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TREE-DEGENERATE GRAPHS AND NESTED DEPENDENT
RANDOM CHOICE\ast 

TAO JIANG\dagger AND SEAN LONGBRAKE\ddagger 

Abstract. The celebrated dependent random choice lemma states that in a bipartite graph,
an average vertex (weighted by its degree) has the property that almost all small subsets S in
its neighborhood have a common neighborhood almost as large as in the random graph of the
same edge-density. There are two well-known applications of this lemma. The first is a theorem of
F\"uredi [Combinatorica, 11 (1991), pp. 75--79] and Alon, Krivelevich, and Sudakov [Combin. Probab.
Comput ., 12 (2003), pp. 477--494] showing that the maximum number of edges in an n-vertex graph
not containing a fixed bipartite graph with maximum degree at most r on one side is O(n2 - 1/r).
This was recently extended by Grzesik, Janzer, and Nagy [J. Combin. Theory Ser. B , 156 (2022),
pp. 299--309] to the family of so-called (r, t)-blowups of a tree. A second application is a theorem of
Conlon, Fox, and Sudakov [Geom. Funct. Anal., 20 (2010), pp. 1354--1366], confirming a special
case of a conjecture of Erd\H os and Simonovits and of Sidorenko, showing that if H is a bipartite
graph that contains a vertex that is completely joined to the other part and G is a graph, then
the probability that the uniform random mapping from V (H) to V (G) is a homomorphism is at

least
\Bigl[ 
2| E(G)| 
| V (G)| 2

\Bigr] | E(H)| 
. In this paper, we introduce a nested variant of the dependent random choice

lemma, which might be of independent interest. We then apply it to obtain a common extension of
the theorem of Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy regarding
Tur\'an and Sidorenko properties of so-called tree-degenerate graphs.

Key words. extremal, Sidorenko, Tur\'an

MSC code. 05C35

DOI. 10.1137/22M1483554

1. Introduction. Given a graph G, let | G| denote its number of vertices. A
homomorphism from a graph H to a graph G is a mapping f : V (H) \rightarrow V (G) such
that for each edge uv in H, f(u)f(v) is an edge in G. Let hH(G) denote the number of
homomorphisms from H to G, and let tH(G) = hH(G)/| G| | H| . Thus tH(G) represents
the fraction of mappings from V (H) to V (G) that are homomorphisms. Viewed
probabilistically, tH(G) is the probability that the uniform random mapping from
V (H) to V (G) is a homomorphism. A beautiful conjecture of Sidorenko [24] is as
follows.

Conjecture 1.1 (Sidorenko [24]). Let H be any bipartite graph. For every graph
G, we have

tH(G)\geq [tK2
(G)]e(H).

Since [tK2(G)]e(H) = ( 2e(G)
n2 )e(H), one may view Sidorenko's conjecture as saying

that the number of homomorphic copies of H in an n-vertex graph G is asymptotically
at least as large as in the n-vertex random graph with the same edge-density. The
following lemma, based on tensor products (see, e.g., Remark 2 in the English version

*
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1806 TAO JIANG AND SEAN LONGBRAKE

of [23]), is commonly known and used in many earlier papers (see, e.g., [1], [5], [20]).
It reduces the conjecture to a slightly weaker statement.

Lemma 1.2 ([23]). Let H be a bipartite graph. If there exists a positive constant
c depending only on H such that for all graphs G, tH(G)\geq c[tK2

(G)]e(H) holds, then
for all G, tH(G)\geq [tK2(G)]e(H).

When the edge-density of G is sufficiently high, it is expected that many of the
homomorphisms from H to G are injective. Erd\H os and Simonovits [12] made several
conjectures regarding the number of injective homomorphisms. As usual, let ex(n,H)
denote the Tur\'an number of H, which is the maximum number of edges in an n-vertex
graph not containing H. Let h\ast 

H(G) denote the number of injective homomorphisms
from H to G, and let t\ast H(G) = h\ast 

H(G)/| G| H| . The first conjecture of Erd\H os and
Simonovits from [12] states that for every c > 0 there is a c\prime > 0 such that if e(G)> (1+
c)ex(n,H), then t\ast H(G)\geq c\prime tK2

(G)e(H). The second, weaker, conjecture from [12] says
that if ex(n,H) = O(n2 - \alpha ), then there exist constants 0 < \~\alpha \leq \alpha , c, c\prime > 0 such that
if e(G) > cn2 - \~\alpha , then t\ast H(G) \geq c\prime tK2(G)e(H). It is known (see [23]) that this weaker
version is equivalent to Sidorenko's conjecture. However, compared to the stronger
conjecture of Erd\H os and Simonovits, Sidorenko's conjecture does not give an explicit
sharp edge-density threshold for when to guarantee the stated number of injective
homomorphisms. There is yet another version of the Erd\H os--Simonovits conjecture,
given in [21], that is equivalent to saying that there exist two constants c, c\prime > 0 such
that if G is an n-vertex graph with e(G)> cex(n,H), then t\ast H(G)\geq c\prime [tK2(G)]e(H).

Sidorenko [24] verified his own conjecture when H is a complete bipartite graph,
an even cycle, a tree, or a bipartite graph with at most four vertices on one side.
Hatami [17] proved that hypercubes satisfy Sidorenko's conjecture by developing a
concept of norming graphs. The first major progress on Sidorenko's conjecture was
made by Conlon, Fox, and Sudakov [5], who used the celebrated dependent random
choice method (see [13] for a survey) to show the following.

Theorem 1.3 (Conlon, Fox, and Sudakov [5]). If H is a bipartite graph that
has contains a vertex that is completely joined to the other part, then H satisfies
Sidorenko's conjecture.

In fact, Conlon, Fox, and Sudakov proved the stronger theorem that if H is a
bipartite graph with bipartition (A,B), and contains vertices v1, . . . , vr in A com-

plete to B, and degree of all u in A is at least d, then tH(G)\geq [tKr,d
(G)]

e(H)
rd . From

Theorem 1.3, Conlon, Fox, and Sudakov [5] also deduced an approximate version of
Sidorenko's conjecture. Since the work of Conlon, Fox, and Sudakov, there has been
much further progress on Sidorenko's conjecture. Li and Szegedy [22] used the en-
tropy method (presented in the form of logarithmic convexity inequalities) to extend
the result of Conlon, Fox, and Sudakov to a more general family of graphs H, which
they refer to as reflection trees. These ideas were further developed by Kim, Lee,
and Lee [20], who proved the conjecture for what they called tree-arrangeable graphs
and showed that if T is a tree and H is a bipartite graph that satisfies Sidorenko's
conjecture, then the Cartesian product of T and H also satisfies Sidorenko's conjec-
ture. Subsequently, Conlon et al. [8, 9] and independently Szegedy [25] established
more families of bipartite graphs H for which Sidorenko's conjecture holds. These
include bipartite graphs that admit a certain type of tree decomposition, subdivisions
of certain graphs including cliques, certain Cartesian products, etc. More recently,
Conlon and Lee [10] showed that Sidorenko's conjecture holds for any bipartite graph
H with a bipartition (A,B) where the number of vertices in B of degree k satisfies a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREE-DEGENERATE GRAPHS 1807

certain divisibility condition for each k. As a corollary, for every bipartite graph H
with a bipartition (A,B) there is a positive integer p such that the blowup Hp

A formed
by taking p vertex-disjoint copies of H and gluing all copies of A along corresponding
vertices satisfies Sidorenko's conjecture.

Another line of work that motivates our result is related to a long-standing con-
jecture of Erd\H os regarding the Tur\'an number of the so-called r-degenerate graphs.
Given a positive integer r, a graph H is r-degenerate if its vertices can be linearly
ordered such that each vertex has back degree at most r.

Conjecture 1.4 (Erd\H os [11]). Let r be a fixed positive integer. Let H be any
r-degenerate bipartite graph. Then ex(n,H) =O(n2 - 1/r).

The first major progress on Conjecture 1.4 was the following theorem, which was
first obtained by F\"uredi [14] in an implicit form and then later reproved by Alon,
Krivelevich, and Sudakov [2] using the dependent random choice method.

Theorem 1.5 (F\"uredi [14]; Alon, Krivelevich, and Sudakov [2]). Let r be a pos-
itive integer. Let H be a bipartite graph with maximum degree at most r on one side.
Then ex(n,H) =O(n2 - 1/r).

The family of graphs satisfying the condition of Theorem 1.5 forms a very special
family of r-degenerate bipartite graphs, which we will refer to as one-side r-bounded
bipartite graphs. Recently, Grzesik, Janzer, and Nagy [16] extended Theorem 1.5 to
a broader family of graphs called (r, t)-blowups of a tree.

Definition 1.6 ((r, t)-blowups of a tree). Let r\leq t and m be positive integers. A
bipartite graph H is an (r, t)-blowup of a tree (or (r, t)-blowup for short) with root block
B0 and nonroot blocks B1, . . . ,Bm if B0,B1, . . . ,Bm partition V (H), | B0| = r, | B1| =
\cdot \cdot \cdot = | Bm| = t and H can be constructed by joining B1 completely to B0 and for each
2\leq i\leq m joining Bi completely to an r-subset of B\gamma (i) for some \gamma (i)\leq i - 1.

Theorem 1.7 (Grzesik, Janzer, and Nagy [16]). Let r\leq t be positive integers. If
H is an (r, t)-blowup of a tree, then ex(n,H) =O(n2 - 1/r).

Since every one-side r-bounded graph is a subgraph of an (r, t)-blowup, Theo-
rem 1.7 substantially generalizes Theorem 1.5.

In this paper, we give a common strengthening of Theorems 1.3 and 1.7 by
proving a general theorem on the Tur\'an and Sidorenko properties of so-called tree-
degenerate graphs.

Definition 1.8 (tree-degenerate graphs). A bipartite graph H is called tree-
degenerate with root block B0 and nonroot blocks B1, . . . ,Bm if B0,B1, . . . ,Bm parti-
tion V (H) and H can be constructed by letting P (B1) =B0 and joining B1 completely
to B0 and, for each 2 \leq i \leq m, joining Bi completely to a subset P (Bi) of B\gamma (i) for
some 1\leq \gamma (i)\leq i - 1, such that for all i\geq 2, | P (B\gamma (i))| \leq | P (Bi)| . We call P (Bi) the
parent set of Bi, call B\gamma (i) the parent block of Bi, and call P the parent function. We
call (B0, . . . ,Bm, P ) a block representation of H.

We present our main result in terms of so-called s-norm density. We will explain
the advantage of doing so after presenting the theorem.

Definition 1.9 (s-norm density). Let G be a graph with n vertices. For each
positive integer s, we define the s-norm density of G, denoted by ps(G), as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1808 TAO JIANG AND SEAN LONGBRAKE

ps(G) := tK1,s(G)1/s.

Note that p1(G) = tK2
(G) = 2e(G)

n2 is the usual edge-density of G.

In general, one may view ps(G) as a modified measure of edge-density of G that
takes the degree distribution into account. Using convexity, one can show that pr(G)\geq 
ps(G) whenever r\geq s (see Lemma 2.3).

Theorem 1.10 (main theorem). Let H be a tree-degenerate graph with a block
representation (B0,B1, . . . ,Bm, P ). Let s= | B0| and r=maxi\geq 0 | P (Bi)| . There exist
positive constants c1 = c1(H), c2 = c2(H), c3 = c3(H) depending only on H such that
for any graph G,

tH(G)\geq c1[ps(G)]e(H) \geq c1[tK2
(G)]e(H).

Furthermore, if hK1,s(G)> c2n
s+1 - s

r , where n= | G| , then

t\ast H(G)\geq c3[ps(G)]e(H) \geq c3[tK2(G)]e(H).

The first part of the theorem and Lemma 1.2 imply the following.

Corollary 1.11. Let H be a tree-degenerate graph. Then H satisfies Sidorenko's
conjecture.

Since a bipartite graph H contains a vertex that is completely joined to the
other part is tree-degenerate with | B0| = 1 and \gamma (i) = 1 for all i \geq 2, Corollary 1.11
generalizes Theorem 1.3.

A special case of the second part of Theorem 1.10 yields the following.

Corollary 1.12. Let r \leq t be positive integers. Let H be an (r, t)-blowup of a
tree with h vertices. Then ex(n,H) = O(n2 - 1/r). Furthermore, there exist constants
c, c\prime > 0 such that every n-vertex graph G with hK1,r

(G) \geq cnr contains at least

c\prime nh( 2e(G)
n2 )e(H) copies of H.

Corollary 1.12 strengthens Theorem 1.7 in two ways. First, it relaxes the density
requirement on G from e(G) = \Omega (n2 - 1/r) to hK1,r

(G) = \Omega (nr) (i.e., from p1(G) =
\Omega (n - 1/r) to pr(G) = \Omega (n - 1/r)). Second, it gives not only at least one copy of H but
also an optimal number (up to a multiplicative constant) of copies of H. A closer
examination of the proof of Theorem 1.7 given by Grzesik, Janzer, and Nagy in [16]
shows that their proof can be strengthened to also give Corollary 1.12. However,
Theorem 1.10 is more general than Corollary 1.12, as the counting statement applies
to any tree-degenerate graph H, where parent set sizes can vary, instead of just to
(r, t)-blowups. The relaxation of p1(G) = \Omega (n - 1/r) to pr(G) = \Omega (n - 1/r) is also a
useful feature, as in bipartite Tur\'an problems sometimes we need to handle cases
where the host graph has very uneven degree distribution and hence high s-norm
density, despite having relatively low 1-norm density (see [19] for an instance of this
kind). It is also worth noting that the following proposition is implicit in several
recent papers, such as [6] and [7]. (Lemma 2.8 of [6] is a bit more general than the
proposition stated below, but the proof idea is the same.)

Proposition 1.13 ([6], [7]). Let H be a bipartite graph in which each vertex in
one part has degree at most r. There exists a constant c= c(H) such that if G is an
n-vertex graph with hK1,r

(G)\geq cnr, then G contains H as a subgraph.

Note that Corollary 1.12 generalizes and strengthens Proposition 1.13 in the sense
that it applies to a broader family and also gives a counting result. To prove Theo-
rem 1.10, we introduce a notion of goodness and prove a lemma that might be viewed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREE-DEGENERATE GRAPHS 1809

as a nested variant of the dependent random choice lemma. Once we establish the
lemma, the proof of Theorem 1.10 readily follows. Conceivably, this variant could
find more applications.

We organize our paper as follows. In section 2, we introduce some preliminary
lemmas. In section 3, we establish the nested goodness lemma. In section 4, we prove
Theorem 1.10. In section 5, we give some concluding remarks.

2. Preliminary lemmas. In this section, we first give some useful lemmas.
They will be used to motivate some definitions and will also be used in the proofs in
later sections. We start with a standard convexity-based inequality, which is some-
times referred to as the power means inequality. We include a proof for completeness.

Lemma 2.1. Let n be a positive integer. Let 1\leq a\leq b be reals. Let x1, . . . , xn be
nonnegative reals. Then

n\sum 
i=1

xa
i \leq n1 - a/b \cdot 

\Biggl( 
n\sum 

i=1

xb
i

\Biggr) a/b

.

Equivalently, \Biggl( 
1

n

n\sum 
i=1

xa
i

\Biggr) 1/a

\leq 

\Biggl( 
1

n

n\sum 
i=1

xb
i

\Biggr) 1/b

.

Proof. Since the function xb/a is either linear or convex, by Jensen's inequality,
we have

\sum n
i=1 x

b
i =

\sum n
i=1(x

a
i )

b/a \geq n[ 1n
\sum n

i=1 x
a
i ]

b/a. Rearranging, we obtain the
desired inequalities.

Let G be a graph with n vertices. Let s be a positive integer. Recall that
ps(G) := tK1,s

(G)1/s.

Lemma 2.2. For any n-vertex graph G and positive integer s,

ps(G) =
1

n

\left(  1

n

\sum 
v\in V (G)

d(v)s

\right)  1/s

.

Proof. Recall that t1,s(G) = hK1,s(G)/n
s+1, where hK1,s(G) is the number of

homomorphisms from K1,s to G. It is easy to see that hK1,s
(G) =

\sum 
v\in V (G) d(v)

s.
Hence,

ps(G) = tK1,s(G)1/s = (
1

ns+1

\sum 
v\in V (G)

d(v)s)1/s =
1

n
(
1

n

\sum 
v\in V (G)

d(v)s)1/s.

Lemmas 2.2 and 2.1 imply the following useful fact.

Lemma 2.3. For any graph G and positive integers r\geq s, we have pr(G)\geq ps(G).

3. Nested goodness lemma. Given a set W and a sequence S of elements of
W , we call S a sequence in W for brevity. The length of S is defined to be the number
of elements in the sequence S (multiplicity counted) and is denoted by | S| . Given a
positive integer k, we let W k denote the set of sequences of length k in W and let Wk

denote the set of sequences of length k in W in which the k elements are all different.
Given a graph G and a sequence S in V (G), the common neighborhood N(S) is the
set of vertices adjacent to every vertex in S.

We now introduce a goodness notion that is inspired by Lemma 2.1 of [5]. A more
specialized version of it was introduced in [18].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1810 TAO JIANG AND SEAN LONGBRAKE

Definition 3.1 (s-norm i-good sequences). Let 0<\alpha ,\beta < 1 be reals. Let s,h be
positive integers. Let G be an n-vertex graph. Let ps = ps(G). For each 0\leq i\leq h, we
define an s-norm i-good sequence in V (G) relative to (\alpha ,\beta ,h) (or simply (s, i)-good for

short) as follows. We say that a sequence T in V (G) is (s,0)-good if | N(T )| \geq \alpha p
| T | 
s n.

For all 1\leq i\leq h, we say that a sequence S of length at most h in V (G) is (s, i)-good
if S is (s,0)-good and for each | S| \leq k\leq h, the number of (s, i - 1)-good sequences of
length k in N(S) is at least (1 - \beta )| N(S)| k.

Below is our main theorem on the goodness notion.

Theorem 3.2 (nested goodness lemma). Let h \geq s be positive integers. Let
0 < \beta < 1 be a real. There is a positive real \alpha depending on h, s, and \beta such that
the following is true. Let G be any graph on n vertices. Let ps = ps(G). For each
0\leq i\leq h,1\leq j \leq h, let \scrA s

i,j denote the set of (s, i)-good sequences of length j relative
to (\alpha ,\beta ,h) in V (G). Then for each 0\leq i\leq h and s\leq \ell \leq j \leq h,\sum 

S\in \scrA s
i,j

| N(S)| \ell \geq (1 - \beta )nj+\ell pj\ell s .

In particular, there exists an (s, i)-good sequence S of size j such that | N(S)| \geq (1 - 
\beta )1/spjsn.

Applying Theorem 3.2 with s = 1, \ell = 1, we get the following, which may be of
independent interest.

Theorem 3.3. Let h be a positive integer. Let 0 < \beta < 1 be a real. There is a
positive real \alpha depending on h and \beta such that the following is true. Let G be any
graph on n vertices. Let p1 = 2e(G)

n2 . For any i, j \in [h], let \scrA 1
i,j denote the set of

(1, i)-good sequences of length j relative to (\alpha ,\beta ,h) in V (G). Then, for all i\in [h],\sum 
S\in \scrA 1

i,j

| N(S)| \geq (1 - \beta )nj+1pj1.

In particular, there exists an (1, i)-good sequence S of size j such that | N(S)| \geq 
(1 - \beta )pj1n.

Loosely speaking, one may think of the usual dependent random choice lemma
as saying that for any positive integers j, h and real 0 < \beta < 1, there is a (1,1)-good
sequence S of size j relative to (\alpha ,\beta ,h) for some appropriate \alpha > 0; that is, most of
the subsets in N(S) of size at most h have their common neighborhood fractionally as
large as expected in the random graph of the same edge-density. Theorem 3.2 follows
from the next, more technical, lemma.

Lemma 3.4. Let h\geq s be positive integers. Let 0<\beta < 1 be a real. There exists a
positive real \alpha depending on h, s, and \beta such that the following is true. Let G be any
graph on n vertices. For each 0\leq i\leq h and 1\leq j \leq h, let \scrA s

i,j denote the set of (s, i)-
good sequences of length j relative to (\alpha ,\beta ,h) in V (G), and let \scrB s

i,j = [V (G)]j \setminus \scrA i,j.
Then for each 0\leq i\leq h,1\leq j \leq h, and 1\leq \ell \leq j,\sum 

S\in \scrB s
i,j

| N(S)| \ell \leq \beta nj+\ell pj\ell s .

Proof. Suppose \alpha has been specified; we define a sequence \alpha i, 0\leq i\leq h, by letting
\alpha 0 = \alpha and \alpha i = \alpha + h(\alpha i - 1/\beta )

1/h for each i \in [h]. For fixed h and \beta , it is easy to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREE-DEGENERATE GRAPHS 1811

see that by choosing \alpha to be small enough, \alpha h < \beta . Note also that the \alpha i are an
increasing function in terms of i. Let us fix such an \alpha . Now, let \scrA s

i,j and \scrB s
i,j be

defined as stated. We use induction on i to prove that for all 0 \leq i \leq h, j \in [h], and
1\leq \ell \leq j, \sum 

S\in \scrB s
i,j

| N(S)| \ell \leq \alpha in
j+\ell pj\ell s .

For the basis step, let i = 0. Let j, \ell \in [h] where \ell \leq j. By the definition of (s,0)-
goodness, \sum 

S\in \scrB s
0,j

| N(S)| \ell \leq nj(\alpha pjsn)
\ell \leq \alpha nj+\ell pj\ell s = \alpha 0n

j+\ell pj\ell s .(3.1)

Hence the claim holds for i= 0. For the induction step, let i\geq 1, and suppose the claim
holds when i is replaced with i - 1. Let j \in [h]. For each j \leq k \leq h, let \scrC s

i,j,k denote
the set of sequences S in \scrB s

i,j such that the number of sequences of length k in N(S)

that are not (s, i - 1)-good is at least \beta | N(S)| k. By definition, \scrB s
i,j =\scrB s

0,j\cup 
\bigcup h

k=j \scrC s
i,j,k.

Let \scrF k be the collection of pairs (S,T ), where S \in \scrC s
i,j,k and T is a sequence of length

k in N(S) that is not (s, i - 1)-good. By our definition,

| \scrF k| \geq 
\sum 

S\in \scrC s
i,j,k

\beta | N(S)| k = \beta \cdot 
\sum 

S\in \scrC s
i,j,k

| N(S)| k.

On the other hand, for each sequence T of length k in V (G) that is not (s, i - 1)-good,
the number of sequences S of length j that satisfy (S,T )\in \scrF k is most | N(T )| j . Hence,

| \scrF k| \leq 
\sum 

T\in \scrB s
i - 1,k

| N(T )| j \leq \alpha i - 1n
j+kpjks ,

where the last inequality follows from the induction hypothesis. Combining the lower
and upper bounds on | \scrF k| , we get\sum 

S\in \scrC s
i,j,k

| N(S)| k \leq (\alpha i - 1/\beta )n
j+kpjks .(3.2)

Let \ell \in [h] such that \ell \leq j. Since j \leq k, we have \ell \leq k. Applying Lemma 2.1 with
a= \ell , b= k and using | \scrC s

i,j,k| \leq nj , we get\sum 
S\in \scrC s

i,j,k

| N(S)| \ell \leq (nj)1 - \ell /k(\alpha i - 1/\beta )
\ell /k(nj+kpjks )\ell /k \leq (\alpha i - 1/\beta )

1/hnj+\ell pj\ell s ,

where we used the fact that \alpha i - 1/\beta < 1. By (3.1) and (3.2), we have\sum 
S\in \scrB s

i,j

| N(S)| \ell \leq 
\sum 

S\in \scrB s
0,j

| N(S)| \ell +
h\sum 

k=j

\sum 
S\in \scrC s

i,j,k

| N(S)| \ell 

\leq [\alpha + h(\alpha i - 1/\beta )
1/h]nj+\ell pj\ell s \leq \alpha in

j+\ell pj\ell s .

This completes the induction and the proof.

Remark 3.5. In Lemma 3.4, the reason we impose the condition \ell \leq j is because its
proof uses Lemma 2.1, which holds only when a \leq b. Also, due to this restriction,
in our definition of tree-degenerate graphs (Definition 1.8), we impose the condition
that for each i\geq 2, | P (B\gamma (i))| \leq | P (Bi)| .

We need another quick lemma. Given two positive integers n, j, let nj = n(n - 
1) \cdot \cdot \cdot (n - j + 1).
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D
ow

nl
oa

de
d 

10
/1

8/
23

 to
 1

34
.5

3.
22

5.
20

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1812 TAO JIANG AND SEAN LONGBRAKE

Lemma 3.6. Let G be a graph on n vertices, and let \ell \geq s and j be positive
integers. Let ps = ps(G). Then

\sum 
S\in [V (G)]j | N(S)| \ell \geq nj+\ell pj\ell s . If ps \geq 4jn - 1/\ell , then\sum 

S\in [V (G)]j
| N(S)| \ell \geq 1

2j+1n
j+\ell pj\ell s .

Proof. First, note that
\sum 

T\in [V (G)]\ell | N(T )| = hK1,\ell 
(G) = n\ell +1tK1,\ell 

(G) = n\ell +1p\ell \ell .
Hence, by convexity,

\sum 
T\in [V (G)]\ell 

| N(T )| j \geq n\ell 

\Biggl( \sum 
T\in [V (G)]\ell | N(T )| 

n\ell 

\Biggr) j

= n\ell (np\ell \ell )
j = nj+\ell pj\ell \ell \geq nj+\ell pj\ell s .

If ps > 4jn - 1/\ell , then\sum 
T\in [V (G)]\ell ,| N(T )| \geq 2j

| N(T )| j \geq nj+\ell pj\ell s  - n\ell (2j)j \geq 1

2
nj+\ell pj\ell s .

Hence, \sum 
T\in [V (G)]\ell ,| N(T )| \geq 2j

| N(T )| j \geq 
\sum 

T\in [V (G)]\ell ,| N(T )| \geq 2j

(| N(T )| /2)j \geq 1

2j+1
nj+\ell pj\ell s .

To prove the first statement, note that
\sum 

S\in [V (G)]j | N(S)| \ell counts pairs (S,T ), where
S is a sequence of length j and T is a sequence of length \ell in N(S). By double
counting, we have

\sum 
S\in [V (G)]j | N(S)| \ell =

\sum 
T\in [V (G)]\ell | N(T )| j \geq nj+\ell pj\ell s .

For the second statement, note that
\sum 

S\in [V (G)]j
| N(S)| \ell counts pairs (S,T ), where

S is a sequence of length j with no repetition and T is a sequence of length \ell in N(S).
By a similar double counting, we have\sum 

S\in [V (G)]j

| N(S)| \ell =
\sum 

T\in [V (G)]\ell 

| N(T )| j \geq 
1

2j+1
nj+\ell pj\ell s .

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let h \geq s be positive integers and 0 < \beta < 1 be a real.
Let \alpha be defined as in Lemma 3.4. Let 0 \leq i \leq h and s \leq \ell \leq j \leq h. Let \scrA s

i,j

denote the set of (s, i)-good sequences of length j relative to (\alpha ,\beta ,h) in V (G), and
let \scrB s

i,j = [V (G)]j \setminus \scrA s
i,j . By Lemma 3.6,\sum 

S\in [V (G)]j

| N(S)| \ell \geq nj+\ell pj\ell s .

By Lemma 3.4,
\sum 

S\in \scrB s
i,j

| N(S)| \ell \leq \beta nj+\ell pj\ell s . Hence,
\sum 

S\in \scrA s
i,j

| N(S)| \ell \geq (1  - 
\beta )nj+\ell pj\ell s , as desired. This proves the first part of the theorem. Now, since | \scrA s

i,j | \leq nj ,
applying the first part of the theorem with \ell = s and via averaging, there exists an
S \in \scrA s

i,j such that | N(S)| s \geq (1  - \beta )pjss ns and hence | N(S)| \geq (1  - \beta )1/spjsn. This
proves the second part of the theorem.

In order to prove the second part of Theorem 1.10, we need the following variant
of Theorem 3.2. We omit the proof since it is almost identical to that of Theorem 3.2,
except that we use the second statement of Lemma 3.6 instead of the first statement.
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TREE-DEGENERATE GRAPHS 1813

Lemma 3.7. Let h\geq \ell \geq s be positive integers. Let 0<\beta < 1 be a real. There is a
positive real \alpha depending on h, s, and \beta such that the following is true. Let G be any
graph on n vertices. Let ps = ps(G). For each 0 \leq i \leq h,1 \leq j \leq h, let \widetilde \scrA s

i,j denote
the set of (s, i)-good sequences of length j relative to (\alpha ,\beta ,h) in V (G) that have no
repetition. If ps > 4jn - 1/\ell , then for each 0\leq i\leq h and s\leq \ell \leq j \leq h,\sum 

S\in \widetilde \scrA s
i,j

| N(S)| \ell \geq 
\biggl( 

1

2j+1
 - \beta 

\biggr) 
nj+\ell pj\ell s .

4. Proof of Theorem 1.10.

Proof of Theorem 1.10. Let n = | G| and h = | H| . Let \beta = 1
h2h+2 . Recall that

s = | B0| and r = maxi\geq 0 | P (Bi)| . Since P (B1) = B0, we have r \geq s. Let \alpha be the
positive constant given by Theorem 3.2 for the given h, s, and \beta . Let

c1 = c1(H) = (1 - \beta )| B1| /| B0| \alpha 
\sum m

i=2 | Bi| (1 - h\beta )m - 1.

Let

c2 = c2(H) = 4h/\alpha and c3 = c3(H) = c1/2
h2+4h.

Suppose H has root block B0 and nonroot blocks B1, . . . ,Bm such that B1 is
completely joined to its parent set P (B1) = B0 and for each i = 2, . . . ,m, Bi is
completely joined to its parent set P (Bi) where P (Bi) \subseteq B\gamma (i) for some 1 \leq \gamma (i) < i
and | P (Bi)| \geq | P (B\gamma (i))| . For each i\in [m], let \scrF i denote the collection of all the parent
sets P (Bj) that are contained in Bi. Let T be a tree with V (T ) := \{ v0, v1, . . . , vm\} 
and edge set E(T ) := v0v1 \cup \{ viv\gamma (i) :\in [m]\} . We call T the auxiliary tree for H. For
each i \in [m], define the depth of Bi, denoted by di, to be the distance from v0 to vi
in T . Let q denote the maximum depth of a block. Then clearly q\leq m\leq h - 1.

Let G be any graph. For convenience, we say that a sequence in V (G) is (s, i)-
good if it is (s, i)-good relative to (\alpha ,\beta ,h). As in Theorem 3.2, for each 0 \leq i \leq h
and s \leq j \leq h, let \scrA s

i,j be the set of (s, i)-good sequences of length j in V (G). Let

\scrB s
i,j = [V (G)]j \setminus \scrA s

i,j . Let
\widetilde \scrA s
i,j be the set of (s, i)-good sequences of length j in V (G)

that contain no repetition. Let f be the uniform random mapping from V (H) to
V (G).

Let

E1 = the event that f(B0)\in \scrA s
q,| B0| and f(B1)\in [N(f(B0))]

| B1| ,

F1 = the event that each sequence in \scrF 1 is mapped to an (s, q - 1)-good sequence,

E\ast 
1 = the event that f(B0)\in \widetilde \scrA s

q,| B0| and f(B1)\in [N(f(B0))]
| B1| ,and

L1 = the event that f is injective on B0 \cup B1.

For each i\in \{ 2, . . . ,m\} , let

Ei = the event that f(Bi)\in [N(f(P (Bi)))]
| Bi| ,

Fi = the event that each sequence in \scrF i is mapped to an (s, q - di)-good sequence, and

Li = the event that f is injective on B0 \cup B1 \cup \cdot \cdot \cdot \cup Bi.

Since s= | B0| , by Theorem 3.2,\sum 
S\in \scrA s

q,| B0| 

| N(S)| s \geq (1 - \beta )n2sps
2

s .(4.1)
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1814 TAO JIANG AND SEAN LONGBRAKE

Furthermore, if ps \geq 4jn - 1/r, then since r \geq s, we have ps \geq 4jn - 1/s, and by
Lemma 3.7, \sum 

S\in \widetilde \scrA s
q,| B0| 

| N(S)| s \geq 
\biggl( 

1

2j+1
 - \beta 

\biggr) 
n2sps

2

s .(4.2)

Hence, since | B1| \geq | B0| = s, using (4.1) and convexity we get\sum 
S\in \scrA s

q,| B0| 

| N(S)| | B1| =
\sum 

S\in \scrA s
q,| B0| 

(| N(S)| s)
| B1| 

s

\geq ns

\biggl( 
1

ns
(1 - \beta )n2sps

2

s

\biggr) | B1| 
s

= (1 - \beta )
| B1| 
| B0| n| B0| +| B1| p| B0| | B1| 

s ,

and if ps \geq 4| B0| n - 1/r, then

\sum 
S\in \widetilde \scrA s

q,| B0| 

| N(S)| | B1| \geq 
\biggl( 

1

2j+1
 - \beta 

\biggr) | B1| 
| B0| 

n| B0| +| B1| p| B0| | B1| 
s .

Hence,

\BbbP (E1) =
\sum 

S\in \scrA s
q,| B0| 

1

n| B0| 
\cdot | N(S)| | B1| 

nB1
=

1

n| B0| +| B1| 

\sum 
S\in \scrA s

q,| B0| 

| N(S)| | B1| (4.3)

\geq (1 - \beta )
| B1| 
| B0| p| B0| | B1| 

s ,

and if ps \geq 4| B0| n - 1/r, then

\BbbP (E\ast 
1 ) =

\sum 
S\in \widetilde \scrA s

q,| B0| 

1

n| B0| 
\cdot | N(S)| | B1| 

nB1
(4.4)

\geq 
\biggl( 

1

2j+1
 - \beta 

\biggr) | B1| 
| B0| 

p| B0| | B1| 
s \geq 

\biggl( 
1

2h+2

\biggr) | B1| 

p| B0| | B1| 
s .

We now bound \BbbP (F1| E1). Recall that \scrF 1 consists of parent sets P (Bj) that are
contained in B1. By requirement, these sets have size at least | P (B1)| = | B0| . Let S
be any fixed sequence in \scrA s

q,| B0| . By the definition of \scrA s
q,| B0| , for each | B0| \leq k\leq h, the

number of (s, q - 1)-good sequences of length k in N(S) is at least (1 - \beta )| N(S)| k. So,
conditioning on f mapping B0 to S and B1 to N(S), the probability that f maps any
particular sequence in \scrF 1 to an (s, q - 1)-good sequence is at least (1 - \beta ). Since there
are clearly at most h sequences in \scrF 1, the probability that f maps every sequence in
\scrF 1 to an (s, q - 1)-good sequence is at least 1 - h\beta . Hence,

\BbbP (F1| E1)\geq 1 - h\beta .(4.5)

Furthermore, as B0 is mapped to an (s, q)-good sequence and thus is an (s,0)-
good sequence, we have that

| N(f(B0))| \geq \alpha p| B0| 
s n\geq \alpha [(4h/\alpha )1/sn - 1/r]sn\geq 4h.
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TREE-DEGENERATE GRAPHS 1815

Since | N(f(B0)) \setminus f(B0)| \geq 3h, we have that

\BbbP (L1| E\ast 
1 )> (3h)| B1| /(4h)

| B1| > (1/2)| B1| .

Now, by definition,

\BbbP (L1| E\ast 
1F1) =

\BbbP (L1F1| E\ast 
1 )

\BbbP (F1| E\ast 
1 )

.

As h\beta =
\bigl( 
1
2

\bigr) h+2
<
\bigl( 
1
2

\bigr) | B1| +2
,

\BbbP (L1F1| E\ast 
1 )\geq \BbbP (L1| E\ast 

1 ) - \BbbP (F1| E\ast 
1 )\geq (1/2)| B1|  - h\beta \geq (1/2)| B1| +1.

Finally, as \BbbP (F1| E\ast 
1 )\leq 1, we have

\BbbP (L1| E\ast 
1F1)\geq (1/2)| B1| +1.(4.6)

For each i = 2, . . . , h, we estimate \BbbP (Ei| E1F1 . . .Ei - 1Fi - 1). Assume the event
E1F1 \cdot \cdot \cdot Ei - 1Fi - 1. Since P (Bi)\subseteq B\gamma (i), where \gamma (i)< i, by our assumption, P (Bi) is
mapped to an (s, q - d\gamma (i))-good sequence. Since an (s, q - d\gamma (i))-sequence is (s,0)-good,

by definition, we have | N(f(P (Bi)))| \geq \alpha p
| P (Bi)| 
s n. Hence,

\BbbP (Ei| E1F1 . . .Ei - 1Fi - 1) =
| N(f(P (Bi)))| Bi| 

n| Bi| 
(4.7)

\geq (\alpha p
| P (Bi)| 
s n)| Bi| 

n| Bi| 
= \alpha | Bi| p| P (Bi)| | Bi| 

s .

Now assume E1F1 . . .Ei - 1Fi - 1Ei. Since S := f(P (Bi)) is an (s, q  - d\gamma (i))-good se-
quence, by definition, for each | S| \leq k \leq h the number of (s, q  - 1  - d\gamma (i))-good
sequences of length k in N(S) is at least (1 - \beta )| N(S)| k. Recall that \scrF i consists of
parent sets P (Bj) for all j > 1 that are contained in Bi. By requirement, these sets
have size at least | P (Bi)| = | S| . By our discussion above, given E1F1 . . .Ei - 1Fi - 1Ei,
the probability of any member of \scrF i not mapped to an (s, q - 1 - d\gamma (i))-good sequence
is at most \beta . Since there are at most h sequences in \scrF i, we have

\BbbP (Fi| E1F1 . . .Ei - 1Fi - 1Ei)\geq 1 - h\beta .(4.8)

By (4.3), (4.5), (4.7), and (4.8), we have

\BbbP (f is a homomorphism)\geq \BbbP (E1F1 . . .Em - 1Fm - 1Em)(4.9)

\geq (1 - \beta )
| B1| 
| B0| \alpha 

\sum m
i=2 | Bi| (1 - h\beta )m - 1p

| B0| | B1| +
\sum m

i=2 | P (Bi)| | Bi| 
s

= c1p
e(H)
s .

This proves the first (main) part of the theorem.
For the second statement, suppose hK1,s(G)> c2n

s+1 - s
r . Then

ps = (hK1,s
(G)/ns+1)1/s \geq c

1/s
2 n - 1/r = (4h/\alpha )1/sn - 1/r.

For each i \geq 2, we bound \BbbP (Li| E\ast 
1F1L1E2F2L2 . . .Li - 1EiFi). Assume the event

E\ast 
1F1L1E2F2L2 . . .Li - 1EiFi. By our assumption, P (Bi) is mapped to an (s, q - d\gamma (i))-

good sequence, and Bi is mapped into N(f(P (Bi))). Since f(P (Bi)) is (s,0)-good,
| P (Bi)| \leq r, and r\geq s,

| N(f(P (Bi)))| \geq \alpha p| P (Bi)| 
s n\geq \alpha [(4h/\alpha )1/sn - 1/r]rn\geq 4h.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1816 TAO JIANG AND SEAN LONGBRAKE

Given E\ast 
1F1L1E2F2L2 . . .Li - 1EiFi, the probability that f maps Bi injectively into

N(F (P (Bi)) and avoids f(B0\cup B1\cup \cdot \cdot \cdot \cup Bi - 1) is at least (3h)| Bi| /(4h)
| Bi| > (1/2)| Bi| .

Following the reasoning leading to (4.6), we have that

\BbbP (Li| E\ast 
1F1L1E2F2L2 . . .Li - 1EiFi)> (1/2)| Bi| +1.(4.10)

By (4.4), (4.10), and a calculation similar to (4.9), we have

\BbbP (f is an injective homomorphism)\geq \BbbP (E\ast 
1F1L1E2F2L2 . . .EmFmLm)

\geq 
\biggl( 

1

2h+2

\biggr) | B1| \biggl( 1

2

\biggr) m+| B1| +\cdot \cdot \cdot +| Bm| 

c1p
e(H)
s

\geq 
\biggl( 

1

2h+2

\biggr) | B1| \biggl( 1

2

\biggr) 2h

c1p
e(H)
s

\geq 1

2h2+4h
c1p

e(H)
s = c3p

e(H)
s .

This proves the second part of the theorem.

5. Concluding remarks. In this paper, we used a nested variant of the de-
pendent random choice to not only embed an appropriate tree-degenerate bipartite
graph H in a host graph G, but also to give tight (up to a multiplicative factor)
bound on the number of copies of H in G. In this variant, we are able to show that
the standard notion of goodness extends to the iterated version almost for free. It
will be interesting to find more applications of it.

Another interesting feature of Theorem 1.10 is that the condition of the host
graph is relaxed from 1-norm density to s-norm density, which makes the result more
flexible for applications. In principle, one could study the so-called s-norm Tur\'an
problem for bipartite graphs, where one wants to determine the maximum s-norm
density of an H-free graph on n vertices for a given bipartite graph H. The problem
seems particularly natural for the family of s-degenerate graphs. For hypergraph
codegree problems, such a study has recently been initiated by Balogh, Clemen, and
Lidick\'y [3], [4].

Last but not least, it will be highly desirable to make more progress on Con-
jecture 1.4 beyond the following general bound obtained by Alon, Krivelevich, and
Sudakov [2], which has stood as the best known upper bound for the last two decades.

Theorem 5.1 ([2]). If H is an r-degenerate bipartite graph, then ex(n,H) =
O(n2 - 1/4r).
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