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Abstract—The increasing adoption of Field-Programmable
Gate Arrays (FPGA) into cloud and data center systems opens
the way to the unprecedented acceleration of Machine Learning
applications. Convolutional Neural Networks (CNN) have largely
been adopted as algorithms for image classification and object
detection. As we head towards FPGA multi-tenancy in the
cloud, it becomes necessary to investigate architectures and
mechanisms for the efficient deployment of CNN into multi-
tenant FPGAs cloud Infrastructure. In this work, we propose
an FPGA architecture and a design flow that support efficient
integration of CNN applications into a cloud infrastructure that
exposes multi-tenancy to cloud developers. We prototype the
proposed approach on randomly allocated virtual regions to
tenants. We study how space-sharing of a single device between
multiple cloud tenants influence the design flow, the allocation of
resources, and the performance in term of resource utilization
and overall latency compared to single-tenant deployments.
Prototyping results show a latency at most 8% lower than
that of single-tenant deployment while achieving higher resource
utilization. We also record a maximum frequency of up to 12%
higher in multi-tenant implementations.

Index Terms—FPGAs, Multi-tenancy, CNN Acceleration, Dis-
tributed Inference

I. INTRODUCTION

Driven by the increasing demand for performance and

efficiency in computation, Field-Programmable Gate Arrays

(FPGAs) are increasingly adopted as part of the pool of

resources integrated into cloud and data center systems. Cloud

providers can now offload compute-intensive algorithms run-

ning in the background of the infrastructure unto FPGA

devices to achieve lower latency, reduced power consumption,

and higher throughput. For example, OVHcloud uses FPGA-

based network processing to defend customer workspaces

against distributed denial-of-service attacks [1]. In addition,

cloud developers can now design custom hardware accelerators

without incurring maintenance expenses. For instance, Ama-

zon EC2 F1 instances provide development, debugging, and

deployment infrastructure for heterogeneous applications that

exploit communication between general-purpose processors

and FPGA accelerators [2].

The rising integration of FPGAs in the cloud offers a unique

opportunity to accelerate applications in Machine Learning. In

recent years, Convolutional Neural Networks (CNN) gained

much attention due to their high accuracy and performance

in image classification and object detection. However, higher

accuracy is typically obtained using deeper and wider CNN

architectures that feature a larger number of layers and chan-

nels. This dramatic increase in CNN complexity means that

advanced FPGAs are needed for efficient CNN inference, typi-

cally available in a cloud deployment. It is not surprising to see

an increased deployment of CNN accelerators on cloud FPGAs

to accelerate computer vision pipelines [ [3], [4]]. Current

cloud infrastructures provision single-tenant FPGAs that are

entirely allocated to a single user at a time [amazon, baidu,

etc.]. However, FPGA multi-tenancy is a rising trend among

researchers [5]–[7]. Cloud architectures that expose multi-

tenant FPGAs to developers allow running multiple hardware

workloads concurrently on a single device independently of

whether the hardware accelerators belong to different users.

This work investigates the design and inference of CNNs

on multi-tenant cloud FPGAs. Since the FPGA is space-shared

between concurrent hardware accelerators, a cloud developer

shares FPGA resources with the co-tenant and the shell that

implements controls from the cloud provider. Therefore, in the

context of multi-tenant cloud FPGAs, we propose a design

flow and an architecture that improves hardware utilization

and productivity, to ensure minimal latency increase for CNNs

inference. We use the FINN framework [8] as our baseline

and extend it to support the pre-implemented flow, which is

a divide-and-conquer approach that enables application and

domain-specific optimization on the design of CNN architec-

tures. Our proposed framework provides an efficient streaming

implementation for multi-tenant FPGAs by benefiting from the

customizability of FINN. Specifically, the contribution of this

paper include:

• Defining the constraints of cloud deployments that expose

multi-tenant FPGAs to developers.

• Propose an FPGA architecture as part of the shell to

support co-hosting hardware accelerators on a single

cloud FPGA.

• Discuss the design flow that relies on graph partitioning

to achieve efficient acceleration of CNN inference with-

out tedious HDL programming and verifications, while

improving the Quality Of Result (QoR) compared to the

traditional design flow with Vivado.

The rest of the paper is organized as follows: section II
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presents some background information discussing the accel-

eration of CNN on single and multi-FPGA platforms. Then,

section III elaborates on the different steps that enable the

deployment of CNN inference in multi-tenancy. Afterwards,

experimental results are presented in section IV and section V

concludes the paper.

II. BACKGROUND

Accelerators with the streaming architecture always tailor

the hardware with respect to the target network [9]. The

topology of such CNN accelerators is transformed into a layer-

by-layer execution schedule, following the structure of the

DAG [10].

The main advantage of this type of architecture is to

minimize the latency caused by communication with off-chip

memory and, thereby, maximize on-chip memory communica-

tion, ensuring high throughput and avoiding any latency [11],

[12]. On the downside, this accelerator architecture cannot

scale to arbitrarily large CNNs. It is essentially restricted

by available on-chip resources needed to implement compute

units for each CNN layer and, critically, the size of OCM

required to store the weights. Most of the research works

in cloud FPGA platforms revolve around multi-FPGA cloud

infrastructures. Shan et al. [13] proposed an optimized power

flow to map CNNs on multi-FPGA configuration bitstreams

that satisfy different application requirements. The platform

consists of a host CPU that controls eight FPGAs over a

PCI-express (PCIe) bus. It can quickly reconfigure them with

several configurations generated offline, adapting them to the

actual application performance requirements. However, they

only consider CNNs applications that can be modeled as

multi-kernel task-level pipelines. Cloud-DNN [3] proposes a

Framework for Mapping DNN Models to Cloud FPGAs by

partitioning the DNN into three sub-nets. The sub-nets are

mapped to different dies in an SSI-based FPGA.

Several works [4], [12], [14], [15] in the literature employ

FINN to generate NN accelerators on FPGAs. Nevertheless,

FINN accelerators’ area consumption and parallelism param-

eters cannot be arbitrarily deduced. Since the performance of

an accelerator is bounded by the slowest component within the

design, finding the parameters to generate a balanced design

can be a bottleneck. In this work, we propose an accurate

model to find the optimal parameters for the configuration to

assess the resource consumption and timing for FINN accel-

erators. We also propose a pre-implemented flow to compose

the final accelerator considering the platform restriction.

A. FINN Architecture

FINN is a framework from Xilinx Research Lab, enabling

the design of heterogeneous custom streaming architecture for

a given topology. Separate compute engines are dedicated to

each layer, communicating via on-chip data streams. Each en-

gine starts to compute as soon as the previous engine produces

output. It currently supports fully connected, convolutional,

ReLU, and pooling layers.

The computational core of the compute engines is the

matrix-vector unit (MVU), as the vast majority of computing

operations in neural networks can be expressed as matrix-

vector operations. The sliding window unit (SWU) supplies

the convolution engine with the image matrix from the incom-

ing feature map by applying interleaving and implementing

the im2col algorithm. An MVU computes the matrix-matrix

product using a different column vector from the image matrix

stream. The MVU consists of an input and output buffer

and an array of Processing Elements (PEs), each with a

number of SIMD lanes. The number of PEs (P) and SIMD

lanes (S) is configurable to regulate the throughput. A PE

performs a number of parallel multiplications equal to the

SIMD value. It then reduces them in an adder tree for their

subsequent accumulation towards the computed dot product.

Finally, threshold comparisons derive the output values from

the accumulation results.

III. PROPOSED FRAMEWORK

This section discusses the different steps to generate a CNN

accelerator, the constraints that need to be implemented to

maximize the performance, and a design flow to generate the

architecture underneath. The proposed framework is depicted

in Figure 1. Table I summarizes the notations used in the

problem formulation.

TABLE I
NOTATIONS

Name Description

G = (V,E, ω, φ)
Graph G with a set of Vertices V,
edge set E, vertices weights ω,
edges weight φ

i, N Index of a vertice, ‖V ‖
LUTi LUT capacity of the V Ri.
FFi Flip-flop requirement of the V Ri.
BRAMi BRAM capacity of the V Ri.
DSPi DSP capacity of the V Ri.
IFMDIMi Dimension of the Input feature maps.
Ki kernel size
IFMCHi Number of channels of the input layer.
OFMCHi Number of channels of the output layer.

A. Multi-Tenant FPGA platform
The FPGA fabric is divided into disjoint Virtual Regions

(VRs) purposed to host Virtual machine workloads, enabling

fast IO access to VR registers (Figure 1-(2)). Each FPGA

of the platform consists of a shell layer, which is a set of

static components on the FPGA that cloud users cannot modify

(Figure 4). The shell is made of two major components: (1)
IO Controllers: to manage the communication with off-chip

resources such as memory, CPU, etc. In this work, we do not

elaborate on the interfacing logic of the shell as we rely on

vendor IPs to design high-performance IO controllers. (2) On-
chip Interconnect: it implements a soft-NoC topology1 that

enables efficient on-chip communication between VRs. We do

not discuss the internal architecture of the shell.

1The NoC reaches a near spec maximum frequency of 872 MHz and a
bandwidth of 28Gbps

492

Authorized licensed use limited to: University of Florida. Downloaded on October 19,2023 at 01:06:04 UTC from IEEE Xplore.  Restrictions apply. 



CNN Inference Graph

Problem Formulation

Partitioner Solver

Resource
Allocation 

Sub-graphs
Implementation

S

Architecture
Composition 

Inter-nodes 

 
Routing 

Partially routed  
kernels

Cloud User 

Timing, flooplanning,
workload 

Sliding
Window Unit PE2 

PEn 

. . .

SIMD Lanes 

Node Processing Unit

PE1 

Database of  
pre-built nodes

Placed and 

 
routed  
nodes

Pool

Conv

Pool

ConvConvPool

Conv

Conv

Computational
Graph 

VMM

VM1 VM1 VMm

Shell

PCIe Controller 

Memory
Controller 
Network

Controller O
n-

C
hi

p 
In

te
rc

on
ne

ctIO Controller Virtual
Region 1

Virtual
Region 2 

Virtual
Region n 

FPGA

N
O

C

1. LUT max 
2. DSP max
3. BRAM max
4. FF max, etc. 

VRs Topology:

1

3

5

4
6

Layeri Layerj

Workload

Resource

LatencyPerformance Exploration

2

Fig. 1. Framework Overview

0 2 4
1 3 5

0 2 4
1 3 50 2 4

1 3 5

Sliding
Window Unit

D
ata Stream

6 8
7 96 8

7 96 8
7 9

Filters

MVU

PE0 PEn

Activation

Buffers
SIMD Lanes 

Next Layer 

Fig. 2. FINN architecture. SWU interleaves the input by applying the image-
to-column algorithm and feeds MVTU.

B. Framework Overview

The deployment of an application in a multi-tenant cloud

infrastructure is depicted in Figure 1 as follow:

(1) Computational Graph: First, it takes as input an in-

ference model trained with Tensorflow or ONNX Deep

learning framework. Then, it generates the computational

graph: G = (V,E, ω, φ) with a set of Vertices V, edges

set E, vertices weights ω, edges weight φ. The vertices

weight represents the computational workload of each

layer, and the edge weight is the local memory ratio,

which is the amount of data (in Kb) that is moved

between two nodes.

(2) Platform Description: Given the physical layout of

FPGA chips (array of logic components and intercon-

nect), each ”FPGA unit of virtualization” will represent a

designated area on the device that we call ”virtual region”

or VR. The VRs are then advertised in the cloud as

opposed to entire FPGAs. To support resource elasticity,

the VR is interfaced to an NoC that establishes on-

chip communication between VRs in a user domain. The

FPGA is accessed through a set of ”IO Controllers”. In

this work, we only use a Peripheral Component Inter-

connect Express (PCIe) connection, but the architecture

can also accommodate network interfaces. To deploy an

accelerator within the proposed platform, each request is

associated with the VRs topology description, including

the resources allocated to each VR and their interconnect

in the form of a dataflow graph as presented in section

III-F.

(3) Performance Exploration: Given the platform descrip-

tion resources and the inference graph, the framework

explore the parameters that will minimize the latency

given the resources budget of the VRs. Additionally,

developing high-performance hardware accelerators on

FPGA often demands skills in hardware design and

long development cycles. Besides, the depth of CNN

architectures increases by reusing and replicating several

layers. We take advantage of the replication of CNN

layers to improve design performance and productivity

by individually pre-implementing (Synthesis, placement,

and routing) CNN’s components. Furthermore, the pre-

implemented designs can be reused in adjacent layers,

improving the engineering time. We employ the FINN-
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HLS [8] framework to design accelerators (Figure 2).

(4) With the implementations and performance details (tim-

ing, floorplanning, workload), we define several con-

straints for the solver to partition the computational graph

G into a set of sub-graphs G = (G1, G2, ..., GM ).
(5) Sub-graphs architectures are generated by stitching the

corresponding pre-built components through a fully au-

tomated process.

(6) Finally, the sub-graphs are allocated to the VR.

C. Performance Exploration

This section essentially consists in performing a design

space exploration of the performances achievable by CNN

sub-functions such as Convolution, pooling, and fully con-

nected layers (FC) under the FINN architecture. It takes into

consideration some design constraints, such as the FPGA’s

resources and timing. If the design space exploration results in

satisfactory performance, the produced netlists are saved into

a database as Design Checkpoint (DCPs).

1) Problem Definition: We use the following nota-

tion to describe a convolution. For each layer i in a

given CNN, there are IFMDIMi
IFMs, Ki kernel size,

(IFMCHi
and OFMCHi

) are the number of channels of the

input and output layer. For FC, a layer i can be represented

by the height Hi, which is the number of neurons of the layer,

and Wi, which is the number of synapses per neuron.

To highlight the effect of the folding on latency, let us

consider the results presented in Figure 3. A higher level

of parallelism implies a higher number of resources used.

Each layer has a set of parameters (S, P) that control the

degree of parallelism, which must be chosen so that the

final accelerator results in a balanced streaming pipeline, with

resources fitting within the given budget. Finding the right con-

figuration can greatly impact the final results. Previous work

has demonstrated that extensive automated search in the design

space can identify accelerator configurations better than human

designers. Regarding heterogeneous streaming architecture,

the slowest layer will determine the overall throughput. The

guiding principle is to implement rate-balancing [8] between

the layers. So, each layer should use roughly an equal number

of clock cycles (CC) to process an image.

a) Latency Constraints: For an inference model with

N nodes and a platform with M VRs, we seek to maximize

{(Si, Pi) ∀i = 1, ..., N} such that:

throughput =
#batch

max(Latency1, Latency2, ..., LatencyN )

CCi = (1 + ε)× CCi+1 ∀i = 1, ..., N

with CCi =
OFMHi ×OFMWi ×K2

i × IFMChi ×OFMChi

Si × Pi
(1)

Assuming:

⎧⎪⎨
⎪⎩

OFMChi
== IFMChi+1

αi = OFM2
Dimi

×K2
i × IFMChi

βi+1 = OFM2
Dimi+1

×K2
i+1 ×OFMChi+1

Equation 1 can be reduced to:

αi × Si+1 × Pi+1 = (1 + ε)× βi+1 × Si × Pi

ε is the imbalance factor, allowing a margin between differ-

ent layers.

b) Variables Constraints: For a layer i, we fix the

maximum value of Pi and Si to 64. As observed in [8], a

Pi > 64 results in low BRAM usage, forcing Vivado HLS to

implement the weight and threshold memories using LUTs,

which causes the LUTs per operation to increase, resulting in

low resource efficiency. We denote by σi,p, a binary decision

variable such that σi,p = 1 iff Pi = xi,p, with ∀xp = 1, ..., 64.

Pi =

64∑
p=1

σi,p × xi,p and

64∑
p=1

σi,p = 1

Si =

64∑
p=1

γi,p × yi,p and

64∑
p=1

γi,p = 1

εi =
2×ε∗100∑

p=1

δi,p × zi,p and
2×ε∗100∑

p=1

δi, p = 1

zi,p is the set of relaxing values. For example, if ε =
0.25 ns, then a maximum difference latency of +/− 0.25 ns
is permitted between the latency of the layers. Hence zi,p ∈
[−ε, ε]. With a maximum of two decimal numbers per relaxing

factor, the search range is equals to 2× ε ∗ 100.

2) Resources Constraints: The framework has to quickly

estimate an accelerator’s LUT, DSP, and OCM requirements

from a given set of values of the parallelism variables (P and

S). Design congestion can negatively impact the achievable

frequency for any FPGA design. Hence, it is recommended

to balance resource utilization between layers. A balance

resource utilization should not exceed the maximum utilization

of 70 % LUTs, 50 % FF, and 80% DSPs Block of total avail-

able resources. We express as Fti(Pi, Si), a linear function

that estimates the the amount of resources of type t demanded

by the ith layer for a given (Pi, Si) configuration.

⎧⎪⎨
⎪⎩

∑N
i=1 Fluti(Pi, Si) ≤ LUTV Rs, ∀i = 1, ...,M∑N
i=1 Fdspi

(Pi, Si) ≤ DSPV Rs, ∀i = 1, ...,M∑N
i=1 Fbrami

(Pi, Si) ≤ BRAMV Rs, ∀i = 1, ...,M

The values of the Fti(Pi, Si) are computed using the layer

cost model as in [16]. The optimization problem is expressed

as a Mixed Integer Quadratic Program (MIQP).

D. Graph Partitioning

The role of the partitioner is to segment the computational

graph into sub-graphs and assign those to VRs. As the sub-

functions have been configured to fit the resource budget

of VRs, we only focus on having the minimum number of

partitions. There can be two graph partitioning scenarios: (1) A

CNN accelerator can fit in a single VR; In this case, no graph

partitioning is required. (2) A CNN accelerator requires more
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Fig. 3. Folding Factor Design Space Exploration

than one VR. In that case, we proceed with multi-way graph

partitioning, which consists of finding a k-balanced partitions

of a graph G = (V,E, ω, φ) that minimizes objective function

over the cut nets for some value of ε. In this work, the FPGA

resources we consider are the number LUTs, BRAMs, and

DSPs.
a) Multi-level partitioning: we implement a recursive

balanced bi-partitioning to generate the different partitions

of the computational graph. More precisely, whenever the

partition Pi does not violate the constraints: (1) the partitions

does not satisfy the VRs requirement in terms of resources, (2)
The number of partitions is smaller than the number of VRs.

We recursively bi-partition each block of Pi until we have k
blocks in total. In Algorithm 1, this process is implemented

in Lines 2–5. If one of the conditions mentioned is violated,

we proceed to the refinement step. The weight of the heaviest

partition i is restricted by a fixed upper bound U = ε× ω(V )
k ,

with ε represents the unbalanced factor, since all partition

cannot have exactly the same weight, and k ≤ #V Rs.
b) Refinement step: : For n iteration, a bi-partitioning

will produce 2n partitions, resulting in unbalanced partitions,

or too many partitions. The refinement step allows us to merge

smaller partitions or further split heavier partitions (with k ≤
#V Rs) to accommodate VRs resources.

Algorithm 1: Automated graph partitioning algorithm

Input : Graph G = (V,E, ω, φ), k, ε > 0
Output: k-balanced Partitions

1 Function partition(G, k, ε):
2 if (k ≤ #V Rs) and

(RESPi >= RESV Rsj , ∀i ∈ k, j ∈ #V Rs) then
3 Gi = bi partition(G, k, ε);
4 IIi := partition(Gi, k, ε);
5 else
6 IIp = V
7 end
8 II = refine(G, balance(G, {IIp}));
9 Return {II}

E. Sub-graphs Implementation

Its function is to generate accelerators for the different

partitions. We start by synthesizing the CNN components

OOC. The OOC flow ensures that I/O buffers and global clock

resources are not inserted into the netlists as the pre-built

components are still to be inserted within the top-level module

of the design. The component’s granularity is discussed in

section IV-B. To achieve high QoR, the implementation of

components follows the following design considerations: (1)
Floorplanning: Pblock boundaries allow you to leverage clock

region or SLICEs boundaries to determine the size of the

pblock. This can help limit clock skew and help with the

overall clock placement of the design. It also help minimizing

the resources utilization, instead of letting the CAD tool

utilize as many chip tiles as it wants. Given that Xilinx

architectures generally replicate the resource structures (CLBs,

DSPs, BRAM, URAM, etc.) over an entire column of clock

regions, the smaller the area of a pblock is, the more the

component can be relocated across the chip, which increases

the reusability. (2) Strategic port planning: the placement of

the ports when pre-implementing modules is one of the most

important steps to ensure high performance and productivity

improvement. Failure to plan the location of the ports of

the pre-implemented modules may result in long compilation

time, poor performance, and high congestion in the design

in which they are inserted. (3) Clock routing: to accurately

run the timing analysis on the OOC modules, source clock

buffers must be specified using the constraint HD.CLK SRC.

Though the buffers are not inserted in the OOC modules,

clock signals are partially routed to the interconnect tiles,

and the timing analysis tool can then run timing estimations.

textbf(4) Logic locking: The main goal of the performance

exploration is to achieve high QoR locally. Once a module

attains a desirable performance (Fmax, area, power, etc.), we

lock the placement and routing to prevent Vivado from altering

the design later and preserve design performance. The other

advantage of locking the design is that the final inter-module
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routing with Vivado will only consider non-routed nets. It

decreases compilation times and improves productivity. (5)
Checkpoint file generation: the pre-implemented components

are stored on disk in the form of DCPs.

The next step is combining the designs of the pre-built

components into a sub-graphs architecture as defined after the

graph partitioning phase. We employ a custom API designed

with the RapidWright [17], to compose the sub-graph hard-

ware accelerators. The final design still has the logic and the

internal routing locked, and the nets created to connect sub-

graph components are not routed yet. While recent updates

in the RapidWright API provide some functions to route the

designs, the routing heuristics are still a work in progress and

are not as mature as Vivado. Therefore, we utilize Vivado for

the final routing, which essentially consists of finding FPGA

interconnects to implement the logic routes created within

RapidWright to minimize timing delays.

F. Resources Allocation

From the cloud provider’s perspective, the FPGA resources

are represented as a dataflow graph (DFG) in which each node

represents a VR, and the edges denote the communication

latency between the VRs regardless of the physical FPGA from

which they are provisioned. Assuming the number of sub-

graphs k ≤ #V Rs, we seek to decrease the communication

latency between designs implemented in different VRs, but

belonging to the same VM. The optimization problem can be

presented as a set of equations in the form of a Mixed Integer

Quadratic Program (MIQP) and is expressed in Equation 2

Min

n∑
i=1

n∑
q=1

m∑
j=1

m∑
k=1

cjk × linkiq × xij × xqk (2)

With xij binary decision variable that represents whether

V Rj is assigned to the acceleratori (xij = 1) or not (xij =
0), cjk communication latency from V Rj to V Rk, linkiq
binary constant defining whether data flows from acceleratori
to acceleratorq .

IV. EXPERIMENTAL RESULTS

A. Evaluation Platform and Setup

For evaluation purposes, we split the FPGA into Three

different VRs of different sizes. We rely on the architecture

defined in [21]. Figure 4 shows the FPGA layout with the

resource utilization of each dedicated area. The user de-

signs can only be hosted in the VRs. We use Vendor IPs

to implement the PCIe interface in the ”PCI Block”. The

”UNASSIGNED” region is used to place and route the soft-

NoC. Designs are implemented on a Xilinx Kintex UltraScale+

FPGA (xcku5p). The hardware is generated using Vivado

v2021.1 and RapidWright v2020.1, and the components are

implemented with Vitis HLS.

The hardware generation is conducted on a computer

equipped with an Intel Corei7-9700K CPU@3.60GHz×4 pro-

cessor and 32GB of RAM. The performance exploration

stage is solved with LocalSolver [22] as it has demonstrated

Fig. 5. Performance Comparison of the multi-tenant vs the multi-FPGA
implementation

obtaining efficient results (optimality gap < 10%) within

seconds regardless of the size of the problem when compared

to other Mixed-Integer Programming (MIP) solvers on NP-

hard problems such as the quadratic assignment problem.
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Experiments

are conducted on

ResNet-50 to verify

our algorithm’s

correctness and

performance. Prior

works [23] show

that the last layer

is highly-sensitive

to low-precision

quantization.

Therefore, that

layer’s weights

and activations are

quantized to an 8-bit

and 16-bit fixed-

point, respectively,

to minimize the loss

in accuracy. In other

layers (including the first layer), the weights and output

activations are quantized to 1 bit and 4 bits, respectively. The

component granularity is defined by the block topology of

ResNet as illustrated in Figure 6.

B. Performance

In this section, we aim to compare the performance of the

ResNet baseline on a multi-FPGAs platform to a multi-tenant.

The baseline implementation of ResNet requires the allocation

of two xcku5p FPGAS. To generate the corresponding design,

we manually partition the graph and assign the resulting

sub-graphs to two FPGAs. For performance comparison, we

create four instances of the same FPGA layout (Figure 4) and

randomly allocate VRs to a single tenant such that the total

amount of resources is close to the number of resources of

2 FPGAs. The performance and the resources are depicted in

Figure 5. Both platforms use approximately the same number

of DSP and BRAMs, with resp. 9.2% and 13.5 % less LUTs

and FFs. We also note a 12.8% higher frequency and an 8.3%

higher latency. The higher latency is justified by the delay
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TABLE II
RESNET PERFORMANCE COMPARISON WITH STATE-OF-ART APPROACHES

Ma et al. [10] Cloud-DNN [3]
Biookaghazadeh
et al. [18]

Elastic-DF [4] Zhang et al. [19] CNN-on-AWS [20] Our Approach

FPGA/Platform Intel Arria 10 AWS Intel Arria 10 2*U250 4* Virtex Ultrascale 5*AWS F1 2*xcku5p
Platform Single FPGA Multiple FPGAs Mult-tenant FPGAs
Model ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-152 ResNet-18 ResNet-50
FMax 200 MHz 125 MHz 212 MHz 217 MHz 150 MHx 246 MHz
(Precision (fixed)
w=weight, a=activation)

w16a16 w16a16 w8a8 w1a2 w16a16 w16a16 w1a4

DSP Blocks 1,518 (100%) 80.25% 33% -
(19%, 18.8%,
9.3%, 30.3%)

-
((2.96%, 5.12%
1.05%, 3.82%)

LUTs 218.6K (51%) 64% 34% -
(77.4%, 74.5%,
83.4%, 88.6%)

-
(3.57%, 6.36%
4.69%, 27.3%)

BRAM (M20K) 1,927 (71%) 83% 48% -
(81.4%, 81.3%,
82.1%, 86%)

-
(41.2%, 50.6%,
23.42%, 60.3%)

Latency/Image (ms) 12.51 13.9 20.9 2.3 - 2.1 6.8

TABLE III
COMPARISON OF COMMUNICATION PERFORMANCES TO THE BASELINE

# of VR Best scenario Worst scenario
Comm.
time (ns)

Comparison
to host baseline

Comm.
time (ns)

Comparison
to host baseline

3 1.678 × 6987↑ 11.024 × 907 ↑
10 9.59 × 1046 ↑ 99.736 × 100 ↑
20 22.04 × 453 ↑ 246.848 × 40 ↑

added by the NoC to move the data between VRs. ResNet built

by pre-implementing components uses fewer resources than

the baseline implementation. When the design is small, vivado

can provide better optimization of the resources. Furthermore,

when pre-implementing components, we define pblocks, lim-

iting the amount of resources that vivado can use and hence,

forcing some area optimizations. When the design is bigger,

vivado tends to maximize the capacity of adaptation, making

it difficult to capture all its specificities.

Table II compares our work with results from prior work

on FPGA inference. Works are grouped into single and multi-

FPGA implementations. Among the single-FPGA, Ma et al.

[10] report the smallest latency of 12.51 ms by integrating op-

timized RTL components within an automated CNN compiler

for various inference tasks. Elastic-DF is the closest work to

ours regarding multi-FPGA implementations and achieves a

latency of 2.1 ms. However, they employ a data quantization

of w1a2, resulting in an accuracy drop of 67.3%, while

w1a4 presents a better performance and memory cost-accuracy

(78.1%) trade-off. Furthermore, FINN uses hls::stream for data

transfer. Since the data width is limited to 4096, with a w1a4

quantization, the data width exceeds the 4096 from the third

block, yielding to use of a Stream Data Width Converter, to

upscale or downscale a stream, with a slight additional latency.

a) Benefits of On-chip Communication: one may ques-

tion the necessity of implementing a soft-NoC to sup-

port multi-tenancy. Designing FPGA accelerators is a time-

consuming, depending on the design’s complexity to imple-

ment. Considering a context in which a user has already

programmed specific functions in a cloud FPGA, leveraging

the deployed accelerators instead of redesigning an entire

hardware stack is beneficial in terms of productivity. It could

Duplicate
Streams

Convolution
(1x1) 

Convolution
(3x3) 

Convolution
(1x1) 

Add

Bypass
FIFO 

Duplicate
Streams

Convolution
(1x1) 

Convolution
(3x3) 

Convolution
(1x1) 

Add

Bypass
FIFO 

Convolution
(1x1) 

Block Type 1 Block Type 2

Block Granularity 
First and Last Block

Convolution
(7x7)

Max Pool 

Fully
Connected

Avg Pool 

Fig. 6. Different modules granularity

also be more cost-effective as a hardware accelerator could be

reused by several hardware workloads. Another advantage is

the low communication overhead compared to relying on soft-

ware functions to initiate data movement between hardware

accelerators. Considering that host round trips to the FPGA

could take an average ∼10μs, we compare hardware-level data

copy of 32 bits with that of software. We scale the number of

virtual regions on an FPGA from 2 to 20 and record the time

required for transferring a packet between the two most distant

VRs in terms of routing hops. We consider two operating

conditions: (1) The best scenario: there is no congestion. (2)
The worst scenario: The on-chip interconnect is congested.

Each router on the way is overloaded, which introduces routing

delays. Table III summarizes the experimental observations. In

the best scenario and with the FPGA divided into 20 regions,

transferring a packet takes 22.04 ns, which is 453× faster than

an equivalent operation by the host. In the worst scenario, with

the same quantity of VRs in an FPGA, the communication

uses ∼2μs, which is 40× faster than an equivalent operation

by the host. Overall, this teaches two major lessons: (1)
implementing on-chip communication support between the

VRs drastically improves the throughput compared to letting

a VM or the host copy the data between the accelerators on a

chip. (2) Achieving higher throughput is tightly associated

with decreasing the number of regions provisioned on a single

FPGA.
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TABLE IV
DESIGN GENERATION TIME FOR IMPLEMENTATION OF RESNET WITH

VIVADO AND THE PROPOSED FRAMEWORK IN MINUTES

Multi-Tenant ResNet Baseline ResNet

Tasks Perfor.
Exploration

Graph
Partitio
ning

Component
Implem

Synthesis P&R

Time 12.6 sec 3.6 sec 4.63 h 3.2 h 6.9h
Ratio ∼0% ∼0% ∼99.9% 31.6% 68.31%

Total (hours) 4.63 h ↑ (2.18 ×) 10.1h

C. Productivity
With the continuous growth of CNNs parameters and depth,

improving productivity is an important factor in hardware

design. This section shows how the proposed flow can leverage

component reuse to reduce compile-time and implementation

cycles. Table IV presents the time in hours to generate the

design checkpoint with both rapidwright and vivado. ResNet

topology reuse 72% of its layers. The proposed framework

takes advantage of that properties to achieve a 2.18× produc-

tivity.

V. CONCLUSION

This paper proposes a framework to accelerate model in-

ference on a multi-tenant FPGA Cloud Platform. The cloud

architecture provides an FPGA abstraction to the users, which

consists in dividing the FPGA into ”Virtual Regions.” The

architecture also features a shell layer that enables fast ac-

cess to FPGA resources and inter-VRs communication. The

framework takes the computational graph of the CNN model

inference as input. Then, it performs an intensive search in the

form of a quadratic optimization problem to determine each

layer’s highest degree of parallelism considering the platform

constraints. The graph is then partitioned, and the resulting

sub-graphs are allocated to the VRs such that the commu-

nication latency is minimized. Experiments and results show

that our approach improves latency and maximum frequency,

with little to no impact on the number of resources used.

Our workflow is designed in a modular fashion, allowing easy

integration for new layer types. In future works, we intend to

expand to a wider variety of neural networks and report power

and energy consumption.
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