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1. Introduction

For r > 2, an r-uniform hypergraph (henceforth, r-graph) is linear if any two edges
share at most one vertex. For » = 2, linear r-graphs are just the usual simple graphs.
An r-uniform linear cycle of length k, denoted by C7, is a linear r-graph on (r — 1)k
vertices whose edges can be ordered as ey, e, ..., e, such that |e; N ej| =1lifj=i+1
(indices taken modulo k) and |e; Ne;| = 0 otherwise. Motivated by known results for
graphs, we study sufficient conditions for the existence of linear cycles of given lengths
in linear r-graphs for r > 3. Our results apply to linear r-graphs of broad edge density,
covering both sparse and dense hypergraphs.

1.1. History

The line of research about the distribution of cycle lengths in graphs was initiated
by Burr and Erdés (see [7]) who conjectured that for every odd number k, there is a
constant c¢g such that for every natural number m, every graph of average degree at
least ¢i contains a cycle of length m modulo k. This conjecture was confirmed in its full
generality by Bollobés [1] for ¢x = 2((k+1)*¥ —1)/k, although earlier partial results were
obtained by Erdds and Burr [7] and Robertson [7]. The constant ¢; was improved to 8k
by Verstraéte [23]. Thomassen [21,22] strengthened the result of Bollobés by proving that
for every k (not necessarily odd), every graph with minimum degree at least 4k(k + 1)
contains cycles of all even lengths modulo k.

On a similar note, Bondy and Vince [3] proved a conjecture of Erdds in a strong
form showing that any graph with minimum degree at least three contains two cycles
whose lengths differ by one or two. Since then there has been extensive research (such as
[13,10,20,17,16]) on the general problem of finding k cycles of consecutive (even or odd)
lengths under minimum degree or average degree conditions in graphs. Very recently, the
optimal minimum degree condition assuring the existence of such k cycles was proved
in [12].

The problem of finding consecutive length cycles in r-graphs is related to another
classical problem in extremal graph theory, namely Turdan numbers for cycles in graphs
and hypergraphs. For r > 2, the Turdn number ex(n,F) of a family F of r-graphs
is the maximum number of edges in an n-vertex r-graph which does not contain any
member of F as its subgraph. If F consists of a single graph F, we write ex(n, F) for
ex(n,{F}). A well-known result of Erdds (unpublished) and independently of Bondy
and Simonovits [2] states that for any integer k > 2, there exists some absolute constant
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¢ > 0 such that ex(n,Co;) < ckn'*t1/F. The value of ¢ was further improved by the
results of Verstraéte [23] and Pikhurko [18], and the current best known upper bound is
ex(n, Car) < 80vElog kn'*/* 4 O(n), due to Bukh and Jiang [4,5]. Verstraéte’s main
result from [23] is as follows.

Theorem 1.1 (Verstraéte, [23]). Let k > 2 be an integer and G a bipartite graph of
average degree at least 4k and girth g. Then there exist cycles of (g/2 — 1)k consecutive
even lengths in G, the shortest of which has length at most twice the radius of G.

In Theorem 1.1, in addition to finding k cycles of consecutive even lengths Verstraéte
also gave a tight upper bound on the length of the shortest cycle among these which
in turn immediately yields ex(n,Ca,) < 8kn't1/k thus improving the coefficients in
the theorems of Erdos and of Bondy-Simonovits. Notice that Verstraéte’s theorem is
applicable to both sparse and dense host graphs while arguments establishing bounds on
ex(n, F) directly usually address relatively dense host graphs. For example, for F' = Cy,
these would typically be graphs with average degree at least Q(nl/ k).

For hypergraphs, Verstraéte [24] conjectured that for r > 3 any r-graph with average
degree Q(k"~1) contains Berge cycles of k consecutive lengths where an r-uniform Berge
cycle of length k is a hypergraph containing k vertices v, ...,vx and k distinct edges
€1, ..., e such that {v;,v;11} C e; for each i, where the indices are taken modulo k. This
conjecture was confirmed by Jiang and Ma in [14]. As an intermediate step, they proved
the following result.

Theorem 1.2 (Jiang and Ma, [14]). For all r > 3, any linear r-graph with average degree
at least Tr(k + 1) contains Berge cycles of k consecutive lengths.

One of the two main results of this paper strengthens this result by replacing Berge
cycles by linear cycles, and also obtaining optimal bounds (up to a constant factor) on
the length of the shortest cycle. The study of the emergence of linear cycles in linear
host hypergraphs is related to so-called linear Turan numbers. The linear Turdn number
exr(n, H) of a linear r-graph H is the maximum number of edges in an n-vertex linear
r-graph G that does not contain H as a subgraph. Collier-Cartaino, Graber, and Jiang
[6] proved that for all integers r,k > 2 there exist positive constants ¢(r, k) and d(r, k)
such that ex(n, Ch,) < c(r,k)n' T/ and exp(n,Cy, 1) < d(r,k)n*T1/k. For fixed r,
the constants ¢(r, k) and d(r, k) they establish are exponential in k. As a corollary, one
of the main results we prove, Theorem 1.3 implies that ¢(r, k) can be taken linear in k,
improving the results in [6]. Note that these results on linear Turdn numbers of linear even
cycles can be viewed as a generalization of the Bondy-Simonovits’ even cycle theorem,
while the result on linear odd cycles demonstrates a phenomenon that is very different
from the graph case.
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1.2. Our results

We establish two extensions of Theorem 1.1 for linear cycles in linear r-uniform hy-
pergraphs. First, we give a generalization of Theorem 1.1 for even linear cycles in linear
r-graphs along with a near optimal control on the shortest length of the even cycles
obtained.

Theorem 1.3. Let » > 3 and k > 2 be integers, define ¢; = 1807272 and ¢y =
log(64r?"+2). If G is an n-vertex linear r-graph with average degree d(G) > cik then
G contains linear cycles of k consecutive even lengths, the shortest of which is at most

? [bg(d(lc?)g/z) - W |

Theorem 1.3 implies an improved upper bound on the linear Turdn number of C3,
which previously was exy(n,C5,) < cn'TV/* for some ¢ exponential in k [6]. We now
prove that ¢ can be taken to be linear in k.

Corollary 1.4. Let r > 3 and k > 2 be integers, denote ¢ = 180r2" 1. For all positive
integers n, we have

exr(n,Ch.) < ckn'tY/k,

Our next main result shows that under analogous degree conditions as in Theorem 1.3,
we can in fact ensure the existence of linear cycles of k consecutive lengths (even and
odd both included). Furthermore, the length of the shortest cycle in the collection is
within a constant factor of being optimal. Note that such a phenomenon can only exist
in r-graphs with r > 3, as for graphs, one needs more than n?/4 edges in an n-vertex
graph just to ensure the existence of any odd cycle.

Theorem 1.5. Let r > 3 and k > 1 be integers. There exist constants ¢y, co depending on
r such that if G is an n-vertex linear r-graph with average degree d(G) > ci1k then G
contains linear cycles of k consecutive lengths, the shortest of which is at most

{ logn
log(d(G)/k) — 2

|+

When viewed as a result on the average degree needed to ensure the existence of cycles
of consecutive lengths, Theorem 1.5 is a substantial strengthening of both Theorem 1.2
and Theorem 1.3. However, the upper bound on the shortest length of a cycle in the
collection is weaker than the one in Theorem 1.3 by roughly a factor of 3. As a result,
while Theorem 1.3 yields exy(n,C3,) = O(n'*'/*), Theorem 1.5 would only give us
ex(n,Chyyq) = O(n'*3/%), and hence it does not imply the bound on ex(n,C5; ;)
given in [6].
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Finally, note that the shortest lengths of linear cycles that we find in Theorem 1.3
and Theorem 1.5 are within a constant factor of being optimal, due to the following
proposition which can be proved using a standard deletion argument. We delay its proof
to the appendix.

Proposition 1.6. Let » > 2 be an integer. For sufficiently large n and all d satisfying
1

(2r)=2 < d < n/2r, there exists an n-vertex linear r-graph with average degree at least d

and containing no linear cycles of length at most |(1 —¢)log,n].

The rest of the paper is organized as follows. In Section 2, we introduce some notation.
In Section 3, we prove Theorem 1.5. In Section 4, we prove Theorem 1.3, whose proof
is more involved than that of Theorem 1.5 due to the tighter control on the shortest
lengths of the cycles. In Section 5, we conclude with some remarks and problems for
future study on related topics.

2. Notation

Let r > 2 be an integer. Given an r-graph G, we use 6(G) and d(G) to denote the
minimum degree and the average degree of G, respectively. Given a graph G and a set S,
an edge-colouring of G using subsets of S is a function x : E(G) — 2°. We say that Y is
strongly proper if V(G)N S = () and whenever e, f are two distinct edges in G that share
an endpoint we have x(e) N x(f) = 0. We say that x is strongly rainbow if V(G)NS =0
and whenever e, f are distinct edges of G we have x(e) N x(f) = 0.

For r > 2, an r-graph G is r-partite if there exists a partition of V(G) into r subsets
Ay, As ... A, such that each edge of G contains exactly one vertex from each A;; we
call such (Ay,..., A,) an r-partition of G. For any 1 < i # j < r, we define the (A4;, 4;)-
projection of G, denoted by Pa, 4,(G) to be the graph with edge set {e N (4; U 4j)|e €
E(G)}. Tt is easy to see that for linear r-partite r-graphs the following mapping f :
E(G) — E(Pa, . 4,(G)) defined by f(e) = e N (A; U Ajy) is bijective.

In this paper, logarithms are base 2 and [k] denotes the set {1,2, ..., k} for all positive
integers k.

3. Linear cycles of consecutive lengths

In this section, we prove Theorem 1.5. Given a linear r-graph G and two vertices x,y
in G, we define the distance dg(z,y) to be the length of a shortest linear path between
2 and y. We drop the index G whenever the context is clear. For any vertex x € V(G),
we define S§(z) = {z} and for all i > 1 define

S¢(z) ={y € V(G) : da(z,y) = i}.

When G is clear from the context we will drop the superscript.
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We first prove some auxiliary lemmas that are used in the proof of Theorem 1.5. Our
first lemma is folklore.

Lemma 3.1. Let r > 2 be an integer and d > 0 a real. Fvery r-graph G of average degree
d contains a subgraph of minimum degree at least d/r.

Lemma 3.2. Let r > 3 be an integer. Let G be a linear r-graph. Let d be a real satisfying
1<d<§(G)/2. Let x € V(G). Then there exist a positive integer m < fﬁ%} and
a subgraph H of G satisfying

(A1) H has average degree at least d/4, and
(A2) each edge of H contains at least one wvertex in Sy, (x) and mo wvertexr from

Uj<m Sj ('r)

Proof. For each i > 0, let S; = S;(x). By the definition of the S;’s, for each e € E(G),
there exists j > 0 such that e C S; U S;y1. For each 7 > 1 let G; be the subgraph of G
induced by the edges that contain some vertex in S;. Then V(G;) C S;—1 U S; U S;41.
Let t = fbg&%] First we show that for some i € [t], G; has average degree at least
d/2. Suppose for contradiction that for each i € [t], G; has average less than d/2. Then
for each i € [t], e(G;) < (d/2)|V(Gy)|/r < (d/2r)(|Si=1] + |Si| + |Si+1])- On the other
hand, by minimum degree condition we have e(G;) > 6(G)|S;|/r. Combining the two
inequalities, we get

25(Q)

[Si—al + 18] + 1Si1]| 2 ——|5il. (1)

Claim 3.3. For each i € [t], we have |S;| > (6(G)/d)|Si-1].

Proof. The claim holds for ¢ = 1 since |S1| > d(G) and |Sp| = 1. Let 1 < j < ¢ and
suppose the claim holds for i = j. We prove the claim for ¢ = j + 1. By (1) and the
induction hypothesis that |S;_1| < (d/d(G))|S;|, we have

d 20(Q)
s ISi 1851 + IS 2 =

5(G) |5

Hence

1Sj41] > <%JG) - % - 1> S| > Lf)\sjl,

where the last inequality uses d < 6(G)/2. O

By the claim, |S;| > (6(G)/d)" > n, which is a contradiction. So there exists i € [{]
such that G; has average degree at least d/2. By our earlier discussion, each edge of G;
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contains a vertex in .S; and lies inside S;_1 US; U S;41. If at least half of the edges of G;
contain some vertex in S;_; then let H be the subgraph of G; consisting of these edges
and let m =i — 1. Otherwise, let H be the subgraph of GG; consisting of edges that do
not contain vertices of S;_; and let m = i. In either case, H and m satisfy (A1) and
(A2). O

Lemma 3.4. Let r > 3. Let G be a linear r-graph. Let d be a real satisfying 1 < d <
d(G)/2. Let x € V(Q). For each v € V(QG), let P, be a fized shortest (z,v)-path in G
and let P = {P, : v € V(GQ)}. Then there exist a positive integer m < [bg&%],
A C S, (x) and a subgraph F of G such that the following hold:

(A3) 6(F) > d/r23+2,

(A4) each edge of F contains exactly one vertex from A and no vertex from the set
Uj<m Sj (I)7

(A5) for each v € V(F)N A, P, intersects V(F) only in v.

Proof. By Lemma 3.2, there exist a subgraph H of G and a positive integer m <
[bg&%] satisfying properties (A1)-(A2). So, in particular, d(H) > d/4. For any ver-
tex v € Sy, (), let e, be the edge in the path P, which contains v. For every f € E(H),
we know that |f N .Sy, (x)| > 1. Let vy be one of these vertices in f N Sy, ().

Now randomly colour the vertices of Sy, (z) with three colours as follows; the colour
of a vertex is red or blue each with probability p, and it is green with probability 1 — 2p.
We call an edge f € E(H) good if vy is coloured green, all vertices in f NSy, (x)\ {vs} are
red, and all other vertices in e, N Sy, (z) are blue. It is easy to see that the probability

of f being good is exactly
(1 — 2p)pH @)= plen NS > (1 — gpyp2r=2,

For our purposes it is enough to choose p = 2/5, however, a more optimal choice is
possible, which will give better constants. So in expectation, there are at least

e(H) (2)2’"—2 . e(H)

5 \5 237

many good edges. Fix such a colouring and let H' C H be induced by all the good edges,
and let A to be the collection of all vy, for which f is good. Now it is easy to check that
both (A4) and (A5) are satisfied. The first one is very easy to check; notice that every
f good has a unique green vertex, vy, all the other vertices are red. But by definition,
all the vertices in A have green colour so f cannot intersect A in more than one vertex.
As for (A5), notice that P, for any v € A can intersect V(F') only in the vertices of
e,. However, if v € A then all the vertices of e, except v are coloured blue. But all the
vertices in A have colour green since they are all of form vy for some f good, so P,
cannot intersect V(F') except at the vertex v. Finally, by Lemma 3.1, H' has a subgraph
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F of minimum degree at least d(H')/r > d(H)/r23" > d/r23"*+2. Notice that A and F
satisfy (A3)-(A5). O

Lemma 3.5. Let r > 3, k > 1 be integers. Let F' be a linear r-graph and A C V(F)
be such that each edge of F' contains exactly one vertex of A. If §(F) > rk + 1 then
F contains a linear path P of length k + 2 such that P intersects A only at degree one
vertices of P.

Proof. Let P be a longest linear path in F’ with the property that P intersects A only at
degree one vertices of P. The length of P is at least one. Let e be the last edge of P. There
exists a vertex v € e \ A that has degree one in P since |e N A| = 1. There are at least
d(G) > rk+1 edges of G containing v. Since G is linear, there are at most |V (P)|—r+1
edges in G that contain v and another vertex of P. Suppose |V (P)| —r + 1 < rk. Then
there is an edge f in G that contains v and no other vertex of P. But now P U f is a
longer linear path than P and each vertex in (V(P)U f) N A has degree one in P U f,
contradicting our choice of P. Hence |V (P)| > rk + r, which implies |P| > k+2. O

Lemma 3.6. Let r > 3,k > 1 and d = kr?23 1. Let F be a linear r-graph with 6(F) >
2d and x be any vertex in F. Then there exist edges e and [ and some integer t <
flog(lg(%w such that for each i € k], there is a linear path of length t + 2 + i starting
at © and having e and [ as its last two edges.

Proof. For each vertex v in F, let P, be a shortest (z,v)-linear path in F'. By Lemma 3.4
(with F' playing the role of G) there exist a positive integer ¢ < [bg&%}, a subset
A C Si(z) and a subgraph F’ of F that satisfy (A3)-(A5). In particular, 6(F”) > d/r2%" =
2rk > rk + 1. Applying Lemma 3.5 to F’, we obtain a linear path P of length k + 2
in F’ such that each vertex in V/(P) N A has degree one in P. Suppose the edges of P
are ordered as ey, ..., ek, e, f. For each i € [k], let v; be the unique vertex in e; N A. For
each i € [k] since P, intersects V (F’) only in v;, Py, U{e;,... e, e, f} is a linear path
of length (k +2) — (¢ — 1) + ¢ that starts at = and ends with e, f. Since this holds for
each 1 =1,...,k, the claim follows. O

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We will show the statement holds for ¢; = 2674674 c5 = 267+4p4
and ¢ = log(cs). Let G be an n-vertex linear r-graph with d(G) > ¢1k. By Lemma 3.1
G contains a subgraph G’ with §(G’) > d(G)/r. Set 6 = d(G)/r. Then §(G’) > 4. Set

d/ _ k?"223r+1, d — 7,,3/2237‘-‘,—2 /5k

Note that when k,r are fixed, d’ is a constant, but d = ©(y/d(G)). Our d is chosen to
approximately optimize the upper bound we obtain later on the lengths of the cycles. As
§ =d(G)/r > c1k/r = 2571013k we have d = r3/2237+2\/§k > k3206715 > 423743 . 94/,
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Let zg be any vertex in G’. We apply Lemma 3.4 to G’. For this one needs to check that
5(G’) > 6 > 2d which holds by the choice of ¢;. Thus there exist m < (log&%] <
[log?%], a subset A C S,,(xo) and a subgraph F' of G’ such that

(P2) each edge of F' contains exactly one vertex in A but no vertex in J
(P3) for each v € V(F) N A, P, intersects V(F) only in v.

S;(xo), and

j<m

Now let z be any vertex in V(F) N A. Since §(F) > d/r23"+2 > 2d’, by Lemma 3.6,
there exist two edges e and f in F' and some integer ¢t < [bg&%} such that for each
ie{t+3,t+4,...,t+k+ 2} there is a linear path @; in F of length ¢ which starts at
x and has e and f as the last two edges.

Let y be the unique vertex in AN f. By (P3), P, and P, intersect V(F') only in = and
y, respectively. Therefore, P, U P, must contain a linear (x,y)-path of length ¢ < 2m
that intersects V(F') only in 2 and y. Let us denote this subpath by Py,.

Ify ¢ enf, then Py UQ1,..., Py UQy are linear cycles of lengths ¢+t +3,...,q¢+
t+k+2, respectively. If y € en f then Py, U(Q1\ f), ..., Poy U{Q4 \ f) are linear cycles
of lengths g+t +2,...,q+t+k+ 1, respectively. In either case we find linear cycles of
k consecutive lengths, the shortest of which has length at most

log n log n logn
< < =7 log(o/)
g+t+3<2m+t+3<2 {log(é/dﬂ + Log((S(F)/d’)-‘ s {log(é/d)w o

where the last inequality holds since §(F)/d" > d/kr325"t3 > §/d. By our choice of d
and c3, we can check that §/d > (d(G)/kes)'/?. Hence, the above upper bound is at
most

logn 2logn 6logn

i Lm) log<d<a>/03k>1 =g hog(d(G)/k) - ] S g —a "

This completes the proof of Theorem 1.5. O
4. Sharper results for linear cycles of even consecutive lengths

For linear cycles of even consecutive lengths, we obtain much tighter control on the
shortest length of a cycle in the collection, which as a byproduct also gives us an improve-
ment on the current best known upper bound on the linear Turdn number exy,(n, C3,)
of an r-uniform linear cycle of a given even length 2k. The previous best known upper
bound is cnknl*‘l/ k where crk is exponential in £ for fixed r. For fixed r, we are now
able to improve the bound on ¢, j to a linear function of k.
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4.1. A useful lemma on long paths with special features

One of the key ingredients of our proof of the main result in this section is Lemma 4.2.
The lemma is about the existence of a long path with special features in a properly
edge-coloured graph with high average degree. It may be viewed a strengthening of two
lemmas used in [14] (Lemma 2.6 and Lemma 2.7).

Lemma 4.1. Let G be an n-vertex graph with average degree at least 2d, for d > 1. Then
there exists a linear ordering o of V(G) as x1 < 9 < -+ < z, and some 0 < m < n
such that for each 1 < i < m |Ng(x;) N{Zit1,...,2}| < d and that the subgraph F of
G induced by {Tm+1,...,Tn} has minimum degree at least d.

Proof. As long as GG contains a vertex whose degree in the remaining subgraph is less
than d we delete it from G. We continue until no such vertex exists. Let F' denote the
remaining subgraph. Suppose this terminates after m steps. Then we have deleted at
most dm < d(n — 1) < e(G) edges. Hence F is nonempty. Let 21 < 29 < -+ < 2, be
the vertices deleted in that order. Let x,,4+1 < ... < x, be an arbitrary linear ordering
of the remaining vertices. Then the ordering ¢ := z; < ... < z, and I satisfy the
requirements. 0O

The following lemma is written in terms of colourings of graphs, but in our appli-
cations the graph H will be some (A;, A;j)-projection of an r-partite r-graph G where
the colouring is obtained by colouring the edge e N (4; U A;) in H by the (r — 2)-set
e\ (4; UA;) for each e € E(G).

Lemma 4.2. Let r > 3 and ¢ > 2. Let H be a connected graph with minimum degree at
least 4rL. Let x be a strongly proper edge-colouring of H using (r — 2)-sets. Let Eq1, Ey be
any partition of E(H) into two nonempty sets such that |Eq| < |Es|. Then there exists
a strongly rainbow path of length at least ¢ in H such that the first edge of P is in F
and all the other edges are in Es.

Proof. Let us call a strongly rainbow path P in H a good path if it can be ordered such
that its first edge is in E7, and all the other edges are in F», if the path is of length at
least two. To prove the lemma, we need to show that H has a good path of length at
least £.

For ¢ = 1,2, let H; be the subgraph of H induced by the edge set F;. Note that
d(Hs) > 2rf. Let L be a connected component of Hs with d(L) > 2r¢. Let us denote
ng, = |V(L)|. We can apply Lemma 4.1 to L and obtain that there exist some integer
0 <m < mny and a linear ordering o := x; < 22 < --- < xp,, of V(L) such that for each
1 <i<m,|Ng(z;) " {®it1,.. .20, }| < rf and that the subgraph F of L induced by
{Tm+1,...,%n, } has minimum degree at least r¢.
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Claim 4.3. For any edge e which has an endpoint in F' there exists a strongly rainbow
path P of length £ whose first edge is e and P\ e C F.

Proof. Suppose e = wwvy, where v; € V(F). Note that v may or may not be in F.
Let P = uv1vs2...v; be a longest strongly rainbow path such that v, € V(F), for all
2 < i < j. For contradiction, assume that j < ¢ — 1. Since 6(F') > rf, there are at least
r{ edges of F' incident to vj. Among these edges, more than ¢r — j > {(r — 1) of them
join v; to a vertex outside V' (P). Since the colouring y is strongly proper, the colours of
these edges form a matching of (r — 2)-sets of size more than ¢(r — 1). For any subgraph
H’ of H, denote

cH)= |J fdeex(o).

ecE(H')

Note that |C(P)| < j(r —2) < £(r — 2). Recall that by the definition of strongly proper
colouring we have C(H) NV (H) = () thus there must exist a vertex vj41 € V(F)\ V(P)
such that x(vjv;4+1) NC(P) = 0. Now PUwv;vj41 is a longer strongly rainbow path than
P, a contradiction. O

Case 1: m = 0. In this case, L = F. If n;, = |[v(H)| then since E; is not empty there
must be an edge e € Ey going between two vertices of V(H) = V(L). If ny, < |v(H)|
then since L is a connected component of Ha, all the edges leaving L to V(H) \ V(L)
must be from E;. And there must be at least one such edge f € FE; since H itself is
connected. In both cases, e or f have at least one endpoint in F. Thus we can apply
Claim 4.3 to either the edge e or f and obtain a good path of length ¢ whose first edge
is either e or f.

Case 2: m > 1. Let P be the collection of all strongly rainbow paths of length ¢ such
that their first vertex is among {x1, 2, ...,z }, and all the edges along the path belong
to Es. We may assume P # (). Indeed, since L is connected, there is an edge e going
across {21, xa, ..., Tm} to F. By Claim 4.3, we can extend e via a strongly rainbow path
P of length ¢ such that P\ e C F. If e € Ey, P will be the desired good path of length
{. So we may assume e € Fy. Thus, P € P.

Among all the paths in P, let P = x;,zj,...2; be such that j; is minimum. By
our assumption, j; € [m] and so |Np(zj,) N {zj41,...,2n, }| < 70 If [Np(z;,) N
{z1,...,25,-1}| > £(r — 2) then by a similar argument as in the proof of Claim 4.3 we
can find jo < ji such that x(z;,z;,) is disjoint from C(P) and z;,z;, € L. In this case,
TjpZj - - Zj, , would contradict to our choice of P. Hence, |Np(z;,)N{z1,...,xj,-1} <
¢(r —2). This shows that dr,(z;,) < (r —2) +rf. Since 0y (x;,) > 4rl, x;, is incident to
more than 4¢r — fr — £(r — 2) = 2¢(r + 1) many edges in F;. Among them, more than
20r + ¢ of them join x;, to a vertex outside V(P). Since  is strongly proper, the colours
on these edges form a matching of size more than 2¢r + . Since |C(P)| < {r, there
must exist at least one edge of E; that joins zj, to a vertex z;, outside V(P) such that
X(xj,x;,) is disjoint from C(P). Then x; x;, ...x;, is a good path of length £+ 1. O
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Fig. 1. H = H, U Hy U H3 and the corresponding tree T'.

The following cleaning lemma is similar to part of Lemma 3.4.

Lemma 4.4. Let H be a linear r-partite r-graph with an r-partition (Aq,---,A,). Let M
be an (r — 1)-uniform matching where for each f € M, f contains one vertex of each of
As, ..., A.. Then there exists a subgraph H' C H such that

(1) e(H") = [1/(r = D"~ e(H),

(2) each edge of M intersects V(H') in at most one vertex.

Proof. Let us independently colour each edge of M using a colour in {2,...,r} chosen
uniformly at random. Denote the colouring c. For each i € {2,...,r}, let M; = {f €
M:c(f)=1i}and let B;={fNA;: f€ M} Let H be the subgraph of H induced by
the edge set {e € E(H) : eNV (M) C By U---U B, }. By definition, H' satisfies (2), it
remains to show (1) holds.

We claim that for any edge e in H, the probability that e is in H' is at least [1/(r —
1)]"!. Let s = [enV(M)]. If s = 0 then e is in H with probability 1. So we may assume
that 1 < s < r—1. Without loss of generality, suppose eNV (M) = {aa,...,as4+1}, where
a; € A; for each ¢ = 2,...,s+ 1. Since M is matching, for each i = 2,...,s+ 1, there is
a unique edge f; € M that contains a;. The probability that a; € B; is the probability
that f; is coloured i, which is 1/(r — 1). Hence, the probability that a; € B; for each
i€{2,...,s+1}is [1/(r—1)]°. In other words, the probability that e is in H' is [1/(r —
D)]* > [1/(r—1)]""1, as claimed. So the expectation of e(H’) is at least [1/(r—1)]""te(H).
Therefore, there exists a colouring ¢ for which e(H’) > [1/(r — 1)]""te(H). O

4.2. Rooted expanded trees and linear cycles of consecutive even lengths

In this subsection, we introduce some of the key notions we use, in particular, a variant
of a breadth-first-search tree in a linear r-partite r-graph G, and prove some auxiliary
results we need for the proof of the main theorem (see Fig. 1 for the representation of
H = H; U Hy U Hy and the corresponding tree T).
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Definition 4.5. Let » > 3 be an integer. Let G be a graph. Let x be any edge-colouring of
G x: E(G) = C"=2) where the set C is the colour set and disjoint from V(G). Given
such x, we define the (x,r)-expansion of G, denoted by GX, to be the r-graph on vertex
set V(G) U C obtained from G by expanding each edge e of G into the r-set e U x(e).

Note that if x is a strongly rainbow, then (), r)-expansion is isomorphic to what is
known in the literature, as the r-expansion of G, defined as follows. The r-expansion G™
of G is an r-graph obtained from G by expanding each edge e of G into an r-set using
pairwise distinct (r — 2)-sets disjoint from V(G). Note that the (r — 2)-sets used for the
r-expansion naturally define a strongly rainbow edge-colouring on G.

Algorithm 4.6 (Mazximal expanded rooted tree - MERT).

Input: A linear r-partite r-graph G with a fixed r-partition (A4q,..., A,) and a vertex
zin A;j.

Output: A triple (H, T, x) where H is some subgraph of G, T is a tree with V(T") C
V(H), rooted at z, such that H is the r-expansion of T" and furthermore, for each i > 0,
there exists some j € [r] such that L;(z) C A;, where L;(z) is the ith level in T, and x
is a strongly rainbow edge-colouring of T', such that x : E(T) — [V(G)\ V(T)]"=? and
H=Tx.

We will also obtain a collection of trees Ty C Ty C Ty C T,, = T, subgraphs of H,
{H;}*, where each H; is called the ith segment of H and a collection of (r — 1)-uniform
matchings {M;}"" where V(M;) = V(H; 1)\ V(H;) and M, is called the ith matching
of H, these are described further below.

Initialization: Let H( be the r-graph with the single vertex x and Tj the tree with the
single vertex z. Let Lo = {«}. Let H; be the subgraph of G counsisting of all edges of G
containing x. For every v € V(Hi) \ {z}, let p, = {z}.

Iteration - 7 > 1: Let E; denote the set of edges in GG that contain exactly one vertex
in V(H;) and no vertices in U;;V (Hj;).

If E; =0 then let L; = (V(H;) \ V(H;-1)) N A;, where A; is any part of (Aq,...,A,)
that doesn’t contain L;_1. Let T; be the tree obtained from T;_; by joining every v € L;
to py € Li—1. Let H = Ug<j<;H;, T = T; and terminate.

If E; # 0 then do the following. Suppose L;_; C Ay. For each j € [r] \ {£}, let E}
be the set of edges in e € E; such that the unique vertex in e N (V(H;) \ V(H;—1)) lies
in A;. Then E; = U;ep 10 E!. Let s(i) be some j € [r] \ {¢} that maximizes |E?|. Let
L; = Eis(i) N Agiy- Let T; be the tree obtained from T;_; by joining every v € L; to
Py € Li—1. Let M; be a largest matching of (r — 1)-tuples in {e \ L; : e € Ef(i)}. For
each I € M; we do the following. Since the graph G is linear, there is a unique vy € L;
such that I Uvy € Ef(i). For each u € I, we define p, to be vy and call it the parent of
w in H. (Note that while v may not belong to V(T), p, € L; C V(T).) Let H;11 be the
subgraph of G induced by the edge set {I Uvr|I € M;}. Increase ¢ by one and repeat.

Termination: Suppose the algorithm stopped after m steps then we call m the height
of H. Note that m is also the height of the tree T'. Let x be the following colouring on
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E(T): For every edge uv € E(T) there is a unique (r—2)-tuple I such that uwUI € E(H),
we let x(uv) = I. By construction of H, y is strongly rainbow. We will interchangeably
call both H and the triple (H, T, x) an MERT of G rooted at x of height m. O

Lemma 4.7. Let v > 3 and k > 1 be integers. Let G be an r-partite r-graph with an
r-partition (A1, Aa,..., A.). Let x be a vertex in G. Let (H,T,x) be an MERT of G
rooted at x of height m. Fixz some integer t < m, and let L; be the ith level of T. Let D
be the subgraph of G consisting of all the edges in G that contain a vertex in L;_1, at
least one vertex in V(Hy) \ Li—1 and no vertices from (Uj<75 V(H;)) \ Le—1. If e(D) >
8kr(r—1)(|Li—1|+|L¢t|) then G contains linear cycles of lengths 204+ 2,20+4, ..., 2042k
for some £ <t —1.

Proof. By definition of MERT, without loss of generality we may suppose L;—1 C Aj.
Since Ao NV (Hy), AsNV (Hy), ..., A, NV (H;) partition V(H;)\ L;—1, by the pigeonhole
principle, for some i € {2,...,r}, at least e(D)/(r — 1) of the edges of D contain a vertex
from A; NV (H;). Without loss of generality, suppose i = 2.

Let X = L;—7 and Y = A2 NV (H,). By definition of MERT, we have |Y| = |[V(H;)N
As| = |L|. Let D’ be the subgraph of D consisting of the edges that contain a vertex in
X and a vertex in Y. By the previous discussion,

e(D') z e(D)/(r = 1). (2)

Let B be the (X,Y)-projection of D’. Since G is linear, e(B) = e(D’). Also, |V(B)| <
|X|+ |Y| = |Li—1| + |L¢|. By our assumption about e(D) and (2),

e(B) =e(D') > 8kr(|Li—1 + |L¢|) > 8kr|V(B)|.

So B has average degree at least 16kr. By Lemma 3.1, B contains a connected subgraph
B’ with minimum degree at least 8kr.

Let S = V(B’) N X. Suppose z’ is the closest common ancestor of S in the tree T
The union of the paths of T joining vertices of S to z’ forms a subtree T' of T rooted
at «’. Suppose that 2’ € L; for some j > 0. Then V(T") C L; U---U L;_1, and 2’ is the
only vertex in V(T") N L;. For each v € S, let @, denote the unique (v, z’)-path in T".

Since 2’ is the closest common ancestor of S in T, 2’ has at least two children in T".
Let 21 be one of the children of  in 77. We define a vertex labelling f on S as follows.
For each v € S, if ), contains 7 then let f(v) = 1, and otherwise let f(v) = 2. Note
that since z’ has at least two children, there will be some w,v € S with f(u) = 1 and
f(w) = 2. The following claim, despite being simple, is one of the key ingredients used
by Bondy and Simonovits in proving their results in [2].

Claim 4.8. Let u,v € S. If f(u) = 1 and f(v) = 2 then Q, U Q, is a path of length
2(t — 1 —7) in T’ that intersects S only in u and v.
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Now, we define a partition of E(B’) into E; and Ey as follows. Let ab be any edge
in E(B') where a € X and b € Y. For i = 1,2, we put ab in E; if f(a) = i. We define
an edge-colouring ¢ on B’ using (r — 2)-sets by letting ¢(ab) be the unique (r — 2)-
set such that ab U @(ab) € E(D') for all ab € E(B’). Since G is r-partite, p(B’) is
disjoint from V' (B’). Since G is linear, ¢ is strongly proper. Without loss of generality,
we may assume that |E;| < |Fs|. By Lemma 4.2, with £ = 2k, B’ contains a strongly
rainbow path P = aibiagbs ... arbragy1 of length 2k such that the first edge of P is in
E; and all other edges are in Fs. Note that we must have a; € S. Otherwise if b; € §
instead then the first two edges of P would have the same colour, contradicting our
definition of P. Hence, ay,as,...,ax+1 € S and by our assumption about P, f(a;) =1
and f(az) = -+ = f(ag+1) = 2. For each i € [k], let P; be the subpath P from a;y to a;.
Let x be the colouring in (H, T, x) produced by Algorithm 4.6.

Claim 4.9. For each i > 2, let R; be the union of the r-uniform paths Py, QX and QY. .
Then R; is a linear cycle of length 2(t — 1 — j) +2(i— 1) in G.

Proof. Since f(a;) = 1 and f(a;) = 2, by Claim 4.8, Qq, U Qq, is a path of length
2(t —1—j) in T” that intersects S only in a; and a;. On the other hand, P; is a path of
length 2(: — 1) in B’, which intersects Qq, UQ,, only at a; and a;. So P,UQ,, UQ,, is a
cycle of length 2(t—1—j)42(i—1) in 7'UB’. By our assumptions, ¢ is strongly rainbow on
P; and x is strongly rainbow on @4, UQ,, . Furthermore, for any e € P; and f € @, UQ,,,
©(e) has no vertices in (Uj<tV(Hj)) \ Ly—1, while x(f) C (Uj<t V(H;)) \ L¢—1. So
w(e)Nx(f) = 0. Therefore, R; is a linear cycle of length 2(t —1—j)+2(:i—1) in G. O

By Claim 4.9, we see Lemma 4.7 holds for some f =t —1—j<t—1. O

Lemma 4.10. Let r > 3, and k > 1 be integers. Let G be an r-partite r-graph with an
r-partition (A1, As, ..., A.). Let x be a vertex in G. Let (H,T,x) be an MERT rooted at
x of height m. For any integer t < m, let

F={ecE(G):en|JV(H) =0 and|enV(H,)| > 2}.
i<t
If e(F) > 8kr"*2|Ly|, then G contains linear cycles of even lengths 20+2,20+4, ..., 20+
2k for some 1 < /(<.

Proof. By our assumption L;_; is contained in one partite set of G. Without loss of
generality suppose that L;—1 C A;. By definition of the MERT, M = {e\ L;—; : e €
H.:} is an (r — 1)-uniform (r — 1)-partite matching with partition (Ag, 4s,...,A,). By
Lemma 4.4, there exists a subgraph F’ of F such that

(1) e(F) = (1/(r = 1))~ te(F),
(2) each edge of M intersects V(F') in at most one vertex.



16 T. Jiang et al. / Journal of Combinatorial Theory, Series B 163 (2023) 1-24

Since V(F") is disjoint from L,_1, item (2) above ensures that
Ve € Hy, [eNV(F')| < 1. (3)

By the definition of F' and the fact that F’ C F, any edge in F’ contains at least two
vertices of V(Hy)\Li—1 = V(M).

By the pigeonhole principle, there exist some 4, j € {2,...,r} such that the subgraph
F" of F' with edge set E(F") :={e € F' : [enNV(M)NA;| =lenV(M)nA;| =1}
satisfies

r) 2 eF) () 2 2/ el) 2 16k (4)

where the last inequality holds as e(F) > 8kr"+2|L,|.

Without loss of generality, suppose that {i,5} = {2,3}. Let B be the (As, As)-
projection of F”. Since G is linear, e(B) = e(F"). Also, note that |[V(B)| < |[V(M)N
(A2 U A3)| < 2|Ly|. Hence, by (4),

e(B) = e(F") > 16kr|L| > 8kr|V(B)].

So B has average degree at least 16kr. By Lemma 3.1, B contains a connected subgraph
B’ such that

5(B') > 8kr.

Let us define an edge-colouring ¢ of B’ using (r — 2)-sets as follows. For all ab € E(B’),
let ¢(ab) be the unique (r — 2)-set such that abU @(ab) € E(F"). It is easy to see that
© is strongly proper.

Recall that for every a € V(Hy) p, denotes the parent of a in H as in Algorithm 4.6.
Let S = {pa]a € V(B’) N As}. Note that S C L;_1. If S is a single vertex, let 2’ be that
single vertex and 7" = {a’}. Otherwise, let 2’ be the closest common ancestor in T of
vertices in S, and let 7" be the subtree of T with the root x’ and having vertices of S as
leaves.

Case 1: |S| = 1. Let P = ajas...agk4+1 with a3 € Ay, a1 € As be any strongly
rainbow path of length 2k + 1 in B’ under the colouring . It easily exists because the
minimum degree in B’ is at least 8kr. For every 1 < i < k, let P2; 11 be the subpath of
P between a1 and ag;41. Since ¢ is strongly rainbow on P and p(P) C V(F"), sz_ﬂ is
a linear path of length 2i in F”. For j = 1,3,...,2k + 1, let €q; be the unique edge of
H, containing both a; and Da, -

By (3), for all @ > 1, eq,,,, intersects P11 only at ag;y1, and e,, intersects Pa;yq
only at a;. By definition of MERT, eq, N eq,,,, = {2'}. Therefore, for all 1 < i < F,
P§  Ueq, Ueq,,,, is a linear cycle of length 2i + 2. Thus, we find linear cycles of even
lengths 4,...,2k + 2, thus the lemma follows for ¢ = 1.
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Case 2: |S| > 2. Then T has at least two children, let z; be one of them. Suppose that
x’ € Lj. For each v € §, let @, denote the unique (v, 2)-path in T". We label vertices
of Ao NV (B’) as follows: for a € As NV (B’) if Q)p, contains x; set f(a) = 1, otherwise
f(a) = 2. The next claim is easy to see.

Claim 4.11. Let u,v € Ao NV (B’). If f(u) =1 and f(v) = 2, then Qp, U Qp, is a path
of length 2(t — 1 — j) in T’ that intersects S only in p, and p,. O

Now define a partition of the edges E(B’) = E; U E5 as follows. For ab € E(B’) put
ab € E; if f(a) = i. Note that this is well defined partition since B’ is bipartite with
bipartition (V(B’) N A2, V(B’) N As).

Claim 4.12. E1 7é @, E2 # @

Proof. Since T has at least two children, there must be a,a’ € A2 N V(B’) such that
f(a) =1 and f(a’) = 2, therefore any edge adjacent to a lies in Ey, any edge adjacent
to a’ lies in Es, and recall that the minimum degree in B’ is positive. O

We may assume that |E;| < |Es|. The other case is similar so we skip the analysis. By
Lemma 4.2, with £ = 2k, B’ contains a strongly rainbow path P = a1bjasbs . . . apbrars1
of length 2k such that the first edge of P is in F; and all other edges are in E5. For
each i € [k], let P; be the subpath P from a; to a;. Since ¢ is strongly rainbow on P,
and p(P;) C V(F"), P? is a linear path of length 2i — 2 in F”. Note that f(a;) = 1
and f(a;) = 2, for all 7 > 2. Thus, for all i > 2, by Claim 4.11, Q,, U Qp,, is a path
of length 2(t — 1 — j) in T”. Since x is strongly rainbow on 7", ey U Q;’(ai is a linear
path of length 2(¢t — 1 — j) in Uj<t H;. In particular, we see that P/ and Q;‘al U Q;gbi
are vertex disjoint. For ¢ € [k + 1], let e,, be the unique edge of H; containing both a;
and po, .

By (3), for all ¢ > 1, e,, intersects P; only at a;, and e,, intersects P; only at
a1. Recall that e,,,e,, € H; are disjoint as well therefore one can easily check that
R, :=Pf U Q;{ll U Qg@i U{eq,,€q;} is a linear cycle of length 2(¢ — j) +2i — 2 in G, for
all 2 <4 < k+ 1. This gives us linear cycles of 2(t — j) + 2, 2(t —j) +4,...,2(t — j) + 2k
in G. So the lemma follows with / =t — j < 't, as desired. O

4.8. Linear cycles of even consecutive lengths in linear r-graphs

In this section we prove Theorem 1.3 and derive Corollary 1.4 from it. Theorem 4.13 is
the main result of this section, as Theorem 1.3 will follow from it by a standard argument
of selecting a large r-partite subgraph.

Theorem 4.13. Let k,r be integers where k > 1 and r > 3. Let c3 = 1807712 and ¢4 =
log(64r™+2). If G is an n-vertex r-partite linear r-graph with average degree d(G) > c3k,
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then G contains linear cycles of lengths 20 4+ 2,20 + 4, ...,20 + 2k, for some positive
. logn _
integer £ < [—log(d(G)/k)—C4—| 1.

We need the following definition of “dense” graphs which helps us to facilitate the
inductive argument used to prove Theorem 4.13.

Definition 4.14. Given a positive real d, an r-graph G is said to be d-minimal, if d(G) > d
but for every proper induced subgraph H we have d(H) < d(G).

Lemma 4.15. Let r > 2 be an integer and d > 0 a real. If G is an r-graph satisfying that
d(G) > d then G contains a d-minimal subgraph G'.

Proof. Among all induced subgraphs H of G satisfying d(H) > d, let G’ be one that
minimizes |V(G’)|. Then G’ is d-minimal. O

Lemma 4.16. Let r > 3 be an integer and d a positive real. Let G be a d-minimal r-graph.
For any proper subset S of V(QG), the number of edges of G that contain a vertex in S
is at least d|S|/r.

Proof. Otherwise, suppose there is a proper subset S of V(G) such that the number of
edges of G that contain a vertex in S is less than d|S|/r. Then the subgraph G’ of G
induced by V(G) \ S satisfies

e(G') 2 e(G) = d|S|/r = d[V(G)|/r — d|S]|/r = d(|V(G")|/r.
Hence d(G') > d, contradicting G being d-minimal. 0O

Proof of Theorem 4.13. Let d = d(G) and let p = (log(dh?%]. By Lemma 4.15, G
contains a d-minimal subgraph G’. Suppose G’ does not contain a collection of linear
cycles of lengths 2042, 20+4, ..., 2042k, where { < p—1. We will derive a contradiction.
Let us apply Algorithm 4.6 to G’ with a fixed vertex x and let (H, T, x) be the produced
MERT. Let m denote the height of H and T

For each i € [m], let

Gi={e € B(G')\E(H):enV(H;) #0,en|JV(H;) =0},
Gl={ec E(Gy):|lenV(H;)| =1}, and F;={ec E(G;):|enV(H;)|>2}.

Note that G, = ), as otherwise Algorithm 4.6 would have produced non-empty L, 1,
instead of stopping at step m, L,, being the last level. For convenience, define L,,11 = 0.

Claim 4.17. For each 1 <i < min{m, p} — 1, we have e(G}) < 8kr3(|L;| + |Liz1|).
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Proof. Let D; be the set of edges in G} that intersect V (H;) in L;. By Algorithm 4.6,
e(Di) > e(Gy)/r-

Let e € D;. By definition, e intersects V(H;) in exactly one vertex and that vertex lies
in L;. Furthermore, e contains no vertex in J,_; V(H;). If e\ L; is vertex disjoint from
V(H;+1) \ L;, then e would have been added to H;11 by Algorithm 4.6, contradicting
e ¢ E(H). Hence e must contain at least one vertex in V(H; 1 \ L;). If e(D;) > 8kr(r —
1)(|L;| + |Li41|) then by Lemma 4.7 (with ¢ = ¢+ 1) G contains linear cycles of lengths
204 2,20+ 4,...,20 + 2k for some ¢ < i < min{m,p} —1 < p — 1, contradicting our
assumption. Hence,

e(Di) < 8kr(r = 1)(|Lil + [Lita]) < 8kr?(|Li] + [Lisal).
Therefore, we have e(G}) < 8kr3(|L;| + |Li41]). O
Claim 4.18. For each 1 <i < min{m,p — 1} we have e(F;) < 8kr"+2|L;|.

Proof. Suppose e(F;) > 8kr"T2|L;|. Then by Lemma 4.10 (with ¢t = i), we can find in G
linear cycles of length 2¢ 4+ 2,20 4+ 4,...,2¢ + 2k for some £ < i < p — 1, contradicting
our assumption. Hence, e(F;) < 8kr"+2|L;| hods for each 1 <i < min{m,p—1}. O

By Claims 4.17 and 4.18, we have that for any 1 <4 < min{m,p} — 1,
e(G;) = e(Gll) +e(F;) < 16kr’"+2(|Li| +|Lit1])- (5)
Claim 4.19. For each 1 <4 < min{m,p} —1, e(U;:1 G;) > (d/2) Z;Zl |L;| — |Lita]-
Proof. Let S = U;:o V(H;). Since ¢ < m — 1, S is a proper subset of V(G’). Let Eg

denote the set of edges of G’ that contains a vertex in S. By our definitions, Fg C

U;ill E(H;)U U;Zl G;. Since G’ is d-minimal, by Lemma 4.16,

|Es| >d|S|/r=d |1+ (r—1)L;| | /r.

On the other hand, by the definition of H, | UZ+1 E(H;)| = ZIH |L;|. Hence, we have

1+1 1+1

Uea; IEsl—IUE )| >d 1+Z7«_1|L| /T_Z|L|
j=1

7

>Z|L|( (1-7) =1) + s = itonl = @2 XI5l Laal

j=1
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completing the proof. O

For each 1 < i < m, let U; = |J'

;=1 Lj. By (5) and Claim 4.19, for each 1 < i <

min{m,p} — 1

[
32]@‘7”T+2|U2+1|—|Ll+1| > Zl6krr+2 (|L ‘+|LJ+1 U d/2 ‘U|_|Lz+1‘
Jj=1 i=1

Hence, for each 1 <i < min{m,p} — 1 we have
U] 2 (d/64kr™2)|U;]. (6)

Case 1: m < p — 1. We will see that if Algorithm 4.6 stops after at most p — 1 steps
then L,, must be relatively small but that would contradict to (6) for i = m — 1. Let
S =V(Hp)\ (Lp-1ULy). Then S is a proper subset of V(G’) with |S| = (r — 2)| Ly, |.
Let Es denote the set of edges of G’ that contain a vertex in S. Since G’ is d-minimal,
we have

|Es| = d|S|/r = d|Lu|(r —2)/r.

On the other hand, since L,, is the last level of H, by the definitions and the fact that
Gl =0, we have Es C E(H,,) U/, E(G;) U F,,. By (5), Claim 4.18 and the fact
that e(H,,) = |L.,|, we have

m—1
|Es| < |L|+ Z 16k 2(|Lj| 4+ |Ljs1]) +8kr™ 2| Ly, | < 32kr™ 2|Upy—q |4+ 16k 2| L.
j=1

Combining the lower and upper bounds above on |Eg|, we get
(r — 2)d| Ly | /7 < 32kr™ 2| U,y 1| 4 16kr" 2| Ly |

As d > c3k = 180kr"™™2 and r > 3, this inequality above implies |L,,| < |Up—1].
Therefore, |Uy,| = |[Un—1| + |Lim| < 2|Unm-1]. But by (6), we have

Uil 2 (d/64kr™2)|Upn—1] 2 2|Upn—1l,

a contradiction.

Case 2: m > p. In this case we show that the expansion rate is so fast that |Up,| >
n, which is a contradiction with z ¢ U,. Since G’ is d-minimal, by Lemma 4.16, the
minimum degree of G’ is at least d/r, and therefore, |Uy| = |L1| = dg/(x) > d/r. Thus
by (6), we have

|Up| > (d/64kr™T2)P.



T. Jiang et al. / Journal of Combinatorial Theory, Series B 163 (2023) 1-24 21

Taking logarithm of both sides of the inequality and using ¢4 = log(647"72) and p =

logn

[WL we get
log |Up| = p(log(d/k) — ca) = logn.
So |U,| > n. This is a contradiction as x ¢ U, completing the proof of the theorem. O
Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let c3,c4 be the constants obtained in Theorem 4.13. Let ¢; =
c3r” = 1807?"*2 and ¢y = ¢y +1og(r") = log(64r*"+2). Let G be an n-vertex r-graph with
d(G) > c¢1k. By a well-known result of Erdés and Kleitman [8] G contains an r-partite
subgraph G’ with d(G’") > d(G)(r!/r") > d(G)/r" > c3k. By Theorem 4.13, G’ (and
thus G also) contains linear cycles of lengths 20+ 2,20+ 4, ..., 20+ 2k, for some positive
integer

f= Logw(é?)g/z) = cJ !

<[ logn —‘_1_{ logn —‘_1
~ | log(d(G)/k) —logr" — c4) log(d(G)/k) — c2) '
This finishes the proof of Theorem 1.3. O

As mentioned in the introduction, as a quick application of Theorem 1.3, we obtain an
improvement on the upper bound given in [6] on ez, (n, C5,) by reducing the coefficient
from at least exponential in k to a function linear in k (for fixed ).

Proof of Corollary 1.4. Let ¢; = 18072712, ¢y = log 6472712 be as in the proof of Theo-
rem 1.3. Let G be an n-vertex linear r-graph with e(G) > ckn't/* where ¢ = ¢, /r =
180727 *1. Then d(G) = re(G)/n > cikn'/F > cik, thus we can apply Theorem 1.3 to
G and conclude that it contains linear cycles of lengths 20,20 4+ 2,...,2¢ + 2(k — 1) for
some positive integer

logn logn
v < < <k
- [log(d(G)/k) — 02)—‘ - {logcl +lognl/k — 02—‘ -

where in the last inequality we used that ¢y < logec;. Since the even numbers in the
interval [2¢,...,2¢ 4+ 2(k — 1)] contain the number 2k it follows that G’ must contain a
linear cycle of length exactly 2k. Hence the corollary holds. O

5. Concluding remarks
In Theorem 1.5, we can slightly improve the leading coefficient 6 but we do not know

if one can further improve the leading coefficient to 2 as in Theorem 1.3. In particular,
we pose the following two questions, the second being a weakening of the first.
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Question 5.1. Let r > 3 and k > 2 be integers. Do there exist constants ¢; = ¢(r),co =
c(r) such that if G is an n-vertex linear r-graph with average degree d(G) > ci1k then
G contains linear cycles of k consecutive lengths, the shortest of which is at most
1 r

2|’10gd(OGg§7k—(:2‘| +17

Question 5.2. Let 7 > 3 and k > 2 be integers. Do there exist constants ¢; = ¢(r),co =
c(r) such that if G is an n-vertex linear r-graph with average degree d(G) > cik then
G contains linear cycles of k consecutive odd lengths, the shortest of which is at most

2l o= | + 17

Ergemlidze, Gy6ri and Methuku [9] proved that for m € {2,3,4,6}, exy(n,{C3,C2,
<, Cair}) = Q(n!T1/™). On the other hand, it follows from the main result of [6]
that exy (n, {C5,,11}) = O(n**Y/™), for any r > 3 and m > 1. Hence, for m € {2,3,4,6}
and all sufficiently large n, there are n-vertex linear 3-graphs G with d(G) = ©(n'/™)
that contain no odd linear cycles of length at most 2m + 1. Thus these graphs exhibit
that in general the bound on the shortest odd cycle length in Questions 5.1 and 5.2 is
best possible for m € {2,3,4,6}, up to the constants ¢y, ca.

It is natural to consider the analogous problem in general r-graphs. Interestingly, for
sufficiently large n the answer is implied by exact results on the (usual) Turdn number
ex(n, C}), obtained in [11], for all r > 5 and [15], for all r > 3, for all k¥ > 3. These
results combined show that for all 7 > 3, > 1, ex(n,C%,,,) = (") — (".") and for all
(r,t) # (3,1), ex(n,Chyps) = () — (") + ("157), while ex(n,C3) = (3) — ("5') +
max{n — 3,4| 2% |}. Note that by these results, for all k > 3, r > 3, ex(n, Cy) is strictly
increasing as a function of k. Furthermore, they show there are extremal r-graphs with
ex(n,C}) many edges with no C}, which also don’t contain C7, for all £ > k. Indeed, a
largest C3, -free r-graph can be obtained by taking all the r-sets in [n] that contain
some vertex in a fixed t-set S. For (r,t) # (3,1), one can obtain a largest C3, ,-free
r-graph by adding to the above-mentioned extremal construction for C3, , ; all the r-sets
in [n] \ S that contain some two fixed vertices. As for C3, one extremal construction is
to take all the triples in [n] containing a fixed vertex x and a largest P3-free 3-graph on
[n] \ {z}, where P§ is the linear 3-uniform path of length two.

Hence, for all » > 3,k > 2 and sufficiently large n, the maximum number of edges
in an n-vertex r-graph that does not contain linear cycles of k consecutive lengths is
precisely ex(n, C} ). Indeed, if G is an r-graph and has more than ex(n, Cj_,) edges,
then since ex(n, Cy) is an increasing function in ¢, G must contain cycles of all lengths
up to k+2, which gives in total k cycles of consecutive lengths. On the other hand, there
is an r-graph G with exactly ex(n, C}_,) edges, in which the length of the longest cycle
is k41, hence we can only hope to find at most k£ — 1 many cycles of consecutive lengths.
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Appendix A

Proof of Proposition 1.6. In the proof we use the fact that d is chosen such that d >
max{r!/ 5,21?_75}. By results of Rodl [19], for sufficiently large n there exists a linear
n-vertex r-graph G of size at least 0.9(3)/(5). Set p = 2rd/n and let F be a random
subgraph of G obtained by independently including each edge of G with probability p.
Let X denote the number of edges in F' and Y the number of linear cycles of length at
most m in F. Then

E[X] > 0.9 <’;) /(2) - (2rd/n) > 1.8dn/r.

On the other hand, observe that for any fixed ¢, since G is linear, there are at most n’
1
linear cycles of length ¢ in G. Hence, using d > (2r)<* and m < (1 — €)log,; n, we have

E[Y] <> nfpf =3 (2rd)" < 2(2rd)™ < 2mF1glitam < gmiipl=<,
(=3 (=3

where the second to last inequality holds since d > r!/¢. Therefore,

1.8dn

r

1. om+1
E[X - Y] > 8d ) dn

2
_2m+1n1—e S === _ . n > —,
r ne T

where the last inequality follows since O'T—E?d — 27%—1 > 0 which holds because 0.8d > 2r
and d > 255.

Hence there exists an r-graph F' for which X —Y > dT”. We can delete one edge from
each linear cycle of length at most m in F'. The remaining graph is an n-vertex linear
r-graph that has average degree at least d and has no linear cycles of length at most
[(1—¢)logyn]. O
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