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TREE-DEGENERATE GRAPHS AND NESTED DEPENDENT
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Abstract. The celebrated dependent random choice lemma states that in a bipartite graph,
an average vertex (weighted by its degree) has the property that almost all small subsets S in
its neighborhood have a common neighborhood almost as large as in the random graph of the
same edge-density. There are two well-known applications of this lemma. The first is a theorem of
Firedi [Combinatorica, 11 (1991), pp. 75-79] and Alon, Krivelevich, and Sudakov [Combin. Probab.
Comput., 12 (2003), pp. 477-494] showing that the maximum number of edges in an n-vertex graph
not containing a fixed bipartite graph with maximum degree at most r on one side is O(n2_1/r).
This was recently extended by Grzesik, Janzer, and Nagy [J. Combin. Theory Ser. B, 156 (2022),
pp. 299-309] to the family of so-called (r,t)-blowups of a tree. A second application is a theorem of
Conlon, Fox, and Sudakov [Geom. Funct. Anal., 20 (2010), pp. 1354-1366], confirming a special
case of a conjecture of Erdés and Simonovits and of Sidorenko, showing that if H is a bipartite
graph that contains a vertex that is completely joined to the other part and G is a graph, then
the probability that the uniform random mapping from V(H) to V(G) is a homomorphism is at
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least R . In this paper, we introduce a nested variant of the dependent random choice

lemma, which might be of independent interest. We then apply it to obtain a common extension of
the theorem of Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy regarding
Turdn and Sidorenko properties of so-called tree-degenerate graphs.
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1. Introduction. Given a graph G, let |G| denote its number of vertices. A
homomorphism from a graph H to a graph G is a mapping f : V(H) — V(G) such
that for each edge uv in H, f(u)f(v) is an edge in G. Let hy(G) denote the number of
homomorphisms from H to G, and let tz7(G) = hy (G)/|G|H]. Thus t 5 (G) represents
the fraction of mappings from V(H) to V(G) that are homomorphisms. Viewed
probabilistically, ¢y (G) is the probability that the uniform random mapping from
V(H) to V(G) is a homomorphism. A beautiful conjecture of Sidorenko [24] is as
follows.

CONJECTURE 1.1 (Sidorenko [24]). Let H be any bipartite graph. For every graph
G, we have

tr(G) > [tr, (G) ).

Since [tx, (G)]*H) = (%)e(m, one may view Sidorenko’s conjecture as saying

that the number of homomorphic copies of H in an n-vertex graph G is asymptotically
at least as large as in the n-vertex random graph with the same edge-density. The

following lemma, based on tensor products (see, e.g., Remark 2 in the English version
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of [23]), is commonly known and used in many earlier papers (see, e.g., [1], [5], [20]).
It reduces the conjecture to a slightly weaker statement.

LEMMA 1.2 ([23]). Let H be a bipartite graph. If there exists a positive constant
¢ depending only on H such that for all graphs G, ty(G) > cltx, (G)]*H) holds, then
for all G, ty(G) > [tx,(G)]<H).

When the edge-density of G is sufficiently high, it is expected that many of the
homomorphisms from H to G are injective. Erdés and Simonovits [12] made several
conjectures regarding the number of injective homomorphisms. As usual, let ex(n, H)
denote the Turan number of H, which is the maximum number of edges in an n-vertex
graph not containing H. Let h};(G) denote the number of injective homomorphisms
from H to G, and let t%(G) = h%(G)/|G|!. The first conjecture of Erdés and
Simonovits from [12] states that for every ¢ > 0 there is a ¢/ > 0 such that if e(G) > (1+
c)ex(n, H), then t%(G) > c'tx,(G)*H). The second, weaker, conjecture from [12] says
that if ex(n, H) = O(n?~%), then there exist constants 0 < & < a,¢,¢’ > 0 such that
if e(G) > en?®~%, then t%(G) > tr, (G)*). Tt is known (see [23]) that this weaker
version is equivalent to Sidorenko’s conjecture. However, compared to the stronger
conjecture of Erdds and Simonovits, Sidorenko’s conjecture does not give an explicit
sharp edge-density threshold for when to guarantee the stated number of injective
homomorphisms. There is yet another version of the Erd6s—Simonovits conjecture,
given in [21], that is equivalent to saying that there exist two constants ¢,¢’ > 0 such
that if G is an n-vertex graph with e(G) > cex(n, H), then t%(G) > ¢[tx, (G)]*UD).

Sidorenko [24] verified his own conjecture when H is a complete bipartite graph,
an even cycle, a tree, or a bipartite graph with at most four vertices on one side.
Hatami [17] proved that hypercubes satisfy Sidorenko’s conjecture by developing a
concept of norming graphs. The first major progress on Sidorenko’s conjecture was
made by Conlon, Fox, and Sudakov [5], who used the celebrated dependent random
choice method (see [13] for a survey) to show the following.

THEOREM 1.3 (Conlon, Fox, and Sudakov [5]). If H is a bipartite graph that
has contains a vertex that is completely joined to the other part, then H satisfies
Sidorenko’s conjecture.

In fact, Conlon, Fox, and Sudakov proved the stronger theorem that if H is a
bipartite graph with bipartition (4, B), and contains vertices v1,...,v, in A com-
plete to B, and degree of all w in A is at least d, then ty(G) > [tK,,,.d(G)]%- From
Theorem 1.3, Conlon, Fox, and Sudakov [5] also deduced an approximate version of
Sidorenko’s conjecture. Since the work of Conlon, Fox, and Sudakov, there has been
much further progress on Sidorenko’s conjecture. Li and Szegedy [22] used the en-
tropy method (presented in the form of logarithmic convexity inequalities) to extend
the result of Conlon, Fox, and Sudakov to a more general family of graphs H, which
they refer to as reflection trees. These ideas were further developed by Kim, Lee,
and Lee [20], who proved the conjecture for what they called tree-arrangeable graphs
and showed that if T is a tree and H is a bipartite graph that satisfies Sidorenko’s
conjecture, then the Cartesian product of T" and H also satisfies Sidorenko’s conjec-
ture. Subsequently, Conlon et al. [8, 9] and independently Szegedy [25] established
more families of bipartite graphs H for which Sidorenko’s conjecture holds. These
include bipartite graphs that admit a certain type of tree decomposition, subdivisions
of certain graphs including cliques, certain Cartesian products, etc. More recently,
Conlon and Lee [10] showed that Sidorenko’s conjecture holds for any bipartite graph
H with a bipartition (A, B) where the number of vertices in B of degree k satisfies a
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certain divisibility condition for each k. As a corollary, for every bipartite graph H
with a bipartition (A, B) there is a positive integer p such that the blowup HY formed
by taking p vertex-disjoint copies of H and gluing all copies of A along corresponding
vertices satisfies Sidorenko’s conjecture.

Another line of work that motivates our result is related to a long-standing con-
jecture of Erdés regarding the Turan number of the so-called r-degenerate graphs.
Given a positive integer r, a graph H is r-degenerate if its vertices can be linearly
ordered such that each vertex has back degree at most 7.

CONJECTURE 1.4 (Erdés [11]). Let r be a fized positive integer. Let H be any
r-degenerate bipartite graph. Then ex(n, H) = O(n?~1/7).

The first major progress on Conjecture 1.4 was the following theorem, which was
first obtained by Fiiredi [14] in an implicit form and then later reproved by Alon,
Krivelevich, and Sudakov [2] using the dependent random choice method.

THEOREM 1.5 (Fiiredi [14]; Alon, Krivelevich, and Sudakov [2]). Let r be a pos-
itive integer. Let H be a bipartite graph with maximum degree at most r on one side.

Then ex(n, H) = O(n?>~1/7).

The family of graphs satisfying the condition of Theorem 1.5 forms a very special
family of r-degenerate bipartite graphs, which we will refer to as one-side r-bounded
bipartite graphs. Recently, Grzesik, Janzer, and Nagy [16] extended Theorem 1.5 to
a broader family of graphs called (r,t)-blowups of a tree.

DEFINITION 1.6 ((r,t)-blowups of a tree). Let r <t and m be positive integers. A
bipartite graph H is an (r,t)-blowup of a tree (or (r,t)-blowup for short) with root block
By and nonroot blocks By, ..., By, if By, B1,..., By, partition V(H), |Bo| =r,|B1| =
«+=|Bp| =t and H can be constructed by joining By completely to By and for each
2 <i <m joining B; completely to an r-subset of By for some v(i) <i— 1.

THEOREM 1.7 (Grzesik, Janzer, and Nagy [16]). Let r <t be positive integers. If
H is an (r,t)-blowup of a tree, then ex(n, H) = O(n?~1/7).

Since every one-side r-bounded graph is a subgraph of an (r,t)-blowup, Theo-
rem 1.7 substantially generalizes Theorem 1.5.

In this paper, we give a common strengthening of Theorems 1.3 and 1.7 by
proving a general theorem on the Turan and Sidorenko properties of so-called tree-
degenerate graphs.

DEFINITION 1.8 (tree-degenerate graphs). A bipartite graph H is called tree-
degenerate with root block By and nonroot blocks By, ..., By, if By, B1,...,Bn parti-
tion V(H) and H can be constructed by letting P(B1) = By and joining By completely
to By and, for each 2 <1 <'m, joining B; completely to a subset P(B;) of B.) for
some 1 <~(i) <i—1, such that for all i > 2, |P(By;))| < |P(B;)|. We call P(B;) the
parent set of By, call By the parent block of B;, and call P the parent function. We
call (Bo,...,Bm,P) a block representation of H.

We present our main result in terms of so-called s-norm density. We will explain
the advantage of doing so after presenting the theorem.

DEFINITION 1.9 (s-norm density). Let G be a graph with n vertices. For each
positive integer s, we define the s-norm density of G, denoted by ps(G), as
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ps(G) :=tx, L (G)'V°.
Note that p1(G) =tk,(G) = 28759 is the usual edge-density of G.

In general, one may view ps(G) as a modified measure of edge-density of G that
takes the degree distribution into account. Using convexity, one can show that p,.(G) >
ps(G) whenever r > s (see Lemma 2.3).

THEOREM 1.10 (main theorem). Let H be a tree-degenerate graph with a block
representation (Bg,Bu,...,Bm, P). Let s=|By| and r =max;>o |P(B;)|. There exist
positive constants c; = c1(H),ca = ca(H),c3 = c5(H) depending only on H such that
for any graph G,

tir(G) 2 erlps(G)*U) = eafte, (G)) D).

s

Furthermore, if hg, (G) > can® ™=+, where n=|G|, then
t(G) = e3[ps (G)]) D = exft e, (G)] ).
The first part of the theorem and Lemma 1.2 imply the following.

COROLLARY 1.11. Let H be a tree-degenerate graph. Then H satisfies Sidorenko’s
conjecture.

Since a bipartite graph H contains a vertex that is completely joined to the
other part is tree-degenerate with |By| =1 and ~y(i) =1 for all ¢ > 2, Corollary 1.11
generalizes Theorem 1.3.

A special case of the second part of Theorem 1.10 yields the following.

COROLLARY 1.12. Let r <t be positive integers. Let H be an (r,t)-blowup of a
tree with h vertices. Then ex(n, H) = O(n®>~'/"). Furthermore, there exist constants
c,c > 0 such that every n-vertex graph G with hg, (G) > cn” contains at least
c’nh(%)e(m copies of H.

Corollary 1.12 strengthens Theorem 1.7 in two ways. First, it relaxes the density
requirement on G from e(G) = Qn?>~V/") to hk, (G) = Qn") (ie., from pi(G) =
Q(n=7) to p.(G) =Q(n~"/")). Second, it gives not only at least one copy of H but
also an optimal number (up to a multiplicative constant) of copies of H. A closer
examination of the proof of Theorem 1.7 given by Grzesik, Janzer, and Nagy in [16]
shows that their proof can be strengthened to also give Corollary 1.12. However,
Theorem 1.10 is more general than Corollary 1.12, as the counting statement applies
to any tree-degenerate graph H, where parent set sizes can vary, instead of just to
(r,t)-blowups. The relaxation of p1(G) = Q(n~'") to p,.(G) = Qn~/") is also a
useful feature, as in bipartite Turdn problems sometimes we need to handle cases
where the host graph has very uneven degree distribution and hence high s-norm
density, despite having relatively low 1-norm density (see [19] for an instance of this
kind). Tt is also worth noting that the following proposition is implicit in several
recent papers, such as [6] and [7]. (Lemma 2.8 of [6] is a bit more general than the
proposition stated below, but the proof idea is the same.)

ProPOSITION 1.13 ([6], [7]). Let H be a bipartite graph in which each vertex in
one part has degree at most r. There exists a constant ¢ = c(H) such that if G is an
n-vertex graph with hg, (G)>cn”, then G contains H as a subgraph.

Note that Corollary 1.12 generalizes and strengthens Proposition 1.13 in the sense
that it applies to a broader family and also gives a counting result. To prove Theo-
rem 1.10, we introduce a notion of goodness and prove a lemma that might be viewed
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as a nested variant of the dependent random choice lemma. Once we establish the
lemma, the proof of Theorem 1.10 readily follows. Conceivably, this variant could
find more applications.

We organize our paper as follows. In section 2, we introduce some preliminary
lemmas. In section 3, we establish the nested goodness lemma. In section 4, we prove
Theorem 1.10. In section 5, we give some concluding remarks.

2. Preliminary lemmas. In this section, we first give some useful lemmas.
They will be used to motivate some definitions and will also be used in the proofs in
later sections. We start with a standard convexity-based inequality, which is some-
times referred to as the power means inequality. We include a proof for completeness.

LEMMA 2.1. Let n be a positive integer. Let 1 < a <b be reals. Let x1,...,x, be
nonnegative reals. Then

St < o, (zx>a/b.

i=1

1 n 1/a 1 n 1/b
() =(54)

Proof. Since the function x%/¢ is either linear or convex, by Jensen’s inequality,
we have 0 2t = 30 (z9)¥¢ > n[2 Y1 29]/9 Rearranging, we obtain the
desired inequalities. O

FEquivalently,

Let G be a graph with n vertices. Let s be a positive integer. Recall that
ps(G) :=tx, ,(G)"/°.
LEMMA 2.2. For any n-vertex graph G and positive integer s,
1/s
pS(G) = ﬁ Z d(U)S
veV(G)

Proof. Recall that t,4(G) = hk, (g)/n*"!, where hg, (G) is the number of
homomorphisms from K, to G. It is easy to see that hg, [(G) = 3, cy () d(v)*.
Hence,

1.1
(@) =t (O = (5 DT @)= (= 3 dw)).

veV(G) veV(Q)
Lemmas 2.2 and 2.1 imply the following useful fact.
LEMMA 2.3. For any graph G and positive integers r > s, we have p-(G) > ps(G).

3. Nested goodness lemma. Given a set W and a sequence S of elements of
W, we call S a sequence in W for brevity. The length of S is defined to be the number
of elements in the sequence S (multiplicity counted) and is denoted by |S|. Given a
positive integer k, we let W* denote the set of sequences of length k in W and let W,
denote the set of sequences of length k£ in W in which the &k elements are all different.
Given a graph G and a sequence S in V(G), the common neighborhood N(S) is the
set of vertices adjacent to every vertex in S.

We now introduce a goodness notion that is inspired by Lemma 2.1 of [5]. A more
specialized version of it was introduced in [18].
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DEFINITION 3.1 (s-norm i-good sequences). Let 0 < a, S <1 be reals. Let s,h be
positive integers. Let G be an n-vertex graph. Let ps = ps(G). For each 0 <i<h, we
define an s-norm i-good sequence in V(QG) relative to (a, B, h) (or simply (s,i)-good for
short) as follows. We say that a sequence T in V(G) is (s,0)-good if |N(T)| > apLTln.
For all 1 <i < h, we say that a sequence S of length at most h in V(G) is (s,i)-good
if S is (s,0)-good and for each |S| <k < h, the number of (s,i— 1)-good sequences of
length k in N(S) is at least (1 — B3)|N(S)|*.

Below is our main theorem on the goodness notion.

THEOREM 3.2 (nested goodness lemma). Let h > s be positive integers. Let
0 < B <1 beareal. There is a positive real o depending on h,s, and B such that
the following is true. Let G be any graph on n wvertices. Let ps = ps(G). For each
0<i<h,1<j<h,let A7, denote the set of (s,i)-good sequences of length j relative
to (o, B,h) in V(G). Then for each 0<i<h and s <{<j<h,

SN = (1 - By i,

SeA;

In particular, there exists an (s,i)-good sequence S of size j such that |N(S)| > (1 —
)Y pin.

Applying Theorem 3.2 with s =1,/ =1, we get the following, which may be of
independent interest.

THEOREM 3.3. Let h be a positive integer. Let 0 < 5 <1 be a real. There is a
positive real o depending on h and  such that the following is true. Let G be any
graph on n wvertices. Let p1 = % For any i,j € [h], let A}j denote the set of

(1,4)-good sequences of length j relative to (a, B, h) in V(G). Then, for all i€ [A],

Y NG = 1=

SeA] ;

In particular, there exists an (1,i)-good sequence S of size j such that [N(S)| >
(1 - B)pin.

Loosely speaking, one may think of the usual dependent random choice lemma
as saying that for any positive integers j, h and real 0 < 8 < 1, there is a (1,1)-good
sequence S of size j relative to («, 8, h) for some appropriate o > 0; that is, most of
the subsets in N (S) of size at most h have their common neighborhood fractionally as
large as expected in the random graph of the same edge-density. Theorem 3.2 follows
from the next, more technical, lemma.

LEMMA 3.4. Let h > s be positive integers. Let 0 < 8 <1 be a real. There exists a
positive Teal o depending on h, s, and 8 such that the following is true. Let G be any
graph on n vertices. For each 0 <i<h and 1<j <h, let A} ; denote the set of (s,i)-
good sequences of length j relative to (a,3,h) in V(G), and let B; ; =[V(G)]’ \ A ;.
Then for each 0<i<h,1<j<h, and 1<0<7],

Y NS < gl

SeB;

Proof. Suppose « has been specified; we define a sequence «;, 0 <1i < h, by letting
ap = a and a; = a+ h(a;_1/B)"/" for each i € [h]. For fixed h and f, it is easy to
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see that by choosing a to be small enough, aj, < 8. Note also that the a; are an
increasing function in terms of ¢. Let us fix such an a. Now, let A7 and B} ; be
defined as stated. We use induction on 7 to prove that for all 0 <¢<h,j € [h], and
1<0<y,

Z IN(S)|* < andTipit.
SEB:

For the basis step, let i = 0. Let j,¢ € [h] where ¢ < j. By the definition of (s,0)-
goodness,

(3.1) Z IN(9)[¢ <n?(apin)t <antplt = agnd T pit.
SeBy,

Hence the claim holds for i = 0. For the induction step, let ¢ > 1, and suppose the claim
holds when i is replaced with ¢ — 1. Let j € [h]. For each j < k <h, let C;;; denote
the set of sequences S in B; ; such that the number of sequences of length £ in N (S)
that are not (s,i—1)-good is at least 3| N(S)|*. By definition, BZ] = BSJUUk Gk
Let Fj, be the collection of pairs (S,T), where S €C; . 75k and T is a sequence of length
k in N(S) that is not (s,i — 1)-good. By our definition,

IFil> Y BINGS)IF=5- Y |

SeCi ;i SeCi

On the other hand, for each sequence T of length k in V(G) that is not (s,i—1)-good,
the number of sequences S of length j that satisfy (S,T) € Fy, is most |[N(T)]7. Hence,

el < DD NP < TFplF,
TeB;_,

where the last inequality follows from the induction hypothesis. Combining the lower
and upper bounds on |F|, we get

(3:2) Y IN)F < (i /B)nT plk.

SECs

Let ¢ € [h] such that ¢ < j. Since j < k, we have ¢ < k. Applying Lemma 2.1 with
a={,b=Fk and using |C;; ,| <1/, we get

S0 NI () i/ B) D) < i )
Sec?

0,5,k

where we used the fact that a;_1/8 < 1. By (3.1) and (3.2), we have

h
DN YN Y D

SeB; SeBy k=j SEC; ,

<[+ h(ai1/B)Y M T plf < amItplt.
This completes the induction and the proof. 0

Remark 3.5. In Lemma 3.4, the reason we impose the condition ¢ < j is because its
proof uses Lemma 2.1, which holds only when a < b. Also, due to this restriction,
in our definition of tree-degenerate graphs (Definition 1.8), we impose the condition
that for each i > 2, |P(B,x;)| < |P(B;)|.

We need another quick lemma. Given two positive integers n, j, let n; = n(n —
1) (n—j4+1).
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LEMMA 3.6. Let G be a graph on n wvertices, and let £ > s and j be positive
integers. Let ps = ps(G). Then Y geiv(ay IN(S)[t > nitpit. If p, > 4jn~"*, then
Sseviay, 1IN > girndHoplt.

Proof. First, note that > rcy (g IN(T)| = bk, ,(G) = g, (G) = n'+1pl.
Hence, by convexity,

, N’ - -
Z |N(T)|J > nt (ZTE[V(G)]Z | ( )) _ ne(npf)J _ nJ”pf > nﬁ_gp;g.
Te[V(G)]*

If ps > 4jn~1/¢, then

A o A
ST NPz - a2 = Snr
TE[V(G)]4IN(T)|22)
Hence,
> IN(T)|; > > (IN(T)I/2)" > o™l
Te[V(A)]IN(T)| 225 Te[V(G)%IN(T)| =25

To prove the first statement, note that 3 ey () [V (9)|¢ counts pairs (S,T), where
S is a sequence of length j and T is a sequence of length ¢ in N(S). By double
counting, we have 3 gc iy i [N =X repy(aye INTP >0/t plt.

For the second statement, note that ZSe[V(G)L |N(S)|¢ counts pairs (S, T), where
S is a sequence of length j with no repetition and 7T is a sequence of length £ in N(S).
By a similar double counting, we have

1 .., .
Z IN(S)|* = Z IN(T); = ﬁnﬁepiz- 0
SEV(G)]; Te[V(G)]*

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let h > s be positive integers and 0 < 8 < 1 be a real.
Let o be defined as in Lemma 3.4. Let 0 < i < h and s < ¢ < j < h. Let Af,j
denote the set of (s,4)-good sequences of length j relative to (a,8,h) in V(G), and
let B; ; = [V(G)J \ A; ;. By Lemma 3.6,

SN = I,

SeV(@))

By Lemma 3.4, Y gcp: |N(S)[* < BndTpi. Hence, Y oo 4o [N(S)[F = (1 -
B)n?Tpit as desired. This proves the first part of the theorem. Now, since |As | < ni,
applying the first part of the theorem with £ = s and via averaging, there exists an
S € Aj ; such that [N(S)]® > (1 — B)pi°n® and hence [N(S)[ > (1 — B)Y*pin. This
proves the second part of the theorem. 0

In order to prove the second part of Theorem 1.10, we need the following variant
of Theorem 3.2. We omit the proof since it is almost identical to that of Theorem 3.2,
except that we use the second statement of Lemma 3.6 instead of the first statement.
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LEMMA 3.7. Let h > { > s be positive integers. Let 0 < <1 be a real. There is a
positive real o depending on h,s, and 3 such that the following is true. Let G be any
graph on n vertices. Let ps = ps(G). For each 0 <i < h,1 <j <h, let A, denote
the set of (s,1)-good sequences of length j relative to (o, 8,h) in V(G) that have no
repetition. If ps > 4jn=1¢, then for each 0<i<h and s <l <j<h,

Z |N(S)|Z e (23‘1-5-1 - 5) njHPie-

SeAs

4. Proof of Theorem 1.10.

Proof of Theorem 1.10. Let n = |G| and h = |H|. Let 8 = ;3. Recall that
s = |By| and r = max;>o|P(B;)|. Since P(By) = By, we have r > s. Let a be the
positive constant given by Theorem 3.2 for the given h, s, and 3. Let

c1=c1(H) = (1 — B)IBl/1Bol o2 1Bil (1 — pgym=1,
Let
co=cy(H)=4h/a and 63ZC3(H)201/2h2+4h.

Suppose H has root block By and nonroot blocks By,...,B,, such that Bj is
completely joined to its parent set P(B;) = By and for each i = 2,...,m, B; is
completely joined to its parent set P(B;) where P(B;) C B, for some 1 < (i) <i
and |P(B;)| > |P(B.))|. For each i € [m], let F; denote the collection of all the parent
sets P(Bj) that are contained in B;. Let T be a tree with V(T) := {vo,v1,...,vm}
and edge set E(T) := vov1 U {v;v,(;) :€ [m]}. We call T' the auxiliary tree for H. For
each i € [m], define the depth of B;, denoted by d;, to be the distance from vy to v;
in T. Let g denote the maximum depth of a block. Then clearly ¢ <m <h — 1.

Let G be any graph. For convenience, we say that a sequence in V(G) is (s,1)-
good if it is (s,i)-good relative to («,B,h). As in Theorem 3.2, for each 0 <i < h
and s < j < h, let A7, be the set of (s,i)-good sequences of length j in V(G). Let
B; ;= V(G) \Af] Let .ij be the set of (s,4)-good sequences of length j in V(G)
that contain no repetition. Let f be the uniform random mapping from V(H) to
V(G).

Let

Ey = the event that f(Bo) € A5, and f(B1) € [N(f(Bo))]'",
F; = the event that each sequence in F; is mapped to an (s,q — 1)-good sequence,

E} = the event that f(By) € -’ZZ,IBO\ and f(B1) € [N(f(By))]'P*!, and
L, = the event that f is injective on By U Bj.

For each 1 €{2,...,m}, let

E; = the event that f(B;) € [N(f(P(B;)))]'P,

F; = the event that each sequence in F; is mapped to an (s,q — d;)-good sequence, and

L; = the event that f is injective on By UBj U---U B;.

Since s = |By|, by Theorem 3.2,

(4.1) S NP =1 B

SeA?

q,|Bol
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Furthermore, if p, > 4jn~Y/", then since r > s, we have p, > 4jn~'/%, and by
Lemma 3.7,

(4.2) SN > <2j1+1 5) n?ps’.

ScAs

a,|Bol

Hence, since |By| > |By| = s, using (4.1) and convexity we get

STONE)E= ST (NS

SEAY 1By SEAL 5ol
1 |B1|
. 25 52\ °
>0 (- gt

Bl‘
=T ..|B B Bol||B
_(1_ﬂ)\50\n\ ol +] 1|p|8 oll 1|,

and if p, > 4|By|n~1/", then

|By |
1 TBol
Z |N(5)|BI'Z(2J,+15) plBol+1Bilp| Bol|Bil,
SEA: i
Hence,
LT L N
4.3) PE,)= Z BB = IBTIE Z IN(S)|/B
SEA: 5o SEAL 18]

|B

> (1 )1 plellBn)

and if p, > 4|By|n~1/", then

. 1 [N(S)[5
wy  EE)= Y - PO)
SEA; 541

[B1]

1 5ol ol 1B | L i)
Z<2j+1_5> Ds ° IZ(W> 2t

We now bound P(F1|E1). Recall that F; consists of parent sets P(B;) that are
contained in B;. By requirement, these sets have size at least |P(B1)| = |By|. Let S
be any fixed sequence in A7 | . By the definition of A7\, for each |Bo| < k < h, the
number of (s,q—1)-good sequences of length k in N(S) is at least (1—3)|N(S)[¥. So,
conditioning on f mapping By to S and B to N(.S), the probability that f maps any
particular sequence in F; to an (s,q— 1)-good sequence is at least (1 — /). Since there
are clearly at most h sequences in Fi, the probability that f maps every sequence in
F1 to an (s,q — 1)-good sequence is at least 1 — hS. Hence,

(4.5) P(Fy|Ey)>1— hB.

Furthermore, as By is mapped to an (s, q)-good sequence and thus is an (s,0)-
good sequence, we have that

IN(f(Bo))| = apl™!n > a[(4h/a)"/*n~"/"]*n > dh.
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Since |N(f(Bo)) \ f(Bo)| > 3h, we have that
P(L1|E7) > (3h) 5,/ (4h)P! > (1/2)/P11,
Now, by definition,

P(L,F1|EY)
P(F|EY) -

P(L1|ETFy) =
P(L1Fi|E}) > P(L1|EY) — P(FL|EY) > (1/2)15 1 — hp > (1/2)1 B
Finally, as P(F1|E}) <1, we have
(4.6) P(Ly|Ef Fy) > (1/2)1B1141

For each i = 2,...,h, we estimate P(E;|E1Fy...E;_1F;_1). Assume the event
E\Fy---E; 1 F;_1. Since P(B;) C B,;), where (i) <1, by our assumption, P(B;) is

mapped to an (s, q—d;)-good sequence. Since an (s, q—d.(;))-sequence is (s, 0)-good,
|P(B:)|

by definition, we have |N(f(P(B;)))| > aps n. Hence,
N(f(P(By)))|P!
P(B; :
(ap” Pl P11 _ Bl PBIIE
IBi] s :

Now assume E1F ... E; 1F; 1 E;. Since S := f(P(B;)) is an (s,q — dy;))-good se-
quence, by definition, for each |S| < k < h the number of (s,q — 1 — d(;))-good
sequences of length k in N(9) is at least (1 — 8)|N(S)|*. Recall that F; consists of
parent sets P(B;) for all j > 1 that are contained in B;. By requirement, these sets
have size at least |P(B;)| =|S|. By our discussion above, given E1Fy...E;_1F;_1F;,
the probability of any member of F; not mapped to an (s,q—1—d,;)-good sequence
is at most S. Since there are at most h sequences in F;, we have

(4.8) P(F,|ELFy ... Ei_1Fi_1E;) > 1— hp.
By (4.3), (4.5), (4.7), and (4.8), we have

(4.9) P(f is a homomorphism) > P(E1Fy ... E_1Fp—1FEm)
> (1 — B) 12 oS 1Bl (1 — pgym—1p|Boll B+ Sis | P(B)IIBd
= crp!).

This proves the first (main) part of the theorem.
For the second statement, suppose hg,  (G) > con*' 7. Then

ps = (hK1,s (G)/nerl)l/s > Cé/snfl/r _ (4h/a)1/sn71/r'

For each i > 2, we bound P(L;|EfF1 L1 EsFsLs ... L;_1 E; F;). Assume the event
EYF\LiEsFyLy ... Ly By F;. By our assumption, P(B;) is mapped to an (s, q—d.;))-
good sequence, and B; is mapped into N(f(P(B;))). Since f(P(B;)) is (s,0)-good,
|P(B;)|<r, and r > s,

IN(f(P(B)))| > aplfPIln > a[(4h/a)/*n =) n > 4h.
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Given EfF1L1EsFsLy...L;_1 E;F;, the probability that f maps B; injectively into
N(F(P(B;)) and avoids f(BoUB;U---UB;_1) is at least (3h)|p,/(4h)'Pil > (1/2)5:,
Following the reasoning leading to (4.6), we have that

(4.10) P(Li|Ef Fy L\ EyFyLy ... Li 1 E;Fy) > (1/2)1Bi+1,

By (4.4), (4.10), and a calculation similar to (4.9), we have

P(f is an injective homomorphism) > IP( E1 F\ L EsFyLs ... By Fr L)

|B1| 1 m+|B1|+-+|Bm| @)
e
1B 2h
1
- e(H)

e(H)

Y

Y

> Wclps( ) =c 3Ps

This proves the second part of the theorem. ]

5. Concluding remarks. In this paper, we used a nested variant of the de-
pendent random choice to not only embed an appropriate tree-degenerate bipartite
graph H in a host graph G, but also to give tight (up to a multiplicative factor)
bound on the number of copies of H in G. In this variant, we are able to show that
the standard notion of goodness extends to the iterated version almost for free. It
will be interesting to find more applications of it.

Another interesting feature of Theorem 1.10 is that the condition of the host
graph is relaxed from 1-norm density to s-norm density, which makes the result more
flexible for applications. In principle, one could study the so-called s-norm Turan
problem for bipartite graphs, where one wants to determine the maximum s-norm
density of an H-free graph on n vertices for a given bipartite graph H. The problem
seems particularly natural for the family of s-degenerate graphs. For hypergraph
codegree problems, such a study has recently been initiated by Balogh, Clemen, and
Lidicky [3], [4].

Last but not least, it will be highly desirable to make more progress on Con-
jecture 1.4 beyond the following general bound obtained by Alon, Krivelevich, and
Sudakov [2], which has stood as the best known upper bound for the last two decades.

THEOREM 5.1 ([2]). If H is an r-degenerate bipartite graph, then ex(n,H) =
O(n2—1/4r>.
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