Finite Elements in Analysis and Design 217 (2023) 103916

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

Check for

Modeling of wave propagation in polycrystalline ice with hierarchical | e
density gradients

Farshad Ghanbari ?, Eduardo G. Rodriguez ", Daniel Mill4n ", Francesco Simonetti ©,
Andrea P. Argiielles?, Christian Peco "

a Department of Engineering Science and Mechanics, Penn State, University Park, 16802, PA, USA
b CONICET and Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, San Rafael, 5600, Mendoza, Argentina
¢ Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, 45221, OH, USA

ARTICLE INFO ABSTRACT

Keywords: Polycrystalline solids are composed of many small grains of varying sizes and crystallographic orientations.
Ice mechanics An elastic wave that propagates through such a material experiences distortion and attenuation. While the
Attenuation influence on propagation in random configurations can be captured with conventional statistical descriptors,
Scattering

the role of second-order features such as the hierarchical gradient in material properties has not been explored.
In this paper, we optimize a numerical strategy based on Finite Elements and Local Max-Entropy approximants
to characterize the role of grain density gradients on ultrasonic attenuation. We focus on ice as a model for
mesoscale ordered configurations due to its relevance to the emerging technology of cryoultrasonics. Our
simulations in one- and two-dimensional settings indicate that second-order descriptors are required to predict
attenuation in polycrystalline ice. Furthermore, we define a novel parameter, based on the standard deviation of
the speed of sound gradient distribution, which shows a quadratic relationship with the ultrasonic attenuation.
The model results can be understood as a phase diagram for the design of metamaterials with specific ultrasonic
scattering properties.

Finite elements
Statistical descriptors

1. Introduction here that only recently the influence of gradient patterns has been

noticed and accounted for in the literature, and that it always appears

Polycrystalline materials exhibit a microstructure made of grains
with various sizes, shapes, and crystallographic orientations. Wave
propagation behavior through such a medium exhibits distortions that
are highly dependent on the spatial statistics of the microstructure,
whose descriptors must be chosen carefully in order to make predic-
tions [1,2]. While we have descriptors to predict wave propagation
response in conventional microstructures (e.g., average properties or
two-point correlation functions in configurations that allow homoge-
nization), the problem is more challenging with materials that exhibit
a higher degree of ordering at the mesoscale. These hierarchically
organized structures can occur in both natural and artificial materials,
such as in ice freezing processes [3], metal forming [4,5], and soft
matter and biological arrangements [6-8]. Interestingly, the study of
wave propagation in ice has recently become relevant to ultrasonic
non-destructive evaluation (NDE) and other critical problems, such as
aircraft icing [9], glacial ice [10] and planetary science [11]. Due to
its relevance to these problems, its potential to display complex hierar-
chical orderings, and its relative simplicity for laboratory experiments,
we choose ice as our polycrystalline material model. We emphasize
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circumscribed to a different family of features (e.g., microstructural
defects [12]). The development of useful microstructural descriptors in
the types of hierarchically ordered configurations is fundamental for
the prediction of the wave propagation response in the aforementioned
materials, which is of interest to scientists and engineers.

In this work, we focus our study on the attenuation response of
an ultrasonic wave propagating through a (macroscopically isotropic)
polycrystalline ice microstructure. As it progresses, the wave expe-
riences reflection and refraction at the grain boundaries, leading to
scattering. In consequence, the energy is spatially redistributed and the
wave displays macroscopic attenuation and distortion [13-16]. Due to
its importance, a number of studies in literature have characterized
and evaluated wave propagation for different microstructures [17—
22]. Nevertheless, when the polycrystal presents certain complexity
(e.g., of crystallographic orientation, size, shape...), the models struggle
to remain practical while incorporating a detailed description of the
microstructural features. In consequence, these models are forced to
introduce simplifications, hence achieving only approximate solutions.
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With the gradual increase of computational power, numerical method-
ologies that remove those simplifications have been put forward. The
Finite Element Method (FEM) has been successfully applied to simu-
late and understand the scattering of elastic waves in polycrystalline
solids [23-25]. A precise description of their performance and a com-
parison with analytical strategies based on statistical descriptors has
been recently explored [26,27]. The aforementioned works primarily
rely on synthetic polycrystals constructed through Voronoi [25,28,29]
and non-Voronoi tessellations [30,31], with varying descriptors on the
size and shape of the grains. However, the traditional focus on materials
with random crystallographic orientations leaves aside materials with
higher levels of organization (e.g., involving a gradient hierarchy at the
mesoscale), which we address in our analysis. Additionally, the compu-
tational modeling of the phenomenon is still quite resource-intensive
and can benefit from the refinement of the numerical approach. In this
work, we also include a detailed study on the optimal strategy to simu-
late ultrasonic propagation in hierarchically ordered configurations in
ice using both traditional FEM and Local-Max Entropy approximants
(LME) [32], an advanced meshfree discretization method.

To further motivate the choice of ice and the ultrasonic range as our
focus, we want to point out that the way ultrasonic waves are attenu-
ated is highly relevant, for example, for NDE techniques, which play
a vital role in the development and implementation of safety-critical
components. Ultrasonic waves propagate and interact with internal
features, such as pores, cracks, inclusions, and other microstructural
defects [33-36] and the received signal can be used in conjunction
with analytical and/or numerical models to deduce this information. In
relation to ice, cryoultrasonic NDE has recently emerged as a solution
for the inspection of components with complex geometries [37,38].
In this novel technique, the piece is embedded in ice to obtain an
ideal sonic shape (i.e., a shape with rectilinear contours and ice-
filled channels and voids). As a couplant material, ice closely matches
the part’s acoustic properties, leading to more adequate part-couplant
interfaces. Ice is a polycrystalline material with the particularity of
having a microstructure whose grain size distribution ranges in the
ultrasonic wavelength. In consequence, ultrasonic measurements in
the stochastic region and approaching the geometric regime become
feasible. Additionally, ice structure is greatly influenced by the freezing
process parameters, which determine the size, orientation, and spatial
configuration of the grains [39,40]. As a result, ultrasonic wave prop-
agation in ice demands a deeper characterization of its microstructure.
This makes ice a perfect model for the analysis of scattering behavior in
hierarchical microstructures. Nevertheless, our results and conclusions
should be of general validity on microstructures that share similar
features.

The remainder of the paper is organized as follows. In Section 2
we introduce the formulation of the problem and the numerical de-
tails, which involves one and two-dimensional simulations. Our one-
dimensional codes are based on FEM and LME. Our two-dimensional
codes are based on MOOSE [41], a FEM implementation. Efficiency
and optimization details, as well as studies for the choice of the study
parameters, are given in this section. In Section 3 we study how
random and organized grain configurations affect the attenuation of
ultrasonic waves. We explore different frequencies and mechanical
properties variations to show that a second-order descriptor of the
density gradient distribution dictates the behavior of the propagating
wave. We finish with some concluding remarks and future lines of work
in Section 4.

2. Formulation and numerical methodology

We aim to simulate the elastodynamic time response of ice with
an arbitrary microstructure subject to an ultrasonic pulse, enabling the
study of the effect of crystallographic orientation and grain size on the
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longitudinal attenuation coefficient, ;. The standard model for wave
propagation [42,43] parts from the conservation of linear momentum

pit—V o) = f, 1)

where u is the displacement and o is the stress tensor. In particular, we
assume we have an elastic media, described by the linear constitutive
relation (Hooke’s law)

cw)=C: ew), &)= %(Vu +vul) @

between the stress ¢ and the infinitesimal strain £(u) tensors, and where
C is the elasticity tensor. For implementation purposes, we use Voigt
notation to express the stress as

T
o= {GXX’ny’czz’dxyvaxpgyz} s (3)
for which the governing equations may be written as

pit — DTo(u) = f, (©)]

cwu)=C D u, 5)

where D represents the differential operator, which can take the form

ox 0 0
0 9 0
0 oy oz ox 0
D= or D=|0 odylin 2D. 6)
dy ox O dy ox
Jdz 0 ox
0 9dz Oy

We can start from Eq. (4) to develop the variational formulation of the

problem, by taking the scalar product of both sides of Eq. (1) with a

test function v and integrating by parts over the domain (2, obtaining
2

a_/ puv-u dQ+/ e)-(C : ew) dR = / v-fdQVve H\(Q) (7)
o Jo Q Q 0

where d = 2 or 3 and H; = {u € L*(Q) | Vu € L*(®) and uly, = 0}.
From here we can proceed to the spatial discretization, which in our
case will be particularized at implementation level with FEM or LME.
For example, for FEM, and defining a number », of finite elements Q¢
Q= U:”z | £2.), the approximate solution may be written as

Ndof

ax,n) = a0, @0 =) @0, ®
j=1

e=1
where the union operator denotes that & is defined in £, a(x, -) = a°(x, -)
for any x € Q¢, n,,, is the number of element degrees of freedom, and
¢ is the Lagrange interpolation vector function associated with the
jth degree of freedom. The coefficients ﬁ;(r) are determined from the
following Galerkin approximation of Eq. (7):
2 pv~ﬁd!2+/£(v)‘(CDﬁ)dQ=/v-fd.Q Yvev,
o Jo Q Q
where V is the subspace of Hé (£2)? of continuous piecewise-polynomial
functions built from local functions q}j(x). After algebraic manipula-
tions, Galerkin Eq. (7) are written as the system of ordinary differential
equations:

Mi+ KU =0, (10)

in the absence of damping and externally applied forces. In Eq. (10) M
and K are the global mass matrix and stiffness matrix, respectively. Ini-
tial conditions U(0) = U, afnd U(0) = U,, must be provided. They are
built through a summation process of elemental matrices and vectors,

n, n,

M=) M K=) K a1
e=1 e=1

where M* and K¢ are the elemental mass matrix, and stiffness matrix

and in sparse global form, that is, only non-zero entries are used and
they are mapped into appropriate global locations by a connectivity
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map from local to global nodes. The dense elemental arrays M€ and K°
are defined by the contributions from element 2, to the integrals as

ij.:/ o dQ, Kf/.:/ (D¢) - (C D) d, 12)
Q(’ 'Q(‘

for 1 < i,j < ny,p. We then proceed to discretize in time using the
Newmark [44] method. In the Newmark time integration scheme, the
acceleration and velocity at ¢+ At are written in terms of displacement,
velocity, and acceleration at time ¢ and the displacement at ¢ + A7 using

it + At) = a(t) + At(1 — p)ia(t) + yAtia(t + Ar), 13)
. _ﬁ(t+Ar)—a(t)_@ f-05.
it + A = SRy Y + 7 u(), 14)

where @ and @ are the velocity and acceleration vectors, respectively.
In Egs. (13) and (14), g and y are Newmark time integration parame-
ters. Substituting the two equations in Eq. (10) results in a linear system
of equations that has @(t+ At) as its only unknown. For all of our 1D and
2D simulations, we choose g = 0.25 and y = 0.5 for which the Newmark
time integration method is implicit and unconditionally stable with no
numerical damping. In consequence, we ensure that the value of «;,
the longitudinal attenuation coefficient, is not affected by the numerical
damping due to the choice of the time integration scheme.

Finally, the choice of the wave pulse is particularly relevant, as our
models must be able to correctly reproduce the high-frequency (MHz
range) signals without loss or distortion. The sine function and the
Hann-windowed tone burst are the most widely used in the field. For
the type of numerical simulations in this study, our analysis concluded
that the Hann-windowed tone burst is more suitable than the sine
function. While the latter generates multiple reflections at the front of
the signal that distort the received signal, the Hann-windowed achieves
a clean, stable wave propagation. The signal takes the general form:

u(t) = h(t) sin Qz f1), (15)

where f is the pure tone burst frequency (center frequency) and A(r) is
the Hann-windowed function defined by

h(t):% [l—cos(?)], (16)
H

where T}, is the Hann-windowed length, which can be calculated using
the number of cycles in the tone burst signal N as

Ty = Ng/f. an
2.1. One-dimensional spatial discretization: FEM and LME approximants

We use a 1D numerical model for the directional isolation and anal-
ysis of the grain configurations effects on wave propagation. The 1D
setting allows us to efficiently explore the parameter space (size, ma-
terial properties, and relative order of grains) and increase the number
of realizations per simulation, hence ensuring statistical significance.

We define the base setting with an elastic bar of length L, as
sketched in Fig. 1. We divide the domain into a collection of equal-
sized longitudinal grains (main figure). Each grain is then numerically
discretized with a one-dimensional grid of nodes (i.e., internal divisions
shown at the zoomed-in grain panel). The average material properties
for our simulations are the following [45]: Young’s modulus E; = 9 GPa
and density p = 916.8 kg/m>. An elastic wave will thus propagate at
velocity ¢ = \/E,/p. The density of the grains (and therefore the speed
of sound ¢ and impedance) can be kept homogeneous along the bar
for control simulations and then varied per grain to generate different
polycrystalline structures. The bar contains 163 grains of equal size
(0.6135 mm). To generate the wave, we apply a three-cycle Hann-
windowed toneburst as a Dirichlet boundary condition on the left side
x = 0. A typical problem uses lengths around 100 mm and frequencies
from 3 to 7 MHz. We compare the amplitude of emitted and received
signals at the extremes of the 1D domain. The numerical parameters

Finite Elements in Analysis & Design 217 (2023) 103916

(e.g., number of nodes per wavelength, type of wave signal, time
step) are chosen with strict convergence and optimization criteria as
detailed in Section 2.3. Note that we define the number of elements
per wavelength 4 (and not per grain) because it is more restrictive for
the values in this study.

The discretization alternatives that we present for 1D simulations
are classical FEM first and second-order Lagrange polynomials (P1
and P2 elements), and LME approximants, a meshfree method. The
interest in studying the behavior of LME approximants stems from the
attractiveness of smooth basis functions in general for the numerical
solution of PDEs. Some examples include B-splines, nonuniform ratio-
nal B-splines (NURBS), and isogeometric analysis (IGA) [46,47]. The
strength of IGA is in high-fidelity boundary representation, whereas
its weakness is in realizing bulk discretizations; hence, using a more
flexible, meshfree method in the bulk as LME or coupling it with IGA
can resolve several numerical challenges [48]. The LME approximant
schemes were developed in [32] using a framework similar to meshfree
methods, which implies their trivial extension to 2D and 3D domains
represented by a scattered set of points in contrast with B-splines,
NURBS, and IGA. LME approximants have a Gaussian decay that is
modulated by a nondimensional parameter y; ,,, which controls the
aspect ratio and effective support of the resulting basis functions.
As y; g tends to infinity, it has been proved [32] that the affine
function supported on the Delaunay triangulation of the node set is
recovered. In practice, for y;,,r = 4 the shape functions are visually
very close to the Delaunay approximant. In [32], it was shown that for
some values of y; ,,, the approximation properties of the maximum-
entropy basis functions are greatly superior to those of the finite
element linear functions representing smooth solutions, even when
the added computational cost due to larger support is taken into ac-
count. Subsequent studies show that maximum entropy shape functions
are suitable for solving a variety of problems, such as linear [49]
and geometrically nonlinear thin shell analysis [50], compressible and
nearly incompressible elasticity problems, and large deformations in
biomembranes [51,52]. The LME approximations have several advan-
tages over other meshfree methods such as the element-free Galerkin
method [53] or the reproducing kernel particle method [54], and
are amenable for parallelization and supercomputing. For example, in
contrast to the above-mentioned methods, LME approximations ful-
fill the weak Kronecker-delta properties facilitating the imposition of
Dirichlet boundary conditions, their shape functions are always positive
which leads to non-negative values in the off-diagonals in the mass
matrix, and they require fewer integration points to achieve the same
accuracy [55-57]. In all examples we use y; = 1.8.

2.2. Two-dimensional spatial discretization and grain structure: MOOSE
and NEPER implementation

We develop our computational framework in MOOSE (Multiphysics
Object-Oriented Simulation Environment) [41], an open-source, paral-
lel finite element implementation. The package is based on PETSc [58,
59], which ensures optimal scalability for the resolution of large scale
problems in our supercomputer facility [60]. To create the tessella-
tions in two-dimensional domains representing the microstructure, we
employ Neper [61], an open-source polycrystal generation software.

To facilitate the comparison with 1D results and to isolate the
effect of grain size distribution vs. grain shape, we use Neper’s Lloyd
algorithm. As shown in Fig. 2(a), this algorithm generates uniform cen-
troidal Voronoi tessellations (CVT) to create a microstructure of high
shape-wise regularity, which serves well the purpose of this study. The
input sphericity and grain diameter histograms for this microstructure
are displayed in Fig. 2(b) and (c). The sphericity of a polyhedron,
according to Neper’s documentation, is the ratio of the surface area of
the sphere of equivalent volume to the surface area of the polyhedron.
Clearly, in two dimensions, the sphericity measure corresponds to the
ratio of the perimeter of the circle of equivalent surface area to the
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Fig. 1. Sketch of the computational domain used to represent the polycrystalline nature of ice. In the main figure, the domain is divided in equal-sized longitudinal grains. The
magnified section shows how each grain is spatially discretized with a one- dimensional collection of nodes.
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Fig. 2. (a) Example of the computational domain with uniform centroidal Voronoi tessellation, and its corresponding grain sphericity (b) and grain diameter (c) histograms. The
vertical axis in histograms is normalized so that the data represents the probability density function estimate and the total number of grains for this example is 1000.

perimeter of the polygon. Note that we choose this algorithm because
of the convenience for this work, but more advanced approaches are
available to represent realistic microstructures, if needed [31,61]. Al-
though traditionally standard Voronoi tessellations can be employed to
represent microstructures with relative success [62-64], the so-called
digital statistical twins approach streamlines the model fitting and
validation process by bringing the synthetic microstructure as close as
possible to the experimental microstructures. Digital microstructures
that are statistically equivalent to real counterparts can be easily gen-
erated using Neper’s grain growth algorithms. The analysis of such
microstructures and their validation using real ice micrographs will be
the subject of a subsequent study.

We impose symmetry boundary conditions (SBC) on the top and
bottom edges of our domain to account for a quasi longitudinal plane
wave in the horizontal direction x. SBCs can be implemented by setting
the displacements in the direction perpendicular to the propagation di-
rection, namely u, equal to zero. In the 2D case, it has been shown that,
given a large enough sampling space in the simulation domain, SBCs
and periodic boundary conditions perform equally well in capturing the
plane wave solution in polycrystalline materials [65]. Furthermore, to
generate the wave, we apply a three-cycle Hann-windowed toneburst as
a Dirichlet boundary condition for u, at x = 0 (the transmitting surface).

In our simulations, the length and the height of the domain (i.e., /, and
I, in Fig. 3(a)), vary based on the mean grain diameter. More specif-
ically, a larger mean grain diameter requires a larger domain size to
ensure sufficient sampling space in the longitudinal and the transverse
directions to accommodate for SBCs. It is worth mentioning that the
grains near the top and the bottom boundaries get doubled in size due
to the mirroring effect caused by the choice of the SBC. Choosing a
sufficiently large enough domain is believed to average out the stronger
scattering due to these larger boundary grains. The boundary at the
rightmost side of the domain along /, is kept traction-free.

The discretization of the computational domain is heavily influ-
enced by two length scales present in the model, namely, the wave-
length, A, and the mean grain diameter, d. Based on the performance
study we take in Section 2.3, we choose A/h > 20 and d/h > 10, where
h is the mesh size. Furthermore, we employ structured meshes with
quadrilateral elements. It has been shown that the choice of structured
mesh compared to an unstructured conforming mesh does not affect
the solution if the mesh is chosen to be fine enough to resolve the grain
boundaries [65]. The choice of structured meshes will reduce the mesh
density and, consequently, the computation time. Fig. 3(b) shows an
example of the mesh that is used in our 2D simulations.
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Fig. 3. Sketch of the computational domain used in 2D simulations. The symmetry boundary condition and the choice of input pulse is shown in (a) and (b) illustrates the

structured mesh with quadrilateral elements used in this study.

We consider the following elastic stiffness of a single crystal with
hexagonal symmetry reported in [66]:

Ci Cn Cp 0 0

Cp Cpn G 0 0

Ch G5 Cp 0 0
0 0 0 Cy O
0 0 0 0 C
O 0 0 0 0 Cs

Eq. (18) describes all the elastic properties that are needed to assemble
the global stiffness matrix K in Eq. (10). The ice material properties
used in this study including the mass density as well as the values of
elastic constants in Eq. (18) are summarized in Table 1. For a poly-
crystalline microstructure, the 3D elastic stiffness matrix C is rotated
by a set of random Euler angles, assigned to each grain. We adopt the
passive Bunge convention with Z, X,, Z, rotations in which we apply 3
successive rotations characterized by the Euler angles about the Z axis,
then about the new X axis, and finally about the new Z axis. Here the
axis subscripts 0, 1,and, 2 indicate the rotation occurrences. For a set
of three Euler angles 6,, 0, 6, the orthogonal rotation tensor becomes:

Ry Rp Ry
R(61,0,0,) =Ry Ry Rosls 19
R31 Rz Ry

C= (18)

[=NeNeNeX =]

where

R;; = cos 6 cos 0, —sinf; sin b, cos O (20)
R, =sin6; cos B, + cos f sin b, cos @ (21)
R|; =sinb, sin O (22)
R, = —cos 6, sind, — sin; cos B, cos O (23)
Ry, = —sinf; sin 6, + cos 0 cos 0, cos O (24)
Ry3 =cos B, sin®@ (25)
R;; =sinf; sin® (26)
R;, = —cos 6, sin® 27)
R33 = cos 6. (28)

Finally, we obtain the rotated elastic tensor as:

Cijti = RinR;y Ry R, C 29

im™\jn mnop»

where C,,,,, is the unrotated rank four elastic tensor whose Voigt rep-
resentation is defined in Eq. (18). The random crystallographic orienta-
tions have a uniform distribution to ensure macroscopic isotropy [26].
We then assume a plane strain formulation, in which the out-of-plane
strain is set to zero. Consequently, the corresponding entries of the

rotated C are dropped out to accommodate the 2D formulation.

2.3. Convergence, wave pulse, and choice of optimal time step

In this study, we use both the traditional L,-norm and the total en-
ergy as the quantities of interest to establish convergence. Considering
Q as the one-dimensional domain through which the wave propagates,
the total amount of energy is expressed as:

1 ou\? du \?
E=1 (—)+2<—) dx, 30
2 /Q [ o) T\ox) | ¥ 30)
where the quadratic form E is constant over time and ¢ = E,/p. The
first and second terms in E are related to the kinetic and potential

energies, respectively. As a reminder, the L,-norm of the error is
defined as:

1/2
llell, = (/Q |u—a|2dx) , (31)

where i is a spatially discretized version of the continuous function u
(i.e., using either FEM or LME). We use d’Alembert’s general solution
to obtain the exact solution u of the Hann-windowed signal, that is

ux,n)=A 1 [1 — cos <% - k_x>] sin(kx — 2z ft), (32)
2 Ty Np

which we use to compute the L,-norm error and the energy error of

the numerical solution & at the end of the bar.

We first use these two convergence criteria to further justify the
choice of the Hann-windowed wave pulse. We compare the behavior of
a sinusoidal and a Hann-windowed pulse on the one-dimensional bar
framework and average values presented in Section 2.1. The frequency
of the pulses is set to 3.5 MHz and the domain is discretized with
P1 FEM, using three integration Gauss points per element. Besides the
visual absence of perturbations in the front of the Hann-windowed
signal, Fig. 4 shows how this type of pulse consistently outperforms
the sinusoidal signal both in (1) energy relative and L,-norm errors,
and (2) accuracy as the number of finite elements per grain increases.
We can also observe how the Hann-windowed pulse achieves higher
accuracy faster, which reduces the computational cost.

The choice of an adequate integration time step 4z is critical for
the accuracy and convergence of the solution. A time step that is
too small would render the computation time impractical. Conversely,
using time steps that are too large hinders the resolution of high-
frequency components. Although our scheme is unconditionally stable,
a practical route to find an accurate time step is to apply a factor y on
the expression [67]:

4 < A% (33)
c

which is reminiscent of the Courant-Friedrichs-Lewy (CFL) condi-
tion [68] for the stability of explicit schemes, where Ax is the space
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Table 1
Ice material properties.
P Ci Cpy Cyn & Cuy Css
(kgm™) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
916.8 15.010 5.765 13.929 7.082 3.4235 3.014
0.1 T T 0.08 T -
—Hann function — Hann function

o —Sine function — Sine function

2 0.08

) .. 0.06

s g
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= g

< = 0.04 |

=004 g

5 0.0: g

£

g = 0.02 r

m 0.02

0 0
10 15 20 25 30 10 15 20 25 30
N per A N per A

Fig. 4. Comparison of the two signals as an external force: Hann-windowed tone burst signal and sine function. On the left is the energy relative error and on the right is the
L,-norm error. The frequency of the pulses is set to 3.5 MHz and the domain is discretized with p = 1 FEM, using three integration Gauss points per element, N, = 3.

between two spatial discretization points and ¢ is the wave speed. The
factor y can be understood in the limit as the ratio of the traveled
length per time step.

We now extensively analyze the convergence behavior of our mod-
els according to changes in (1) type of discretization method, (2)
number of elements per wavelength, (3) time step 4t and coefficient y,
and (4) number of Gauss points. Our objective is to justify an optimal
selection of parameters for the computational setting used in our study,
and establish the behavior of FEM and LME discretization methods as
a reference for future applications. Again, we execute the simulations
on the one-dimensional framework and average parameters specified
in Section 2.1. Following the aforementioned results, we introduce a
Hann-windowed pulse of 3.5 MHz and observe the evolution of the
error when the objective parameters are modified. We summarize the
most important results of our analysis in Figs. 5 and 6. In Fig. 5(a), we
study how the L,-norm error behaves varying y between 0.1 and 0.9
as the number of elements per wavelength (N per 1) is increased. We
present this variation for different discretization methods and number
of Gauss points: FEM P1 element integrated with three Gauss points,
FEM P2 element with five Gauss points, and LME with five Gauss
points. The Gauss points number (N) for each basis function is such
that optimizes integration accuracy and computational cost. We ob-
serve relevant values around y = 0.47 and y = 0.7, and we further
analyze and make comparisons in Fig. 5(b) and (c), respectively. The
comparison in Fig. 5(b) confirms how the three methods achieve more
accurate and stable solutions as the number of elements per grain
increases. Interestingly, LME is extremely smooth at all levels of dis-
cretization, while P1 oscillates in coarse meshes and only consolidates
at the 20 elements threshold. In contrast, P2 has a much more steep
convergence and achieves higher accuracy with fewer elements.

This prevalence of P2 is repeatable for other values of y and
would point to this discretization element as the most appropriate one.
However, a detailed analysis for a larger range of y, that we present in
Fig. 6(a), confirms that the minimum observed in Fig. 5(a) around y
= 0.7 exists for different number of elements per wavelength, at which
P1 outclasses the other methods. Interestingly, the same study for LME
with y;,r = 1.8 in Fig. 6(b) reveals that LME decreases the error
monotonically as y is decreased, and for different number of elements
N per A. This would be recommended for applications in which the
reduction of the time step is required and therefore the monotonic,
predictable behavior of the error is an advantage. For the relatively
simple setting of our study, we fix y = 0.7 and we select P1 and at
least 20 elements per wavelength to ensure proper convergence and
optimal performance.

3. Numerical results and discussion

In this section, we apply our numerical model to calculate atten-
uation in ice, which serves as a model for polycrystalline material
wave propagation. We introduce the way we compute attenuation and
then we (1) explore attenuation vs. grain size and compare it with
homogenization analytical techniques, (2) study the role of hierarchical
distributions and second-order descriptors in 1D, and (3) analyze and
test the role of the standard deviation of density gradients in a more
realistic 2D setting.

3.1. Ultrasonic attenuation

We calculate the attenuation coefficient «; following the method
suggested by Kalashnikov [69]. In general, the change of amplitude A
of a decaying/attenuating plane wave can be expressed as:

A= Age-indy, (34)

where A, is the transmitted amplitude of the propagating wave and d,,
is the traveled distance from the initial location (propagation length).
«; is expressed here as Np/m. To this extent, the fast Fourier trans-
form of the time domain for the transmitted and received signals is
calculated.

Then the attenuation coefficient is obtained by comparing the fre-
quency domain of the transmitted and the received signals at each
frequency (see Fig. 7(b)). The transmitted signal is readily available
at I, = 0. The received signal is calculated at the propagation length,
d,, which is taken to be at 90% of the domain length, /.. In order to
evaluate the received signal in the two-dimensional case, we sample
a line at d,, consisting of 1000 discrete points along the width of the
domain /. At each time step, this generates a displacements vector of
dimension 1000, which is averaged to get the final form of the received
signal. Fig. 7 clearly shows the loss of amplitude of the propagating
wave at d,.

3.2. Influence of grain size and frequency in numerical and analytical
attenuation

In this section, we study the role of average grain size and fre-
quency on the attenuation behavior. Our simulations are performed
on quasi-uniform grain size distributions (i.e., Gaussian with a very
small standard deviation) and a random rotation pattern of the grain
elasticity tensor. We compare our results to Weaver’s theory of wave
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Fig. 7. Typical (a) time and (b) frequency domains for the transmitted signal and received 5 MHz center frequency signal corresponding to Model I defined in Table 2. The

amplitude decrease is clearly visible in both time and frequency domain plots.

propagation in polycrystals [14]. Weaver’s theoretical model was eval-
uated using the single crystal elastic constants in Table 1 (Section 2.2)
and is valid through the stochastic regime. Although the theory is
formulated in 3D, for the scattering regime that we are considering in

this study, it was shown that the 2D model performs as well as the 3D
one in recovering the theory [70]. Therefore, we did not modify the
theory to accommodate our 2D simulations. For the comparison, we
have considered different mean grain diameters in the range of 67 pm to
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Fig. 8. Snapshot of the ultrasonic wave propagation in random uniform microstructure corresponding to 5 MHz center frequency and 67 pm average grain diameter taken at

t =7 ps. The color bar represents the magnitude of the displacement.

Table 2

Details of the models used for the attenuation simulations in 2D. n, d, h, DOF, f, and R are the total number of grains, mean grain diameter,
element size, number of degrees of freedom, center frequency, and number of realizations, respectively.

Model 1. x1 ) n d h DOF f R
name (mm?) (mm) (mm) (MHz)

I 10x2.5 5,513 0.0669 0.006 1,393,057

I 10 x 5 5,000 0.113 0.01 1,003,002 35 5 15
111 12 x 10 3,000 0.220 0.02 602,202 ~

IV.A 4,489 0.336

IV.B 20 x 20 1,089 0.684 0.03 892,448

680 pm for 3.5 and 5 MHz center frequencies. Due to the random nature
of the wave scattering, it is required to perform a statistical analysis of
multiple microstructures that are randomly generated. Achieving sta-
tistical significance implies the generation of random grain geometries
as well as random crystallographic orientations. However, producing
and meshing unique random distributions is computationally expen-
sive. To mitigate the time demands of this process, we follow the
strategy presented in [65]. It has been shown that multiple random
microstructure realizations can be achieved using a faster approach in
which the grain geometries are kept unchanged and only the crystal
orientations, represented by Euler angles, are randomly re-assigned.
Van Pamel et al. [65] report that the results are statistically equivalent
to those from randomly changing the grain structures and the crystal
orientations.

Fig. 8 shows an example of the simulated wavefront propagation
and the corresponding scattering. The color bar represents the magni-
tude of the displacement in m, and the snapshot is taken at t = 7 ps.
The distortion of the wavefront, as well as the reflection of the wave
inside the medium, are clearly visible in Fig. 8. We have considered 15
realizations corresponding to the grain diameters shown in Fig. 9(a).
Each realization is characterized by a set of random Euler angles that
rotate the elasticity tensor of the individual grains. We then calculate
the corresponding attenuation coefficient «; using the methodology
explained in Section 3.1. Details of the models used for this study are
listed in Table 2.

In accordance with the analytical model, we observe that for both
3.5 and 5 MHz center frequencies the attenuation coefficient increases
with the mean grain diameter up to the 330 pm threshold. Inter-
estingly, the same is not true for the mean grain diameters larger
than 330 pm, as shown in Fig. 9(a). Over that threshold (i.e., grain
diameters larger than 330 um), «; reaches a plateau, which can further
be explained as the transitional scattering zone between the Rayleigh
and the stochastic scattering regimes. The transitional zone can be
visualized (see Fig. 9(b)) by plotting the normalized attenuation «;d
versus normalized propagation constant kd in the log space, where d
is the grain diameter and k represents the wave number. As shown in
Fig. 9(b), the transitional zone marks the end of the Rayleigh scattering
regime and the beginning of the stochastic scattering regime for which
kd < 1 and kd > 1, respectively.

The steep section of each curve in Fig. 9(a) represents the increase
of sensitivity of a particular wavelength to the mean grain size. Atten-
uation values close to zero correspond to grain diameters that cannot
be detected by the comparatively large wavelength. As the grain size
increases, so does the attenuation. As expected, the higher frequency
with a shorter wavelength is more sensitive to the smaller diameters
and shows, in general, more attenuation. The finite element results re-
ported in this section show good agreement with the theory, exhibiting
an average relative difference of 13.7%. Note that we have used the
average grain diameter in our analytical model for comparison. The
results are comparable to other studies in literature, but the use of the
two-point correlation function of real microstructures can significantly
reduce this difference [71]. The results depicted in Fig. 9(a) and (b)
are relevant for the validation of the numerical model and for the
selection of frequencies and grain diameters, as well as giving a first
approximation to the attenuation behavior in polycrystalline ice.

3.3. Role of interface gradient of grain distribution in attenuation

In this section, we study how the attenuation varies when the den-
sity of the ice grains is modified, following both natural and artificial
configurations. Our objective is to capture the governing statistical
parameters and study the role of second-order descriptors in uncom-
mon grain arrangements. We frame the problem on a one-dimensional
domain to initially isolate a single longitudinal response. We extend
this study to two-dimensions in Section 3.4. An example of the one-
dimensional setting we use is shown in Fig. 10. We introduce changes
of density in the grains and therefore we affect the speed of sound
¢ (and therefore impedance). We apply a three-cycle Hann-windowed
toneburst as a Dirichlet boundary condition on the left side x = 0
and use the numerical scheme presented in Section 2.1 with P1 FEM.
The results are consistent with those obtained by applying LME. To
standardize the numerical simulations and avoid local effects, we com-
pare the amplitude of emitted and received signals at the extremes of
the 1D domain, where the speed of sound is kept constant. Between
those measuring extremes, 163 grains of equal size (0.6135 mm) are
placed, mimicking a filter. The material property distributions of grains
are realized through a vector of speeds ¢ with 163 different values of
speed, whose variability stems from changes in density. The density
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Fig. 9. Effect of grain size on the attenuation coefficient in (a) the linear space and (b) the normalized log space. The finite element results are compared with the theory. The
error bars in (a) represent the standard deviation of attenuation values for multiple realizations corresponding to each grain size. The dashed lines in (a) are the shape-preserving
fit of the discrete point (triangle markers) for better visualization. The log space plot of the normalized attenuation «,d against normalized propagation constant kd is shown in

(b), where k is the wave number, and d denotes the average grain diameter.
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Fig. 10. Sketch of the computational domain representing the polycrystalline microstructure of ice. The lower plot shows the values of the speed of sound associated with each
one of the grains. The upper plot records the corresponding discrete jump between one grain and the next, fundamental in our analysis of attenuation predictability. The values
used in this figure correspond to one single example. We apply several permutations of the grains to achieve multiple realizations with different orderings.

distributions we use have a mean of 916.8 kg/m> and a range between
826 and 1234 kg/m?.

Typical material formation processes tend to develop microstruc-
tures with properties that vary, approximating normal or log-normal
distributions [72,73]. In our algorithm, which reproduces variations in
density, these patterns have a high probability of occurrence and do not
lead to hierarchical orderings at a mesoscale. In consequence, different
patterns in this category converge to similar density gradient averaged
values, and the attenuation response can be predicted using a simple
descriptor (e.g., mean and deviation of the distribution). However, if
more extreme ordered configurations are introduced, we observe a
disparity of attenuation coefficients that prevents the prediction using
classical descriptors (see inset plot in Fig. 11).

We then proceed to analyze the landscape of hierarchical orderings
with the objective of finding a reduced-order model to predict atten-
uation in complex distributions. We use an algorithm using random
and specific customized parameters and subsequent permutations to
generate a large number N, of mesoscale ordered distributions of
the sound speed vector c¢. Our objective is to determine a suitable
second-order descriptor that captures the attenuation variability when
a particular set of grains. For each configuration J in N, and since the
attenuation is related to interface jumps at the local level, we propose
to part from a jump variable Ac, which we define for each i grain as:
N, —1, (35)

=1, . N,

Ac; = ciyy =

where N,, is the total number of grains (which is kept constant between
configurations). The standard deviation of particular configuration J
can be expressed as:

Nge—1

1 —J7\?
O'AJC = ﬁ Z (ACi — Ac ) 5 (36)
8r i=1

and the global average for J is computed as:

—J Ner 1 Ac; 3
Ac = —_— 7

1:21 N —1 @7
From here, we deduce a normalized second-order descriptor based on
this discrete material gradient variable that allows us to quantify the
ordering degree of a particular distribution. We define the variable &
for a particular distribution J as:

%4

&= max(c,,) — min(c,,)’ (38)
where max(o,.) and min(c,.) have been used for normalization, and
they correspond to the maximum/minimum values of the considered
spectrum of configurations (J = 1... N,). Note that £ describes how
the jumps in material properties are distributed, and any dependence
we find will not be modified by the normalization. However, in this
way ¢ indicates the level of organization for a particular configuration
spectrum. For example, given a range of variability and a number of
grains, values of ¢ close to zero indicate the ordering that minimizes
differences in material properties between adjacent grains, while values
of & close to one indicate the orderings at which the magnitude of the
jumps between the grains has been maximized. Our results using this
parameter indicate that ¢ is able to predict the attenuation coefficients
for highly-ordered distributions. We present in Fig. 11 a collection of
130 different simulations on the a; — ¢ space. Typical randomized con-
figurations, such as the ones found in natural microstructures, have the
highest probability of occurrence and present values in the range of £ =
0.38-0.45 (in color green). The corresponding attenuation coefficient
values fall within the ranges predicted in Section 3.2, which worked
with conventional distributions.
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Fig. 11. Attenuation coefficient relationship with ¢ at the frequency 3.5 MHz for 130 configurations. The top figure shows the attenuation as a function of the first-order descriptor
Ac, which cannot capture the attenuation behavior. Each box contains a specific distribution of the speed wave c. Boxes in black mean small jumps between adjacent properties of
grains, boxes in magenta mean big jumps between adjacent properties of grains, and boxes in blue mean random permutation of grains properties. The square markers in green

mean random permutation with a higher probability of occurrence.

On the left side of the chart, small ¢ values signal configurations
that minimize the gradient of density. These types of configurations
can naturally occur due to atypical growing processes or due to gravity
effects. An example would be a distribution in which the speed of sound
evolves from lowest to highest (or, interestingly, the other way around).
It is important to note that this arrangement of material properties leads
to extremely small attenuation values, far below what is expected for a
random permutation of the very same values. In contrast, high values
of ¢ represent configurations where the gradients between grains are
maximized, and lead to very high values of attenuation. These extreme
lower and higher ¢ configurations have been selected at random to
create a representative curve and study the behavior of the attenuation
over a relevant spectrum of orderings. Relevant for templating and de-
sign of artificial microstructures, these distributions exhibit unusually
high attenuation values.

In conclusion, Fig. 11 shows that the relationship between attenu-
ation and the spectrum of configurations can be reduced to a single
parameter. The results of our analysis indicate that the attenuation
exhibits a quadratic growth as the parameter ¢ increases.

3.4. Role of interface gradient in two-dimensional microstructures

In this section, we characterize the attenuation coefficient response
in 2D ordered configurations. The 2D configurations implement the
corresponding randomized crystal orientations. Following the method-
ology outlined in Section 3.3, we apply here a mass density gradient to
the microstructure in the wave propagation direction /,. We choose a
computational domain with dimensions /, X/, = 40 x 20 mm? that con-
tains a total of 1000 grains. The mean grain diameter for this setup is
approximately 1 mm. We then consider a random Gaussian distribution
of the density that has the mean equal to the density value used in other
sections of this study, namely p = 916.8 kg/m>. Furthermore, the stan-
dard deviation of the density pattern is 26.19 kg/m? that corresponds to
a 183.36 kg/m? range in density values (i.e., 20% total density change,
see Fig. 12(f)). This random density distribution is utilized to generate
various ordered density patterns based on parameter ¢ (see Fig. 12(a—
e)). We then obtain the attenuation values following the procedure
explained in Section 3.1 for a 5 MHz center frequency input signal.

10

Different density distributions defined by the parameter ¢ are shown
in Fig. 12. To isolate the effect of the mass density change from the
one introduced by the grain orientations, we normalize the calculated
a; with respect to a baseline attenuation coefficient @;. The baseline
attenuation corresponds to the case in which the mass density is
constant throughout the domain and the loss in wave amplitude is only
due to the scatter resulting from different grain orientations. As can be
observed in Fig. 12, the attenuation behavior is in agreement with the
one obtained for 1D. Interestingly, the quadratic fit is reproduced in
the two-dimensional case and the results suggest that ¢ can be used as
a design parameter to achieve extremely lower or higher attenuation
values in realistic microstructures.

4. Conclusions

In this paper, we have presented a numerical approach for the anal-
ysis of ultrasonic wave propagation in polycrystalline solids exhibiting
hierarchical distributions at the mesoscale. Due to its relevance to
cryoultrasonics NDE and several other fields in science and engineering,
we have focused on ice as a model for this family of microstructures. We
have used an optimized numerical approach to explore how attenuation
within the ultrasonic frequency range is affected by a landscape of
density distributions with different degrees of hierarchical ordering.
We have concluded that second-ordering descriptors are necessary to
accurately capture the attenuation response; moreover, we introduced
a new parameter, based on the standard deviation of the speed of
sound gradient, that shows a quadratic response with ultrasonic atten-
uation. We have tested the parameter in both one and two-dimensional
settings.

Additionally, we extensively tested our computational approach
and explored the numerical performance of first and second-order
finite elements, and LME approximants, which cannot be found in the
literature. We have concluded that (1) second-order finite elements
perform better with non-optimal time step coefficients, that (2) if
the optimal coefficient can be achieved, linear finite elements exhibit
superior convergence, and that (3) LME stabilizes the totality of the
convergence curve for the error in total energy and L,-norm, and that,
in contrast with FEM, the error decreases monotonically with the time
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Fig. 12. Change in the longitudinal attenuation coefficient as a function of density variation between adjacent grains along the length of the domain /. (i.e., the propagation
direction). The vertical axis is normalized with respect to the baseline attenuation, @, in which density is constant throughout the domain. The density variation orderings shown

in (a)-(e) are based on the random Gaussian density distribution shown in (f).

step. We have reported the upper bound for the optimal time step
coefficient y < 0.7 and details on the discretization parameters that
achieve optimal computational performance in linear FEM.

These results are relevant for ice, for which literature is scarce,
but also for any material that undergoes non-uniform growing pro-
cesses that induce hierarchical organizations of material properties.
Understanding wave propagation in ice opens the door to metamaterial
design guidelines, where the fine-scale can be controlled precisely to
obtain a customized ultrasonic response. Although 2D simulations have
been proven to be representative of wave propagation of polycrystalline
materials, we suggest that future work should include a validation of
these results in the 3D setting. Likewise, the parameter space is large
and the effect of further frequencies and grain shape should be analyzed
in the frame of highly ordered configurations.
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