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ARTICLE INFO ABSTRACT
Keywords: Sedimentary basins are attractive for geothermal development due to their ubiquitous presence, high perme-
Sedimentary geothermal ability, and extensive lateral extent. Geothermal energy from sedimentary basins has mostly been used for direct

Electricity generation potential
Porous media analytical solutions
Electric power generation

heating purposes due to their relatively low temperatures, compared to conventional hydrothermal systems.
However, there is an increasing interest in using sedimentary geothermal energy for electric power generation
Reservoir impedance due to the advances in conversion technologies using binary cycles that allow electricity generation from
Geothermal reservoir heat depletion reservoir temperatures as low as 80 °C. This work develops and implements analytical solutions for calculating
Wellbore heat loss reservoir impedance, reservoir heat depletion, and wellbore heat loss in sedimentary reservoirs that are laterally
extensive, homogeneous, horizontally isotropic and have uniform thickness. Reservoir impedance and wellbore
heat loss solutions are combined with a power cycle model to estimate the electricity generation potential.
Results from the analytical solutions are in good agreement with numerically computed reservoir models. Our
results suggest that wellbore heat loss can be neglected in many cases of electricity generation calculations,
depending on the reservoir transmissivity. The reservoir heat depletion solution shows how reservoir tempera-
ture and useful lifetime behave as a function of flow rate, initial heat within the reservoir, and heat conduction
from the surroundings to the reservoir. Overall, our results suggest that in an exploratory sedimentary
geothermal field, these analytical solutions can provide reliable first order estimations without incurring
intensive computational costs.

Over the past decades, however, numerous sedimentary basins have
been investigated to assess their electric power generation potential

1. Introduction such as the Molasse basin (Northern Alpine Foreland Basin), the Western
Canadian foreland basin, the Upper Rhine Graben, and the North

Geothermal energy is a steady and dispatchable power generation German basin, to name a few (Clauser, 2006; Agemar et al., 2014; Banks
source with a low carbon footprint. Depending on the temperature and and Harris, 2018). Despite relatively low reservoir temperatures, elec-
enthalpy of the geothermal heat extraction fluid, geothermal energy can tricity can be generated from such sedimentary formations by employing
be used for direct applications, such as heating and cooling or for elec- binary cycle energy conversion techniques, such as an Organic Rankine
tricity generation. Geothermal resources from high temperature (T > Cycle (ORC) or a Kalina cycle (Colonna et al., 2015; Arslan, 2011). In the
180 °C) hydrothermal reservoirs of volcanic origin are generally used for binary cycle process, a working fluid, with a lower boiling point, is used
electricity generation, whereas medium- to low-temperature resources to generate steam from the produced reservoir fluid at the land surface
(T < 180 °C) are predominantly used for direct purposes, such as district at temperatures as low as 85 °C (Moya et al., 2021). In Tartiere and
heating, heating of greenhouses and balneological applications Astolfi (2017), the authors present a detailed analysis on the evolution,

(Huenges, 2016; Moeck et al., 2019).
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Nomenclature

A, cross-sectional area

Apes conduction area of reservoir

D well diameter

L well spacing

M source-sink strength

P fluid pressure

Qross heat exchange from wellbore to surroundings

T, background geothermal temperature

Tinj injection temperature

T, reservoir temperature

Ty well wall temperature

q Darcy velocity

Vies volume of reservoir

a equivalent radius of the reservoir

a area-based equivalent radius

ay volume-based equivalent radius

b reservoir thickness

Ceff specific heat capacity of rock/water mixture

CFluid working fluid specific heat capacity

e Euler’s number

h enthalpy

kefr effective thermal conductivity of saturated fluid/rock
mixture

m mass flow rate (general)

Mior total mass flow rate through well

r radial horizontal spatial coordinate

o well radius

ri, ra distance from well to equipotential line (Section 2.1.3)

t time

tg dimensionless time

x cartesian horizontal spatial coordinate

Xo location of well/porous media interface

z vertical spatial coordinate

r non-dimensional temperature

AP pressure difference in the reservoir between the injection

well and the midpoint between the injection and
production well

APyt pressure difference in the reservoir between the injection

well and the production well

frictional losses in well

Wellbore heat transfer factor

heat depletion term

angle of rotation in radial coordinates

permeability

inverse of the product of the contact resistance and the

thermal conductivity

U fluid viscosity

] effective fluid viscosity in reservoir

& parameter that accounts for heat capacity inside and
outside reservoir. Typically,é = 3 (see Section2.3).

p fluid density

Peff density of rock/water mixture

AP Loss

N A SN

p effective fluid density in reservoir
@ stream potential
0] thermal diffusivity of fluid/rock mixture

current installed capacity and growth potential of the ORC market. Few
examples of ORC plants include the Neustadt-Glewe demonstration
power plant in Germany, which was based on the ORC technology,
utilizing a sandstone reservoir in the North-German sedimentary basin
(Siebt et al., 2005). In the region of Munich, Germany, several
geothermal power plants are in operation, which provide direct heat for
district heating in the winter and electricity in the summer, extracting
energy from the porous limestones and dolomites in the south-German
Molasse basin (Liischen et al., 2014). The Unterhaching geothermal
power plant in this region was the first Kalina cycle based geothermal
power plant in Europe, which operated until 2017 (Weber et al., 2021).
Numerous other low- or medium-enthalpy geothermal projects are being
developed in France, Germany, Austria and Switzerland, exploiting the
main sedimentary basins such as the Upper Rhine Graben, the Molasse
basin and the North German basin (Boissavy et al., 2019; Goldbrunner
and Goetzl, 2019; Link and Minnig, 2022).

Sedimentary basins yield high potential to provide geothermal heat
due to their: (a) widespread presence and frequent proximity to end
users, (b) significant energy content (despite relatively low tempera-
tures) due to their typical large size, compared to the rather small-scale,
artificially generated Enhanced Geothermal System (EGS) reservoirs,
and (c) often high natural transmissivities (i.e. low reservoir imped-
ances) at least at moderate depths of a couple of kilometers. Further-
more, sedimentary basin reservoirs typically do not require hydraulic
stimulation, in contrast to EGS, thereby significantly reducing the risk of
inducing seismicity (Ge and Saar, 2022). However, electric power gen-
eration from such low-enthalpy sedimentary basin geothermal systems
is relatively new, compared to electricity generation from high-enthalpy
geothermal systems, which have been widely studied (e.g. Minissale,
1991; Langella et al., 2017; Deb et al., 2020). In addition to binary cy-
cles, another approach to generating electric power from low-enthalpy
sedimentary basin reservoirs is the use of subsurface carbon dioxide
(CO2) in so-called COz-Plume Geothermal (CPG) power plants

(Randolph and Saar, 2011). The use of CO; results in an approximate
doubling of the thermal, and thus electric, energy production rate,
compared to water, and enables direct placement of a CO»-turbine in the
single power loop, so that a binary cycle is not needed (Adams et al.,
2014, 2015, 2021; Ezekiel et al., 2022). However, in this work, we focus
on indirect binary cycle process using R245fa as a secondary working
fluid. It is important to note here that R245fa belongs to a group of
hydrofluorocarbons that has a high global warming potential (GWP)
(Dawo et al., 2021). Alternatively, working fluids such as R1233zd(E)
and R1224yd(Z) have similar thermophysical properties as R245fa but
lower GWP values and are considered as potential drop-in replacement
for R245fa in the future ORC plants (Eyerer et al., 2016, 2019). In this
study, we use R245fa as the working fluid because this is the currently
available commercial technology for power production and further-
more, we compare the results of this study with the numerical simula-
tions performed in Adams et al. (2015), where R245fa is the working
fluid. We use analytical methods to evaluate the electricity generation
potential from sedimentary basin reservoirs without implementing
computationally expensive reservoir simulation. Analytical models are
typically easier to apply than numerical solutions and tend to have fewer
degrees of freedom, reducing the likelihood of human error. Being
computationally inexpensive, analytical models can be used to explore
large parameter spaces and to perform sensitivity analyses. Analytical
models have been used in many subsurface applications for first-order
estimations and pre-screening evaluations such as geologic COs
sequestration (Nordbotten and Celia, 2012), groundwater remediation
(Bakker and Strack, 1996; Strack, 1999) and geothermal reservoir
development (Birdsell et al., 2021). However, analytical approaches rely
on simplified assumptions and approximations, making them often less
suitable for solving complex geological problems. Numerical simulators,
on the other hand, can handle problems with more complex geometries,
heterogeneities, and coupled physics (e.g., thermo-hydro-mechanical-
reservoir simulation). Numerical models may relax the assumptions
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and approximations that some analytical solutions require, making them
suitable for applications where such simplifications are not justified. On
the other hand, increasingly complex numerical models can require
large amounts of input data for parameter specification, meshing
choices, and setup of boundary and initial conditions. Given these
tradeoffs between analytical and numerical methods, no method is al-
ways more favorable, precise, or accurate, compared to the other.

When exploring geothermal fields with little to no data that char-
acterize the subsurface, initial calculations are typically based on as-
sumptions that the reservoir is homogeneous and isotropic. In such
greenfields, analytical methods might provide sufficiently reasonable
first-order approximations of the geothermal energy production poten-
tial, which are comparable to the results of the numerical models. We
test this hypothesis by comparing results from both approaches, i.e.,
employing both analytical and numerical reservoir calculations in
sedimentary reservoirs that are laterally extensive, homogeneous, hor-
izontally isotropic and have uniform thicknesses. Hence, the objectives
of our work are to:

i introduce analytical solutions for assessing the sedimentary reservoir

impedance, reservoir heat depletion over time and wellbore heat

loss,

couple the analytical solutions for reservoir impedance and wellbore

heat loss with a power cycle model, including thermodynamic cal-

culations for turbine(s), cooler(s), condenser(s), boiler(s), and pump

(s), to estimate the electric power generation potential,

analyze the reservoir heat depletion as an indicator of how the

electric power generation decreases over a project lifetime, and

iv compare the estimates from analytical solutions with the results from
numerical models to clarify and further demonstrate the advantages
and disadvantages of the two methods for representing the
subsurface.

=

i

=

ii

While the equations in objective (i) are not entirely novel, a summary
and comparison of these analytical equations is valuable and important
to understand the method’s applicability to sedimentary geothermal
systems. More importantly, the coupling of analytical reservoir equa-
tions with a power cycle model in objective (ii) and the ability to
investigate objective (iii) are novel contributions. Further, the resultant
comparison of electricity generation using both analytical and numeri-
cal reservoir equations in (iv), is also novel. The paper is organized as
follows: In Section 2, we introduce the analytical solutions that describe
the reservoir behavior and recapitulate the numerical reservoir simu-
lator and the power cycle model from previous work (Adams et al.,
2015, 2021). In Section 3, we compare the results from the analytical
model with those from the numerical model with respect to estimated
power generation and operational reservoir lifetime. Section 4 presents
our conclusions.

2. Methods

As mentioned earlier, we implement analytical reservoir solutions
coupled with a power cycle model to calculate electric power generation
and to gain knowledge concerning the operational lifetime of a
sedimentary-basin geothermal reservoir. The heat and electric power
generation rates are proportional to the flow rate and temperature of the
produced fluid. Therefore, in Sections 2.1 and 2.2, we provide analytical
solutions for the reservoir impedance and wellbore heat loss. The
operational lifetime of the reservoir is related to the reservoir heat
depletion rate, as power generation decreases with reservoir tempera-
ture. Therefore, in Section 2.3, we provide an analytical solution for
reservoir heat depletion. In Section 2.4 and 2.5, we review the numerical
reservoir simulator and the power cycle model from Adams et al. (2015),
which remain mostly unchanged in this work.

The key simulation parameters and assumptions are given in Table 1
and are consistent with the base case scenario presented in Adams et al.
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Table 1

Model assumptions and parameters.
Parameter Value
Reservoir parameters

Well pattern

Primary geothermal fluid
Secondary ORC fluid

Well diameter (D)

Well spacing (L)

Geologic temperature gradient
Surface temperature
Reservoir depth

Injection temperature (Ti;;)
Far-field temperature (T,)
Flow rate (m)

1 km? Inverted 5-spot

Water

R245fa

0.41m

707 m

35 °C/km

15°C

2.5 km

22°C

102.5°C

100 kg/s (for the reservoir heat depletion
calculations in Sections 2.3 and 3.3.)
Maximized power (for the power generation calcs
in Sections 2.5 and 3.2.)

Reservoir pressure Hydrostatic

Permeability (x) 5.10"14 m?

Reservoir thickness (b) 300 m

Thermal conductivity of 2.1 W/m- °C
saturated media

Density of saturated media 2485 kg/m*
(Peg)

Specific heat capacity of 1320 J/kg- °C
saturated media (ceff)

Thermal conductivity of 2.1 W/m- °C

saturated media (kes)
Other reservoir assumptions Laterally extensive, horizontal, homogeneous,
horizontally isotropic, uniform thickness

Power Cycle Generation Model Parameters

ORC isentropic turbine 80%
efficency (assumed)

Pump efficiency (assumed) 90%

Ambient mean annual air 15 °C (Dallas, TX)
temperature

Cooling or condensing tower 7°C

approach temperature
Cooling or condensing tower
type
Pinch point temperature 7°C

Wet, closed circuit

(2015) and are justified in that reference. For example, the 35 °C/km
geothermal temperature gradient is approximately equal to the average
value for the continental crust of the Western United States (Nathenson
and Guffanti, 1988). For the sake of brevity, we do not repeat all the
justification here. However, it is important to note that we assume the
reservoir is horizontal, homogenous, horizontally isotropic, has a uni-
form thickness, and is bounded by impermeable aquicludes above and
below.

2.1. Reservoir impedance analytical solutions

Reservoir impedance is defined as the pressure difference between an
injection well and a production well divided by the mass flow rate, i.e.,
APy /My Where APy, is the pressure difference in the reservoir between
the injection well and the production well and my,, is the total flow rate
through the injection well. All other parameters remaining the same,
low reservoir impedances enable higher flow rates, leading to increases
in thermal and electric power generation rates.

We analyze two well patterns: an inverted 5-spot tessellated well
pattern developed field (TDF) and an isolated doublet (ID). A TDF is a
geothermal field that contains a repeating pattern of wells in a laterally
extensive reservoir. An example of a TDF is the inverted 5-spot well
pattern shown in Fig. 1, employed in many previous reservoir simula-
tions (e.g., Randolph and Saar, 2011; Adams et al., 2015, 2021). An
inverted 5-spot well pattern consists of four equidistant production wells
on the corners of a square with one injection well in the center of the
square. We assume that one quarter of the fluid mass from each pro-
duction well is injected back into the central injection well to maintain
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Production Well
® Injection Well

______ 5-Spot Boundary

|:| Analyzed quarter of 5-spot
D Non-analyzed quarters of 5-spot

7/ 7 7 No-flow Boundary Condition

> Approx. Flow Direction

Fig. 1. Schematic of an inverted 5-spot tessalated well pattern developed field (TDF). Within the inverted 5-spot TDF pattern, one quarter (i.e., quadrant) is analyzed
(white box with black outline). No-flow boundary conditions (blue dashes) are utilized to separate the analyzed quarter of the inverted 5-spot from: 1) the other, non-
analyzed quarters (or quadrants) of the inverted 5-spot (gray box with dark gray outlines) and 2) the other inverted 5-spots. These no-flow boundaries are valid due to
the symmetry of the fluid flow direction (indicated by the blue arrows) and are commonly invoked (e.g. Pruess, 2006).

reservoir pressure; the remaining produced fluid mass is injected into
neighboring injection wells. In total, the fluid mass injected into any
injection well is thus the same as the fluid mass extracted from any
production well. When analyzing an inverted 5-spot TDF, we assume
that there are many inverted 5-spots (as shown in Fig. 1), and we analyze
an internal inverted 5-spot that is far from the boundaries of the well
field, which allows us to use symmetry to simplify boundary conditions
and perform calculations for only one quarter (i.e., one quadrant) of an
inverted 5-spot, as depicted in Fig. 1 and as used previously (e.g., Ran-
dolph and Saar, 2011; Adams et al., 2015, 2021). Since only one quarter
of the 5-spot is analyzed, only one-quarter of the injection screen is
analyzed, and therefore only one quarter of the total injection volume is
considered in the derivations in Sections 2.1.1 and 2.1.3. As Fig. 1
shows, hydrologically, there is no flow laterally to adjacent inverted
5-spot patterns and no flow laterally to the remaining three quarters of
the 5-spot pattern (Randolph and Saar, 2011; Adams et al., 2015, 2021).
Furthermore, there is no flow vertically because of the (assumed)
impermeable units above and below the reservoir. These boundary
conditions are valid under the assumptions of a horizontal, homoge-
neous, isotropic, laterally extensive reservoir with repeating adjacent
5-spot TDF; the boundary conditions and the approximate flow pattern
are depicted in Fig. 1.

While the inverted 5-spot TDF represents a mature field, many
geothermal fields will start with a single injection-production well pair.
We define an isolated doublet (ID) as an injection-production well pair
with non-zero well spacing, located far from any other wells, so that
there is no external hydraulic or thermal influence. Therefore, we
analyze IDs and inverted 5-spot TDFs, which act as bounding cases in a

geothermal field’s lifetime. In our analysis, the well spacing between an
injection and a production well is assumed to be 707 m for both the ID
and the inverted 5-spot TDF, i.e. half of the diagonal of a 1 x 1 km?
inverted 5-spot well pattern (Fig. 1).

We provide four analytical solutions that integrate Darcy’s equation
to give the reservoir impedance. The difference between each approach
comes from the definition of the cross-sectional area within Darcy’s
equation, which is described in more detail in Sections 2.1.1-2.1.4
below. Pressure contours for each approach are shown in Fig. 2, and the
flow direction is perpendicular to each pressure contour. The first
approach (Section 2.1.1) uses a cartesian coordinate system to define the
cross-sectional area, which honors the flow behavior that should be
parallel to the x-axis at the midpoint in between an injection and a
production well in a 5-spot (see “TDF-Cartesian” in Fig. 2a). The second
approach (Section 2.1.2) applies primarily to the ID and uses a radial
coordinate system, which honors the radial behavior of flow near an
injection or a production well (see “TDF-Radial” in Fig. 2a or “ID-Radial”
in Fig. 2b). The third approach (Section 2.1.3) is a hybrid method, which
implements the best of the first two approaches, such that the radial
fluid flow near either well and the lateral fluid flow at the midpoint
between the two wells are both honored for the 5-spot TDF (see “TDF-
Hybrid” in Fig. 2a). The final approach (Section 2.1.4 and “ID-Potential”
in Fig. 2b) applies to the ID and uses a method that is based on the
potential function and streamlines to improve the “ID-Radial” solution.

It is important to note that all derivations in Section 2.1 are one-
dimensional, rely on average fluid properties, and assume a uniform
fluid velocity profile through a cross-sectional area. Thus, the solutions
do not account for fluid flow deviations from these fluid flow patterns
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b)

& Well Diameter, D

,/// /l : 5 e o “
/ ID-Radial

ID-Potential

Fig. 2. Pressure contours for (a) one-quarter of a 5-spot TDF and (b) an ID in plan view, where “Inj” indicates the injection well and “Prod” indicates the production
well. These pressure contours correspond to the cross-sectional area divided by the reservoir thickness for the solutions derived in Section 2.1.1-2.1.4 and vary based
on the method used (e.g., “ID-Radial”; “ID-Potential”; “TDF-Cartesian”; “TDF-Radial”; or “TDF-Hybrid”). Note that @ is the angle of rotation arround the well and is

utilized in Section 2.1.4 for the “ID-Potential” solution.

(Fig. 2), heterogeneities, or buoyancy forces. However, the solutions do,
at a minimum, provide an order-of-magnitude approximation of the
geothermal reservoir behavior under production. Due to the symmetry
of the inverted 5-spot TDF, only one quarter of the system is analyzed in
Sections 2.1.1 and 2.1.3. All the sides in Fig. 2a can be treated as no-flux
boundary conditions, as discussed earlier in this section.

2.1.1. 5-spot tessellated, developed field (TDF) in Cartesian coordinates

The one-dimensional Darcy equation for horizontal flow can be
expressed in Eq. (1), where P is the fluid pressure from both elevation
and pressure head, p is the dynamic viscosity of the fluid, g is the Darcy
velocity (specific discharge), x is the permeability, and x is distance in
the direction of fluid flow.

L o))
K

The continuity equation is shown in Eq. (2), where the mass flow
rate, m, is equal to the product of fluid density, p, the cross-sectional
area, A, and the Darcy velocity, q. Here, m is the flow rate through
the portion of the injection well that is analyzed. Therefore, in the so-
lutions for the 5-spot TDF in Sections 2.1.1 and 2.1.3, where only one
quarter of the injection well screen is analyzed, m equals only one-fourth
of the total mass flow rate, m,,. In contrast, the whole circumference of
the well screen is analyzed in the ID solutions in Sections 2.1.2 and 2.1.4,
so that m equals m,, in those sections.

m=p-Acq (2)
Eq. (2) is substituted into Eq. (1), yielding Eq. (3).

dP = —% Kf:" dx (3)

For a one-quarter domain of a 5-spot configuration, the x-axis is
aligned with the line between the injection and production wells (see
Fig. 2a). The cross-sectional area, A., through which Darcy fluid flow
occurs in the reservoir is given by Eq. (4), where b is the reservoir
thickness. The lines “TDF-Cartesian” in Fig. 2a indicate the cross-
sectional area, divided by the reservoir thickness, b.

A, =2xb 4

By combining Egs. (3) and 4 and integrating from the interface be-
tween the well and the porous medium (i.e., the outside of the casing),
Xo, to the midpoint between the two wells, L/2, yields Eq. (5), where L is

the distance between the injection and the production wells (i.e., the
well spacing). Integration of Eq. (5) yields Eq. (6), where AP is the
pressure decrease from the injection well to the midpoint. The dynamic
viscosity, f, and the density, p, are average values for the entire
reservoir.

" om 1
p=_F -
/d p 2:xb / xdx )
Hom L
AP == In{ —
p 2:k-b n(2-xo) )

To find the total fluid pressure difference in the reservoir between
the injection well and the production well, AP,,, Eq. (6) must be
doubled, as it estimates the pressure loss from the injection well to the
mid-point between the injection and the production wells. The fluid
pressure continues to drop at the same rate going from the midpoint to
the production well. As a result, this doubling cancels out the 2 in the
denominator of Eq. (6).

Also, the well perimeter in this one-dimensional Cartesian space is a
square, where each side of the square has a length of 2-x,. Thus, it is
possible to equate the perimeter of the square with the circumference of
a circle with a diameter, D, which will represent the diameter of the well,
to yield Eq. (7).

7D = 4-(2:x)) @

Substituting Eq. (7) into Eq. (6) yields the pressure difference as a
function of the well diameter, D. This equation is valid for all quadrants
of the inverted 5-spot well pattern, and the total flow rate through the
well is my,; = 4m, due to the symmetry of the problem. We express the
reservoir impedance in terms of AP,,, and my, in Eq. (8), which facilitates
comparisons with other solutions in Section 2.1. Note that the reservoir
impedance is inversely proportional to the reservoir transmissivity, «b,
which is the product of reservoir permeability and thickness.

AP, p 1 4-L
el In[ —=
My p 4k-b t n-D ®

2.1.2. Isolated doublet (ID) in radial coordinates
We use an approach similar to that in Section 2.1.1 to solve for the
reservoir impedance of an isolated doublet (ID), which is an injection-
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production pair that is far from the influence of other wells (Fig. 2b). We
assume that the fluid flow between the injection well and the production
well is radial and uniform in all directions, up to a radius of L /2. For this
injection-production well pair, we use radial coordinates and substitute
dx = drin Eq. (1). The cross-sectional area of flow is the product of the
circumference at radius r and the reservoir thickness b (Eq. (9)). In one-
dimensional radial coordinates, the well perimeter is a circle unlike one-
dimensional Cartesian coordinates where the well perimeter is a square
(Section 2.1.1). Hence, the cross-sectional area, divided by the reservoir
thickness, is illustrated by the lines labeled “ID-Radial” in Fig. 2b.

A, =271b 9

By combining Egs. (3) and (9), we obtain Eq. (10), where ry is the
well radius, which is analogous to x, in Section 2.1.1. Integration yields
Eq. (11), which is the pressure difference from the well to the midpoint
between the injection and the production wells.

Hoom 1
dP = —= —d 10
/ p 2-mwx-b / r g an

oo L
AP = e (Tro) an
Eq. (11) is rearranged to include the reservoir impedance of a source-
sink pair (Eq. (12)), where the well radius is half the well diameter. Note
that the flow rate, m, is equal to my,, in this section because we use the
entire circumference of the well, unlike in Section 2.1.1, where we
analyzed one-quarter of the well circumference.

Ll _E__ ln<£) 12)
My p kb \D

The radial approach can also be used to derive the impedance of an
inverted 5-spot TDF, where the impedance calculated for the “ID-Radial”
is the same as that of the “TDF-Radial” (i.e. Eq. (12) also applies to an
inverted 5-spot TDF, analyzed with radial coordinates (Fig. 2a). This can
be derived following the same approach as in Section 2.1.1, except the
lower bound of the integration in Eq. (5) is then D/2 and A, = zrb /2.
Since we show a similar derivation in this section (i.e., Section 2.1.2), it
is not repeated.

Note that for large values of L/D, the reservoir impedance of the “ID-
Radial” solution (Eq. (12)) is larger than the reservoir impedance of an
inverted 5-spot TDF-Cartesian (Eq. (8)) by a factor of 4 /z. This 27%
difference is due to the 27% smaller sweep area of the “ID-Radial” and
the “TDF-Radial” solutions, compared to the “TDF-Cartesian” solution.
Thus, in Section 2.1.4, we use the potential functions to include the
entirety of the reservoir area for an ID.

2.1.3. 5-Spot tessellated, developed field (TDF), hybrid

In a 5-spot “TDF-Hybrid”, the cross-sectional area, divided by the
reservoir thickness, is best represented by a circular arc near the well
because fluid flow is radially away from the injection well (see “TDF-
Radial” in Fig. 2a). However, at the midpoint between the wells, the
cross-sectional area, divided by the reservoir thickness, is best repre-
sented by a line that is perpendicular to the x-coordinate due to the
symmetry in the 5-spot TDF (see “TDF-Cartesian” in Fig. 2a). We define a
hybrid cross-sectional area in Eq. (13) that honors the radial flow near
either well and the cartesian flow at the midpoint between the wells. The
hybrid area, divided by the reservoir thickness, is illustrated in Fig. 2a by
the lines labeled “TDF Hybrid.”

2 ) T Ln
A, = %-Xu <x (I—Z) +x<?—x(,)) (13)

The same approach as shown in Sections 2.1.1 and 2.1.2 is used to
find the reservoir impedance (Eq. (14)).
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2.1.4. Isolated doublet (ID) with potential flow

The pressure potential curve surrounding an injection well or a
production well does not have a constant radius, as is assumed in Sec-
tion 2.1.2. Thus, to find a more precise solution for an ID, we integrate
the distance of the potential curve surrounding the sink to obtain the
cross-sectional area (Eq. (15)), where r; is the radius to the equipotential
line from the sink and 6 is the angle of integration around the well, as
shown in Fig. 2.

2

A = b~/r1 do (15)

0

For source-sink potential flow, the stream potential, ¢, is given by
Eq. (16), where M is the source-sink strength, r; is the radial distance
from the sink, and r, is the radial distance from the source (Stern 2006).

oMy (’_‘) a6)

2r r

The shortest streamline extends directly from the sink to the source
and is shown as a dashed line in Fig. 2b. The potential along this
streamline is given by Eq. (17), which is evaluated by applying r; =r
andry, =L—r.

a7)

Equating Eqs. (16) and (17) yields Eq. (18), which provides the
distances r; and r, along a line of constant potential as a function of L
and r. Eq. (18) is solved for rZ in Eq. (19).

L
n_L 4 18)

r r

2
B =rk (E — 1) 19

r

Using trigonometry, we find length r, as a function of r; and 0 in-
dependent of the considerations of potential flow in Eq. (20)

13 =1} +L* — 2-L-ry-cosf (20)

Equating Egs. (19) and (20), solving for ry, integrating according to
Eq. (15), and assuming large values of L (i.e. L>1) yields Eq. (21). The
L>>1 assumption is likely valid for most of the sedimentary-basin
geothermal fields that this paper pertains to because optimal well
spacing is likely to be hundreds of meters (Adams et al., 2015).

2-7-b

A, = 21

The denominator in Eq. (21) does not lend itself to simple integra-
tion. We thus approximate Eq. (21) with Eq. (22). This approximation
preserves the anomaly occurring at r = L/2, where the cross-sectional
area becomes infinite. At the midpoint between the injection well and
the production well, the line of equal potential is tangent to the
streamline, extending to infinity.

12\ /M1 2" /1 2
(s o) =C) C-2) =(-3) @2

Egs. (21) and (22) are combined with Eq. (3) in radial space (dx =
dr) and integrated using an approach similar to Eq. (10). The resulting
reservoir impedance is given by Eq. (23), where e is Euler’s number.

AP, p 1 L D
Dt _ 2 In(— ) += 2
My p mk-b n D-e * L (23)
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The solution in Eq. (23) is similar to the solution in Eq. (12); i.e., the
“ID, Potential” and the “ID, Radial” differ only by the factor of e within
the natural logarithm. The D/L term is small for large values of L /D and
can be neglected without much loss of precision. For well spacing to well
diameter ratios of 1000 (i.e., L/D = 1000), Eq. (23) provides a reservoir
impedance value approximately 15% smaller than Eq. (12). This
decreased impedance, using the “ID-Potential” method (Eq. (23)), is
enabled by the infinite swept volume, whereas the “ID-Radial” solution
(Eg. (12)) has a finite swept volume.

2.2. Wellbore heat loss analytical solution

Heat loss to the rock surrounding the wellbore is implemented using
a semi-analytical approach. In each wellbore element that is numerically
integrated (Adams et al., 2015), an analytical heat solution for a
semi-infinite solid is applied from Zhang et al. (2011). This approach
assumes that heat conduction only occurs radially to the far-field and
that the wellbore wall temperature is constant with time.

Similar to Adams et al. (2015), the wellbore elements are evaluated
numerically, with pressure (Eq. (24)) and energy (Eq. (25)) balances
across each element, where Az is the change in element elevation, APy
is the pipe frictional loss, h is the enthalpy, Qs is the heat exchange to
the surroundings, m is the fluid mass flow rate, and an “i” subscript
indicates the value at the i™ element. The pressure loss equation is
identical to Adams et al. (2015), while the energy equation includes the
new heat exchange term.

Py =P —p;g Az — APpyg, 24)
iy = hy — gz — 2 25)
m

The heat loss is solved with Eq. (26) from Zhang et al. (2011), where
ke is the effective thermal conductivity of the rock/water porous media
complex,  is a non-dimensional, time-dependent factor for heat trans-
fer, T, is the well casing temperature, and T, is the background, far-field
temperature at depth, equal to the product of geologic temperature
gradient and reservoir depth plus the mean annual surface temperature.
It is assumed that the well casing and fluid heat transfer resistances are
small compared to conduction through the rock and are thus negligible.

OLossi = Azzﬂk(’ffﬂ(

The well casing temperature is an intermediate temperature between
the wellbore fluid temperature and the far-field temperature. Without
heat loss, the wellbore elements are assumed to be sufficiently long that
the fluid temperature is in thermal equilibrium with the well casing.
Thus, the well casing temperature, T, is assumed to be the resulting
fluid temperature for an enthalpy of h; and a pressure of P; if the heat loss
term in Eq. (25) were zero.

The dimensionless factor j is given by Zhang et al. (2011) as Eq. (27),
where t; is dimensionless time.

Tyi—Tei) (26)

B= 27)

2 1.16 1y >2.8
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The dimensionless time, t;, is given in Eq. (28), where o is the
thermal diffusivity of the rock/fluid porous media complex and t is
(dimensional) time.

4.t

ty = O (28)

2.3. Reservoir heat depletion analytical solution

Recent work used numerical solutions to show how reservoir heat
depletion affects electric power output (Adams et al., 2021). We adapt a
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heat depletion analytical solution from Carslaw and Jager (1986) to
estimate the sedimentary basin heat depletion. This approach is similar
to that used by Zhang et al. (2011).

The reservoir is treated as a sphere with infinite thermal conduc-
tivity, which is situated within a semi-infinite medium at the back-
ground, far-field geothermal temperature. The temperature of the
reservoir is (Carslaw and Jager, 1986):

_ -0

a 4ﬂ'aA keﬂ'

e +T,, 29

where Q is the rate of heat removal from the reservoir, a is the equivalent
radius of the reservoir, where its subscript is discussed in more detail
later in this section, and € is a function of time and parameters related to
reservoir size, geometry, and thermal diffusivity.

The rate of heat removal from a reservoir is:

Q = —mcpia (Tinj - Tr)-, (30)

where Tjy; is the fluid injection temperature and cpyq is the working
fluid’s specific heat capacity. We assume that the heat extraction rate is
constant (to be consistent with Eq. (29)) and we substitute Eq. (30) into
Eq. (29). While Q will actually decrease with time as the reservoir
temperature decreases (assuming a constant mass flow rate), Eq. (29)
will give approximate values of reservoir temperature at early times,
before the temperature declines are substantial. We are most interested
in temperature depletion at these early times. For later times, when the
temperature depletion is large, the solution to Eq. (29) will be conser-
vative as it will rather overpredict temperature depletion.

With algebraic manipulation of Egs. (29) and (30), a non-
dimensional reservoir temperature can be expressed as:

Tr - Tin‘ mcFIuid € -
= ! = 1 31
T, — Ty (47mAkLﬂ + > @D

where € is defined as:

_ltad 2480 7 P ( ) o (32)
T ayl T [(2(1 + ay2) — EayA)]* + [d — Eayau]®

where 1 is the inverse of the product of the contact resistance between
the reservoir and the surrounding rock/fluid complex and the thermal
conductivity of the reservoir-surrounding rock/fluid complex, ¢ has a
value of three when the density and specific heat capacity of the reser-
voir are the same as the reservoir-surrounding rock (as we assume), and
u is an integration variable.

As an aside, we note that the non-dimensional temperature in the
absence of conduction is given by:

. -1
ey
( CFluid + 1) (33)
Vrespgffceﬂ"
where V,,; is the reservoir volume.

In the limit as A approaches infinity, € can be expressed more simply
as:

r_ T =T _
T, — Ty

5 % exp (‘““ ’) du
_¥ (34
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Analytical solutions of € exist for both early and late time (Carslaw
and Jager, 1986). Nonetheless, we solve the integral in Eq. (34)
numerically so that the solution covers all times that are relevant for
geothermal development, including intermediate times that the
analytical solutions do not represent well.

In the original Carslaw and Jager (1986) solution, a represents the
radius of a sphere. However, since geothermal reservoirs are typically
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not spherical, we find that careful specification of the equivalent radius
can improve the solution. The equivalent radius could be specified to
match the reservoir volume, ay, or the surface area over which heat
conduction occurs, as:

1
3Vis \?
= 35
ay (4;1:) (35)
AIES
a =\3r (36)

where A is the surface area of the reservoir exposed to heat conduction
from the surroundings.

In separate comparisons to the numerical solution for reservoir heat
depletion (see Section 2.4), we find that it is best to use the area-based
equivalent radius outside of € (i.e., in Egs. (29) and (31)). This ensures
that the temperature is correct as time approaches infinity because the
late-time steady-state temperature occurs when the heat extraction rate
is equal to the rate of conductive heat transfer into the reservoir. We use
the volume-based radius for the calculation of € (Eq. (34)), which en-
sures that the initial amount of heat in the reservoir is correctly
accounted for.

2.4. Numerical simulations

We also perform numerical thermo-hydraulic reservoir simulations
for comparisons with the analytical solutions. The simulations calculate
reservoir impedance and the temperature at the production well with
respect to time.

The simulations are performed with the reservoir simulator TOUGH2
with the Equation of State ECO2N module (Pruess 2004, 2005) and
investigate one-eighth of a 5-spot TDF, similar to Adams et al. (2015).
The input file and mesh (included in the Supplemental Information) are
based on an example in the TOUGH2 manual (Pruess et al., 1999, Sec-
tion 9.4), where we intentionally changed as little as possible. The mesh
contains 36 elements, consistent with the TOUGH2 manual example and
previous studies (Randolph and Saar, 2011; Adams et al., 2015). We
apply fixed mass flow rate boundary conditions at the injection and
production cells. We maintain the pressure at the corner node as the
hydrostatic reservoir pressure by supplying constant fluid pressure as
needed. Due to symmetry, there is no flux of heat or fluid across the
vertical reservoir boundaries. There is also no fluid flux through the top
or bottom reservoir boundaries because the overlying and underlying
rock is assumed to be impermeable. Heat is conducted into the reservoir
from the top and bottom boundaries according to a built-in TOUGH2
analytical function, which assumes Cartesian, one-dimensional heat
conduction coming from the background, which is at temperature T,
acting as a local heat source term (Pruess et al., 1999). The reservoir heat
extraction working fluid is water.

The base case model parameters and assumptions are shown in
Table 1 and are based on Adams et al. (2015). In Section 3.3, we also
present results for a thin reservoir with a thickness of 30 m, one-tenth
the base case reservoir thickness.

2.5. Estimating electricity generation

The power cycle generation model is adopted from Adams et al.
(2015), follows the approach presented in Scenario 5 of that work which
uses R245fa as the secondary working fluid for the indirect power sys-
tem (Fig. 3), and uses the same parameter values as the base-case sce-
nario from that work. The model essentially remains unchanged from
the original work, except for two changes. First, Adams et al. (2015)
used the TOUGH2 reservoir simulator for calculating reservoir imped-
ance, while in this work, we utilize an analytical solution for reservoir
impedance as described in Section 2.1. Second, wellbore heat loss from
the production well (Section 2.2) was not considered in Adams et al.
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Fig. 3. Cycle schematics for an indirect (i.e., binary) groundwater - Organic
Rankine Cycle (ORC) geothermal power plant. Modified from Adams
et al. (2015).
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(2015) but is included in our work here. Power generation is calculated
without considering pressure depletion in the reservoir.

Fig. 3 shows the cycle schematics for the indirect (i.e., binary) water -
Organic Rankine Cycle (ORC). In the lower loop, the primary fluid
(water) is circulated from the land surface through the reservoir, where
it gains heat; and back to the land surface, where it supplies heat to the
secondary working fluid. In the upper loop, the organic secondary fluid
(R245fa) is heated by the primary fluid via a heat exchanger, driving the
ORC to produce electricity.

We include the most important aspects of the power cycle calculation
in this section, but we encourage readers to refer Adams et al. (2015) for
more information about the power cycle calculations. The flow rate
through the primary loop is chosen to maximize the net power genera-
tion, which is the gross turbine power minus the parasitic power of the
pumps and the heat rejection equipment. The mass flow rate through the
secondary loop depends on the flow rate of the primary fluid so that all
heat is transferred and a 7 °C pinch point is obtained.

In the secondary cycle, the secondary fluid leaves the boiler at State 9
and is expanded through the turbine to State 10 with an assumed isen-
tropic turbine efficiency of 80%. It is cooled isobarically to saturation at
State 11. Going through the condenser towards the ORC pump (State
12), the R245fa fluid is cooled isobarically to 7 °C above the ambient
temperature (i.e., a 7 °C approach temperature). The ORC pump effi-
ciency is assumed to be 90%. The primary fluid is set to be at least 7 °C
hotter than the secondary working fluid in the heat exchangers. Thus,
the primary fluid temperature at States 7 and 8, are at least 7 °C above
the boiling and condensing temperatures of R245fa.

The entire upper loop and portions of the lower loop are solved using
MATLAB. For example, the pressure drop due to friction in the wellbore
from Points 1 to 2 and 3 to 6 (Fig. 3) are solved with MATLAB. Likewise,
all pressure and thermodynamic equations of the upper loop (Points 6 —
14) are solved with MATLAB, using the CoolProp thermodynamic
property library (Bell et al., 2014). In contrast, the reservoir modeling
aspects of our paper here are provided by Points 2-3 (Section 2.1, 2.3,
and 2.4) and the wellbore heat loss is given by Points 3-6 (Section 2.2).
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3. Results and discussion

In Section 3.1, we summarize the analytical reservoir impedance
solutions and compare them to the numerical solution from TOUGH2,
discussed in Section 2.4. In Section 3.2, we use the reservoir impedance
from Section 2.1, the wellbore heat loss from Section 2.2, and the power
cycle model from Section 2.5 to calculate the initial electric power
generation. This power generation is compared to the power generation
of the numerical reservoir simulator from Section 2.4. In Section 3.3, we
compare reservoir heat depletion results from the analytical solution in
Section 2.3 with the numerical model.

3.1. Reservoir impedance

The reservoir impedance solutions from Section 2.1 can be expressed
more concisely. The solutions can be calculated as a function of the
location of the well/porous medium interface (i.e., xo or ry) and the
cross-sectional area, A., and then expressed in terms of the constants C;
and C,:

L
AP, 21 ]  J
Mgy B p K A((x) _E

Xo
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The solutions of Section 2.1 are summarized in Table 2, using the
variables A, C;, C», and xq or ry from Eq. (37). The final column shows
the value of C;InC,, which is proportional to the reservoir impedance,
with an assumed value of L/D = 1000. Notably, the differences in
reservoir impedance are small amongst all analytical solutions (the
range for C;InC, is 1.8 to 2.2), which indicates that the ID exhibits
reservoir impedances that are not significantly different from those
obtained for a 5-spot TDF. We suggest the use of the “TDF-Hybrid” so-
lution (Eq. (14)) for 5-spot TDFs because it honors the radial fluid flow
pattern near wells and the linear fluid flow pattern near the midpoint
between an injection and a production well, at x =L /2, as discussed in
Section 2.1.3. We suggest the use of the “ID-Potential” solution (Eq. (23),
Section 2.1.4) for the ID cases, as it includes the entire sweep area.

In Fig. 4, we compare the reservoir impedance as a function of time
for the numerical and two analytical solutions. The analytical results are
provided by Eq. (14) for the 5-spot TDF-Hybrid and Eq. (23) for the “ID-
Potential”. In the numerical model, fluid properties are pressure- and
temperature-dependent, which is accounted for internally in TOUGH2.
For the analytical solutions, the temperature from the reservoir heat
depletion solution (Eq. (31)), and the hydrostatic pressure are inputs to
the CoolProp (Bell et al., 2014) Python library, which calculates the fluid
properties.

In all three solutions, the reservoir impedance increases with time
due to the increase in the kinematic viscosity of the groundwater as the
reservoir cools. The shapes of the impedance curves differ because of the
viscosity calculation method. The numerical solution accounts for
spatial and temporal viscosity variations as the reservoir cools. As the
reservoir near the injection well starts cooling almost immediately upon
water injection, the kinematic viscosity near the injection well increases

Geothermics 116 (2024) 102843

at early times. The reservoir impedance increases steadily throughout
time as the cooled region grows. The reservoir impedance doubles by the
tenth year of operation. In contrast, the analytical solution uses the
average reservoir temperature and pressure to calculate the average
kinematic viscosity of the water, which does not account for spatial
variations in fluid properties. It thus takes approximately ten years in the
analytical solution case for the average temperature to change by 10%
(see Section 3.3). Thus, the average kinematic water viscosity and the
average reservoir impedance have only increased by approximately 10%
after ten years. In fact, the analytical solution shows that it takes about
200 years for the reservoir impedance double due to cooling.

The numerical solution gives a lower reservoir impedance than the
two analytical solutions, which are similar to each other, differing by
only 13%. At early times, when the fluid properties are in good agree-
ment, the analytical solutions yield reservoir impedances that are
roughly twice as high as those obtained by the numerical solution.

The discrepancies among the numerical and the analytical reservoir
impedances may be partially explained by the employed grid resolution.
Ravilov (2019) found that the reservoir impedance increases with the
number of nodes in a reservoir simulator. Thus, the numerical solution
in Fig. 4, with its relatively low spatial resolution, likely provides a lower
bound for the reservoir impedance.

The Ravilov (2019) study raises an important consideration: mesh
discretization can have a large effect on reservoir impedance in nu-
merical simulations. In his study, as the number of nodes increased from
1300 to 600,000, the reservoir impedance increased by approximately
25% (from 38 to 48 kPa-s/kg). Through extrapolation, Ravilov (2019)
predicted that an infinite number of nodes would lead to an impedance
increase of approximately 50% (to 58 kPa-s/kg). It is difficult to know if
the impedance asymptotes to a fixed value as the number of nodes goes
to infinity, and if this asymptote does exist, it is also difficult to know
what the value of this impedance will be. Ravilov’s (2019) work suggests
that getting an accurate reservoir impedance value using a numerical
simulator may require nearly infinite computational resources.

It is difficult to say whether the analytical or the numerical reservoir
impedance solutions are more accurate. Each calculation method has its
strengths and weaknesses and may be useful depending on the problem
of interest. The analytical approach is computationally less expensive
than the numerical approach. On the other hand, the analytical solution
relies on simplifications, such as the use of average fluid properties, a
one-dimensional coordinate system, and a uniform fluid flow field. The
numerical simulation does not rely on these simplifications but depends
on the spatial resolution of the computation mesh, as discussed in the
previous paragraph. Moreover, the analytical and numerical solutions
only differ by roughly a factor of two, which is often much smaller than
other uncertainties associated with subsurface reservoir properties, such
as reservoir transmissivity. Reservoir transmissivity can exhibit un-
certainties that are on the order of a magnitude or more, particularly if a
geothermal reservoir has not been thoroughly characterized or is highly
heterogeneous.

Table 2
Analytical impedance. right-most column indicates value for L = 1000D.
Well pattern Xo Or Ip A C Cs C1InC,
TDF-cartesian (Section 2.1.1, Eq. (8)) 7D 2xb 1 4L 1.8
8 4 nD
ID-radial (Section 2.1.2, Eq. (12)) E 2nrb 1 £ 2.2
2 T D
TDF-hybrid (Section 2.1.3, Eq. (14)) 9 2b ¥3 L l 2 £ 2.1
2 I 1-3) +xGg =) P 4D
3%
ID-potential (Section 2.1.4, Eq. (23)) D 2--b 1 L 1.9
2 1 lr/2 r DB
Gz - a)
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Fig. 4. The TDF numerical solution using TOUGH2, the TDF analytical solution using the “TDF-Hybrid” approach, and the ID analytical solution using the “ID-

Potential” approach.

3.2. Electric power generation

Fig. 5a shows electric power generation as a function of reservoir
transmissivity for various reservoir impedance models. There are little
differences in electric power generation (<10%) among the four
analytical reservoir impedance models, as the differences in the under-
lying analytical reservoir impedance calculations are small (<18%).
However, the reservoir impedance predicted by the numerical model is
roughly half of the reservoir impedance predicted by the analytical so-
lutions for a given reservoir transmissivity value. This reservoir
impedance difference results in up to twice the predicted electric power
generation when a numerical reservoir impedance model is used,
compared to using an analytical reservoir impedance model. As was
stated in Section 3.1, the numerical and the analytical solutions yield a
range of possible reservoir impedances, and it is unclear which calcu-
lation method yields more accurate results. In many applications, the
uncertainty in the reservoir transmissivity may be much larger than the
uncertainty introduced by the reservoir impedance calculation method.
Thus, to calculate electric power generation accurately, it is crucial to
reduce the uncertainties as much as possible in the reservoir trans-
missivity. However, there will likely always remain a significant un-
certainty in the prediction of heat and electric power generation,
particularly before reservoir impedance has been measured in the field.

The difference in predicted electric power generation is minor be-
tween models that include wellbore heat loss and those that neglect it, as
shown in Fig. 5b. At low reservoir transmissivities (<3200 mD-m), the
production temperature is different between models with and without
wellbore heat loss. However, at low reservoir transmissivities, electric
power generation is negligible (<0.2 MWe), and therefore the absolute
difference in electricity generation is also very small. As the reservoir
transmissivity increases, the production temperature in the wellbore
heat loss model asymptotes to the production temperature in the adia-
batic wellbore model. Therefore, the percentage difference in electric
power generation between the models is very small for high-
transmissivity reservoirs. Note that we do not show the brine mass
flow rate or the thermal output in Fig. 5. However, at high reservoir
transmissivities (>10,000 mD-m), the production temperature is
approximately constant (i.e., it asymptotes to the reservoir tempera-
ture). Therefore, both the mass flow rate and the thermal output are
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proportional to the electric power generation, following an “S” shape on
the right side of Fig. 5(b). Since the difference in predicted power gen-
eration is small across the full range of reservoir transmissivities, well-
bore heat loss can typically be neglected in many simulations of
geothermal energy extraction from sedimentary basin reservoirs.

3.3. Reservoir heat depletion

As the temperature of a reservoir reduces, so does the power gen-
eration from the reservoir. Therefore, understanding the reservoir
temperature as a function of time offers insights into power generation
as a function of time and reservoir heat depletion.

Fig. 6 shows the non-dimensional reservoir temperature versus time
for both the analytical and the numerical solutions, calculated from Eq.
(31) (for analytical) and in a post-processing step from the numerical
solution. The solutions that neglect heat conduction (dotted lines in
Fig. 6) are calculated from Eq. (33). Fig. 6a uses the logarithm of time to
illustrate the late-time behavior, while Fig. 6b uses a linear time scale to
emphasize the shape of the curves at early times and how (in)significant
the inclusion of heat conduction from the reservoir-surrounding rock
into the reservoir is, for determining the reservoir temperature.

3.3.1. Comparison of solutions

The shapes of the analytical and the numerical solutions are
different, which is partially the result of them representing the tem-
perature at different locations in the reservoir. The analytical solution
shows the average temperature of the reservoir, which always decreases
at a decreasing rate. In contrast, the numerical solution shows the pro-
duction well temperature, which decreases at an increasing rate until the
cold front reaches the production well. Then the fluid production tem-
perature continues to decrease, but at a decreasing rate. This tempera-
ture versus time pattern in the numerical solution is a classic example of
so-called cold front breakthrough.

Another difference in the solutions is caused by the way in which
heat is removed from the reservoir. In the analytical solution, heat is
removed at a constant rate. In the numerical solution, a fluid flow rate
and a fluid injection temperature are specified, such that the initial heat
removal rate matches the rate in the analytical solution. However, as the
reservoir cools, the heat removal rate decreases in the numerical
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Fig. 5. Panel (a) shows reservoir impedance and electric power generation as a
function of reservoir transmissivity and illustrates the sensitivity of power
generation to the impedance model used, indicated by different line types (see
legend). Panel (b) shows the production temperature and electric power gen-
eration as a function of reservoir transmissivity and illustrates the sensitivity of
power generation to the assumptions made concerning wellbore heat loss,
indicated by different line types (see legend). Both panels show four analytical
reservoir impedance models and Panel (a) also shows the numerical reservoir
impedance model. Horizontal arrows associate the curve with the related
y-axis.

solution. The numerical solution may be more realistic for sedimentary-
basin geothermal systems in this regard, whereas the analytical solution
represents a worst-case (i.e., cold) bound for heat depletion, especially
at later energy production times.

The numerical and the analytical model also differ in their respective
problem geometries. The numerical solution uses a three-dimensional
geometry, employing one-dimensional, cartesian heat conduction from
above and from below the reservoir. In contrast, the analytical solution
follows a one-dimensional radial heat flow geometry, where the

11

Geothermics 116 (2024) 102843

equivalent radius is adjusted to match the volume and the surface area of
the numerical solution (Section 2.3).

Despite the differences discussed in the previous paragraphs, both
the analytical and the numerical solutions describe a reservoir’s heat
depletion with the same available reservoir volume and amount of
removable heat. Heat conduction into the reservoir from outside is
treated similarly in that they both use one-dimensional analytical ap-
proaches (recall from Section 2.4 that in the numerical simulator the
conduction of heat into the reservoir is an analytical solution that is built
into TOUGH2). Thus, it is possible to get an estimate of reservoir heat
depletion employing both the numerical and the analytical approaches.

The analytical solution can be used in at least two ways. Firstly, it can
be interpreted as the average reservoir temperature. In this approach, it
always provides a lower-bound on the average reservoir temperature
due to its assumed constant rate of heat removal, as discussed earlier in
this section. Secondly, the analytical solution can be interpreted as the
production temperature used for power generation calculations. When
following this interpretation, the analytical solution is conservative at
early times, as it predicts a temperature that is lower than the production
temperature provided by the numerical solution. While a numerical
solution would likely be more accurate for power generation calcula-
tions, it is computationally expensive, which may be why some previous
studies have neglected reservoir heat depletion and only reported the
initial power generation (e.g., Randolph and Saar, 2011; Adams et al.,
2015). Using the analytical solution for reservoir temperature provides a
computationally inexpensive lower bound, which could prove to be
useful in combination with electric power cycle models to calculate
power generation over a geothermal field’s lifetime.

3.3.2. Physical insights into heat depletion and conduction

Fig. 6a shows different fluid flow rates and their effects on the
analytical solution. For high fluid flow rates, the reservoir temperature
decreases faster, and steady-state conditions are achieved earlier,
reaching lower temperatures. However, for lower fluid flow rates, the
reservoir temperature decreases more slowly and approaches a steady
state (greater than Ti) at much later times because heat conduction
brings heat into the reservoir at the same rate as the working fluid
removes it. In contrast, the analytical solutions that do not consider heat
conduction all approach Ty, (I' = 0) at earlier times because there is no
heat recharge.

Heat conduction affects the reservoir temperature more significantly
in reservoirs that exhibit lower fluid flow rates, as shown by the curves
that represent 10 kg/s, 100 kg/s, and 500 kg/s in Fig. 6a. At 10 kg/s,
there is a large difference between the temperatures with (solid green
curve) and without (dashed green curve) heat conduction. However, this
difference is minor for the 100 kg/s curves and barely perceptible in the
500 kg/s curve.

Fig. 6b compares the base case (reservoir thickness = 300 m) with a
mass flow rate equal to 100 kg/s to a thin reservoir (thickness = 30 m)
with the same mass flow rate, highlighting the effect of reservoir size
and aspect ratio on reservoir heat depletion and on the importance of
heat conduction. For this discussion, we assume that the reservoir life-
time ends when 20% of the original heat is depleted from the reservoir,
which corresponds to I' = 0.8 and T, = 86.4 °C. While our assumption
that 20% heat depletion corresponds to the end of a reservoir’s life is
somewhat arbitrary, it allows for comparison of reservoir lifetime for
different reservoir thickness and conduction from surrounding rock.
However, it is possible to run the same analysis with a different defini-
tion of the reservoir lifetime. One takeaway is that the base-case reser-
voir has a longer lifetime than the thin reservoir because there is more
heat initially in the base case reservoir. The base case reservoir takes
between 20 and 44 years, depending on the solution utilized (see the
green and black curves in Fig. 6b), to reach the end of its lifetime. In
contrast, this occurs in less than six years for the thin reservoir (see the
blue and gray curves in Fig. 6b). Secondly, heat conduction plays a
larger role in extending the reservoir lifetime for a thin reservoir than for
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Fig. 6. (a) Analytical versus numerical solutions of normalized reservoir temperature w.r.t. logarithm of time for different fluid mass flow rates and different
reservoir thicknesses. (b) Normalized reservoir temperature versus time for a fluid mass flow rate equal to 100 kg/s. Dotted lines indicate scenarios that do not
include heat conduction from the surrounding to the reservoir. The base-case reservoir (represented by green and black curves) is 300 m thick, and the thin reservoir
(represented with blue and gray curves) is 30 m thick. The non-dimensional temperature, T, is defined in Eq. (31), whereI" = 1 corresponds to T, = T, = 102.5°C; T’

= 0.8 corresponds to 20% heat depletion, which we assume marks the end of the reservoir lifetime with T, =

86.4°C;and I' = 0 correponds to T, = Tjp; = 22 °C. For

more information on heat depletion and reservoir lifetimes, please see Adams et al. (2021).

the thicker base-case reservoir. For example, in the analytical solution
(green curves in Fig. 6b), heat conduction extends the base-case reser-
voir lifetime by 7%, from 18.6 years, without heat conduction (dashed
green curve), to 20.0 years, with heat conduction (solid green curve). In
contrast, heat conduction extends the thin reservoir lifetime by 140%,
from 1.8 years without heat conduction (dashed blue line), to 4.3 years
with heat conduction (solid blue line). Thus, as expected, heat conduc-
tion affects reservoirs with a high surface area to volume ratio more
significantly than reservoirs with an inverse ratio.

4. Conclusions

This paper introduced and used analytical solutions to approximate
the impedance, wellbore heat loss, and heat depletion of geothermal
reservoirs under energy production. The reservoir impedance and
wellbore heat loss solutions were coupled to a power cycle model to
calculate electric power generation. The reservoir heat depletion solu-
tion gave insights about power generation decline and reservoir lifetime.
Key takeaways include:

1. The utility of the analytical impedance solution relative to the numerical
impedance solution depends on the assumptions and the application. In
this work, the analytical solution provided a reservoir impedance
that was higher than the reservoir impedance provided by the nu-
merical solution, and thus resulted in less estimated electricity gen-
eration. But the results of the numerical solution depend on the
resolution of the grid used in the simulation, which can produce
results that vary substantially (Section 3.1). In contrast, analytical
solutions are independent of grid resolution and computationally
inexpensive, but rely on simplifications (e.g., average fluid proper-
ties and uniform fluid velocity profiles). Considering the pros and
cons of both types of solutions, we consider both approaches as
acceptable, depending on the application, particularly for explora-
tion studies, where screening-level calculations are performed. Un-
certainty due to differences between the analytical and the numerical
values for reservoir impedance are likely much smaller than other
subsurface uncertainties in an insufficiently characterized geological
system. Among the analytical solutions, we recommend the use of
the “ID-Potential” solution (Eq. (23)) for IDs and the “TDF-Hybrid”
solution (Eq. (14)) for 5-spot TDFs.

2. Wellbore heat losses may be neglected for many calculations of
geothermal electric power generation (Fig. 5b). For high reservoir
transmissivities, the fluid flow rate was large enough so that the fluid
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production temperature depletion was insignificant and power gen-
eration was similar for calculations with and without wellbore heat
loss. For low-transmissivity reservoirs (<3200 mD-m), the fluid flow
rate was low, which resulted in little electricity generation (<0.2
MW,), with or without wellbore heat loss.

3. The analytical and numerical solutions of the reservoir heat depletion
provide temperatures at different regions of the reservoir, but funda-
mentally they both reflect the temperature of reservoirs with the same
initial amount of removable heat, which is replenished by heat conduction
from the surroundings. The analytical solution (Eq. (31)) represents a
lower bound of the average reservoir temperature for all time
(particularly at later times) and represents a lower bound on the
production temperature during early years (Section 3.3). Coupling
the analytical heat depletion solution with a power cycle model can
be computationally inexpensive way to calculate the electric power
generation of the lifetime of a geothermal power plant.

4. The amount of heat initially present in the reservoir is closely related to the
reservoir size and can be approximated by a lumped mass, with (Eq.
(31)) or without (Eq. (33)) considering heat conduction. The thin
reservoir reached 20% heat depletion faster than the thick reservoir,
as expected. For the thin reservoir, all approaches (analytical and
numerical with and without heat conduction with 100 kg/s flow
rate) predicted <6 years before 20% heat depletion was reached,
whereas for the thicker, base-case reservoir, all approaches predict
between 19 and 44 years before 20% heat depletion was reached.

5. Reservoir temperature is more sensitive to heat conduction from the sur-
roundings in scenarios with low fluid flow rates (Fig. 6a) or a high ratio of
reservoir surface area to volume (e.g., the thin reservoir in Section 3.3).

There are advantages and disadvantages of using analytical versus
numerical reservoir models. A careful weighing of objectives should be
made when constructing a geothermal power plant model that couples
reservoir performance with electricity generation. Some of the conclu-
sions above can provide guidance when weighing these objectives.
Others offer insights into the behavior of geothermal reservoirs and
power production.
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