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A B S T R A C T   

Sedimentary basins are attractive for geothermal development due to their ubiquitous presence, high perme
ability, and extensive lateral extent. Geothermal energy from sedimentary basins has mostly been used for direct 
heating purposes due to their relatively low temperatures, compared to conventional hydrothermal systems. 
However, there is an increasing interest in using sedimentary geothermal energy for electric power generation 
due to the advances in conversion technologies using binary cycles that allow electricity generation from 
reservoir temperatures as low as 80 ◦C. This work develops and implements analytical solutions for calculating 
reservoir impedance, reservoir heat depletion, and wellbore heat loss in sedimentary reservoirs that are laterally 
extensive, homogeneous, horizontally isotropic and have uniform thickness. Reservoir impedance and wellbore 
heat loss solutions are combined with a power cycle model to estimate the electricity generation potential. 
Results from the analytical solutions are in good agreement with numerically computed reservoir models. Our 
results suggest that wellbore heat loss can be neglected in many cases of electricity generation calculations, 
depending on the reservoir transmissivity. The reservoir heat depletion solution shows how reservoir tempera
ture and useful lifetime behave as a function of flow rate, initial heat within the reservoir, and heat conduction 
from the surroundings to the reservoir. Overall, our results suggest that in an exploratory sedimentary 
geothermal field, these analytical solutions can provide reliable first order estimations without incurring 
intensive computational costs.   

1. Introduction 

Geothermal energy is a steady and dispatchable power generation 
source with a low carbon footprint. Depending on the temperature and 
enthalpy of the geothermal heat extraction fluid, geothermal energy can 
be used for direct applications, such as heating and cooling or for elec
tricity generation. Geothermal resources from high temperature (T >

180 ◦C) hydrothermal reservoirs of volcanic origin are generally used for 
electricity generation, whereas medium- to low-temperature resources 
(T < 180 ◦C) are predominantly used for direct purposes, such as district 
heating, heating of greenhouses and balneological applications 
(Huenges, 2016; Moeck et al., 2019). 

Over the past decades, however, numerous sedimentary basins have 
been investigated to assess their electric power generation potential 
such as the Molasse basin (Northern Alpine Foreland Basin), the Western 
Canadian foreland basin, the Upper Rhine Graben, and the North 
German basin, to name a few (Clauser, 2006; Agemar et al., 2014; Banks 
and Harris, 2018). Despite relatively low reservoir temperatures, elec
tricity can be generated from such sedimentary formations by employing 
binary cycle energy conversion techniques, such as an Organic Rankine 
Cycle (ORC) or a Kalina cycle (Colonna et al., 2015; Arslan, 2011). In the 
binary cycle process, a working fluid, with a lower boiling point, is used 
to generate steam from the produced reservoir fluid at the land surface 
at temperatures as low as 85 ◦C (Moya et al., 2021). In Tartière and 
Astolfi (2017), the authors present a detailed analysis on the evolution, 
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current installed capacity and growth potential of the ORC market. Few 
examples of ORC plants include the Neustadt-Glewe demonstration 
power plant in Germany, which was based on the ORC technology, 
utilizing a sandstone reservoir in the North-German sedimentary basin 
(Siebt et al., 2005). In the region of Munich, Germany, several 
geothermal power plants are in operation, which provide direct heat for 
district heating in the winter and electricity in the summer, extracting 
energy from the porous limestones and dolomites in the south-German 
Molasse basin (Lüschen et al., 2014). The Unterhaching geothermal 
power plant in this region was the first Kalina cycle based geothermal 
power plant in Europe, which operated until 2017 (Weber et al., 2021). 
Numerous other low- or medium-enthalpy geothermal projects are being 
developed in France, Germany, Austria and Switzerland, exploiting the 
main sedimentary basins such as the Upper Rhine Graben, the Molasse 
basin and the North German basin (Boissavy et al., 2019; Goldbrunner 
and Goetzl, 2019; Link and Minnig, 2022). 

Sedimentary basins yield high potential to provide geothermal heat 
due to their: (a) widespread presence and frequent proximity to end 
users, (b) significant energy content (despite relatively low tempera
tures) due to their typical large size, compared to the rather small-scale, 
artificially generated Enhanced Geothermal System (EGS) reservoirs, 
and (c) often high natural transmissivities (i.e. low reservoir imped
ances) at least at moderate depths of a couple of kilometers. Further
more, sedimentary basin reservoirs typically do not require hydraulic 
stimulation, in contrast to EGS, thereby significantly reducing the risk of 
inducing seismicity (Ge and Saar, 2022). However, electric power gen
eration from such low-enthalpy sedimentary basin geothermal systems 
is relatively new, compared to electricity generation from high-enthalpy 
geothermal systems, which have been widely studied (e.g. Minissale, 
1991; Langella et al., 2017; Deb et al., 2020). In addition to binary cy
cles, another approach to generating electric power from low-enthalpy 
sedimentary basin reservoirs is the use of subsurface carbon dioxide 
(CO2) in so-called CO2-Plume Geothermal (CPG) power plants 

(Randolph and Saar, 2011). The use of CO2 results in an approximate 
doubling of the thermal, and thus electric, energy production rate, 
compared to water, and enables direct placement of a CO2-turbine in the 
single power loop, so that a binary cycle is not needed (Adams et al., 
2014, 2015, 2021; Ezekiel et al., 2022). However, in this work, we focus 
on indirect binary cycle process using R245fa as a secondary working 
fluid. It is important to note here that R245fa belongs to a group of 
hydrofluorocarbons that has a high global warming potential (GWP) 
(Dawo et al., 2021). Alternatively, working fluids such as R1233zd(E) 
and R1224yd(Z) have similar thermophysical properties as R245fa but 
lower GWP values and are considered as potential drop-in replacement 
for R245fa in the future ORC plants (Eyerer et al., 2016, 2019). In this 
study, we use R245fa as the working fluid because this is the currently 
available commercial technology for power production and further
more, we compare the results of this study with the numerical simula
tions performed in Adams et al. (2015), where R245fa is the working 
fluid. We use analytical methods to evaluate the electricity generation 
potential from sedimentary basin reservoirs without implementing 
computationally expensive reservoir simulation. Analytical models are 
typically easier to apply than numerical solutions and tend to have fewer 
degrees of freedom, reducing the likelihood of human error. Being 
computationally inexpensive, analytical models can be used to explore 
large parameter spaces and to perform sensitivity analyses. Analytical 
models have been used in many subsurface applications for first-order 
estimations and pre-screening evaluations such as geologic CO2 
sequestration (Nordbotten and Celia, 2012), groundwater remediation 
(Bakker and Strack, 1996; Strack, 1999) and geothermal reservoir 
development (Birdsell et al., 2021). However, analytical approaches rely 
on simplified assumptions and approximations, making them often less 
suitable for solving complex geological problems. Numerical simulators, 
on the other hand, can handle problems with more complex geometries, 
heterogeneities, and coupled physics (e.g., thermo-hydro-mechanical- 
reservoir simulation). Numerical models may relax the assumptions 

Nomenclature 

Ac cross-sectional area 
Ares conduction area of reservoir 
D well diameter 
L well spacing 
M source-sink strength 
P fluid pressure 
QLoss heat exchange from wellbore to surroundings 
Te background geothermal temperature 
Tinj injection temperature 
Tr reservoir temperature 
Tw well wall temperature 
q Darcy velocity 
Vres volume of reservoir 
a equivalent radius of the reservoir 
aA area-based equivalent radius 
aV volume-based equivalent radius 
b reservoir thickness 
ceff specific heat capacity of rock/water mixture 
cFluid working fluid specific heat capacity 
e Euler’s number 
h enthalpy 
keff effective thermal conductivity of saturated fluid/rock 

mixture 
ṁ mass flow rate (general) 
ṁtot total mass flow rate through well 
r radial horizontal spatial coordinate 
r0 well radius 

r1, r2 distance from well to equipotential line (Section 2.1.3) 
t time 
td dimensionless time 
x cartesian horizontal spatial coordinate 
x0 location of well/porous media interface 
z vertical spatial coordinate 
Γ non-dimensional temperature 
ΔP pressure difference in the reservoir between the injection 

well and the midpoint between the injection and 
production well 

ΔPtot pressure difference in the reservoir between the injection 
well and the production well 

ΔPLoss frictional losses in well 
β Wellbore heat transfer factor 
∈ heat depletion term 
θ angle of rotation in radial coordinates 
κ permeability 
λ inverse of the product of the contact resistance and the 

thermal conductivity 
μ fluid viscosity 
μ effective fluid viscosity in reservoir 
ξ parameter that accounts for heat capacity inside and 

outside reservoir. Typically,ξ = 3 (see Section2.3). 
ρ fluid density 
ρeff density of rock/water mixture 
ρ effective fluid density in reservoir 
φ stream potential 
ω thermal diffusivity of fluid/rock mixture  
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and approximations that some analytical solutions require, making them 
suitable for applications where such simplifications are not justified. On 
the other hand, increasingly complex numerical models can require 
large amounts of input data for parameter specification, meshing 
choices, and setup of boundary and initial conditions. Given these 
tradeoffs between analytical and numerical methods, no method is al
ways more favorable, precise, or accurate, compared to the other. 

When exploring geothermal fields with little to no data that char
acterize the subsurface, initial calculations are typically based on as
sumptions that the reservoir is homogeneous and isotropic. In such 
greenfields, analytical methods might provide sufficiently reasonable 
first-order approximations of the geothermal energy production poten
tial, which are comparable to the results of the numerical models. We 
test this hypothesis by comparing results from both approaches, i.e., 
employing both analytical and numerical reservoir calculations in 
sedimentary reservoirs that are laterally extensive, homogeneous, hor
izontally isotropic and have uniform thicknesses. Hence, the objectives 
of our work are to:  

i introduce analytical solutions for assessing the sedimentary reservoir 
impedance, reservoir heat depletion over time and wellbore heat 
loss,  

ii couple the analytical solutions for reservoir impedance and wellbore 
heat loss with a power cycle model, including thermodynamic cal
culations for turbine(s), cooler(s), condenser(s), boiler(s), and pump 
(s), to estimate the electric power generation potential,  

iii analyze the reservoir heat depletion as an indicator of how the 
electric power generation decreases over a project lifetime, and  

iv compare the estimates from analytical solutions with the results from 
numerical models to clarify and further demonstrate the advantages 
and disadvantages of the two methods for representing the 
subsurface. 

While the equations in objective (i) are not entirely novel, a summary 
and comparison of these analytical equations is valuable and important 
to understand the method’s applicability to sedimentary geothermal 
systems. More importantly, the coupling of analytical reservoir equa
tions with a power cycle model in objective (ii) and the ability to 
investigate objective (iii) are novel contributions. Further, the resultant 
comparison of electricity generation using both analytical and numeri
cal reservoir equations in (iv), is also novel. The paper is organized as 
follows: In Section 2, we introduce the analytical solutions that describe 
the reservoir behavior and recapitulate the numerical reservoir simu
lator and the power cycle model from previous work (Adams et al., 
2015, 2021). In Section 3, we compare the results from the analytical 
model with those from the numerical model with respect to estimated 
power generation and operational reservoir lifetime. Section 4 presents 
our conclusions. 

2. Methods 

As mentioned earlier, we implement analytical reservoir solutions 
coupled with a power cycle model to calculate electric power generation 
and to gain knowledge concerning the operational lifetime of a 
sedimentary-basin geothermal reservoir. The heat and electric power 
generation rates are proportional to the flow rate and temperature of the 
produced fluid. Therefore, in Sections 2.1 and 2.2, we provide analytical 
solutions for the reservoir impedance and wellbore heat loss. The 
operational lifetime of the reservoir is related to the reservoir heat 
depletion rate, as power generation decreases with reservoir tempera
ture. Therefore, in Section 2.3, we provide an analytical solution for 
reservoir heat depletion. In Section 2.4 and 2.5, we review the numerical 
reservoir simulator and the power cycle model from Adams et al. (2015), 
which remain mostly unchanged in this work. 

The key simulation parameters and assumptions are given in Table 1 
and are consistent with the base case scenario presented in Adams et al. 

(2015) and are justified in that reference. For example, the 35 ◦C/km 
geothermal temperature gradient is approximately equal to the average 
value for the continental crust of the Western United States (Nathenson 
and Guffanti, 1988). For the sake of brevity, we do not repeat all the 
justification here. However, it is important to note that we assume the 
reservoir is horizontal, homogenous, horizontally isotropic, has a uni
form thickness, and is bounded by impermeable aquicludes above and 
below. 

2.1. Reservoir impedance analytical solutions 

Reservoir impedance is defined as the pressure difference between an 
injection well and a production well divided by the mass flow rate, i.e., 
ΔPtot/ṁtot where ΔPtot is the pressure difference in the reservoir between 
the injection well and the production well and ṁtot is the total flow rate 
through the injection well. All other parameters remaining the same, 
low reservoir impedances enable higher flow rates, leading to increases 
in thermal and electric power generation rates. 

We analyze two well patterns: an inverted 5-spot tessellated well 
pattern developed field (TDF) and an isolated doublet (ID). A TDF is a 
geothermal field that contains a repeating pattern of wells in a laterally 
extensive reservoir. An example of a TDF is the inverted 5-spot well 
pattern shown in Fig. 1, employed in many previous reservoir simula
tions (e.g., Randolph and Saar, 2011; Adams et al., 2015, 2021). An 
inverted 5-spot well pattern consists of four equidistant production wells 
on the corners of a square with one injection well in the center of the 
square. We assume that one quarter of the fluid mass from each pro
duction well is injected back into the central injection well to maintain 

Table 1 
Model assumptions and parameters.  

Parameter Value 

Reservoir parameters 
Well pattern 1 km2 Inverted 5-spot 
Primary geothermal fluid Water 
Secondary ORC fluid R245fa 
Well diameter (D) 0.41 m 
Well spacing (L) 707 m 
Geologic temperature gradient 35 ◦C/km 
Surface temperature 15 ◦C 
Reservoir depth 2.5 km 
Injection temperature (Tinj) 22 ◦C 
Far-field temperature (Te) 102.5 ◦C 
Flow rate (ṁ) 100 kg/s (for the reservoir heat depletion 

calculations in Sections 2.3 and 3.3.) 
Maximized power (for the power generation calcs 
in Sections 2.5 and 3.2.) 

Reservoir pressure Hydrostatic 
Permeability (κ) 5⋅10−14 m2 

Reservoir thickness (b) 300 m 
Thermal conductivity of 

saturated media 
2.1 W/m- ◦C 

Density of saturated media 
(ρeff ) 

2485 kg/m3 

Specific heat capacity of 
saturated media (ceff ) 

1320 J/kg- ◦C 

Thermal conductivity of 
saturated media (keff ) 

2.1 W/m- ◦C 

Other reservoir assumptions Laterally extensive, horizontal, homogeneous, 
horizontally isotropic, uniform thickness 

Power Cycle Generation Model Parameters 
ORC isentropic turbine 

efficency (assumed) 
80% 

Pump efficiency (assumed) 90% 
Ambient mean annual air 

temperature 
15 ◦C (Dallas,TX) 

Cooling or condensing tower 
approach temperature 

7 ◦C 

Cooling or condensing tower 
type 

Wet, closed circuit 

Pinch point temperature 7 ◦C  
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reservoir pressure; the remaining produced fluid mass is injected into 
neighboring injection wells. In total, the fluid mass injected into any 
injection well is thus the same as the fluid mass extracted from any 
production well. When analyzing an inverted 5-spot TDF, we assume 
that there are many inverted 5-spots (as shown in Fig. 1), and we analyze 
an internal inverted 5-spot that is far from the boundaries of the well 
field, which allows us to use symmetry to simplify boundary conditions 
and perform calculations for only one quarter (i.e., one quadrant) of an 
inverted 5-spot, as depicted in Fig. 1 and as used previously (e.g., Ran
dolph and Saar, 2011; Adams et al., 2015, 2021). Since only one quarter 
of the 5-spot is analyzed, only one-quarter of the injection screen is 
analyzed, and therefore only one quarter of the total injection volume is 
considered in the derivations in Sections 2.1.1 and 2.1.3. As Fig. 1 
shows, hydrologically, there is no flow laterally to adjacent inverted 
5-spot patterns and no flow laterally to the remaining three quarters of 
the 5-spot pattern (Randolph and Saar, 2011; Adams et al., 2015, 2021). 
Furthermore, there is no flow vertically because of the (assumed) 
impermeable units above and below the reservoir. These boundary 
conditions are valid under the assumptions of a horizontal, homoge
neous, isotropic, laterally extensive reservoir with repeating adjacent 
5-spot TDF; the boundary conditions and the approximate flow pattern 
are depicted in Fig. 1. 

While the inverted 5-spot TDF represents a mature field, many 
geothermal fields will start with a single injection-production well pair. 
We define an isolated doublet (ID) as an injection-production well pair 
with non-zero well spacing, located far from any other wells, so that 
there is no external hydraulic or thermal influence. Therefore, we 
analyze IDs and inverted 5-spot TDFs, which act as bounding cases in a 

geothermal field’s lifetime. In our analysis, the well spacing between an 
injection and a production well is assumed to be 707 m for both the ID 
and the inverted 5-spot TDF, i.e. half of the diagonal of a 1 × 1 km2 

inverted 5-spot well pattern (Fig. 1). 
We provide four analytical solutions that integrate Darcy’s equation 

to give the reservoir impedance. The difference between each approach 
comes from the definition of the cross-sectional area within Darcy’s 
equation, which is described in more detail in Sections 2.1.1–2.1.4 
below. Pressure contours for each approach are shown in Fig. 2, and the 
flow direction is perpendicular to each pressure contour. The first 
approach (Section 2.1.1) uses a cartesian coordinate system to define the 
cross-sectional area, which honors the flow behavior that should be 
parallel to the x-axis at the midpoint in between an injection and a 
production well in a 5-spot (see “TDF-Cartesian” in Fig. 2a). The second 
approach (Section 2.1.2) applies primarily to the ID and uses a radial 
coordinate system, which honors the radial behavior of flow near an 
injection or a production well (see “TDF-Radial” in Fig. 2a or “ID-Radial” 
in Fig. 2b). The third approach (Section 2.1.3) is a hybrid method, which 
implements the best of the first two approaches, such that the radial 
fluid flow near either well and the lateral fluid flow at the midpoint 
between the two wells are both honored for the 5-spot TDF (see “TDF- 
Hybrid” in Fig. 2a). The final approach (Section 2.1.4 and “ID-Potential” 
in Fig. 2b) applies to the ID and uses a method that is based on the 
potential function and streamlines to improve the “ID-Radial” solution. 

It is important to note that all derivations in Section 2.1 are one- 
dimensional, rely on average fluid properties, and assume a uniform 
fluid velocity profile through a cross-sectional area. Thus, the solutions 
do not account for fluid flow deviations from these fluid flow patterns 

Fig. 1. Schematic of an inverted 5-spot tessalated well pattern developed field (TDF). Within the inverted 5-spot TDF pattern, one quarter (i.e., quadrant) is analyzed 
(white box with black outline). No-flow boundary conditions (blue dashes) are utilized to separate the analyzed quarter of the inverted 5-spot from: 1) the other, non- 
analyzed quarters (or quadrants) of the inverted 5-spot (gray box with dark gray outlines) and 2) the other inverted 5-spots. These no-flow boundaries are valid due to 
the symmetry of the fluid flow direction (indicated by the blue arrows) and are commonly invoked (e.g. Pruess, 2006). 
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(Fig. 2), heterogeneities, or buoyancy forces. However, the solutions do, 
at a minimum, provide an order-of-magnitude approximation of the 
geothermal reservoir behavior under production. Due to the symmetry 
of the inverted 5-spot TDF, only one quarter of the system is analyzed in 
Sections 2.1.1 and 2.1.3. All the sides in Fig. 2a can be treated as no-flux 
boundary conditions, as discussed earlier in this section. 

2.1.1. 5-spot tessellated, developed field (TDF) in Cartesian coordinates 
The one-dimensional Darcy equation for horizontal flow can be 

expressed in Eq. (1), where P is the fluid pressure from both elevation 
and pressure head, μ is the dynamic viscosity of the fluid, q is the Darcy 
velocity (specific discharge), κ is the permeability, and x is distance in 
the direction of fluid flow. 

dP = −
μ⋅q
κ

dx (1) 

The continuity equation is shown in Eq. (2), where the mass flow 
rate, ṁ, is equal to the product of fluid density, ρ, the cross-sectional 
area, Ac, and the Darcy velocity, q. Here, ṁ is the flow rate through 
the portion of the injection well that is analyzed. Therefore, in the so
lutions for the 5-spot TDF in Sections 2.1.1 and 2.1.3, where only one 
quarter of the injection well screen is analyzed, ṁ equals only one-fourth 
of the total mass flow rate, ṁtot. In contrast, the whole circumference of 
the well screen is analyzed in the ID solutions in Sections 2.1.2 and 2.1.4, 
so that ṁ equals ṁtot in those sections. 

ṁ = ρ⋅Ac⋅q (2) 

Eq. (2) is substituted into Eq. (1), yielding Eq. (3). 

dP = −
μ
ρ

ṁ
κ⋅Ac

dx (3) 

For a one-quarter domain of a 5-spot configuration, the x-axis is 
aligned with the line between the injection and production wells (see 
Fig. 2a). The cross-sectional area, Ac, through which Darcy fluid flow 
occurs in the reservoir is given by Eq. (4), where b is the reservoir 
thickness. The lines “TDF-Cartesian” in Fig. 2a indicate the cross- 
sectional area, divided by the reservoir thickness, b. 

Ac = 2⋅x⋅b (4) 

By combining Eqs. (3) and 4 and integrating from the interface be
tween the well and the porous medium (i.e., the outside of the casing), 
x0, to the midpoint between the two wells, L/2, yields Eq. (5), where L is 

the distance between the injection and the production wells (i.e., the 
well spacing). Integration of Eq. (5) yields Eq. (6), where ΔP is the 
pressure decrease from the injection well to the midpoint. The dynamic 
viscosity, μ, and the density, ρ, are average values for the entire 
reservoir. 

∫

dP = −
μ
ρ

ṁ
2⋅κ⋅b

∫
L
2

x0

1
x

dx (5)  

ΔP =
μ
ρ

ṁ
2⋅κ⋅b

ln
(

L
2⋅x0

)

(6) 

To find the total fluid pressure difference in the reservoir between 
the injection well and the production well, ΔPtot , Eq. (6) must be 
doubled, as it estimates the pressure loss from the injection well to the 
mid-point between the injection and the production wells. The fluid 
pressure continues to drop at the same rate going from the midpoint to 
the production well. As a result, this doubling cancels out the 2 in the 
denominator of Eq. (6). 

Also, the well perimeter in this one-dimensional Cartesian space is a 
square, where each side of the square has a length of 2⋅x0. Thus, it is 
possible to equate the perimeter of the square with the circumference of 
a circle with a diameter, D, which will represent the diameter of the well, 
to yield Eq. (7). 

π⋅D = 4⋅(2⋅x0) (7) 

Substituting Eq. (7) into Eq. (6) yields the pressure difference as a 
function of the well diameter, D. This equation is valid for all quadrants 
of the inverted 5-spot well pattern, and the total flow rate through the 
well is ṁtot = 4ṁ, due to the symmetry of the problem. We express the 
reservoir impedance in terms of ΔPtot and ṁtot in Eq. (8), which facilitates 
comparisons with other solutions in Section 2.1. Note that the reservoir 
impedance is inversely proportional to the reservoir transmissivity, κb, 
which is the product of reservoir permeability and thickness. 

ΔPtot

ṁtot
=

μ
ρ

1
4⋅κ⋅b

ln
(

4⋅L
π⋅D

)

(8)  

2.1.2. Isolated doublet (ID) in radial coordinates 
We use an approach similar to that in Section 2.1.1 to solve for the 

reservoir impedance of an isolated doublet (ID), which is an injection- 

Fig. 2. Pressure contours for (a) one-quarter of a 5-spot TDF and (b) an ID in plan view, where “Inj” indicates the injection well and “Prod” indicates the production 
well. These pressure contours correspond to the cross-sectional area divided by the reservoir thickness for the solutions derived in Section 2.1.1–2.1.4 and vary based 
on the method used (e.g., “ID-Radial”; “ID-Potential”; “TDF-Cartesian”; “TDF-Radial”; or “TDF-Hybrid”). Note that θ is the angle of rotation arround the well and is 
utilized in Section 2.1.4 for the “ID-Potential” solution. 
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production pair that is far from the influence of other wells (Fig. 2b). We 
assume that the fluid flow between the injection well and the production 
well is radial and uniform in all directions, up to a radius of L /2. For this 
injection-production well pair, we use radial coordinates and substitute 
dx = dr in Eq. (1). The cross-sectional area of flow is the product of the 
circumference at radius r and the reservoir thickness b (Eq. (9)). In one- 
dimensional radial coordinates, the well perimeter is a circle unlike one- 
dimensional Cartesian coordinates where the well perimeter is a square 
(Section 2.1.1). Hence, the cross-sectional area, divided by the reservoir 
thickness, is illustrated by the lines labeled “ID-Radial” in Fig. 2b. 

Ac = 2⋅π⋅r⋅b (9) 

By combining Eqs. (3) and (9), we obtain Eq. (10), where r0 is the 
well radius, which is analogous to x0 in Section 2.1.1. Integration yields 
Eq. (11), which is the pressure difference from the well to the midpoint 
between the injection and the production wells. 

∫

dP = −
μ
ρ

ṁ
2⋅π⋅κ⋅b

∫
L
2

r0

1
r

dr (10)  

ΔP =
μ
ρ

ṁ
2⋅π⋅κ⋅b

ln
(

L
2⋅r0

)

(11) 

Eq. (11) is rearranged to include the reservoir impedance of a source- 
sink pair (Eq. (12)), where the well radius is half the well diameter. Note 
that the flow rate, ṁ, is equal to ṁtot in this section because we use the 
entire circumference of the well, unlike in Section 2.1.1, where we 
analyzed one-quarter of the well circumference. 

ΔPtot

ṁtot
=

μ
ρ

1
π⋅κ⋅b

ln
(

L
D

)

(12) 

The radial approach can also be used to derive the impedance of an 
inverted 5-spot TDF, where the impedance calculated for the “ID-Radial” 
is the same as that of the “TDF-Radial” (i.e. Eq. (12) also applies to an 
inverted 5-spot TDF, analyzed with radial coordinates (Fig. 2a). This can 
be derived following the same approach as in Section 2.1.1, except the 
lower bound of the integration in Eq. (5) is then D/2 and Ac = πrb /2. 
Since we show a similar derivation in this section (i.e., Section 2.1.2), it 
is not repeated. 

Note that for large values of L/D, the reservoir impedance of the “ID- 
Radial” solution (Eq. (12)) is larger than the reservoir impedance of an 
inverted 5-spot TDF-Cartesian (Eq. (8)) by a factor of 4 /π. This 27% 
difference is due to the 27% smaller sweep area of the “ID-Radial” and 
the “TDF-Radial” solutions, compared to the “TDF-Cartesian” solution. 
Thus, in Section 2.1.4, we use the potential functions to include the 
entirety of the reservoir area for an ID. 

2.1.3. 5-Spot tessellated, developed field (TDF), hybrid 
In a 5-spot “TDF-Hybrid”, the cross-sectional area, divided by the 

reservoir thickness, is best represented by a circular arc near the well 
because fluid flow is radially away from the injection well (see “TDF- 
Radial” in Fig. 2a). However, at the midpoint between the wells, the 
cross-sectional area, divided by the reservoir thickness, is best repre
sented by a line that is perpendicular to the x-coordinate due to the 
symmetry in the 5-spot TDF (see “TDF-Cartesian” in Fig. 2a). We define a 
hybrid cross-sectional area in Eq. (13) that honors the radial flow near 
either well and the cartesian flow at the midpoint between the wells. The 
hybrid area, divided by the reservoir thickness, is illustrated in Fig. 2a by 
the lines labeled “TDF Hybrid.” 

Ac =
2b

L
2 − xo

(

x2
(

1 −
π
4

)
+ x

(
Lπ
8

− xo

))

(13) 

The same approach as shown in Sections 2.1.1 and 2.1.2 is used to 
find the reservoir impedance (Eq. (14)). 

ΔPtot

ṁtot
=

μ
ρ

1
π⋅κ⋅b

ln
(

π
4

L
D

)

(14)  

2.1.4. Isolated doublet (ID) with potential flow 
The pressure potential curve surrounding an injection well or a 

production well does not have a constant radius, as is assumed in Sec
tion 2.1.2. Thus, to find a more precise solution for an ID, we integrate 
the distance of the potential curve surrounding the sink to obtain the 
cross-sectional area (Eq. (15)), where r1 is the radius to the equipotential 
line from the sink and θ is the angle of integration around the well, as 
shown in Fig. 2. 

Ac = b⋅
∫2π

0

r1 dθ (15) 

For source-sink potential flow, the stream potential, φ, is given by 
Eq. (16), where M is the source-sink strength, r1 is the radial distance 
from the sink, and r2 is the radial distance from the source (Stern 2006). 

φ = −
M
2π ln

(
r1

r2

)

(16) 

The shortest streamline extends directly from the sink to the source 
and is shown as a dashed line in Fig. 2b. The potential along this 
streamline is given by Eq. (17), which is evaluated by applying r1 = r 
and r2 = L − r. 

φ = −
M
2π ln

r
L − r

(17) 

Equating Eqs. (16) and (17) yields Eq. (18), which provides the 
distances r1 and r2 along a line of constant potential as a function of L 
and r. Eq. (18) is solved for r2

2 in Eq. (19). 

r2

r1
=

L
r

− 1 (18)  

r2
2 = r2

1⋅
(

L
r

− 1
)2

(19) 

Using trigonometry, we find length r2 as a function of r1 and θ in
dependent of the considerations of potential flow in Eq. (20) 

r2
2 = r2

1 + L2 − 2⋅L⋅r1⋅cosθ (20) 

Equating Eqs. (19) and (20), solving for r1, integrating according to 
Eq. (15), and assuming large values of L (i.e. L≫1) yields Eq. (21). The 
L>>1 assumption is likely valid for most of the sedimentary-basin 
geothermal fields that this paper pertains to because optimal well 
spacing is likely to be hundreds of meters (Adams et al., 2015). 

Ac =
2⋅π⋅b

(
1
r2 − 2

L⋅r

)1/2 (21) 

The denominator in Eq. (21) does not lend itself to simple integra
tion. We thus approximate Eq. (21) with Eq. (22). This approximation 
preserves the anomaly occurring at r = L/2, where the cross-sectional 
area becomes infinite. At the midpoint between the injection well and 
the production well, the line of equal potential is tangent to the 
streamline, extending to infinity. 
(

1
r2 −

2
L⋅r

)1/2

=

(
1
r

)1/2

⋅
(

1
r

−
2
L

)1/2

≈

(
1
r

−
2
L

)

(22) 

Eqs. (21) and (22) are combined with Eq. (3) in radial space (dx =

dr) and integrated using an approach similar to Eq. (10). The resulting 
reservoir impedance is given by Eq. (23), where e is Euler’s number. 

ΔPtot

ṁtot
=

μ
ρ

1
π⋅κ⋅b

[

ln
(

L
D⋅e

)

+
D
L

]

(23) 
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The solution in Eq. (23) is similar to the solution in Eq. (12); i.e., the 
“ID, Potential” and the “ID, Radial” differ only by the factor of e within 
the natural logarithm. The D/L term is small for large values of L /D and 
can be neglected without much loss of precision. For well spacing to well 
diameter ratios of 1000 (i.e., L/D = 1000), Eq. (23) provides a reservoir 
impedance value approximately 15% smaller than Eq. (12). This 
decreased impedance, using the “ID-Potential” method (Eq. (23)), is 
enabled by the infinite swept volume, whereas the “ID-Radial” solution 
(Eq. (12)) has a finite swept volume. 

2.2. Wellbore heat loss analytical solution 

Heat loss to the rock surrounding the wellbore is implemented using 
a semi-analytical approach. In each wellbore element that is numerically 
integrated (Adams et al., 2015), an analytical heat solution for a 
semi-infinite solid is applied from Zhang et al. (2011). This approach 
assumes that heat conduction only occurs radially to the far-field and 
that the wellbore wall temperature is constant with time. 

Similar to Adams et al. (2015), the wellbore elements are evaluated 
numerically, with pressure (Eq. (24)) and energy (Eq. (25)) balances 
across each element, where Δz is the change in element elevation, ΔPLoss 
is the pipe frictional loss, h is the enthalpy, QLoss is the heat exchange to 
the surroundings, ṁ is the fluid mass flow rate, and an “i” subscript 
indicates the value at the ith element. The pressure loss equation is 
identical to Adams et al. (2015), while the energy equation includes the 
new heat exchange term. 

Pi+1 = Pi − ρi⋅g⋅Δz − ΔPLoss,i (24)  

hi+1 = hi − g⋅Δz −
QLoss,i

ṁ
(25) 

The heat loss is solved with Eq. (26) from Zhang et al. (2011), where 
keff is the effective thermal conductivity of the rock/water porous media 
complex, β is a non-dimensional, time-dependent factor for heat trans
fer, Tw is the well casing temperature, and Te is the background, far-field 
temperature at depth, equal to the product of geologic temperature 
gradient and reservoir depth plus the mean annual surface temperature. 
It is assumed that the well casing and fluid heat transfer resistances are 
small compared to conduction through the rock and are thus negligible. 

QLoss,i = Δz⋅2⋅π⋅keff ⋅β⋅
(
Tw,i − Te,i

)
(26) 

The well casing temperature is an intermediate temperature between 
the wellbore fluid temperature and the far-field temperature. Without 
heat loss, the wellbore elements are assumed to be sufficiently long that 
the fluid temperature is in thermal equilibrium with the well casing. 
Thus, the well casing temperature, Tw, is assumed to be the resulting 
fluid temperature for an enthalpy of hi and a pressure of Pi if the heat loss 
term in Eq. (25) were zero. 

The dimensionless factor β is given by Zhang et al. (2011) as Eq. (27), 
where td is dimensionless time. 

β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(π⋅td)
−1/2

+
1
2

−
1
4

(td

π

)1
2

+
1
8
td, td ≤ 2.8

2
ln(4⋅td) − 1.16

−
1.16

(ln(4⋅td) − 1.16)
2, td > 2.8

(27) 

The dimensionless time, td, is given in Eq. (28), where ω is the 
thermal diffusivity of the rock/fluid porous media complex and t is 
(dimensional) time. 

td = ω 4⋅t
D2 (28)  

2.3. Reservoir heat depletion analytical solution 

Recent work used numerical solutions to show how reservoir heat 
depletion affects electric power output (Adams et al., 2021). We adapt a 

heat depletion analytical solution from Carslaw and Jager (1986) to 
estimate the sedimentary basin heat depletion. This approach is similar 
to that used by Zhang et al. (2011). 

The reservoir is treated as a sphere with infinite thermal conduc
tivity, which is situated within a semi-infinite medium at the back
ground, far-field geothermal temperature. The temperature of the 
reservoir is (Carslaw and Jager, 1986): 

Tr =
−Q

4πaAkeff
∈ (t) + Te, (29)  

where Q is the rate of heat removal from the reservoir, a is the equivalent 
radius of the reservoir, where its subscript is discussed in more detail 
later in this section, and ∈ is a function of time and parameters related to 
reservoir size, geometry, and thermal diffusivity. 

The rate of heat removal from a reservoir is: 

Q = −ṁcFluid
(
Tinj − Tr

)
, (30)  

where Tinj is the fluid injection temperature and cFluid is the working 
fluid’s specific heat capacity. We assume that the heat extraction rate is 
constant (to be consistent with Eq. (29)) and we substitute Eq. (30) into 
Eq. (29). While Q will actually decrease with time as the reservoir 
temperature decreases (assuming a constant mass flow rate), Eq. (29) 
will give approximate values of reservoir temperature at early times, 
before the temperature declines are substantial. We are most interested 
in temperature depletion at these early times. For later times, when the 
temperature depletion is large, the solution to Eq. (29) will be conser
vative as it will rather overpredict temperature depletion. 

With algebraic manipulation of Eqs. (29) and (30), a non- 
dimensional reservoir temperature can be expressed as: 

Γ =
Tr − Tinj

Te − Tinj
=

(
ṁcFluid ∈

4πaAkeff
+ 1

)−1

(31)  

where ∈ is defined as: 

∈=
1 + aV λ

aV λ
−

2a2
V ξ2λ2

π

∫∞

0

exp
(

ωu2 t
a2

V

)

du

[(u2(1 + aV λ) − ξaV λ)]
2

+ [u3 − ξaV λu]
2 (32)  

where λ is the inverse of the product of the contact resistance between 
the reservoir and the surrounding rock/fluid complex and the thermal 
conductivity of the reservoir-surrounding rock/fluid complex, ξ has a 
value of three when the density and specific heat capacity of the reser
voir are the same as the reservoir-surrounding rock (as we assume), and 
u is an integration variable. 

As an aside, we note that the non-dimensional temperature in the 
absence of conduction is given by: 

Γ =
Tr − Tinj

Te − Tinj
=

(
tṁcFluid

Vresρeff ceff
+ 1

)−1

(33)  

where Vres is the reservoir volume. 
In the limit as λ approaches infinity, ∈ can be expressed more simply 

as: 

∈= 1 −
2ξ2

π

∫∞

0

exp
(

ωu2 t
a2

V

)

du

(u2 − ξ)
2

+ (ξu)
2 (34) 

Analytical solutions of ∈ exist for both early and late time (Carslaw 
and Jager, 1986). Nonetheless, we solve the integral in Eq. (34) 
numerically so that the solution covers all times that are relevant for 
geothermal development, including intermediate times that the 
analytical solutions do not represent well. 

In the original Carslaw and Jager (1986) solution, a represents the 
radius of a sphere. However, since geothermal reservoirs are typically 
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not spherical, we find that careful specification of the equivalent radius 
can improve the solution. The equivalent radius could be specified to 
match the reservoir volume, aV, or the surface area over which heat 
conduction occurs, aA: 

aV =

(
3Vres

4π

)1
3

(35)  

aA =

̅̅̅̅̅̅̅̅
Ares

4π

√

(36)  

where Ares is the surface area of the reservoir exposed to heat conduction 
from the surroundings. 

In separate comparisons to the numerical solution for reservoir heat 
depletion (see Section 2.4), we find that it is best to use the area-based 
equivalent radius outside of ∈ (i.e., in Eqs. (29) and (31)). This ensures 
that the temperature is correct as time approaches infinity because the 
late-time steady-state temperature occurs when the heat extraction rate 
is equal to the rate of conductive heat transfer into the reservoir. We use 
the volume-based radius for the calculation of ∈ (Eq. (34)), which en
sures that the initial amount of heat in the reservoir is correctly 
accounted for. 

2.4. Numerical simulations 

We also perform numerical thermo-hydraulic reservoir simulations 
for comparisons with the analytical solutions. The simulations calculate 
reservoir impedance and the temperature at the production well with 
respect to time. 

The simulations are performed with the reservoir simulator TOUGH2 
with the Equation of State ECO2N module (Pruess 2004, 2005) and 
investigate one-eighth of a 5-spot TDF, similar to Adams et al. (2015). 
The input file and mesh (included in the Supplemental Information) are 
based on an example in the TOUGH2 manual (Pruess et al., 1999, Sec
tion 9.4), where we intentionally changed as little as possible. The mesh 
contains 36 elements, consistent with the TOUGH2 manual example and 
previous studies (Randolph and Saar, 2011; Adams et al., 2015). We 
apply fixed mass flow rate boundary conditions at the injection and 
production cells. We maintain the pressure at the corner node as the 
hydrostatic reservoir pressure by supplying constant fluid pressure as 
needed. Due to symmetry, there is no flux of heat or fluid across the 
vertical reservoir boundaries. There is also no fluid flux through the top 
or bottom reservoir boundaries because the overlying and underlying 
rock is assumed to be impermeable. Heat is conducted into the reservoir 
from the top and bottom boundaries according to a built-in TOUGH2 
analytical function, which assumes Cartesian, one-dimensional heat 
conduction coming from the background, which is at temperature Te, 
acting as a local heat source term (Pruess et al., 1999). The reservoir heat 
extraction working fluid is water. 

The base case model parameters and assumptions are shown in 
Table 1 and are based on Adams et al. (2015). In Section 3.3, we also 
present results for a thin reservoir with a thickness of 30 m, one-tenth 
the base case reservoir thickness. 

2.5. Estimating electricity generation 

The power cycle generation model is adopted from Adams et al. 
(2015), follows the approach presented in Scenario 5 of that work which 
uses R245fa as the secondary working fluid for the indirect power sys
tem (Fig. 3), and uses the same parameter values as the base-case sce
nario from that work. The model essentially remains unchanged from 
the original work, except for two changes. First, Adams et al. (2015) 
used the TOUGH2 reservoir simulator for calculating reservoir imped
ance, while in this work, we utilize an analytical solution for reservoir 
impedance as described in Section 2.1. Second, wellbore heat loss from 
the production well (Section 2.2) was not considered in Adams et al. 

(2015) but is included in our work here. Power generation is calculated 
without considering pressure depletion in the reservoir. 

Fig. 3 shows the cycle schematics for the indirect (i.e., binary) water - 
Organic Rankine Cycle (ORC). In the lower loop, the primary fluid 
(water) is circulated from the land surface through the reservoir, where 
it gains heat; and back to the land surface, where it supplies heat to the 
secondary working fluid. In the upper loop, the organic secondary fluid 
(R245fa) is heated by the primary fluid via a heat exchanger, driving the 
ORC to produce electricity. 

We include the most important aspects of the power cycle calculation 
in this section, but we encourage readers to refer Adams et al. (2015) for 
more information about the power cycle calculations. The flow rate 
through the primary loop is chosen to maximize the net power genera
tion, which is the gross turbine power minus the parasitic power of the 
pumps and the heat rejection equipment. The mass flow rate through the 
secondary loop depends on the flow rate of the primary fluid so that all 
heat is transferred and a 7  ◦C pinch point is obtained. 

In the secondary cycle, the secondary fluid leaves the boiler at State 9 
and is expanded through the turbine to State 10 with an assumed isen
tropic turbine efficiency of 80%. It is cooled isobarically to saturation at 
State 11. Going through the condenser towards the ORC pump (State 
12), the R245fa fluid is cooled isobarically to 7 ◦C above the ambient 
temperature (i.e., a 7 ◦C approach temperature). The ORC pump effi
ciency is assumed to be 90%. The primary fluid is set to be at least 7 ◦C 
hotter than the secondary working fluid in the heat exchangers. Thus, 
the primary fluid temperature at States 7 and 8, are at least 7 ◦C above 
the boiling and condensing temperatures of R245fa. 

The entire upper loop and portions of the lower loop are solved using 
MATLAB. For example, the pressure drop due to friction in the wellbore 
from Points 1 to 2 and 3 to 6 (Fig. 3) are solved with MATLAB. Likewise, 
all pressure and thermodynamic equations of the upper loop (Points 6 – 
14) are solved with MATLAB, using the CoolProp thermodynamic 
property library (Bell et al., 2014). In contrast, the reservoir modeling 
aspects of our paper here are provided by Points 2–3 (Section 2.1, 2.3, 
and 2.4) and the wellbore heat loss is given by Points 3–6 (Section 2.2). 

Fig. 3. Cycle schematics for an indirect (i.e., binary) groundwater - Organic 
Rankine Cycle (ORC) geothermal power plant. Modified from Adams 
et al. (2015). 
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3. Results and discussion 

In Section 3.1, we summarize the analytical reservoir impedance 
solutions and compare them to the numerical solution from TOUGH2, 
discussed in Section 2.4. In Section 3.2, we use the reservoir impedance 
from Section 2.1, the wellbore heat loss from Section 2.2, and the power 
cycle model from Section 2.5 to calculate the initial electric power 
generation. This power generation is compared to the power generation 
of the numerical reservoir simulator from Section 2.4. In Section 3.3, we 
compare reservoir heat depletion results from the analytical solution in 
Section 2.3 with the numerical model. 

3.1. Reservoir impedance 

The reservoir impedance solutions from Section 2.1 can be expressed 
more concisely. The solutions can be calculated as a function of the 
location of the well/porous medium interface (i.e., x0 or r0) and the 
cross-sectional area, Ac, and then expressed in terms of the constants C1 
and C2: 

ΔPtot

ṁtot
=

2μ
ρ

1
κ

∫
L
2

xo

dx
Ac(x)

=
μ
ρ

1
κb

C1lnC2 (37) 

The solutions of Section 2.1 are summarized in Table 2, using the 
variables Ac, C1, C2, and x0 or r0 from Eq. (37). The final column shows 
the value of C1lnC2, which is proportional to the reservoir impedance, 
with an assumed value of L/D = 1000. Notably, the differences in 
reservoir impedance are small amongst all analytical solutions (the 
range for C1lnC2 is 1.8 to 2.2), which indicates that the ID exhibits 
reservoir impedances that are not significantly different from those 
obtained for a 5-spot TDF. We suggest the use of the “TDF-Hybrid” so
lution (Eq. (14)) for 5-spot TDFs because it honors the radial fluid flow 
pattern near wells and the linear fluid flow pattern near the midpoint 
between an injection and a production well, at x = L /2, as discussed in 
Section 2.1.3. We suggest the use of the “ID-Potential” solution (Eq. (23), 
Section 2.1.4) for the ID cases, as it includes the entire sweep area. 

In Fig. 4, we compare the reservoir impedance as a function of time 
for the numerical and two analytical solutions. The analytical results are 
provided by Eq. (14) for the 5-spot TDF-Hybrid and Eq. (23) for the “ID- 
Potential”. In the numerical model, fluid properties are pressure- and 
temperature-dependent, which is accounted for internally in TOUGH2. 
For the analytical solutions, the temperature from the reservoir heat 
depletion solution (Eq. (31)), and the hydrostatic pressure are inputs to 
the CoolProp (Bell et al., 2014) Python library, which calculates the fluid 
properties. 

In all three solutions, the reservoir impedance increases with time 
due to the increase in the kinematic viscosity of the groundwater as the 
reservoir cools. The shapes of the impedance curves differ because of the 
viscosity calculation method. The numerical solution accounts for 
spatial and temporal viscosity variations as the reservoir cools. As the 
reservoir near the injection well starts cooling almost immediately upon 
water injection, the kinematic viscosity near the injection well increases 

at early times. The reservoir impedance increases steadily throughout 
time as the cooled region grows. The reservoir impedance doubles by the 
tenth year of operation. In contrast, the analytical solution uses the 
average reservoir temperature and pressure to calculate the average 
kinematic viscosity of the water, which does not account for spatial 
variations in fluid properties. It thus takes approximately ten years in the 
analytical solution case for the average temperature to change by 10% 
(see Section 3.3). Thus, the average kinematic water viscosity and the 
average reservoir impedance have only increased by approximately 10% 
after ten years. In fact, the analytical solution shows that it takes about 
200 years for the reservoir impedance double due to cooling. 

The numerical solution gives a lower reservoir impedance than the 
two analytical solutions, which are similar to each other, differing by 
only 13%. At early times, when the fluid properties are in good agree
ment, the analytical solutions yield reservoir impedances that are 
roughly twice as high as those obtained by the numerical solution. 

The discrepancies among the numerical and the analytical reservoir 
impedances may be partially explained by the employed grid resolution. 
Ravilov (2019) found that the reservoir impedance increases with the 
number of nodes in a reservoir simulator. Thus, the numerical solution 
in Fig. 4, with its relatively low spatial resolution, likely provides a lower 
bound for the reservoir impedance. 

The Ravilov (2019) study raises an important consideration: mesh 
discretization can have a large effect on reservoir impedance in nu
merical simulations. In his study, as the number of nodes increased from 
1300 to 600,000, the reservoir impedance increased by approximately 
25% (from 38 to 48 kPa-s/kg). Through extrapolation, Ravilov (2019) 
predicted that an infinite number of nodes would lead to an impedance 
increase of approximately 50% (to 58 kPa-s/kg). It is difficult to know if 
the impedance asymptotes to a fixed value as the number of nodes goes 
to infinity, and if this asymptote does exist, it is also difficult to know 
what the value of this impedance will be. Ravilov’s (2019) work suggests 
that getting an accurate reservoir impedance value using a numerical 
simulator may require nearly infinite computational resources. 

It is difficult to say whether the analytical or the numerical reservoir 
impedance solutions are more accurate. Each calculation method has its 
strengths and weaknesses and may be useful depending on the problem 
of interest. The analytical approach is computationally less expensive 
than the numerical approach. On the other hand, the analytical solution 
relies on simplifications, such as the use of average fluid properties, a 
one-dimensional coordinate system, and a uniform fluid flow field. The 
numerical simulation does not rely on these simplifications but depends 
on the spatial resolution of the computation mesh, as discussed in the 
previous paragraph. Moreover, the analytical and numerical solutions 
only differ by roughly a factor of two, which is often much smaller than 
other uncertainties associated with subsurface reservoir properties, such 
as reservoir transmissivity. Reservoir transmissivity can exhibit un
certainties that are on the order of a magnitude or more, particularly if a 
geothermal reservoir has not been thoroughly characterized or is highly 
heterogeneous. 

Table 2 
Analytical impedance. right-most column indicates value for L = 1000D.  

Well pattern x0 or r0 Ac C1 C2 C1lnC2 

TDF-cartesian (Section 2.1.1, Eq. (8)) πD
8 

2xb 1
4 

4
π

L
D 

1.8 

ID-radial (Section 2.1.2, Eq. (12)) D
2 

2πrb 1
π 

L
D 

2.2 

TDF-hybrid (Section 2.1.3, Eq. (14)) D
2 

2b
L
2

− xo

(

x2
(

1 −
π
4

)
+ x

(Lπ
8

− xo
)) 1

π 
π
4

L
D 

2.1 

ID-potential (Section 2.1.4, Eq. (23)) D
2  

2⋅π⋅b
( 1
r2 −

2
L⋅r

)1/2  
1
π  

L
De  

1.9  
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3.2. Electric power generation 

Fig. 5a shows electric power generation as a function of reservoir 
transmissivity for various reservoir impedance models. There are little 
differences in electric power generation (<10%) among the four 
analytical reservoir impedance models, as the differences in the under
lying analytical reservoir impedance calculations are small (≤18%). 
However, the reservoir impedance predicted by the numerical model is 
roughly half of the reservoir impedance predicted by the analytical so
lutions for a given reservoir transmissivity value. This reservoir 
impedance difference results in up to twice the predicted electric power 
generation when a numerical reservoir impedance model is used, 
compared to using an analytical reservoir impedance model. As was 
stated in Section 3.1, the numerical and the analytical solutions yield a 
range of possible reservoir impedances, and it is unclear which calcu
lation method yields more accurate results. In many applications, the 
uncertainty in the reservoir transmissivity may be much larger than the 
uncertainty introduced by the reservoir impedance calculation method. 
Thus, to calculate electric power generation accurately, it is crucial to 
reduce the uncertainties as much as possible in the reservoir trans
missivity. However, there will likely always remain a significant un
certainty in the prediction of heat and electric power generation, 
particularly before reservoir impedance has been measured in the field. 

The difference in predicted electric power generation is minor be
tween models that include wellbore heat loss and those that neglect it, as 
shown in Fig. 5b. At low reservoir transmissivities (<3200 mD-m), the 
production temperature is different between models with and without 
wellbore heat loss. However, at low reservoir transmissivities, electric 
power generation is negligible (<0.2 MWe), and therefore the absolute 
difference in electricity generation is also very small. As the reservoir 
transmissivity increases, the production temperature in the wellbore 
heat loss model asymptotes to the production temperature in the adia
batic wellbore model. Therefore, the percentage difference in electric 
power generation between the models is very small for high- 
transmissivity reservoirs. Note that we do not show the brine mass 
flow rate or the thermal output in Fig. 5. However, at high reservoir 
transmissivities (>10,000 mD-m), the production temperature is 
approximately constant (i.e., it asymptotes to the reservoir tempera
ture). Therefore, both the mass flow rate and the thermal output are 

proportional to the electric power generation, following an “S” shape on 
the right side of Fig. 5(b). Since the difference in predicted power gen
eration is small across the full range of reservoir transmissivities, well
bore heat loss can typically be neglected in many simulations of 
geothermal energy extraction from sedimentary basin reservoirs. 

3.3. Reservoir heat depletion 

As the temperature of a reservoir reduces, so does the power gen
eration from the reservoir. Therefore, understanding the reservoir 
temperature as a function of time offers insights into power generation 
as a function of time and reservoir heat depletion. 

Fig. 6 shows the non-dimensional reservoir temperature versus time 
for both the analytical and the numerical solutions, calculated from Eq. 
(31) (for analytical) and in a post-processing step from the numerical 
solution. The solutions that neglect heat conduction (dotted lines in 
Fig. 6) are calculated from Eq. (33). Fig. 6a uses the logarithm of time to 
illustrate the late-time behavior, while Fig. 6b uses a linear time scale to 
emphasize the shape of the curves at early times and how (in)significant 
the inclusion of heat conduction from the reservoir-surrounding rock 
into the reservoir is, for determining the reservoir temperature. 

3.3.1. Comparison of solutions 
The shapes of the analytical and the numerical solutions are 

different, which is partially the result of them representing the tem
perature at different locations in the reservoir. The analytical solution 
shows the average temperature of the reservoir, which always decreases 
at a decreasing rate. In contrast, the numerical solution shows the pro
duction well temperature, which decreases at an increasing rate until the 
cold front reaches the production well. Then the fluid production tem
perature continues to decrease, but at a decreasing rate. This tempera
ture versus time pattern in the numerical solution is a classic example of 
so-called cold front breakthrough. 

Another difference in the solutions is caused by the way in which 
heat is removed from the reservoir. In the analytical solution, heat is 
removed at a constant rate. In the numerical solution, a fluid flow rate 
and a fluid injection temperature are specified, such that the initial heat 
removal rate matches the rate in the analytical solution. However, as the 
reservoir cools, the heat removal rate decreases in the numerical 

Fig. 4. The TDF numerical solution using TOUGH2, the TDF analytical solution using the “TDF-Hybrid” approach, and the ID analytical solution using the “ID- 
Potential” approach. 
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solution. The numerical solution may be more realistic for sedimentary- 
basin geothermal systems in this regard, whereas the analytical solution 
represents a worst-case (i.e., cold) bound for heat depletion, especially 
at later energy production times. 

The numerical and the analytical model also differ in their respective 
problem geometries. The numerical solution uses a three-dimensional 
geometry, employing one-dimensional, cartesian heat conduction from 
above and from below the reservoir. In contrast, the analytical solution 
follows a one-dimensional radial heat flow geometry, where the 

equivalent radius is adjusted to match the volume and the surface area of 
the numerical solution (Section 2.3). 

Despite the differences discussed in the previous paragraphs, both 
the analytical and the numerical solutions describe a reservoir’s heat 
depletion with the same available reservoir volume and amount of 
removable heat. Heat conduction into the reservoir from outside is 
treated similarly in that they both use one-dimensional analytical ap
proaches (recall from Section 2.4 that in the numerical simulator the 
conduction of heat into the reservoir is an analytical solution that is built 
into TOUGH2). Thus, it is possible to get an estimate of reservoir heat 
depletion employing both the numerical and the analytical approaches. 

The analytical solution can be used in at least two ways. Firstly, it can 
be interpreted as the average reservoir temperature. In this approach, it 
always provides a lower-bound on the average reservoir temperature 
due to its assumed constant rate of heat removal, as discussed earlier in 
this section. Secondly, the analytical solution can be interpreted as the 
production temperature used for power generation calculations. When 
following this interpretation, the analytical solution is conservative at 
early times, as it predicts a temperature that is lower than the production 
temperature provided by the numerical solution. While a numerical 
solution would likely be more accurate for power generation calcula
tions, it is computationally expensive, which may be why some previous 
studies have neglected reservoir heat depletion and only reported the 
initial power generation (e.g., Randolph and Saar, 2011; Adams et al., 
2015). Using the analytical solution for reservoir temperature provides a 
computationally inexpensive lower bound, which could prove to be 
useful in combination with electric power cycle models to calculate 
power generation over a geothermal field’s lifetime. 

3.3.2. Physical insights into heat depletion and conduction 
Fig. 6a shows different fluid flow rates and their effects on the 

analytical solution. For high fluid flow rates, the reservoir temperature 
decreases faster, and steady-state conditions are achieved earlier, 
reaching lower temperatures. However, for lower fluid flow rates, the 
reservoir temperature decreases more slowly and approaches a steady 
state (greater than Tinj) at much later times because heat conduction 
brings heat into the reservoir at the same rate as the working fluid 
removes it. In contrast, the analytical solutions that do not consider heat 
conduction all approach Tinj (Γ = 0) at earlier times because there is no 
heat recharge. 

Heat conduction affects the reservoir temperature more significantly 
in reservoirs that exhibit lower fluid flow rates, as shown by the curves 
that represent 10 kg/s, 100 kg/s, and 500 kg/s in Fig. 6a. At 10 kg/s, 
there is a large difference between the temperatures with (solid green 
curve) and without (dashed green curve) heat conduction. However, this 
difference is minor for the 100 kg/s curves and barely perceptible in the 
500 kg/s curve. 

Fig. 6b compares the base case (reservoir thickness = 300 m) with a 
mass flow rate equal to 100 kg/s to a thin reservoir (thickness = 30 m) 
with the same mass flow rate, highlighting the effect of reservoir size 
and aspect ratio on reservoir heat depletion and on the importance of 
heat conduction. For this discussion, we assume that the reservoir life
time ends when 20% of the original heat is depleted from the reservoir, 
which corresponds to Γ = 0.8 and Tr = 86.4 ◦C. While our assumption 
that 20% heat depletion corresponds to the end of a reservoir’s life is 
somewhat arbitrary, it allows for comparison of reservoir lifetime for 
different reservoir thickness and conduction from surrounding rock. 
However, it is possible to run the same analysis with a different defini
tion of the reservoir lifetime. One takeaway is that the base-case reser
voir has a longer lifetime than the thin reservoir because there is more 
heat initially in the base case reservoir. The base case reservoir takes 
between 20 and 44 years, depending on the solution utilized (see the 
green and black curves in Fig. 6b), to reach the end of its lifetime. In 
contrast, this occurs in less than six years for the thin reservoir (see the 
blue and gray curves in Fig. 6b). Secondly, heat conduction plays a 
larger role in extending the reservoir lifetime for a thin reservoir than for 

Fig. 5. Panel (a) shows reservoir impedance and electric power generation as a 
function of reservoir transmissivity and illustrates the sensitivity of power 
generation to the impedance model used, indicated by different line types (see 
legend). Panel (b) shows the production temperature and electric power gen
eration as a function of reservoir transmissivity and illustrates the sensitivity of 
power generation to the assumptions made concerning wellbore heat loss, 
indicated by different line types (see legend). Both panels show four analytical 
reservoir impedance models and Panel (a) also shows the numerical reservoir 
impedance model. Horizontal arrows associate the curve with the related 
y-axis. 
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the thicker base-case reservoir. For example, in the analytical solution 
(green curves in Fig. 6b), heat conduction extends the base-case reser
voir lifetime by 7%, from 18.6 years, without heat conduction (dashed 
green curve), to 20.0 years, with heat conduction (solid green curve). In 
contrast, heat conduction extends the thin reservoir lifetime by 140%, 
from 1.8 years without heat conduction (dashed blue line), to 4.3 years 
with heat conduction (solid blue line). Thus, as expected, heat conduc
tion affects reservoirs with a high surface area to volume ratio more 
significantly than reservoirs with an inverse ratio. 

4. Conclusions 

This paper introduced and used analytical solutions to approximate 
the impedance, wellbore heat loss, and heat depletion of geothermal 
reservoirs under energy production. The reservoir impedance and 
wellbore heat loss solutions were coupled to a power cycle model to 
calculate electric power generation. The reservoir heat depletion solu
tion gave insights about power generation decline and reservoir lifetime. 
Key takeaways include:  

1. The utility of the analytical impedance solution relative to the numerical 
impedance solution depends on the assumptions and the application. In 
this work, the analytical solution provided a reservoir impedance 
that was higher than the reservoir impedance provided by the nu
merical solution, and thus resulted in less estimated electricity gen
eration. But the results of the numerical solution depend on the 
resolution of the grid used in the simulation, which can produce 
results that vary substantially (Section 3.1). In contrast, analytical 
solutions are independent of grid resolution and computationally 
inexpensive, but rely on simplifications (e.g., average fluid proper
ties and uniform fluid velocity profiles). Considering the pros and 
cons of both types of solutions, we consider both approaches as 
acceptable, depending on the application, particularly for explora
tion studies, where screening-level calculations are performed. Un
certainty due to differences between the analytical and the numerical 
values for reservoir impedance are likely much smaller than other 
subsurface uncertainties in an insufficiently characterized geological 
system. Among the analytical solutions, we recommend the use of 
the “ID-Potential” solution (Eq. (23)) for IDs and the “TDF-Hybrid” 
solution (Eq. (14)) for 5-spot TDFs.  

2. Wellbore heat losses may be neglected for many calculations of 
geothermal electric power generation (Fig. 5b). For high reservoir 
transmissivities, the fluid flow rate was large enough so that the fluid 

production temperature depletion was insignificant and power gen
eration was similar for calculations with and without wellbore heat 
loss. For low-transmissivity reservoirs (<3200 mD-m), the fluid flow 
rate was low, which resulted in little electricity generation (<0.2 
MWe), with or without wellbore heat loss.  

3. The analytical and numerical solutions of the reservoir heat depletion 
provide temperatures at different regions of the reservoir, but funda
mentally they both reflect the temperature of reservoirs with the same 
initial amount of removable heat, which is replenished by heat conduction 
from the surroundings. The analytical solution (Eq. (31)) represents a 
lower bound of the average reservoir temperature for all time 
(particularly at later times) and represents a lower bound on the 
production temperature during early years (Section 3.3). Coupling 
the analytical heat depletion solution with a power cycle model can 
be computationally inexpensive way to calculate the electric power 
generation of the lifetime of a geothermal power plant.  

4. The amount of heat initially present in the reservoir is closely related to the 
reservoir size and can be approximated by a lumped mass, with (Eq. 
(31)) or without (Eq. (33)) considering heat conduction. The thin 
reservoir reached 20% heat depletion faster than the thick reservoir, 
as expected. For the thin reservoir, all approaches (analytical and 
numerical with and without heat conduction with 100 kg/s flow 
rate) predicted <6 years before 20% heat depletion was reached, 
whereas for the thicker, base-case reservoir, all approaches predict 
between 19 and 44 years before 20% heat depletion was reached. 

5. Reservoir temperature is more sensitive to heat conduction from the sur
roundings in scenarios with low fluid flow rates (Fig. 6a) or a high ratio of 
reservoir surface area to volume (e.g., the thin reservoir in Section 3.3). 

There are advantages and disadvantages of using analytical versus 
numerical reservoir models. A careful weighing of objectives should be 
made when constructing a geothermal power plant model that couples 
reservoir performance with electricity generation. Some of the conclu
sions above can provide guidance when weighing these objectives. 
Others offer insights into the behavior of geothermal reservoirs and 
power production. 
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