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ABSTRACT. Representations of certain vertex algebras, here called of
CohFT-type, can be used to construct vector bundles of coinvariants
and conformal blocks on moduli spaces of stable curves [DGT2]. We
show that such bundles define semisimple cohomological field theories.
As an application, we give an expression for their total Chern character
in terms of the fusion rules, following the approach and computation in
[MOP*2] for bundles given by integrable modules over affine Lie alge-
bras. It follows that the Chern classes are tautological. Examples and
open problems are discussed.

Vertex algebras, fundamental in a number of areas of mathematics and
mathematical physics, have recently been shown to be a source of new con-
structions for vector bundles on moduli of curves [FBZ, DGT2]. In par-
ticular, given an n-tuple of modules M? over a vertex algebra V satisfying
certain natural hypotheses (stated in §2.1), one may construct the wvector
bundle of coinvariants V4(V; M®) on the moduli space Mg,n of n-pointed
stable curves of genus g [DGT2]. The fiber at a pointed curve (C,FP,) is
the vector space of coinvariants, i.e., the largest quotient of ®?_; M* by the
action of a Lie algebra determined by (C, P,) and the vertex algebra V.

Such vector bundles generalize the classical coinvariants of integrable mod-
ules over affine Lie algebras [TK, TUY]. Bundles of coinvariants from vertex
algebras have much in common with their classical counterparts. For in-
stance, both support a projectively flat logarithmic connection [TUY, DGT1]
and satisfy factorization [TUY, DGT2], a property that makes recursive ar-
guments about ranks and Chern classes possible.

Following [MOP™2], bundles of coinvariants from integrable modules over
affine Lie algebras give cohomological field theories (CohFTs for short). Here
we show the same is true for their generalizations. We say that a vertex
algebra V is of CohFT-type if V satisfies the hypotheses of §2.1. We prove:

Theorem 1. For a vertex algebra V' of CohFT-type, the collection consisting
of the Chern characters of all vector bundles of coinvariants from finitely-
generated V -modules forms a semisimple cohomological field theory.
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In particular, the ranks of the bundles of coinvariants form a topological
quantum field theory (TQFT), namely, the degree zero part of the CohFT.
As such, the ranks are recursively determined by the fusion rules, that is,
the dimension of spaces of coinvariants on a three-pointed rational curve
(Proposition 3.2.1). The fusion rules have been computed in the literature for
many classes of vertex algebras of CohFT-type (see §5 for a few examples).

In fact, the CohFTs from Theorem 1 are determined by the fusion rules.
Indeed, after work of Givental and Teleman [Givl, Giv2, Tel|, a semisimple
CohFT is determined by its TQFT part together with some additional struc-
ture (see also [Pan]). As in [MOP™"2], the explicit computation of the Atiyah
algebra giving rise to the projectively flat logarithmic connection allows one
to determine the recursion. As the Atiyah algebra in the case of bundles
of coinvariants from vertex algebras was determined in [DGT1], one is able
to extend the reconstruction of the CohFTs of coinvariants from affine Lie
algebras in [MOP™2] to the general case of vertex algebras.

Namely, following [MOP™2], there exists a polynomial Py (ae) with coef-
ficients in H* (Mg,n), explicitly given in §4, such that the following holds:

Corollary 1. For a vertex algebra V' of CohFT-type and an n-tuple M* of
simple V -modules with M* of conformal dimension a;, the Chern character
of the vector bundle of coinvariants V,(V; M®) is

ch (Vg(V; M®)) = Py(as) in H* (M)

By Corollary 1, Chern classes of bundles of coinvariants defined by vertex
algebras of CohF'T-type lie in the tautological ring of M, . As an explicit

example of the classes, the first Chern class in Picg(M,,,) is given by:

Corollary 2. Let V' be a vertex algebra of CohFT-type and central charge c,
and let M" be simple V-modules of conformal dimension a;. Then

c1 (Vg(V; M®)) = rank V,y (V; M®) (;)\ +> aﬂ/h’) — bireOier — > bi:1i:1,
izl il

with by = Y aw -rankVy_1 (V;M* @ W @ W)
Wwew

and b= Y aw -rankV; (Vi M' @ W) -rank V,_; (V; M @ W').

wew

Here # is the set of finitely many simple V-modules; ayy is the conformal
dimension of a simple V-module W (§1.3); for I C [n] = {1,...,n}, we set
M! := ®;c;M?; and the last sum is over 4, I such that i € {0,...,¢9} and
I C [n], modulo the relation (i,I) = (¢ — i, I¢).

As for the first Chern class in Corollary 2, the Chern classes depend on
the central charge of the vertex algebra and the conformal dimensions (or
weights) of the modules. Since V' is of CohFT-type, the central charge and
the conformal dimensions of the modules are rational [DLM?2].
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Plan of paper: We start in §1 with some background on vertex algebras.
In particular, there we describe the sheaf of coinvariants V,(V; M*®) and its
dual, the sheaf of conformal blocks. In §2 we review a selection of results on
vector bundles defined by representations of vertex algebras of CohFT-type,
mainly from [DGT1] and [DGT2], which will be used to prove the statements
above. Theorem 1 is proved in §3 and Corollary 1 in §4. In §5 we review
the invariants necessary to compute the Chern classes in several examples,
including the moonshine module vertex algebra V% and even lattice vertex
algebras. We discuss the problem for commutant and orbifold vertex alge-
bras, illustrating with parafermion vertex algebras, and orbifolds of lattice
and parafermion vertex algebras.

From this and prior work, it is clear that the vector bundle of coinvariants
from modules over vertex algebras of CohFT-type have a number of prop-
erties in common with their classical analogues, for which much has already
been discovered. For instance, bundles of coinvariants defined from modules
over affine Lie algebras are particularly interesting on My ,,, where they are
globally generated, and their sections define morphisms [Fak|. In particular,
by studying their Chern classes one can learn about the maps they define.
In §6 we discuss questions one might explore with this in mind.

1. BACKGROUND

Here we briefly review vertex algebras, their modules, related Lie algebras,
and the vector spaces of coinvariants they define. We refer the reader to
[FHL, LL, FBZ, DGT1, DGT2] for details. We use notation as in [DGT?2],
where further information and references on these topics can be found.

1.1. The Virasoro algebra. The Witt (Lie) algebra Der K is the Lie alge-
bra C((2))9. generated by L, := —2PT19,, for p € Z, with Lie bracket given
by [Lp, Lql = (P — @) Lp+q-

The Virasoro (Lie) algebra Vir is a central extension of Der K which is
generated by a formal vector K and the elements L, for p € Z, with Lie
bracket given by

1
[Ka Lp] =0, [Lpa Lq] = (p - Q)Lerq + 12

A representation of Vir has central charge ¢ € C if K € Vir acts as ¢ -id.

(p3 - p)5p+q,0 K.

1.2. Vertex operator algebras. A wvertex operator algebra is a four-tuple
(V, 1V,w,Y(-,z)) with: V = @®;>0V; a Z>¢-graded C-vector space with
dim V; < oo; two distinguished elements 1V € Vj (the vacuum vector) and
w € Va (the conformal vector); a linear map Y (-,2): V — End(V) [z,27]
that assigns to A € V the vertex operator Y (A, z) := 3 ez Az~ 1. These
data are required to satisfy suitable axioms, see e.g., [DGT2, §1.1]. We re-
view below some of the consequences which will be used in what follows.
When no confusion arises, we refer to the four-tuple as V.
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The Fourier coefficients of the fields Y(+,z) endow V with a series of
products indexed by Z, that is, A *; B := A B, for A,B € V. These
products are weakly commutative and weakly associative.

The conformal structure of V' realizes the Fourier coefficients w(;) as a
representation of the Virasoro algebra on V' via the identifications L, =
W(p+1) and K = c-idy for a constant ¢ € C called the central charge of V.
Moreover, Ly is required to act as a degree operator on V', i.e., Lo|y, = i-idy;,
and L_; (the translation operator) is given by L_1A = A(_Q)IV, for AeV.

As a consequence of the axioms, one has A¢;)Vi C Viyqeg(a)—i—1 for ho-
mogeneous A € V' [Zhu], hence the degree of the operator A ;) is defined as
deg A(;) = deg(A) —i— 1.

1.3. Modules of vertex operator algebras. There are a number of ways
to define a module over a vertex operator algebra V. We take a V-module
M to be a module over the universal enveloping algebra % (V') of V' (defined
by L. Frenkel and Zhu [FZ], see also [FBZ, §5.1.5]) satisfying three finiteness
properties. Namely, we assume that: (i) M is a finitely generated % (V)-
module; (ii) F % (V)v is finite-dimensional, for every v in M; and (iii) for
every v in M, there exists a positive integer k such that F*% (V)v = 0.
These conditions are as in [NT, Def. 2.3.1]. Here, F¥% (V) C % (V) is the
vector subspace topologically generated by compositions of operators with
total degree less than or equal to —k.

E. Frenkel and Ben-Zvi [FBZ, Thm 5.1.6] showed that there is an equiva-
lence of categories between % (V')-modules satisfying property (iii) and the
so-called weak V-modules, which a priori are not graded. However, with
the additional assumptions (i) and (ii), one can show the modules have
a grading by the natural numbers. Such a V-module consists of a pair
(M, YM(‘,z)), where M = @®;>0 M; is a Z>o-graded C-vector space, and
YM(.)2): V = End(M) [z,27'] is a linear function that assigns to A € V
an End(M)-valued vertex operator YM (A, 2) := Y,z A%z_i_l. Moreover,
by condition (i), if A € V' is homogeneous, then A%Mk C Mptdeg(A)—i—1-

The V-modules we work with are also known in the literature as finitely
generated admissible V-modules (see for instance, [ABD] for the definitions
of weak and admissible V-modules).

As for V, one has that M is also naturally equipped with an action of
the Virasoro algebra with central charge ¢, induced by the identification of
wg\g +1) with L,. When M is a simple V-module, there exists ays € C, called
the conformal dimension (or conformal weight) of M, such that Lo(v) =
(deg(v) + apr)v, for every homogeneous v in M [Zhu].

The vertex algebra V' is a module over itself, sometimes referred to as the
adjoint module [LL, §4.1] or the trivial module. In what follows the set of
simple modules over V is denoted # .

1.4. Contragredient modules. Contragredient modules provide a notion
of duality for V-modules. We recall their definition following [FHL, §5.2].
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For a vertex algebra V and a V-module (M = Pi>oM;, YM(—, z)), its con-
tragredient module is (M’, yM (-, z)), where M’ is the graded dual of M,
that is, M’ := @;>oM,’, with M, := Hom¢(M;,C), and YM' (=, 2): V —

7

End (M) [[z, zil]] is the unique linear map determined by
<YM/(A,2)¢,m> = <w,YM (eZLl(—zJ)LOA, 271> m>

for Ae V, ¢ e M' and m € M. Here (-,-) is the natural pairing between a
vector space and its graded dual.

1.5. The Lie algebra ancillary to V. The Lie algebra ancillary to V is
defined as the quotient

V) =&(V) = (VeC(t))/mo,

where ¢ is a formal variable and 0 := L_; ® id¢(y) +idv @ d;. The image of
At e VRC((t) in £(V) is denoted by A Observe that £(V) is spanned
by series of the form }7;~; ¢; Apj, for A € V, ¢; € C, and ip € Z. The Lie
bracket is induced by

?
A Bp] =3 (k> (A0 B) iy
k>0
There is a canonical Lie algebra isomorphism between £(V') and the current
Lie algebra in [NT]. In what follows, the formal variable ¢ is interpreted as
a formal coordinate at a point P on an algebraic curve. A coordinate-free
description of £(V') is provided in §1.6.
For a V-module M, the Lie algebra homomorphism £(V) — End(M)

defined by

Z ciAp) — Res.=o YM(A, 2) Z c; 2 dz

i>ig i>ig
induces an action of £(V) on M. For instance, A acts as the Fourier
coefficient A(;y of the vertex operator YM(A,z).

1.6. The vertex algebra bundle and the chiral Lie algebra. Let (C, P,)
be a stable n-pointed curve. As illustrated in [FBZ] for smooth curves and
in [DGT2] for stable curves, one can construct a vector bundle ¥¢ (the ver-
tex algebra bundle) on C' whose fiber at each point of C' is (non-canonically)
isomorphic to V. For a smooth open subset U C C admitting a global co-
ordinate (e.g., if there exists an étale map U — A'), the choice of a global
coordinate on U gives a trivialization ¥¢|y = V' x U. The vertex algebra
bundle ¥¢ is constructed via descent along the torsor of formal coordinates
at points in C. The bundle ¥ is naturally equipped with a flat connection
V: Yo — Yo ® we such that, up to the choice of a formal coordinate ¢; at
P;, one can identify

(1) H° (D}, Ve @ we/ImV) = £, (V).
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Here D;% is the punctured formal disk about the marked point P; € C. As
shown in [FBZ, §§19.4.14, 6.6.9], the isomorphism (1) induces the structure
of a Lie algebra independent of coordinates on the left-hand side.

The chiral Lie algebra is defined as

ZLovp,(V) = H° (C\ P, Yo ® wo/ImV) .
This space has indeed the structure of a Lie algebra after [FBZ, §19.4.14].

1.7. The action of the chiral Lie algebra on V-modules. Consider the
linear map ¢ given by restriction of sections from C'\ P, to the n punctured
formal disks DIX% using the formal coordinates t; at B;:

o Zovp, (V) = @121 L4, (V).

After [FBZ, §19.4.14], ¢ is a homomorphism of Lie algebras. The map ¢
thus induces an action of L\ p, (V) on £(V)®"-modules which is used to
construct coinvariants.

1.8. Sheaves of coinvariants and conformal blocks. We briefly recall
how to construct sheaves of coinvariants on M, and refer to [DGT1, §5]
for a detailed exposition. To a stable n-pointed curve (C, P,) of genus g such
that C'\ P, is affine, and to V-modules M, ... M", we associate the space
of coinvariants

VIV M%) op) =My, , ) = M/ Lo (V) - M7,

where M*® = ®"_; M?. Thanks to the propagation of vacua, it is possible to
define these spaces also when C'\ P, is not affine via a direct limit. Carrying
out the construction relatively over M, ,, one defines the quasi-coherent
sheaf of coinvariants Vy(V; M®) on M, assigned to M®. The dual sheaf
V,(V; M®*)T is the sheaf of conformal blocks assigned to M®.

A brief history of coinvariants and conformal blocks and of the work on
their properties can be found in [DGT2, §§0.1 and 0.2].

2. VECTOR BUNDLES OF COINVARIANTS

Here we review a number of results about vector bundles of coinvariants
defined from representations of vertex algebras satisfying certain natural
hypotheses. Motivated by the new results proved here, we name vertex
algebras satisfying such hypotheses as vertex algebras of CohFT-type.

2.1. Vertex algebras of CohFT-type. We define a vertex algebra V to
be of CohFT-type if V is a vertex operator algebra such that:
(1) V = @iez., Vi with Vo = C;
(IT) V is rational, that is, every finitely generated V-module is a direct
sum of simple V-modules; and
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(ITT) V is Ca-cofinite, that is, the subspace
C2(V) := spang {A(,Q)B : A, B e V}

has finite codimension in V.

The set # of simple modules over a rational vertex algebra is finite,
and a simple module M = @;>0 M; over a rational vertex algebra satisfies
dim M; < co [DLM1].

The assumptions (I)-(III) on the vertex algebra have been found in [DGT?2]
to imply that the sheaves of coinvariants are in fact vector bundles:

Theorem 2.1.1 ([DGT2, VB Corollary|). For a vertex algebra V' of CohFT-
type, the sheaf of coinvariants V4,(V; M®) assigned to finitely generated ad-
missible V-modules M, ..., M™ is a vector bundle of finite rank on the mod-
uli space Mg.p,.

Since V is rational and Cs-cofinite, the central charge of V' and the con-
formal dimension of every simple V-module are rational numbers [DLM2].
When V is of CohFT-type, the Chern character of the bundles of coinvariants
form a cohomological field theory, as we verify below, hence the name.

2.2. The connection. Following [DGT1], the vector bundles V,(V;M?*)
support a projectively flat logarithmic connection. We can explicitly describe
this using the language of Atiyah algebras [BS]. Given a line bundle L on a
variety, the Atiyah algebra Ay, is the sheaf of first order differential operators
acting on L. An analoguous construction holds for a virtual line bundle L?,
where z € C, yielding the Atiyah algebra x Ay, [Tsu]. With this terminology,
the connection on Vy(V; M*) is explicitly described as follows:

Theorem 2.2.1 ([DGT1]). For n simple modules M* of conformal dimen-
sion a; over a vertexr algebra V of CohFT-type and central charge c, the
Atiyah algebra SAN + Y1 a; Ay, with logarithmic singularities along the
boundary A acts on Vg (V; M®), specifying a twisted logarithmic D-module
structure.

Here A is the Hodge line bundle on Mg,n; U, is the cotangent line bundle
at the i-th marked point on ﬂg,n; and A = Mg,n \ My is the locus
of singular curves. Theorem 2.2.1 generalizes the analogous statement for
bundles of coinvariants of integrable representations at a fixed level over
affine Lie algebras [Tsu]. This is proved more generally for quasi-coherent
sheaves of coinvariants in [DGT1, §7].

2.3. Chern classes on M, ,. The explicit description of the connection
determines the Chern character of the restriction of V,(V; M®) on M, ,:
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Corollary 2.3.1 ([DGT1, Corollary 2]). LetV be a vertez algebra of CohFT-
type and central charge c, and let M"Y, ..., M™ be n simple V-modules of
conformal dimension a;. Then

ch (Vg(V; M*®)) = rank Vg (V; M®) - exp (; A+ Zcm/%) € H"(Mgy,).
i=1

Here A = ¢1(A) and ¢; = ¢1(¥;). The corollary follows from: (a) a
vector bundle F over a smooth base S with an action of the Atiyah algebra
Apea, for L — S a line bundle and a € Q, satisfies ¢1(F) = (rank E) aL
[MOP1, Lemma 5]; and (b) the projectively flat connection implies that
ch(E) = (rank E) exp(c1 (F)/rank E) [Kob, (2.3.3)].

From Corollary 2.3.1, the total Chern class is

rank Vg (V;M*®)
) € H"(Mgy,) .

c(Vy(V; M®)) = (1 n % A+ f: ait;
=1

2.4. The factorization property. After [DGT2, Factorization Theorem]|,
for V' of CohFT-type, the bundles V,(V'; M*) satisfy the factorization prop-
erty. Assume that the curve C has one nodal point @, let C be the partial
normalization of C' at @, and let Qo = (Q+,Q—) be the pair of preimages of
Qin C.

Theorem 2.4.1 ([DGT2, Factorization Theorem)). Let V' be a vertez algebra
of CohFT-type. Then

V(ViM*)op) = D V(V?M.@’W@W,)(

C,PaliQs)
Wwew

When C = C4 U C_ is disconnected, with Q1+ € C, one has:

V(ViM* @ W@ W)z p o0 ZVVIMLEW) @V (VM2 oW,

where Xy = (C4, Po|c, UQ+), and M} are the modules at the P, on Cx.
The factorization property extends in families of nodal curves. More gen-
erally, the sewing property holds, extending the factorization property over
the formal neighborhood of families of nodal curves [DGT2].

2.5. Finding ranks through recursions. As a consequence of the fac-
torization property, the rank of Vy(V;M?®), equal to the dimension of the
vector space of coinvariants V (V; M ')(07 p.) at any pointed curve (C, P,),
can be computed when (C, P,) is maximally degenerate. Using propagation
of vacua [FBZ, §10.3.1] and inserting points with the adjoint module V' if
necessary, one may reduce to the case when all irreducible components of
C are rational curves with three special points, and thus the rank may be
expressed as sum of products of dimensions of vector spaces of coinvariants
on three-pointed rational curves.

As the following two examples show, formulas for the ranks can be readily
identified in some simple cases. A third such recursive calculation is carried
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out for bundles defined from modules over even lattice vertex algebras in
Example 5.2.5.

Example 2.5.1. The rank of V{(V;V) on Mj; equals the cardinality of
the set of simple V-modules #'. This follows from factorization and the
equality (2) in the next section.

Example 2.5.2. Let V be a vertex algebra of CohFT-type with no nontrivial
modules. Bundles of coinvariants of modules over V' on M, ,, have rank 1.

In §3.2 we use the formalism of semisimple TQFTs to reconstruct the
ranks from the fusion rules. Rank computations for bundles defined from
modules over even lattice vertex algebras are done from this perspective in
Examples 5.2.4 and 5.2.6.

3. PROOF OF THEOREM 1 AND TQFT COMPUTATIONS

In this section, using the results from §2, we prove Theorem 1, show-
ing bundles of coinvariants defined by representations of vertex algebras of
CohFT-type give rise to cohomological field theories (for more on CohFTs,
see e.g., [MOPT2, §2]). Theorem 1 is proved as in the case of coinvari-
ants from affine Lie algebras treated in [MOP™2, §3], and we follow their
approach.

3.1. The CohFT of Chern characters of coinvariants. Let us start by
defining the data of the CohFT. Let V be a vertex algebra of CohFT-type.
As V is rational, the set # of simple V-modules is finite. The Hilbert space
of the CohFT is F(V) := Q” = ®weyQhw. The CohFT is defined by the
classes
ch (Vy(V; M*)) € H*(Mgy)
for 29 —2+n > 0 and V-modules M!,... M" viewed as elements of F(V)
(hence necessarily finitely-generated), and extending by linearity. The vector
space has a pairing 7 defined by n(har, hn) = dpr,n7, where N’ is the contra-
gredient of N. In addition, F(V') has a commutative, associative product x*
defined by
har* hy := Y dim Vo (V; M, N, W') hy,
wew

for M, N € # and extending by linearity, with unit hy corresponding to
the adjoint module V. This product extends linearly to the fusion algebra
F(V)c :=F(V)®gC. This is a commutative, associative Frobenius algebra
with unit. In particular, one has n(a x b, ¢) = n(a,b* ¢), for a,b,c € F(V)c.

Proof of Theorem 1. The axioms necessary to form a CohFT are verified
thanks to the factorization property in families [DGT2, Thm 8.2.2], propa-
gation of vacua in families ([FBZ, §10.3.1] for a single smooth pointed curve,
and [Cod, Prop. 3.6] for families of stable curves, see also [DGT1, Thm 5.1]),
and the fact that given simple V-modules M and N, one has

(2) rank Vo(V; M, N, V) = dp N
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This follows from the identification of the three-point, genus zero confor-
mal blocks for simple V-modules M, N, and W with the vector space
Hom 41y (A(W) ®@a¢vy Mo, No) [FZ, Li]. Here A(V) is Zhu's semisimple
associative algebra assigned to V', and A(W) is an A(V)-bimodule general-
izing the algebra A(V) for a V-module W [FZ]. For W = V, the space of
conformal blocks is thus isomorphic to Hom 4y (Mo, No). The assumption
that M and N are simple V-modules gives that My and Ny are simple A(V)-
modules, and thus (2) follows from Schur’s lemma. We note that statements
asserting (2) can be found in case V = V' or for even lattice vertex algebras
in [Hua, FHL, DL], and (2) is implicitly assumed elsewhere in the literature.
Finally, the CohFT is semisimple, or equivalently, the Frobenius algebra
F(V)c is semisimple. This follows from the general argument in [Bea, §5
and Prop. 6.1] using contragredient duality in genus zero, non-negativity of
ranks, and the factorization property. Contragredient duality, that is,

(3) rank Vo (V; M',..., M") =rank Vo (V; (MY, ..., (M"™)),

is obtained in the affine Lie algebra case as a consequence of the stronger
statement [Bea, Prop. 2.8]. In our case, we proceed as follows: By propaga-
tion of vacua, we can assume that enough of the modules M* are equal to V,
and by the factorization property, we can reduce to compute the rank over
a totally degenerate stable rational curve, such that each component has at
least one marked point where the adjoint module V' is assigned. Then (3)
follows from (2). O

3.2. Computing the TQFT. As a consequence of Theorem 1, the ranks
of vector bundles of coinvariants of vertex algebras of CohFT-type form a
semisimple TQFT. Hence all ranks are determined by the dimensions of
vector spaces of coinvariants on a rational curve with three marked points.
We describe here the reconstruction of the TQFT of the ranks from the
fusion rules following results on semisimple TQFTs [Tel, LV].

Let F(V)c be the fusion ring given from the semisimple TQFT determined
by a vertex algebra V' of CohFT-type, as in §2.1. Let {e;}; be a semisimple
basis of F(V), that is, n(e;, ej) = d; j and e; x ej = J; jA;e;, for some \; € C.
The values ); are known as the semisimple values of the TQFT. Let {e'};
be the dual basis to {e;};.

Proposition 3.2.1. The ranks of the vector bundles of coinvariants on Mg,
assigned to n finitely-generated modules over a vertex algebra V- of CohF'T-
type is given by the following linear functional on F(V)&":

2 1) ;
Z)\ (g=1)+n e ‘®e.
\—,_/
n times

The statement is a special case of [LV, Prop. 4.1] applied to our TQFT.
Examples are given in §5. In the case of coinvariants from modules over affine
Lie algebras, the above formula reproduces the classical Verlinde numbers
after some algebraic manipulations (see e.g., [Bea, Gol]).
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4. CHERN CLASSES ON Mg,

In this section we prove Corollary 1 following [MOP*2]. We work with
a vertex algebra V of CohFT-type. In particular the set # of simple V-
modules is finite. The Chern characters of bundles of coinvariants are given
by the polynomial Py (ae) defined as a sum over stable graphs. We start by
reviewing stable graphs below, and then define the contributions to Py (ae)
corresponding to vertices, edges, and legs.

4.1. Stable graphs and module assignments. A stable graph is the dual
graph of a stable curve. We only recall the basic features; for more details
see, e.g., [PPZ]. A stable graph I' comes with a vertex set V(I'), an edge
set E(T'), a half-edge set H(I'), and a leg set L(I'). Each leg has a label
i€ {1,...,n}, and this gives an isomorphism L(I') = {1,...,n}. Each edge
e € E(T) is the union of two half-edges e = {h,h'}, with h,h' € H(T'). Each
vertex v € V(I') has a genus label g, € Z>o and a valence n, counting the
number of half-edges and legs incident to v. The genus of the graph I is
defined as Y ,ev(r) 9o + h* (L), where h'(T') is the first Betti number of T.

A stable graph I of genus g with n legs identifies a locally closed stratum
in M, ,, equal to the image of the glueing map of degree |Aut(T')|:

gr: H Mgv»nv = MF - mgvn'
veV ()
Given a stable graph I', a module assignment is a function of type
p: HT) — W

such that for (h,h') € E(T'), one has p(h') = u(h)’, that is, u(h’) is the
contragredient module of u(h) (§1.4).

4.2. Vertex contributions. Fix a stable graph I' and a module assignment
w: H(I') — #. To each vertex v of T is assigned a collection of simple V-
modules M% ..., M one for each leg or half-edge incident to v: for each
leg i incident to v, the module M?" is assigned to v; and for each half-edge h
incident to v, the module u(h) is assigned to v. The vertex contribution is
defined as

Cont,(v) :=rank V, (V;Mil, . ,Minv> .

4.3. Edge contributions. Fix a stable graph I' and a module assignment
p: H(I') — # . For each edge e = {h, h'}, let a,) be the conformal dimen-
sion of u(h). The edge contribution is defined as

1 — %u(m) Wntpr)
Yp + Y

This is well defined since pu(h) and p(h’) have equal conformal dimension.

Cont,(e) :=
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4.4. The polynomial Py (a,). Following the computations of [MOP*2],
consider the following polynomial with coefficients in H* (ﬂg,n);

o) := é/\Z|Aut (He““z’l H Cont H Cont )

veV(I) ecE(l

where c¢ is equal to the central charge of V. The sum in the formula is over
all isomorphism classes of stable graphs I' of genus g with n legs, and over
all module assignments p. For degree reasons, the exponentials are finite
sums, and Py (a,) is indeed a polynomial.

For the vector bundle of coinvariants of modules over an affine vertex alge-
bra, [MOP*2] shows that ch (V(V; M*®)) = Py (as), where V = L,(g) is the
simple affine vertex algebra, and M" is a simple Ly(g)-module of conformal
dimension a;, for each i. We extend this result to prove Corollary 1:

Proof of Corollary 1. From [MOP"2, Lemma 2.2], a semisimple CohFT is
uniquely determined by the restriction of the classes to M, ,,. More precisely,
the results in [MOP™2] imply that any semisimple CohFT whose restriction
to My, is as in Corollary 2.3.1 for some ¢, a; € Q is given by an expression
as in the statement. (]

5. EXAMPLES AND PROJECTS

5.1. Vertex algebras with no nontrivial modules. We start with coin-
variants constructed from a holomorphic vertex algebra V of CohFT-type,
that is, a vertex algebra of CohFT-type such that V is the unique simple
V-module. Any bundle of coinvariants of modules over V on M, ,, has rank
1 and first Chern class equal to §A, where c is the central charge of V.
The rank assertion is in Example 2.5.2. The first Chern class follows from
Theorem 1, as the conformal dimension of the adjoint module is zero.

Example 5.1.1. There are 71 self-contragredient, holomorphic vertex alge-
bras of CohFT-type with conformal dimension 24. This very special class
includes the moonshine module vertex algebra V% (whose automorphism
group is the monster group), and the vertex algebra given by the Leech lat-
tice [LS1]. For such V = @2,V;, the weight one Lie algebra V; is either
semi-simple, abelian of rank 24, or 0. If V; is abelian of rank 24, then V is
isomorphic to the Leech lattice vertex algebra. If V; = 0, it is conjectured
that V = V8 Vertex algebras with the 69 other possible Lie algebras V;
have been constructed in [LS1]. Each gives a vector bundle of coinvariants
of rank 1 and first Chern class 12\.

5.2. Chern classes of bundles from even lattice vertex algebras. As
we illustrate below, even lattice vertex algebras are of CohFT-type, hence fol-
lowing Theorem 2.1.1, their simple modules define vector bundles on M, ,.

For the definitions of lattice vertex algebras we recommend [Bor, FLM2,
Don, LL]. We briefly review the notation. Let L be a positive-definite even
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lattice. That is, L is a free abelian group of finite rank d together with
a positive-definite bilinear form (-,-) such that (a,«) € 2Z for all o € L.
One assigns to L the even lattice vertex algebra Vi. This has finitely many
simple modules {V4x |\ € L'/L}, where L' :={\ € L®zQ|(\, ) € Z,
for all 4 € L} is the dual lattice [Don]. Contragredient modules are deter-
mined by V7, y = Vi_x. The following statement follows from results in the
literature.

Proposition 5.2.1 ([Bor, FLM1, Don, DL, DLM2]). For a positive-definite
even lattice L of rank d, one has:
i) The lattice vertex algebra Vi, is of CohF T-type with central charge ¢ = d;
ii) The conformal dimension of the module Vi 1y is min gep, M'
iit) For the fusion algebra F(Vi)c = ®xer/LChy, the product is gwen by

hay * by = g4

Proof. By [Bor, FLM1] V7, satisfies property (I), by [Don] V7, is rational,
and hence satisfies property (II), and by [DLM2, Proposition 12.5] V7, is
Cy-cofinite, so satisfies property (III). The central charge is computed in
[FLM1, Theorem 8.10.2], and the conformal dimension is deduced implicitly
in [Don, page 260]. The fusion rules are described in [DL, Chapter 12]. [

Proposition 5.2.1 contains all ingredients needed to compute ranks of bun-
dles of coinvariants from modules over Vi applying Proposition 3.2.1 and
their Chern characters applying Corollary 1. Let us discuss some examples.

Remark 5.2.2. There are a number of lattices L one may use to construct
the vertex algebras Vi, and it is straightforward to cook up a lattice of
almost any rank, whose discriminant group L’/L has arbitrary order. The
order of the discriminant is the determinant of the Gram matrix for a basis
of the lattice. For instance, to obtain L'/L = Z/2kZ, for k € N, one can
take a one-dimensional lattice with basis vector e such that (e,e) = 2k.

For any root system (see e.g., [KMRT, pgs 352-355]), there is a root lattice
A, and for those of type A, D, E, F, and G, the lattice is even, and gives
rise to a vertex algebra V). Every irreducible root system A corresponds
to a simple Lie algebra ga. If one normalizes the associated bilinear form
(encoded by the Dynkin diagram), then in these cases one has V) = Li(ga),
the simple affine vertex algebra at level 1 (see [FLM1] and [LL, Rmk 6.5.8]
for details). The weight lattice gives the dual lattice A’. For instance, for
A = A,,—1 the root lattice has rank m — 1, so that V) = Li(sl,,) has
conformal dimension m — 1.

One may also construct vertex algebras Vi, by taking L to be the direct
sum of lattices described above, getting quotient lattices L'/L that are of
the form Z/miZ & - - - ® Z/myZ for arbitrary my, ..., mg. Such lattices may
be interpreted as Mordel-Weil lattices (see e.g., [Shi, SS]).

The root lattices are very special, and one may easily construct more
general lattices with discriminant groups isomorphic to Z/mZ. For instance
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if m is prime and congruent to 0 or 3 mod 4, this can be done with a rank 2
even lattice (the order of the discriminant group for an even lattice of rank 2
is always congruent to 0 or 3 mod 4). As the diversity of quadratic forms
cannot be overstated (see e.g., [Con2, Conl, BH]), there are many potentially
interesting classes from lattice vertex algebras.

Example 5.2.3. Let V;, be a vertex algebra given by an even unimodular
lattice of rank d. Because the lattice is unimodular, V7, is self-contragredient
and it has no nontrivial modules. In particular, any bundle of coinvariants
from modules over Vj, has rank one and first Chern class g)\.

Example 5.2.4. Consider an even lattice L of rank d with L'/L = Z/27.

The vertex algebra Vi has two simple modules V' = V; and W. From

Proposition 5.2.1, the product in F(Vy)c = Chy @ Chyy is given by
hv*h\/:hv, hv*hW:hw, hw*hW:hv.

With terminology as in §3.2, a semisimple basis for F (V)¢ is

1 1
e 1= ﬁ(hv + hw), ey 1= ﬁ(hv — hw),

1
with semisimple values both equal to v/2. One has hy = E(el + e2) and
1
hw = E(el — e2). Applying Proposition 3.2.1, the rank of the bundle
Vo (V;VEP @ W) on Mgy, for p+q=nis

—24n 1 1
rank V, (V; Ve ® W®q> N (ﬂn + (—l)q\/in)

=29 5q, even-

In particular, the rank vanishes when ¢ is odd. Applying Corollary 1, when
q = 2r, the Chern character is

chV, (V; Ve W®2r> =

g—h' () 2r — eo(¥ntiyr)
S ey € T T 2 )
r | U‘t(r)‘ i=1 ecE(D) 7/)h+¢h’

Here a is the conformal dimension of W. The sum in the formula is over
those isomorphism classes of stable graphs I' of genus g with n legs such
that for each vertex, the number of assigned W at the incident legs is even.
Note that the only module assignment p contributing nontrivially to the
polynomial Py in this case is pu: h — W, for all half-edges h.

Example 5.2.5. Let L be an even lattice such that L'/L = Z/mZ, for
m > 2. Let # = {V = Wy,...,Wp_1} be the set of simple Vz-modules.
The fusion rules from [DL] give

rank Vo (V; W; @ W; @ W) = it jtk=p0-
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This implies that

m

. Xn QNm—1 _
rank Vo (Vp; W5 @ - @ W, 17" ) = Os~mt i =0
and by induction on the genus and the factorization property, we can further
deduce that

. ® N — _

(4) rank Vo (Vi; W™ @ - @ W71 ) = mf oSt =0
Example 5.2.6. One can also obtain the rank found in Example 5.2.5 using
Proposition 3.2.1. Namely, for an even lattice L such that L'/L = Z/mZ, a
semisimple basis for the fusion ring F(V7)c = @7, Ch; is

1 m—1 -
ei::—Zp”hj, fori=0,...,m—1,
vm =

where p € C is a primitive m-th root of unity. One checks e; x e; = \/me;,
hence the semisimple values are all /m. As in Example 5.2.4, one applies
Proposition 3.2.1 to recover (4).

Remark 5.2.7. Examples 5.2.4-5.2.6 show that ranks of bundles of coinvari-
ants from modules over an even lattice L such that L'/L = Z/mZ coincide
with ranks of bundles of coinvariants from modules over the affine Lie algebra
sl, at level one. However, while the ranks depend only on L’/L, the Chern
characters depend additionally on the quadratic form of L, responsible for
the conformal dimension of the irreducible Vi -modules. It is reasonable to
expect that classes from lattice vertex algebras could give a collection of
CohFTs larger than the one obtained from the affine Lie algebra case.

5.3. Commutants and the parafermion vertex algebras. For a vertex
algebra V and a vertex subalgebra U of V', one may construct the commutant,
or coset, vertex algebra Comy (U) of U in V [FZ]. It would be interesting to
study the Chern classes for bundles of coinvariants of modules over Comy (U)
for pairs U C V such that Comy (U) is of CohFT-type.

Conjecturally, if U and V' are both of CohFT-type, then Comy (U) is also
of CohFT-type. However, U and V need not be of CohFT-type: one such
example is given by the well-studied family of cosets of the Heisenberg vertex
algebra in the affine vertex algebra Ly (g) for a finite-dimensional simple Lie
algebra g at level £ € Z. The Heisenberg vertex algebra is not rational,
nor Cy-cofinite (see e.g., [FBZ| for a discussion of the Heisenberg vertex
algebra). Nevertheless, the parafermion vertex algebras are known to be of
CohFT-type [DR] (see also [ALY, DLWY, DLY, DW1, DW2, DW3|). These
are related to W-algebras [ALY]. The necessary invariants for expressing
the Chern classes of bundles of coinvariants of modules over parafermion
vertex algebras are known from [DKR, DR, ADJRJ, and one could proceed
as in §5.2.
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5.4. Orbifold vertex algebras. Let GG be a subgroup of the group of au-
tomorphisms of a vertex algebra V. The orbifold vertez algebra V' consists
of the fixed points of G in V. In case V is of CohFT-type, its full group of
automorphisms G is a finite-dimensional algebraic group [DG2]. If G is also
solvable, then V& will also be of CohFT-type [Miy, CM]. Conjecturally, V&
is always of CohFT-type. We note that even if V' is holomorphic, and there-
fore has no non-trivial modules, the vertex algebra V& will not generally be
holomorphic [GK, DVVV, DPR].

One could for instance consider orbifold vertex algebras created from
parafermion vertex algebras. In some cases, the simple modules and the
fusion rules are known in the literature [JW1, JW2, JW2].

Similarly, one could construct orbifold vertex algebras starting from lat-
tice vertex algebras. In [BE], simple modules for orbifolds V%, where G is
generated by an isometry of order two, are classified and their fusion rules
are given. Explicit examples with root lattices and Dynkin diagram auto-
morphisms are given in [BE, §4].

6. QUESTIONS

Summarizing, bundles of coinvariants defined by modules over vertex al-
gebras of CohFT-type share three important properties with their classical
counterparts: They (i) support a projectively flat logarithmic connection
[TUY, DGT1]; (ii) satisfy the factorization property, a reflection of their
underlying combinatorial structure [TUY, DGT?2]; and (iii) give rise to co-
homological field theories, as we show here.

As described in Remark 5.2.2, bundles of coinvariants from lattice vertex
algebras are generalizations of those given by affine Lie algebras at level
one. It is natural to expect that other known properties of the classical case
extend to the vertex algebra case, and a number of questions come to mind.

Question 1. Given a simple, simply connected algebraic group G with as-
sociated Lie algebra Lie(G) = g and ¢ € Z-q, the simple vertex algebra
V = Ly(g) is of CohFT-type [FZ, DLM2|. By [BL, Fal, KNRJ, for a smooth
algebraic curve C| there is a natural line bundle D on the moduli stack
Bung(C) of G-bundles on C' such that, for any point P in C, there is a
canonical isomorphism

V (Le(9); Le(8)) ¢ py = H® (Bung(C), DY)

where Ly(g) is the adjoint module over itself. By [Pau, LS2], given V-
modules M*®, there is a line bundle L on the moduli stack of quasi-parabolic

G-bundles ParBung(C, P,), for which V(V; M ’)}LC p,) 18 isomorphic to the

global sections of L on ParBung(C, P,). This geometric picture holds for
stable curves with singularities as well [BF] (see also [BG1]).

The automorphism group Aut(V) of a vertex algebra V' of CohFT-type
is a finite-dimensional algebraic group [DG2]. The connected component
Aut(V)? of Aut(V) containing the identity has been described in a number
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of cases [DGR, DGI1, DG3, DG2|. For instance for V' = L,(g), one has
Lie (Aut(V)?) = Vi = g [DG2]. For V of CohFT-type, can one find a
geometric realization for conformal blocks defined from modules over V', for
instance involving algebraic structures on curves related to Aut(V)?? Ideas
in this direction have been considered in [Uen| and [BZF].

Question 2. Gromov-Witten invariants of smooth projective homogeneous
spaces define base-point-free classes on My ,,; divisors defined from Gromov-
Witten invariants of P = Gr(1,r + 1) are equivalent to first Chern classes
of bundles from integrable modules at level one over sl [BG2, Props 1.4
and 3.1]. Numerical evidence suggests a more general connection between
classes of bundles at level ¢ with Gromov-Witten divisors for Grassmannians
Gr(¢,r + ¢) [BG2]. By Witten’s Dictionary, the quantum cohomology of
Grassmannians can be used to compute ranks of conformal blocks bundles
in type A for any level [Bel]. Are there connections between other Gromov-
Witten theories and the more general bundles of coinvariants studied here?

Question 3. Vector bundles defined by representations of affine Lie algebras
are globally generated in genus zero, and so Chern classes have valuable
positivity properties. For instance, first Chern classes are base-point-free,
giving rise to morphisms [Fak]. Can one give sufficient conditions on vertex
algebras of CohFT-type and their modules so that the vector bundles of
coinvariants are globally generated? Chern classes of bundles from certain
Virasoro vertex algebras are not nef, so further assumptions must be made.

Question 4. Bundles of coinvariants from affine Lie algebras give rise to
morphisms from My, to Grassmannian varieties [Fak]. In the special case
where the Lie algebra is of type A and modules are at level one, we know
the image varieties parametrize configurations of weighted points on rational
normal curves in projective spaces [GS, Gia, GG]|. If Chern classes given by
representations of particular types of vertex algebras are base-point-free, can
one give modular interpretations for the images of their associated maps?

Question 5. Classes associated to bundles of coinvariants on My, defined
by V' = Ly(g) satisfy scaling and level-rank identities, and are zero above
a critical level, allowing one to give sufficient conditions for when they lie
on extremal faces of the nef cone [AGS, BGM2, BGM1]|. Do Chern classes
studied here satisfy similar identities? Can one find criteria to ensure they
lie on extremal faces of cones of nef cycles? Do bundles defined by particular
modules over vertex operator algebras generate extremal rays? Bundles from
vertex operator algebras constructed from exotic lattices may be relevant.

Question 6. In [BG3, Theorem 5.1], using factorization, Verlinde bundles
constructed from level one integrable modules over sl are shown to be
isomorphic to both GIT bundles [BG3|, and to the r-th tensor power of cyclic
bundles studied in [Fed]. Are there other such identifications, for instance
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involving the line bundles of coinvariants on My, constructed from even
lattice theories, as discussed in Example 5.2.57
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