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Abstract—The increasing adoption of Field-Programmable
Gate Arrays (FPGA) into cloud and data center systems opens
the way to the unprecedented acceleration of Machine Learning
applications. Convolutional Neural Networks (CNN) have largely
been adopted as algorithms for image classification and object
detection. As we head towards FPGA multi-tenancy in the
cloud, it becomes necessary to investigate architectures and
mechanisms for the efficient deployment of CNN into multi-
tenant FPGAs cloud Infrastructure. In this work, we propose
an FPGA architecture and a design flow that support efficient
integration of CNN applications into a cloud infrastructure that
exposes multi-tenancy to cloud developers. We prototype the
proposed approach on randomly allocated virtual regions to
tenants. We study how space-sharing of a single device between
multiple cloud tenants influence the design flow, the allocation of
resources, and the performance in term of resource utilization
and overall latency compared to single-tenant deployments.
Prototyping results show a latency at most 8% lower than
that of single-tenant deployment while achieving higher resource
utilization. We also record a maximum frequency of up to 12%
higher in multi-tenant implementations.

Index Terms—FPGAs, Multi-tenancy, CNN Acceleration, Dis-
tributed Inference

I. INTRODUCTION

Driven by the increasing demand for performance and
efficiency in computation, Field-Programmable Gate Arrays
(FPGAs) are increasingly adopted as part of the pool of
resources integrated into cloud and data center systems. Cloud
providers can now offload compute-intensive algorithms run-
ning in the background of the infrastructure unto FPGA
devices to achieve lower latency, reduced power consumption,
and higher throughput. For example, OVHcloud uses FPGA-
based network processing to defend customer workspaces
against distributed denial-of-service attacks [1]. In addition,
cloud developers can now design custom hardware accelerators
without incurring maintenance expenses. For instance, Ama-
zon EC2 F1 instances provide development, debugging, and
deployment infrastructure for heterogeneous applications that
exploit communication between general-purpose processors
and FPGA accelerators [2].

The rising integration of FPGAs in the cloud offers a unique
opportunity to accelerate applications in Machine Learning. In
recent years, Convolutional Neural Networks (CNN) gained
much attention due to their high accuracy and performance
in image classification and object detection. However, higher
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accuracy is typically obtained using deeper and wider CNN
architectures that feature a larger number of layers and chan-
nels. This dramatic increase in CNN complexity means that
advanced FPGAs are needed for efficient CNN inference, typi-
cally available in a cloud deployment. It is not surprising to see
an increased deployment of CNN accelerators on cloud FPGAs
to accelerate computer vision pipelines [ [3], [4]]. Current
cloud infrastructures provision single-tenant FPGAs that are
entirely allocated to a single user at a time [amazon, baidu,
etc.]. However, FPGA multi-tenancy is a rising trend among
researchers [5]-[7]. Cloud architectures that expose multi-
tenant FPGAs to developers allow running multiple hardware
workloads concurrently on a single device independently of
whether the hardware accelerators belong to different users.

This work investigates the design and inference of CNNs
on multi-tenant cloud FPGAs. Since the FPGA is space-shared
between concurrent hardware accelerators, a cloud developer
shares FPGA resources with the co-tenant and the shell that
implements controls from the cloud provider. Therefore, in the
context of multi-tenant cloud FPGAs, we propose a design
flow and an architecture that improves hardware utilization
and productivity, to ensure minimal latency increase for CNNs
inference. We use the FINN framework [8] as our baseline
and extend it to support the pre-implemented flow, which is
a divide-and-conquer approach that enables application and
domain-specific optimization on the design of CNN architec-
tures. Our proposed framework provides an efficient streaming
implementation for multi-tenant FPGAs by benefiting from the
customizability of FINN. Specifically, the contribution of this
paper include:

« Defining the constraints of cloud deployments that expose
multi-tenant FPGAs to developers.

¢ Propose an FPGA architecture as part of the shell to
support co-hosting hardware accelerators on a single
cloud FPGA.

« Discuss the design flow that relies on graph partitioning
to achieve efficient acceleration of CNN inference with-
out tedious HDL programming and verifications, while
improving the Quality Of Result (QoR) compared to the
traditional design flow with Vivado.

The rest of the paper is organized as follows: section II
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presents some background information discussing the accel-
eration of CNN on single and multi-FPGA platforms. Then,
section III elaborates on the different steps that enable the
deployment of CNN inference in multi-tenancy. Afterwards,
experimental results are presented in section IV and section V
concludes the paper.

II. BACKGROUND

Accelerators with the streaming architecture always tailor
the hardware with respect to the target network [9]. The
topology of such CNN accelerators is transformed into a layer-
by-layer execution schedule, following the structure of the
DAG [10].

The main advantage of this type of architecture is to
minimize the latency caused by communication with off-chip
memory and, thereby, maximize on-chip memory communica-
tion, ensuring high throughput and avoiding any latency [11],
[12]. On the downside, this accelerator architecture cannot
scale to arbitrarily large CNNs. It is essentially restricted
by available on-chip resources needed to implement compute
units for each CNN layer and, critically, the size of OCM
required to store the weights. Most of the research works
in cloud FPGA platforms revolve around multi-FPGA cloud
infrastructures. Shan et al. [13] proposed an optimized power
flow to map CNNs on multi-FPGA configuration bitstreams
that satisfy different application requirements. The platform
consists of a host CPU that controls eight FPGAs over a
PCl-express (PCle) bus. It can quickly reconfigure them with
several configurations generated offline, adapting them to the
actual application performance requirements. However, they
only consider CNNs applications that can be modeled as
multi-kernel task-level pipelines. Cloud-DNN [3] proposes a
Framework for Mapping DNN Models to Cloud FPGAs by
partitioning the DNN into three sub-nets. The sub-nets are
mapped to different dies in an SSI-based FPGA.

Several works [4], [12], [14], [15] in the literature employ
FINN to generate NN accelerators on FPGAs. Nevertheless,
FINN accelerators’ area consumption and parallelism param-
eters cannot be arbitrarily deduced. Since the performance of
an accelerator is bounded by the slowest component within the
design, finding the parameters to generate a balanced design
can be a bottleneck. In this work, we propose an accurate
model to find the optimal parameters for the configuration to
assess the resource consumption and timing for FINN accel-
erators. We also propose a pre-implemented flow to compose
the final accelerator considering the platform restriction.

A. FINN Architecture

FINN is a framework from Xilinx Research Lab, enabling
the design of heterogeneous custom streaming architecture for
a given topology. Separate compute engines are dedicated to
each layer, communicating via on-chip data streams. Each en-
gine starts to compute as soon as the previous engine produces
output. It currently supports fully connected, convolutional,
ReLU, and pooling layers.
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The computational core of the compute engines is the
matrix-vector unit (MVU), as the vast majority of computing
operations in neural networks can be expressed as matrix-
vector operations. The sliding window unit (SWU) supplies
the convolution engine with the image matrix from the incom-
ing feature map by applying interleaving and implementing
the im2col algorithm. An MVU computes the matrix-matrix
product using a different column vector from the image matrix
stream. The MVU consists of an input and output buffer
and an array of Processing Elements (PEs), each with a
number of SIMD lanes. The number of PEs (P) and SIMD
lanes (S) is configurable to regulate the throughput. A PE
performs a number of parallel multiplications equal to the
SIMD value. It then reduces them in an adder tree for their
subsequent accumulation towards the computed dot product.
Finally, threshold comparisons derive the output values from
the accumulation results.

III. PROPOSED FRAMEWORK

This section discusses the different steps to generate a CNN
accelerator, the constraints that need to be implemented to
maximize the performance, and a design flow to generate the
architecture underneath. The proposed framework is depicted
in Figure 1. Table I summarizes the notations used in the
problem formulation.

TABLE 1
NOTATIONS

Name Description

Graph G with a set of Vertices V,
G = (V,E,w,¢$) edge set E, vertices weights w,

edges weight ¢
i, N Index of a vertice, ||V||
LUT; LUT capacity of the V R;.
FF; Flip-flop requirement of the V' R;.
BRAM; BRAM capacity of the V R;.
DSP; DSP capacity of the V R;.
IFMpr, Dimension of the Input feature maps.
K; kernel size
IFMcH, Number of channels of the input layer.
OFMcu, Number of channels of the output layer.

A. Multi-Tenant FPGA platform

The FPGA fabric is divided into disjoint Virtual Regions
(VRs) purposed to host Virtual machine workloads, enabling
fast IO access to VR registers (Figure 1-(2)). Each FPGA
of the platform consists of a shell layer, which is a set of
static components on the FPGA that cloud users cannot modify
(Figure 4). The shell is made of two major components: (1)
10 Controllers: to manage the communication with off-chip
resources such as memory, CPU, etc. In this work, we do not
elaborate on the interfacing logic of the shell as we rely on
vendor IPs to design high-performance 10 controllers. (2) On-
chip Interconnect: it implements a soft-NoC topology! that
enables efficient on-chip communication between VRs. We do
not discuss the internal architecture of the shell.

'The NoC reaches a near spec maximum frequency of 872 MHz and a
bandwidth of 28Gbps
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Fig. 2. FINN architecture. SWU interleaves the input by applying the image-
to-column algorithm and feeds MVTU.

B. Framework Overview

The deployment of an application in a multi-tenant cloud
infrastructure is depicted in Figure 1 as follow:

(1) Computational Graph: First, it takes as input an in-
ference model trained with Tensorflow or ONNX Deep
learning framework. Then, it generates the computational
graph: G = (V, E,w, ¢) with a set of Vertices V, edges
set E, vertices weights w, edges weight ¢. The vertices
weight represents the computational workload of each
layer, and the edge weight is the local memory ratio,
which is the amount of data (in Kb) that is moved
between two nodes.

(2) Platform Description: Given the physical layout of
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FPGA chips (array of logic components and intercon-
nect), each "FPGA unit of virtualization” will represent a
designated area on the device that we call "virtual region”
or VR. The VRs are then advertised in the cloud as
opposed to entire FPGAs. To support resource elasticity,
the VR is interfaced to an NoC that establishes on-
chip communication between VRs in a user domain. The
FPGA is accessed through a set of ”IO Controllers”. In
this work, we only use a Peripheral Component Inter-
connect Express (PCle) connection, but the architecture
can also accommodate network interfaces. To deploy an
accelerator within the proposed platform, each request is
associated with the VRs topology description, including
the resources allocated to each VR and their interconnect
in the form of a dataflow graph as presented in section
III-F.

(3) Performance Exploration: Given the platform descrip-

tion resources and the inference graph, the framework
explore the parameters that will minimize the latency
given the resources budget of the VRs. Additionally,
developing high-performance hardware accelerators on
FPGA often demands skills in hardware design and
long development cycles. Besides, the depth of CNN
architectures increases by reusing and replicating several
layers. We take advantage of the replication of CNN
layers to improve design performance and productivity
by individually pre-implementing (Synthesis, placement,
and routing) CNN’s components. Furthermore, the pre-
implemented designs can be reused in adjacent layers,
improving the engineering time. We employ the FINN-
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HLS [8] framework to design accelerators (Figure 2).

(4) With the implementations and performance details (tim-
ing, floorplanning, workload), we define several con-
straints for the solver to partition the computational graph
G into a set of sub-graphs G = (G1,Ga,...,G ).

(5) Sub-graphs architectures are generated by stitching the
corresponding pre-built components through a fully au-
tomated process.

(6) Finally, the sub-graphs are allocated to the VR.

C. Performance Exploration

This section essentially consists in performing a design
space exploration of the performances achievable by CNN
sub-functions such as Convolution, pooling, and fully con-
nected layers (FC) under the FINN architecture. It takes into
consideration some design constraints, such as the FPGA’s
resources and timing. If the design space exploration results in
satisfactory performance, the produced netlists are saved into
a database as Design Checkpoint (DCPs).

1) Problem Definition: We use the following nota-
tion to describe a convolution. For each layer 7 in a
given CNN, there are IFMpry, IFMs, K; kernel size,
(IFMcp, and OF M¢y,) are the number of channels of the
input and output layer. For FC, a layer ¢ can be represented
by the height H;, which is the number of neurons of the layer,
and W;, which is the number of synapses per neuron.

To highlight the effect of the folding on latency, let us
consider the results presented in Figure 3. A higher level
of parallelism implies a higher number of resources used.
Each layer has a set of parameters (S, P) that control the
degree of parallelism, which must be chosen so that the
final accelerator results in a balanced streaming pipeline, with
resources fitting within the given budget. Finding the right con-
figuration can greatly impact the final results. Previous work
has demonstrated that extensive automated search in the design
space can identify accelerator configurations better than human
designers. Regarding heterogeneous streaming architecture,
the slowest layer will determine the overall throughput. The
guiding principle is to implement rate-balancing [8] between
the layers. So, each layer should use roughly an equal number
of clock cycles (CC) to process an image.

a) Latency Constraints: For an inference model with
N nodes and a platform with M VRs, we seek to maximize
{(S;, P;) Vi=1,..., N} such that:

#batch
max(Latencyi, Latencysa, ..., Latencyn)
CC»L :(lJrC) XCCH.l V’Lzl,,N
OF My, x OF My, x K2 x IF Mgy, x OF Mcn,

throughput =

with CC; =

Si x P;
(D

Assuming:

OF Mgy, == IFMcy,,,
Q; = OF]\/[%TIHL X Kz2 X IFA-{C}LI
Bit1 = OFMp,,,  x K2, x OFMcy,

i1
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Equation 1 can be reduced to:
(7 XS/L'+1 XPH»l :(1+€) Xﬂi+1 XSi ><P7;

€ is the imbalance factor, allowing a margin between differ-
ent layers.

b) Variables Constraints: For a layer ¢, we fix the
maximum value of P; and S; to 64. As observed in [8], a
P; > 64 results in low BRAM usage, forcing Vivado HLS to
implement the weight and threshold memories using LUTs,
which causes the LUTSs per operation to increase, resulting in
low resource efficiency. We denote by o; ;,, a binary decision
variable such that o; , = 1 iff P; = x; ,, with Vz, = 1,...,64.

64 64
P = E Oip X Tip and E oip=1
p=1 p=1

64 64
Si=> %ipXvip and Y vip=1
p=1 p=1

2xex100 2xex100
€ = E Oip X zip and g di,p=1
p=1 p=1

z;p 1s the set of relaxing values. For example, if €
0.25 ns, then a maximum difference latency of +/ — 0.25 ns
is permitted between the latency of the layers. Hence z; , €
[—¢, €]. With a maximum of two decimal numbers per relaxing
factor, the search range is equals to 2 x € * 100.

2) Resources Constraints: The framework has to quickly
estimate an accelerator’s LUT, DSP, and OCM requirements
from a given set of values of the parallelism variables (£ and
S). Design congestion can negatively impact the achievable
frequency for any FPGA design. Hence, it is recommended
to balance resource utilization between layers. A balance
resource utilization should not exceed the maximum utilization
of 70 % LUTs, 50 % FF, and 80% DSPs Block of total avail-
able resources. We express as [y, (P;,.S;), a linear function
that estimates the the amount of resources of type ¢ demanded
by the ith layer for a given (P;,S;) configuration.

SN Pt (P Si) < LUTygs, Yi=1,..,M
SN Fuapi(Pi,Si) < DSPygs, Yi=1,...M
SN Foram, (Pi, Si) < BRAMy e, Vi=1,..,M

The values of the Fy, (P;, .S;) are computed using the layer
cost model as in [16]. The optimization problem is expressed
as a Mixed Integer Quadratic Program (MIQP).

D. Graph Partitioning

The role of the partitioner is to segment the computational
graph into sub-graphs and assign those to VRs. As the sub-
functions have been configured to fit the resource budget
of VRs, we only focus on having the minimum number of
partitions. There can be two graph partitioning scenarios: (1) A
CNN accelerator can fit in a single VR; In this case, no graph
partitioning is required. (2) A CNN accelerator requires more
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than one VR. In that case, we proceed with multi-way graph
partitioning, which consists of finding a k-balanced partitions
of a graph G = (V, E,w, ¢) that minimizes objective function
over the cut nets for some value of e. In this work, the FPGA
resources we consider are the number LUTs, BRAMs, and
DSPs.

a) Multi-level partitioning: we implement a recursive
balanced bi-partitioning to generate the different partitions
of the computational graph. More precisely, whenever the
partition P; does not violate the constraints: (1) the partitions
does not satisfy the VRs requirement in terms of resources, (2)
The number of partitions is smaller than the number of VRs.
We recursively bi-partition each block of P; until we have k
blocks in total. In Algorithm 1, this process is implemented
in Lines 2-5. If one of the conditions mentioned is violated,
we proceed to the refinement step. The weight of the heaviest
partition ¢ is restricted by a fixed upper bound U = € x “’TV),
with e represents the unbalanced factor, since all partition
cannot have exactly the same weight, and k < #V Rs.

b) Refinement step: : For n iteration, a bi-partitioning
will produce 2™ partitions, resulting in unbalanced partitions,
or too many partitions. The refinement step allows us to merge
smaller partitions or further split heavier partitions (with k <
#V Rs) to accommodate VRs resources.

Algorithm 1: Automated graph partitioning algorithm

Input : Graph G = (V, E,w, ), k, € >0
Output: k-balanced Partitions

1 Function partition (G, k,¢€):
2 if (k < #VRs) and
(RESp, >= RESvrs;,Vi € k,j € #V Rs) then

11 = refine(G, balance(G, {I1,}));
Return {I1}

3 G = bi_partition(G, k, €);
4 1I; := partition(Gi, k, €);
5 else

o | | IL,=V

7 end

8

9
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E. Sub-graphs Implementation

Its function is to generate accelerators for the different
partitions. We start by synthesizing the CNN components
OOC. The OOC flow ensures that I/O buffers and global clock
resources are not inserted into the netlists as the pre-built
components are still to be inserted within the top-level module
of the design. The component’s granularity is discussed in
section IV-B. To achieve high QoR, the implementation of
components follows the following design considerations: (1)
Floorplanning: Pblock boundaries allow you to leverage clock
region or SLICEs boundaries to determine the size of the
pblock. This can help limit clock skew and help with the
overall clock placement of the design. It also help minimizing
the resources utilization, instead of letting the CAD tool
utilize as many chip tiles as it wants. Given that Xilinx
architectures generally replicate the resource structures (CLBs,
DSPs, BRAM, URAM, etc.) over an entire column of clock
regions, the smaller the area of a pblock is, the more the
component can be relocated across the chip, which increases
the reusability. (2) Strategic port planning: the placement of
the ports when pre-implementing modules is one of the most
important steps to ensure high performance and productivity
improvement. Failure to plan the location of the ports of
the pre-implemented modules may result in long compilation
time, poor performance, and high congestion in the design
in which they are inserted. (3) Clock routing: to accurately
run the timing analysis on the OOC modules, source clock
buffers must be specified using the constraint HD.CLK_SRC.
Though the buffers are not inserted in the OOC modules,
clock signals are partially routed to the interconnect tiles,
and the timing analysis tool can then run timing estimations.
textbf(4) Logic locking: The main goal of the performance
exploration is to achieve high QoR locally. Once a module
attains a desirable performance (F},,,, area, power, etc.), we
lock the placement and routing to prevent Vivado from altering
the design later and preserve design performance. The other
advantage of locking the design is that the final inter-module
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routing with Vivado will only consider non-routed nets. It
decreases compilation times and improves productivity. (5)
Checkpoint file generation: the pre-implemented components
are stored on disk in the form of DCPs.

The next step is combining the designs of the pre-built
components into a sub-graphs architecture as defined after the
graph partitioning phase. We employ a custom API designed
with the RapidWright [17], to compose the sub-graph hard-
ware accelerators. The final design still has the logic and the
internal routing locked, and the nets created to connect sub-
graph components are not routed yet. While recent updates
in the RapidWright API provide some functions to route the
designs, the routing heuristics are still a work in progress and
are not as mature as Vivado. Therefore, we utilize Vivado for
the final routing, which essentially consists of finding FPGA
interconnects to implement the logic routes created within
RapidWright to minimize timing delays.

E. Resources Allocation

From the cloud provider’s perspective, the FPGA resources
are represented as a dataflow graph (DFG) in which each node
represents a VR, and the edges denote the communication
latency between the VRs regardless of the physical FPGA from
which they are provisioned. Assuming the number of sub-
graphs k < #V Rs, we seek to decrease the communication
latency between designs implemented in different VRs, but
belonging to the same VM. The optimization problem can be
presented as a set of equations in the form of a Mixed Integer
Quadratic Program (MIQP) and is expressed in Equation 2

n m

n m
MmZZZZc]k X linkiqg X T35 X Tqk 2)

i=1 g=1 j=1 k=1
With z;; binary decision variable that represents whether
V R; is assigned to the accelerator; (z;; = 1) or not (z;; =
0), cj, communication latency from VR; to V Ry, link;,
binary constant defining whether data flows from accelerator;

to accelerator,.

IV. EXPERIMENTAL RESULTS
A. Evaluation Platform and Setup

For evaluation purposes, we split the FPGA into Three
different VRs of different sizes. We rely on the architecture
defined in [21]. Figure 4 shows the FPGA layout with the
resource utilization of each dedicated area. The user de-
signs can only be hosted in the VRs. We use Vendor IPs
to implement the PCle interface in the “PCI Block”. The
"UNASSIGNED” region is used to place and route the soft-
NoC. Designs are implemented on a Xilinx Kintex UltraScale+
FPGA (xcku5p). The hardware is generated using Vivado
v2021.1 and RapidWright v2020.1, and the components are
implemented with Vitis HLS.

The hardware generation is conducted on a computer
equipped with an Intel Corei7-9700K CPU@3.60GHz x4 pro-
cessor and 32GB of RAM. The performance exploration
stage is solved with LocalSolver [22] as it has demonstrated

@ Multi-Tenant Multi-FPGAs

600 -

450 -

30017 192 2 § ti2g% ¢
§ o
150 \ §
i 0E NE . WE N
KLUTs KFF Freq (MHz) KBRAM Latency (ms)

Fig. 5. Performance Comparison of the multi-tenant vs the multi-FPGA
implementation

obtaining efficient results (optimality gap < 10%) within
seconds regardless of the size of the problem when compared
to other Mixed-Integer Programming (MIP) solvers on NP-
hard problems such as the quadratic assignment problem.

Experiments

are conducted on
ResNet-50 to verify

LUT: 33.3%
FF:33.3%
DSP:33.3%

BRAM:33.3% our algorithm’s
URAM: 33.3%
correctness and
performance. Prior
LUT: 4.30%
| Freaz00 works [23] show

DSP:2.8%
|, BRAM:4.44%
URAM: 0%

that the last layer
is  highly-sensitive
to low-precision
quantization.
Therefore, that
layer’s weights
and activations are
quantized to an 8-bit
and 16-bit fixed-
point,  respectively,
to minimize the loss
in accuracy. In other
layers (including the first layer), the weights and output
activations are quantized to 1 bit and 4 bits, respectively. The
component granularity is defined by the block topology of
ResNet as illustrated in Figure 6.

Fig. 4. FPGA Layout

B. Performance

In this section, we aim to compare the performance of the
ResNet baseline on a multi-FPGAs platform to a multi-tenant.
The baseline implementation of ResNet requires the allocation
of two xckuSp FPGAS. To generate the corresponding design,
we manually partition the graph and assign the resulting
sub-graphs to two FPGAs. For performance comparison, we
create four instances of the same FPGA layout (Figure 4) and
randomly allocate VRs to a single tenant such that the total
amount of resources is close to the number of resources of
2 FPGAs. The performance and the resources are depicted in
Figure 5. Both platforms use approximately the same number
of DSP and BRAMs, with resp. 9.2% and 13.5 % less LUTs
and FFs. We also note a 12.8% higher frequency and an 8.3%
higher latency. The higher latency is justified by the delay
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TABLE 11
RESNET PERFORMANCE COMPARISON WITH STATE-OF-ART APPROACHES

Ma et al. [10] | Cloud-DNN (3] ftlz?klaig;]azadeh Elastic-DF [4] | Zhang et al. [19] CNN-on-AWS [20] | Our Approach
FPGA/Platform Intel Arria 10 | AWS Intel Arria 10 2*U250 4* Virtex Ultrascale | 5*AWS F1 2*xckuSp
Platform Single FPGA Multiple FPGAs Mult-tenant FPGAs
Model ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-152 ResNet-18 ResNet-50
FMax 200 MHz 125 MHz 212 MHz 217 MHz 150 MHx 246 MHz
(Precision (fixed) 116416 wl6al6 w8a8 wla2 wl6al6 wl6al6 wlad
w=weight, a=activation)
e (19%, 18.8%, ((2.96%, 5.12%
DSP Blocks 1,518 (100%) | 80.25% 33% - 9.3%, 30.3%) - 1.05%, 3.82%)
. (77.4%, 14.5%, (3.57%, 6.36%
LUTs 2I86K (51%) | 64% 4% - 83.4%, 88.6%) - 4.69%, 27.3%)
(81.4%, 81.3%, (41.2%, 50.6%,
[ 0 0 - -
BRAM (M20K) 1,927 (71%) 83% 48% 82.1%, 86%) 23.42%, 60.3%)
Latency/Image (ms) 12.51 13.9 20.9 2.3 - 2.1 6.8
TABLE III Duplicate

COMPARISON OF COMMUNICATION PERFORMANCES TO THE BASELINE

# of VR Best scenario Worst scenario
Comm. Comparison Comm. Comparison
time (ns) | to host baseline | time (ns) | to host baseline

3 1.678 X 69871 11.024 x 907 T

10 9.59 x 1046 T 99.736 x 100 T

20 22.04 X 453 1 246.848 x 40 1

added by the NoC to move the data between VRs. ResNet built
by pre-implementing components uses fewer resources than
the baseline implementation. When the design is small, vivado
can provide better optimization of the resources. Furthermore,
when pre-implementing components, we define pblocks, lim-
iting the amount of resources that vivado can use and hence,
forcing some area optimizations. When the design is bigger,
vivado tends to maximize the capacity of adaptation, making
it difficult to capture all its specificities.

Table II compares our work with results from prior work
on FPGA inference. Works are grouped into single and multi-
FPGA implementations. Among the single-FPGA, Ma et al.
[10] report the smallest latency of 12.51 ms by integrating op-
timized RTL components within an automated CNN compiler
for various inference tasks. Elastic-DF is the closest work to
ours regarding multi-FPGA implementations and achieves a
latency of 2.1 ms. However, they employ a data quantization
of wla2, resulting in an accuracy drop of 67.3%, while
wla4 presents a better performance and memory cost-accuracy
(78.1%) trade-off. Furthermore, FINN uses hls::stream for data
transfer. Since the data width is limited to 4096, with a wla4
quantization, the data width exceeds the 4096 from the third
block, yielding to use of a Stream Data Width Converter, to
upscale or downscale a stream, with a slight additional latency.

a) Benefits of On-chip Communication: one may ques-
tion the necessity of implementing a soft-NoC to sup-
port multi-tenancy. Designing FPGA accelerators is a time-
consuming, depending on the design’s complexity to imple-
ment. Considering a context in which a user has already
programmed specific functions in a cloud FPGA, leveraging
the deployed accelerators instead of redesigning an entire
hardware stack is beneficial in terms of productivity. It could
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also be more cost-effective as a hardware accelerator could be
reused by several hardware workloads. Another advantage is
the low communication overhead compared to relying on soft-
ware functions to initiate data movement between hardware
accelerators. Considering that host round trips to the FPGA
could take an average ~10us, we compare hardware-level data
copy of 32 bits with that of software. We scale the number of
virtual regions on an FPGA from 2 to 20 and record the time
required for transferring a packet between the two most distant
VRs in terms of routing hops. We consider two operating
conditions: (1) The best scenario: there is no congestion. (2)
The worst scenario: The on-chip interconnect is congested.
Each router on the way is overloaded, which introduces routing
delays. Table III summarizes the experimental observations. In
the best scenario and with the FPGA divided into 20 regions,
transferring a packet takes 22.04 ns, which is 453 x faster than
an equivalent operation by the host. In the worst scenario, with
the same quantity of VRs in an FPGA, the communication
uses ~2us, which is 40x faster than an equivalent operation
by the host. Overall, this teaches two major lessons: (1)
implementing on-chip communication support between the
VRs drastically improves the throughput compared to letting
a VM or the host copy the data between the accelerators on a
chip. (2) Achieving higher throughput is tightly associated
with decreasing the number of regions provisioned on a single
FPGA.
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TABLE IV
DESIGN GENERATION TIME FOR IMPLEMENTATION OF RESNET WITH
VIVADO AND THE PROPOSED FRAMEWORK IN MINUTES

Multi-Tenant ResNet Baseline ResNet
Graph
Tasks Perfor. | paritio | COMPORENL | g hesis | P&R
Exploration ning Implem
Time 12.6 sec 36sec | 463 h 32h 6.9h
Ratio ~0% ~0% ~99.9% 31.6% 68.31%
Total (hours) 4.63 h 1 (2.18 x) 10.1h

C. Productivity

With the continuous growth of CNNs parameters and depth,
improving productivity is an important factor in hardware
design. This section shows how the proposed flow can leverage
component reuse to reduce compile-time and implementation
cycles. Table IV presents the time in hours to generate the
design checkpoint with both rapidwright and vivado. ResNet
topology reuse 72% of its layers. The proposed framework
takes advantage of that properties to achieve a 2.18 x produc-
tivity.

V. CONCLUSION

This paper proposes a framework to accelerate model in-
ference on a multi-tenant FPGA Cloud Platform. The cloud
architecture provides an FPGA abstraction to the users, which
consists in dividing the FPGA into “Virtual Regions.” The
architecture also features a shell layer that enables fast ac-
cess to FPGA resources and inter-VRs communication. The
framework takes the computational graph of the CNN model
inference as input. Then, it performs an intensive search in the
form of a quadratic optimization problem to determine each
layer’s highest degree of parallelism considering the platform
constraints. The graph is then partitioned, and the resulting
sub-graphs are allocated to the VRs such that the commu-
nication latency is minimized. Experiments and results show
that our approach improves latency and maximum frequency,
with little to no impact on the number of resources used.
Our workflow is designed in a modular fashion, allowing easy
integration for new layer types. In future works, we intend to
expand to a wider variety of neural networks and report power
and energy consumption.
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