigeonhole 

principle, for some i ∈ {2, . . . , r}, at least e(D)/(r −1) of the edges of D contain a vertex 

from Ai ∩ V (Ht). Without loss of generality, suppose i = 2.

Let X = Lt−1 and Y = A2 ∩ V (Ht). By definition of MERT, we have |Y | = |V (Ht) ∩
A2| = |Lt|. Let D′ be the subgraph of D consisting of the edges that contain a vertex in 

X and a vertex in Y . By the previous discussion,

e(D′) ≥ e(D)/(r − 1). (2)

Let B be the (X, Y )-projection of D′. Since G is linear, e(B) = e(D′). Also, |V (B)| ≤
|X| + |Y | = |Lt−1| + |Lt|. By our assumption about e(D) and (2),

e(B) = e(D′) ≥ 8kr(|Lt−1 + |Lt|) ≥ 8kr|V (B)|.

So B has average degree at least 16kr. By Lemma 3.1, B contains a connected subgraph 

B′ with minimum degree at least 8kr.

Let S = V (B′) ∩ X. Suppose x′ is the closest common ancestor of S in the tree T . 

The union of the paths of T joining vertices of S to x′ forms a subtree T ′ of T rooted 

at x′. Suppose that x′ ∈ Lj for some j ≥ 0. Then V (T ′) ⊆ Lj ∪ · · · ∪ Lt−1, and x′ is the 

only vertex in V (T ′) ∩ Lj . For each v ∈ S, let Qv denote the unique (v, x′)-path in T ′.

Since x′ is the closest common ancestor of S in T , x′ has at least two children in T ′. 

Let x1 be one of the children of x in T ′. We define a vertex labelling f on S as follows. 

For each v ∈ S, if Qv contains x1 then let f(v) = 1, and otherwise let f(v) = 2. Note 

that since x′ has at least two children, there will be some u, v ∈ S with f(u) = 1 and 

f(v) = 2. The following claim, despite being simple, is one of the key ingredients used 

by Bondy and Simonovits in proving their results in [2].

Claim 4.8. Let u, v ∈ S. If f(u) = 1 and f(v) = 2 then Qu ∪ Qv is a path of length 

2(t − 1 − j) in T ′ that intersects S only in u and v.
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Now, we define a partition of E(B′) into E1 and E2 as follows. Let ab be any edge 

in E(B′) where a ∈ X and b ∈ Y . For i = 1, 2, we put ab in Ei if f(a) = i. We define 

an edge-colouring ϕ on B′ using (r − 2)-sets by letting ϕ(ab) be the unique (r − 2)-

set such that ab ∪ ϕ(ab) ∈ E(D′) for all ab ∈ E(B′). Since G is r-partite, ϕ(B′) is 

disjoint from V (B′). Since G is linear, ϕ is strongly proper. Without loss of generality, 

we may assume that |E1| ≤ |E2|. By Lemma 4.2, with � = 2k, B′ contains a strongly 

rainbow path P = a1b1a2b2 . . . akbkak+1 of length 2k such that the first edge of P is in 

E1 and all other edges are in E2. Note that we must have a1 ∈ S. Otherwise if b1 ∈ S

instead then the first two edges of P would have the same colour, contradicting our 

definition of P . Hence, a1, a2, . . . , ak+1 ∈ S and by our assumption about P , f(a1) = 1

and f(a2) = · · · = f(ak+1) = 2. For each i ∈ [k], let Pi be the subpath P from a1 to ai. 

Let χ be the colouring in (H, T, χ) produced by Algorithm 4.6.

Claim 4.9. For each i ≥ 2, let Ri be the union of the r-uniform paths P ϕ
i , Qχ

a1
and Qχ

ai
. 

Then Ri is a linear cycle of length 2(t − 1 − j) + 2(i − 1) in G.

Proof. Since f(a1) = 1 and f(ai) = 2, by Claim 4.8, Qa1
∪ Qai

is a path of length 

2(t − 1 − j) in T ′ that intersects S only in a1 and ai. On the other hand, Pi is a path of 

length 2(i − 1) in B′, which intersects Qa1
∪ Qai

only at a1 and ai. So Pi ∪ Qa1
∪ Qai

is a 

cycle of length 2(t −1 −j) +2(i −1) in T ′∪B′. By our assumptions, ϕ is strongly rainbow on 

Pi and χ is strongly rainbow on Qa1
∪Qai

. Furthermore, for any e ∈ Pi and f ∈ Qa1
∪Qai

, 

ϕ(e) has no vertices in 
(

⋃

j<t V (Hj)
)

\ Lt−1, while χ(f) ⊆
(

⋃

j<t V (Hj)
)

\ Lt−1. So 

ϕ(e) ∩ χ(f) = ∅. Therefore, Ri is a linear cycle of length 2(t − 1 − j) + 2(i − 1) in G. �

By Claim 4.9, we see Lemma 4.7 holds for some � = t − 1 − j ≤ t − 1. �

Lemma 4.10. Let r ≥ 3, and k ≥ 1 be integers. Let G be an r-partite r-graph with an 

r-partition (A1, A2, . . . , Ar). Let x be a vertex in G. Let (H, T, χ) be an MERT rooted at 

x of height m. For any integer t ≤ m, let

F = {e ∈ E(G) : e ∩
⋃

i<t

V (Hi) = ∅ and |e ∩ V (Ht)| ≥ 2}.

If e(F ) ≥ 8krr+2|Lt|, then G contains linear cycles of even lengths 2� +2, 2� +4, . . . , 2� +

2k for some 1 ≤ � ≤ t.

Proof. By our assumption Lt−1 is contained in one partite set of G. Without loss of 

generality suppose that Lt−1 ⊆ A1. By definition of the MERT, M = {e \ Lt−1 : e ∈
Ht} is an (r − 1)-uniform (r − 1)-partite matching with partition (A2, A3, . . . , Ar). By 

Lemma 4.4, there exists a subgraph F ′ of F such that

(1) e(F ′) ≥ (1/(r − 1))r−1e(F ),

(2) each edge of M intersects V (F ′) in at most one vertex.
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Since V (F ′) is disjoint from Lt−1, item (2) above ensures that

∀e ∈ Ht, |e ∩ V (F ′)| ≤ 1. (3)

By the definition of F and the fact that F ′ ⊆ F , any edge in F ′ contains at least two 

vertices of V (Ht)\Lt−1 = V (M).

By the pigeonhole principle, there exist some i, j ∈ {2, . . . , r} such that the subgraph 

F ′′ of F ′ with edge set E(F ′′) := {e ∈ F ′ : |e ∩ V (M) ∩ Ai| = |e ∩ V (M) ∩ Aj | = 1}
satisfies

e(F ′′) ≥ e(F ′)/

(

r − 1

2

)

≥ (2/rr+1)e(F ) ≥ 16kr|Lt|, (4)

where the last inequality holds as e(F ) ≥ 8krr+2|Lt|.
Without loss of generality, suppose that {i, j} = {2, 3}. Let B be the (A2, A3)-

projection of F ′′. Since G is linear, e(B) = e(F ′′). Also, note that |V (B)| ≤ |V (M) ∩
(A2 ∪ A3)| ≤ 2|Lt|. Hence, by (4),

e(B) = e(F ′′) ≥ 16kr|Lt| ≥ 8kr|V (B)|.

So B has average degree at least 16kr. By Lemma 3.1, B contains a connected subgraph 

B′ such that

δ(B′) ≥ 8kr.

Let us define an edge-colouring ϕ of B′ using (r − 2)-sets as follows. For all ab ∈ E(B′), 

let ϕ(ab) be the unique (r − 2)-set such that ab ∪ ϕ(ab) ∈ E(F ′′). It is easy to see that 

ϕ is strongly proper.

Recall that for every a ∈ V (Ht) pa denotes the parent of a in H as in Algorithm 4.6. 

Let S = {pa|a ∈ V (B′) ∩ A2}. Note that S ⊆ Lt−1. If S is a single vertex, let x′ be that 

single vertex and T ′ = {x′}. Otherwise, let x′ be the closest common ancestor in T of 

vertices in S, and let T ′ be the subtree of T with the root x′ and having vertices of S as 

leaves.

Case 1: |S| = 1. Let P = a1a2 . . . a2k+1 with a1 ∈ A2, a2k+1 ∈ A2 be any strongly 

rainbow path of length 2k + 1 in B′ under the colouring ϕ. It easily exists because the 

minimum degree in B′ is at least 8kr. For every 1 ≤ i ≤ k, let P2i+1 be the subpath of 

P between a1 and a2i+1. Since ϕ is strongly rainbow on P and ϕ(P ) ⊆ V (F ′′), P ϕ
2i+1 is 

a linear path of length 2i in F ′′. For j = 1, 3, . . . , 2k + 1, let eaj
be the unique edge of 

Ht containing both aj and paj
.

By (3), for all i ≥ 1, ea2i+1
intersects P2i+1 only at a2i+1, and ea1

intersects P2i+1

only at a1. By definition of MERT, ea1
∩ ea2i+1

= {x′}. Therefore, for all 1 ≤ i ≤ k, 

P ϕ
2i+1 ∪ ea1

∪ ea2i+1
is a linear cycle of length 2i + 2. Thus, we find linear cycles of even 

lengths 4, . . . , 2k + 2, thus the lemma follows for � = 1.
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Case 2: |S| ≥ 2. Then T ′ has at least two children, let x1 be one of them. Suppose that 

x′ ∈ Lj . For each v ∈ S, let Qv denote the unique (v, x′)-path in T ′. We label vertices 

of A2 ∩ V (B′) as follows: for a ∈ A2 ∩ V (B′) if Qpa
contains x1 set f(a) = 1, otherwise 

f(a) = 2. The next claim is easy to see.

Claim 4.11. Let u, v ∈ A2 ∩ V (B′). If f(u) = 1 and f(v) = 2, then Qpu
∪ Qpv

is a path 

of length 2(t − 1 − j) in T ′ that intersects S only in pu and pv. �

Now define a partition of the edges E(B′) = E1 ∪ E2 as follows. For ab ∈ E(B′) put 

ab ∈ Ei if f(a) = i. Note that this is well defined partition since B′ is bipartite with 

bipartition (V (B′) ∩ A2, V (B′) ∩ A3).

Claim 4.12. E1 �= ∅, E2 �= ∅.

Proof. Since T ′ has at least two children, there must be a, a′ ∈ A2 ∩ V (B′) such that 

f(a) = 1 and f(a′) = 2, therefore any edge adjacent to a lies in E1, any edge adjacent 

to a′ lies in E2, and recall that the minimum degree in B′ is positive. �

We may assume that |E1| ≤ |E2|. The other case is similar so we skip the analysis. By 

Lemma 4.2, with � = 2k, B′ contains a strongly rainbow path P = a1b1a2b2 . . . akbkak+1

of length 2k such that the first edge of P is in E1 and all other edges are in E2. For 

each i ∈ [k], let Pi be the subpath P from a1 to ai. Since ϕ is strongly rainbow on Pi

and ϕ(Pi) ⊆ V (F ′′), P ϕ
i is a linear path of length 2i − 2 in F ′′. Note that f(a1) = 1

and f(ai) = 2, for all i ≥ 2. Thus, for all i ≥ 2, by Claim 4.11, Qpa1
∪ Qpai

is a path 

of length 2(t − 1 − j) in T ′. Since χ is strongly rainbow on T ′, Qχ
pa1

∪ Qχ
pai

is a linear 

path of length 2(t − 1 − j) in 
⋃

j<t Hj . In particular, we see that P ϕ
i and Qχ

pa1
∪ Qχ

pbi

are vertex disjoint. For i ∈ [k + 1], let eai
be the unique edge of Ht containing both ai

and pai
.

By (3), for all i ≥ 1, eai
intersects Pi only at ai, and ea1

intersects Pi only at 

a1. Recall that ea1
, eai

∈ Ht are disjoint as well therefore one can easily check that 

Ri := P ϕ
i ∪ Qχ

pa1
∪ Qχ

pai
∪ {ea1

, eai
} is a linear cycle of length 2(t − j) + 2i − 2 in G, for 

all 2 ≤ i ≤ k + 1. This gives us linear cycles of 2(t − j) + 2, 2(t − j) + 4, . . . , 2(t − j) + 2k

in G. So the lemma follows with � = t − j ≤ t, as desired. �

4.3. Linear cycles of even consecutive lengths in linear r-graphs

In this section we prove Theorem 1.3 and derive Corollary 1.4 from it. Theorem 4.13 is 

the main result of this section, as Theorem 1.3 will follow from it by a standard argument 

of selecting a large r-partite subgraph.

Theorem 4.13. Let k, r be integers where k ≥ 1 and r ≥ 3. Let c3 = 180rr+2 and c4 =

log(64rr+2). If G is an n-vertex r-partite linear r-graph with average degree d(G) ≥ c3k, 
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then G contains linear cycles of lengths 2� + 2, 2� + 4, . . . , 2� + 2k, for some positive 

integer � ≤ � log n
log(d(G)/k)−c4

� − 1.

We need the following definition of “dense” graphs which helps us to facilitate the 

inductive argument used to prove Theorem 4.13.

Definition 4.14. Given a positive real d, an r-graph G is said to be d-minimal, if d(G) ≥ d

but for every proper induced subgraph H we have d(H) < d(G).

Lemma 4.15. Let r ≥ 2 be an integer and d > 0 a real. If G is an r-graph satisfying that 

d(G) ≥ d then G contains a d-minimal subgraph G′.

Proof. Among all induced subgraphs H of G satisfying d(H) ≥ d, let G′ be one that 

minimizes |V (G′)|. Then G′ is d-minimal. �

Lemma 4.16. Let r ≥ 3 be an integer and d a positive real. Let G be a d-minimal r-graph. 

For any proper subset S of V (G), the number of edges of G that contain a vertex in S

is at least d|S|/r.

Proof. Otherwise, suppose there is a proper subset S of V (G) such that the number of 

edges of G that contain a vertex in S is less than d|S|/r. Then the subgraph G′ of G

induced by V (G) \ S satisfies

e(G′) ≥ e(G) − d|S|/r ≥ d|V (G)|/r − d|S|/r = d(|V (G′)|/r.

Hence d(G′) ≥ d, contradicting G being d-minimal. �

Proof of Theorem 4.13. Let d = d(G) and let p = � log n
log(d/k)−c4) �. By Lemma 4.15, G

contains a d-minimal subgraph G′. Suppose G′ does not contain a collection of linear 

cycles of lengths 2� +2, 2� +4, . . . , 2� +2k, where � ≤ p −1. We will derive a contradiction. 

Let us apply Algorithm 4.6 to G′ with a fixed vertex x and let (H, T, χ) be the produced 

MERT. Let m denote the height of H and T .

For each i ∈ [m], let

Gi = {e ∈ E(G′) \ E(H) : e ∩ V (Hi) �= ∅, e ∩
⋃

j<i

V (Hj) = ∅},

G1
i = {e ∈ E(Gi) : |e ∩ V (Hi)| = 1}, and Fi = {e ∈ E(Gi) : |e ∩ V (Hi)| ≥ 2}.

Note that G1
m = ∅, as otherwise Algorithm 4.6 would have produced non-empty Lm+1, 

instead of stopping at step m, Lm being the last level. For convenience, define Lm+1 = ∅.

Claim 4.17. For each 1 ≤ i ≤ min{m, p} − 1, we have e(G1
i ) ≤ 8kr3(|Li| + |Li+1|).
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Proof. Let Di be the set of edges in G1
i that intersect V (Hi) in Li. By Algorithm 4.6,

e(Di) ≥ e(G1
i )/r.

Let e ∈ Di. By definition, e intersects V (Hi) in exactly one vertex and that vertex lies 

in Li. Furthermore, e contains no vertex in 
⋃

j<i V (Hj). If e \ Li is vertex disjoint from 

V (Hi+1) \ Li, then e would have been added to Hi+1 by Algorithm 4.6, contradicting 

e /∈ E(H). Hence e must contain at least one vertex in V (Hi+1 \ Li). If e(Di) ≥ 8kr(r −
1)(|Li| + |Li+1|) then by Lemma 4.7 (with t = i + 1) G contains linear cycles of lengths 

2� + 2, 2� + 4, . . . , 2� + 2k for some � ≤ i ≤ min{m, p} − 1 ≤ p − 1, contradicting our 

assumption. Hence,

e(Di) ≤ 8kr(r − 1)(|Li| + |Li+1|) < 8kr2(|Li| + |Li+1|).

Therefore, we have e(G1
i ) ≤ 8kr3(|Li| + |Li+1|). �

Claim 4.18. For each 1 ≤ i ≤ min{m, p − 1} we have e(Fi) ≤ 8krr+2|Li|.

Proof. Suppose e(Fi) ≥ 8krr+2|Li|. Then by Lemma 4.10 (with t = i), we can find in G

linear cycles of length 2� + 2, 2� + 4, . . . , 2� + 2k for some � ≤ i ≤ p − 1, contradicting 

our assumption. Hence, e(Fi) ≤ 8krr+2|Li| hods for each 1 ≤ i ≤ min{m, p − 1}. �

By Claims 4.17 and 4.18, we have that for any 1 ≤ i ≤ min{m, p} − 1,

e(Gi) = e(G1
i ) + e(Fi) ≤ 16krr+2(|Li| + |Li+1|). (5)

Claim 4.19. For each 1 ≤ i ≤ min{m, p} − 1, e(
⋃i

j=1 Gj) ≥ (d/2) 
∑i

j=1 |Lj | − |Li+1|.

Proof. Let S =
⋃i

j=0 V (Hj). Since i ≤ m − 1, S is a proper subset of V (G′). Let ES

denote the set of edges of G′ that contains a vertex in S. By our definitions, ES ⊆
⋃i+1

j=1 E(Hj) ∪ ⋃i
j=1 Gj . Since G′ is d-minimal, by Lemma 4.16,

|ES | ≥ d|S|/r = d

⎛

⎝1 +

i
∑

j=1

(r − 1)|Lj |

⎞

⎠ /r.

On the other hand, by the definition of H, | ⋃i+1
j=1 E(Hj)| = ∑i+1

j=1 |Lj |. Hence, we have

e

⎛

⎝

i
⋃

j=1

Gj

⎞

⎠ = |ES | − |
i+1
⋃

j=1

E(Hj)| ≥ d

⎛

⎝1 +
i

∑

j=1

(r − 1)|Lj |

⎞

⎠ /r −
i+1
∑

j=1

|Lj |

≥
i

∑

j=1

|Lj |
(

d

(

1 − 1

r

)

− 1

)

+ d/r − |Li+1| ≥ (d/2)

i
∑

j=1

|Lj | − |Li+1|,
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completing the proof. �

For each 1 ≤ i ≤ m, let Ui =
⋃i

j=1 Lj . By (5) and Claim 4.19, for each 1 ≤ i ≤
min{m, p} − 1,

32krr+2|Ui+1| − |Li+1| ≥
i

∑

j=1

16krr+2 (|Lj | + |Lj+1|) ≥ e

⎛

⎝

i
⋃

j=1

Gj

⎞

⎠ ≥ (d/2)|Ui| − |Li+1|.

Hence, for each 1 ≤ i ≤ min{m, p} − 1 we have

|Ui+1| ≥ (d/64krr+2)|Ui|. (6)

Case 1: m ≤ p − 1. We will see that if Algorithm 4.6 stops after at most p − 1 steps 

then Lm must be relatively small but that would contradict to (6) for i = m − 1. Let 

S = V (Hm) \ (Lm−1 ∪ Lm). Then S is a proper subset of V (G′) with |S| = (r − 2)|Lm|. 
Let ES denote the set of edges of G′ that contain a vertex in S. Since G′ is d-minimal, 

we have

|ES | ≥ d|S|/r = d|Lm|(r − 2)/r.

On the other hand, since Lm is the last level of H, by the definitions and the fact that 

G1
m = ∅, we have ES ⊆ E(Hm) ∪ ⋃m−1

i=1 E(Gi) ∪ Fm. By (5), Claim 4.18 and the fact 

that e(Hm) = |Lm|, we have

|ES | ≤ |Lm|+
m−1
∑

j=1

16krr+2(|Lj |+ |Lj+1|)+8krr+2|Lm| ≤ 32krr+2|Um−1|+16krr+2|Lm|.

Combining the lower and upper bounds above on |ES|, we get

(r − 2)d|Lm|/r ≤ 32krr+2|Um−1| + 16krr+2|Lm|.

As d ≥ c3k = 180krr+2 and r ≥ 3, this inequality above implies |Lm| < |Um−1|. 
Therefore, |Um| = |Um−1| + |Lm| < 2|Um−1|. But by (6), we have

|Um| ≥ (d/64krr+2)|Um−1| ≥ 2|Um−1|,

a contradiction.

Case 2: m ≥ p. In this case we show that the expansion rate is so fast that |Up| ≥
n, which is a contradiction with x /∈ Up. Since G′ is d-minimal, by Lemma 4.16, the 

minimum degree of G′ is at least d/r, and therefore, |U1| = |L1| = dG′(x) ≥ d/r. Thus 

by (6), we have

|Up| ≥ (d/64krr+2)p.
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Taking logarithm of both sides of the inequality and using c4 = log(64rr+2) and p =

� log n
log(d/k)−c4) �, we get

log |Up| ≥ p(log(d/k) − c4) ≥ log n.

So |Up| ≥ n. This is a contradiction as x /∈ Up, completing the proof of the theorem. �

Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let c3, c4 be the constants obtained in Theorem 4.13. Let c1 =

c3rr = 180r2r+2 and c2 = c4 +log(rr) = log(64r2r+2). Let G be an n-vertex r-graph with 

d(G) ≥ c1k. By a well-known result of Erdős and Kleitman [8] G contains an r-partite 

subgraph G′ with d(G′) ≥ d(G)(r!/rr) ≥ d(G)/rr ≥ c3k. By Theorem 4.13, G′ (and 

thus G also) contains linear cycles of lengths 2� + 2, 2� + 4, . . . , 2� + 2k, for some positive 

integer

� ≤
⌈

log n

log(d(G′)/k) − c4)

⌉

− 1

≤
⌈

log n

log(d(G)/k) − log rr − c4)

⌉

− 1 =

⌈

log n

log(d(G)/k) − c2)

⌉

− 1.

This finishes the proof of Theorem 1.3. �

As mentioned in the introduction, as a quick application of Theorem 1.3, we obtain an 

improvement on the upper bound given in [6] on exL(n, Cr
2k) by reducing the coefficient 

from at least exponential in k to a function linear in k (for fixed r).

Proof of Corollary 1.4. Let c1 = 180r2r+2, c2 = log 64r2r+2 be as in the proof of Theo-

rem 1.3. Let G be an n-vertex linear r-graph with e(G) ≥ ckn1+1/k, where c = c1/r =

180r2r+1. Then d(G) = re(G)/n ≥ c1kn1/k ≥ c1k, thus we can apply Theorem 1.3 to 

G and conclude that it contains linear cycles of lengths 2�, 2� + 2, . . . , 2� + 2(k − 1) for 

some positive integer

� ≤
⌈

log n

log(d(G)/k) − c2)

⌉

≤
⌈

log n

log c1 + log n1/k − c2

⌉

≤ k,

where in the last inequality we used that c2 < log c1. Since the even numbers in the 

interval [2�, . . . , 2� + 2(k − 1)] contain the number 2k it follows that G′ must contain a 

linear cycle of length exactly 2k. Hence the corollary holds. �

5. Concluding remarks

In Theorem 1.5, we can slightly improve the leading coefficient 6 but we do not know 

if one can further improve the leading coefficient to 2 as in Theorem 1.3. In particular, 

we pose the following two questions, the second being a weakening of the first.
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Question 5.1. Let r ≥ 3 and k ≥ 2 be integers. Do there exist constants c1 = c(r), c2 =

c(r) such that if G is an n-vertex linear r-graph with average degree d(G) ≥ c1k then 

G contains linear cycles of k consecutive lengths, the shortest of which is at most 

2� log n
log d(G)/k−c2

� + 1?

Question 5.2. Let r ≥ 3 and k ≥ 2 be integers. Do there exist constants c1 = c(r), c2 =

c(r) such that if G is an n-vertex linear r-graph with average degree d(G) ≥ c1k then 

G contains linear cycles of k consecutive odd lengths, the shortest of which is at most 

2� log n
log(d(G)/k)−c2

� + 1?

Ergemlidze, Győri and Methuku [9] proved that for m ∈ {2, 3, 4, 6}, exL(n, {C3
3 , C3

5 ,

· · · , C3
2m+1}) = Ω(n1+1/m). On the other hand, it follows from the main result of [6]

that exL(n, {Cr
2m+1}) = O(n1+1/m), for any r ≥ 3 and m ≥ 1. Hence, for m ∈ {2, 3, 4, 6}

and all sufficiently large n, there are n-vertex linear 3-graphs G with d(G) = Θ(n1/m)

that contain no odd linear cycles of length at most 2m + 1. Thus these graphs exhibit 

that in general the bound on the shortest odd cycle length in Questions 5.1 and 5.2 is 

best possible for m ∈ {2, 3, 4, 6}, up to the constants c1, c2.

It is natural to consider the analogous problem in general r-graphs. Interestingly, for 

sufficiently large n the answer is implied by exact results on the (usual) Turán number 

ex(n, Cr
k), obtained in [11], for all r ≥ 5 and [15], for all r ≥ 3, for all k ≥ 3. These 

results combined show that for all r ≥ 3, t ≥ 1, ex(n, Cr
2t+1) =

(

n
r

)

−
(

n−t
r

)

and for all 

(r, t) �= (3, 1), ex(n, Cr
2t+2) =

(

n
r

)

−
(

n−t
r

)

+
(

n−t−2
r−2

)

, while ex(n, C3
4 ) =

(

n
3

)

−
(

n−1
3

)

+

max{n − 3, 4� n−1
4 �}. Note that by these results, for all k ≥ 3, r ≥ 3, ex(n, Cr

k) is strictly 

increasing as a function of k. Furthermore, they show there are extremal r-graphs with 

ex(n, Cr
k) many edges with no Cr

k which also don’t contain Cr
� , for all � ≥ k. Indeed, a 

largest Cr
2t+1-free r-graph can be obtained by taking all the r-sets in [n] that contain 

some vertex in a fixed t-set S. For (r, t) �= (3, 1), one can obtain a largest Cr
2t+2-free 

r-graph by adding to the above-mentioned extremal construction for Cr
2t+1 all the r-sets 

in [n] \ S that contain some two fixed vertices. As for C3
4 , one extremal construction is 

to take all the triples in [n] containing a fixed vertex x and a largest P 3
2 -free 3-graph on 

[n] \ {x}, where P 3
2 is the linear 3-uniform path of length two.

Hence, for all r ≥ 3, k ≥ 2 and sufficiently large n, the maximum number of edges 

in an n-vertex r-graph that does not contain linear cycles of k consecutive lengths is 

precisely ex(n, Cr
k+2). Indeed, if G is an r-graph and has more than ex(n, Cr

k+2) edges, 

then since ex(n, Cr
t ) is an increasing function in t, G must contain cycles of all lengths 

up to k +2, which gives in total k cycles of consecutive lengths. On the other hand, there 

is an r-graph G with exactly ex(n, Cr
k+2) edges, in which the length of the longest cycle 

is k +1, hence we can only hope to find at most k −1 many cycles of consecutive lengths.
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Appendix A

Proof of Proposition 1.6. In the proof we use the fact that d is chosen such that d ≥
max{r1/ε, 2

1−ε

ε2 }. By results of Rödl [19], for sufficiently large n there exists a linear 

n-vertex r-graph G of size at least 0.9
(

n
2

)

/
(

r
2

)

. Set p = 2rd/n and let F be a random 

subgraph of G obtained by independently including each edge of G with probability p. 

Let X denote the number of edges in F and Y the number of linear cycles of length at 

most m in F . Then

E[X] ≥ 0.9

(

n

2

)

/

(

r

2

)

· (2rd/n) > 1.8dn/r.

On the other hand, observe that for any fixed �, since G is linear, there are at most n�

linear cycles of length � in G. Hence, using d ≥ (2r)
1

ε2 and m ≤ (1 − ε) logd n, we have

E[Y ] ≤
m

∑

�=3

n�p� =
m

∑

�=3

(2rd)� < 2(2rd)m ≤ 2m+1d(1+ε)m ≤ 2m+1n1−ε2

,

where the second to last inequality holds since d ≥ r1/ε. Therefore,

E[X − Y ] >
1.8dn

r
− 2m+1n1−ε2

>

(

1.8d

r
− 2m+1

nε2

)

n ≥ dn

r
,

where the last inequality follows since 0.8d
r − 2m+1

nε2 ≥ 0 which holds because 0.8d ≥ 2r

and d ≥ 2
1−ε

ε2 .

Hence there exists an r-graph F for which X − Y ≥ dn
r . We can delete one edge from 

each linear cycle of length at most m in F . The remaining graph is an n-vertex linear 

r-graph that has average degree at least d and has no linear cycles of length at most 

�(1 − ε) logd n�. �
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