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A B S T R A C T

Polycrystalline solids are composed of many small grains of varying sizes and crystallographic orientations.
An elastic wave that propagates through such a material experiences distortion and attenuation. While the
influence on propagation in random configurations can be captured with conventional statistical descriptors,
the role of second-order features such as the hierarchical gradient in material properties has not been explored.
In this paper, we optimize a numerical strategy based on Finite Elements and Local Max-Entropy approximants
to characterize the role of grain density gradients on ultrasonic attenuation. We focus on ice as a model for
mesoscale ordered configurations due to its relevance to the emerging technology of cryoultrasonics. Our
simulations in one- and two-dimensional settings indicate that second-order descriptors are required to predict
attenuation in polycrystalline ice. Furthermore, we define a novel parameter, based on the standard deviation of
the speed of sound gradient distribution, which shows a quadratic relationship with the ultrasonic attenuation.
The model results can be understood as a phase diagram for the design of metamaterials with specific ultrasonic
scattering properties.
1. Introduction

Polycrystalline materials exhibit a microstructure made of grains
with various sizes, shapes, and crystallographic orientations. Wave
propagation behavior through such a medium exhibits distortions that
are highly dependent on the spatial statistics of the microstructure,
whose descriptors must be chosen carefully in order to make predic-
tions [1,2]. While we have descriptors to predict wave propagation
response in conventional microstructures (e.g., average properties or
two-point correlation functions in configurations that allow homoge-
nization), the problem is more challenging with materials that exhibit
a higher degree of ordering at the mesoscale. These hierarchically
organized structures can occur in both natural and artificial materials,
such as in ice freezing processes [3], metal forming [4,5], and soft
matter and biological arrangements [6–8]. Interestingly, the study of
wave propagation in ice has recently become relevant to ultrasonic
non-destructive evaluation (NDE) and other critical problems, such as
aircraft icing [9], glacial ice [10] and planetary science [11]. Due to
its relevance to these problems, its potential to display complex hierar-
chical orderings, and its relative simplicity for laboratory experiments,
we choose ice as our polycrystalline material model. We emphasize
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here that only recently the influence of gradient patterns has been
noticed and accounted for in the literature, and that it always appears
circumscribed to a different family of features (e.g., microstructural
defects [12]). The development of useful microstructural descriptors in
the types of hierarchically ordered configurations is fundamental for
the prediction of the wave propagation response in the aforementioned
materials, which is of interest to scientists and engineers.

In this work, we focus our study on the attenuation response of
an ultrasonic wave propagating through a (macroscopically isotropic)
polycrystalline ice microstructure. As it progresses, the wave expe-
riences reflection and refraction at the grain boundaries, leading to
scattering. In consequence, the energy is spatially redistributed and the
wave displays macroscopic attenuation and distortion [13–16]. Due to
its importance, a number of studies in literature have characterized
and evaluated wave propagation for different microstructures [17–
22]. Nevertheless, when the polycrystal presents certain complexity
(e.g., of crystallographic orientation, size, shape...), the models struggle
to remain practical while incorporating a detailed description of the
microstructural features. In consequence, these models are forced to
introduce simplifications, hence achieving only approximate solutions.
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With the gradual increase of computational power, numerical method-
ologies that remove those simplifications have been put forward. The
Finite Element Method (FEM) has been successfully applied to simu-
late and understand the scattering of elastic waves in polycrystalline
solids [23–25]. A precise description of their performance and a com-
parison with analytical strategies based on statistical descriptors has
been recently explored [26,27]. The aforementioned works primarily
rely on synthetic polycrystals constructed through Voronoi [25,28,29]
and non-Voronoi tessellations [30,31], with varying descriptors on the
size and shape of the grains. However, the traditional focus on materials
with random crystallographic orientations leaves aside materials with
higher levels of organization (e.g., involving a gradient hierarchy at the
mesoscale), which we address in our analysis. Additionally, the compu-
tational modeling of the phenomenon is still quite resource-intensive
and can benefit from the refinement of the numerical approach. In this
work, we also include a detailed study on the optimal strategy to simu-
late ultrasonic propagation in hierarchically ordered configurations in
ice using both traditional FEM and Local-Max Entropy approximants
(LME) [32], an advanced meshfree discretization method.

To further motivate the choice of ice and the ultrasonic range as our
focus, we want to point out that the way ultrasonic waves are attenu-
ated is highly relevant, for example, for NDE techniques, which play
a vital role in the development and implementation of safety-critical
components. Ultrasonic waves propagate and interact with internal
features, such as pores, cracks, inclusions, and other microstructural
defects [33–36] and the received signal can be used in conjunction
with analytical and/or numerical models to deduce this information. In
relation to ice, cryoultrasonic NDE has recently emerged as a solution
for the inspection of components with complex geometries [37,38].
In this novel technique, the piece is embedded in ice to obtain an
ideal sonic shape (i.e., a shape with rectilinear contours and ice-
filled channels and voids). As a couplant material, ice closely matches
the part’s acoustic properties, leading to more adequate part-couplant
interfaces. Ice is a polycrystalline material with the particularity of
having a microstructure whose grain size distribution ranges in the
ultrasonic wavelength. In consequence, ultrasonic measurements in
the stochastic region and approaching the geometric regime become
feasible. Additionally, ice structure is greatly influenced by the freezing
process parameters, which determine the size, orientation, and spatial
configuration of the grains [39,40]. As a result, ultrasonic wave prop-
agation in ice demands a deeper characterization of its microstructure.
This makes ice a perfect model for the analysis of scattering behavior in
hierarchical microstructures. Nevertheless, our results and conclusions
should be of general validity on microstructures that share similar
features.

The remainder of the paper is organized as follows. In Section 2
we introduce the formulation of the problem and the numerical de-
tails, which involves one and two-dimensional simulations. Our one-
dimensional codes are based on FEM and LME. Our two-dimensional
codes are based on MOOSE [41], a FEM implementation. Efficiency
and optimization details, as well as studies for the choice of the study
parameters, are given in this section. In Section 3 we study how
random and organized grain configurations affect the attenuation of
ultrasonic waves. We explore different frequencies and mechanical
properties variations to show that a second-order descriptor of the
density gradient distribution dictates the behavior of the propagating
wave. We finish with some concluding remarks and future lines of work
in Section 4.

2. Formulation and numerical methodology

We aim to simulate the elastodynamic time response of ice with
an arbitrary microstructure subject to an ultrasonic pulse, enabling the
study of the effect of crystallographic orientation and grain size on the
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longitudinal attenuation coefficient, 𝛼𝐿. The standard model for wave
propagation [42,43] parts from the conservation of linear momentum

𝜌𝒖̈ − ∇ ⋅ 𝝈(𝒖) = 𝒇 , (1)

where 𝒖 is the displacement and 𝝈 is the stress tensor. In particular, we
assume we have an elastic media, described by the linear constitutive
relation (Hooke’s law)

𝝈(𝒖) = 𝑪 ∶ 𝜺(𝒖), 𝜺(𝒖) = 1
2
(∇𝒖 + ∇𝒖𝑇 ) (2)

between the stress 𝝈 and the infinitesimal strain 𝜺(𝒖) tensors, and where
𝑪 is the elasticity tensor. For implementation purposes, we use Voigt
notation to express the stress as

𝝈 =
{

𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑧
}𝑇 , (3)

for which the governing equations may be written as

𝜌𝒖̈ −𝑫𝑇 𝝈(𝒖) = 𝒇 , (4)

𝝈(𝒖) = 𝑪 𝑫 𝒖, (5)

where 𝑫 represents the differential operator, which can take the form

𝑫 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑥 0 0
0 𝜕𝑦 0
0 0 𝜕𝑧
𝜕𝑦 𝜕𝑥 0
𝜕𝑧 0 𝜕𝑥
0 𝜕𝑧 𝜕𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or 𝑫 =
⎡

⎢

⎢

⎣

𝜕𝑥 0
0 𝜕𝑦
𝜕𝑦 𝜕𝑥

⎤

⎥

⎥

⎦

in 2D. (6)

We can start from Eq. (4) to develop the variational formulation of the
problem, by taking the scalar product of both sides of Eq. (1) with a
test function 𝒗 and integrating by parts over the domain 𝛺, obtaining

𝜕2

𝜕𝑡2 ∫𝛺
𝜌 𝒗⋅𝒖 𝑑𝛺+∫𝛺

𝜺(𝒗)⋅(𝑪 ∶ 𝜺(𝒖)) 𝑑𝛺 = ∫𝛺
𝒗⋅𝒇 𝑑𝛺 ∀ 𝒗 ∈ 𝐻1

0 (𝛺)𝑑 , (7)

here 𝑑 = 2 or 3 and 𝐻1
0 = {𝒖 ∈ 𝐿2(𝛺) ∣ ∇𝒖 ∈ 𝐿2(𝛺) and 𝒖|𝜕𝛺 = 0}.

rom here we can proceed to the spatial discretization, which in our
ase will be particularized at implementation level with FEM or LME.
or example, for FEM, and defining a number 𝑛𝑒 of finite elements 𝛺𝑒

𝛺 =
⋃𝑛𝑒

𝑒=1 𝛺𝑒), the approximate solution may be written as

𝒖̃(𝒙, 𝑡) =
𝑛𝑒
⋃

𝑒=1
𝒖̃𝑒(𝒙, 𝑡), 𝒖̃𝑒(𝒙, 𝑡) =

𝑛𝑑𝑜𝑓
∑

𝑗=1
𝒖̃𝑒𝑗 (𝑡)𝝓

𝑒
𝑗 (𝒙), (8)

where the union operator denotes that 𝒖̃ is defined in 𝛺, 𝒖̃(𝒙, ⋅) = 𝒖̃𝑒(𝒙, ⋅)
for any 𝒙 ∈ 𝛺𝑒, 𝑛𝑑𝑜𝑓 is the number of element degrees of freedom, and
𝝓𝑒
𝑗 is the Lagrange interpolation vector function associated with the

𝑗th degree of freedom. The coefficients 𝒖̃𝑒𝑗 (𝑡) are determined from the
following Galerkin approximation of Eq. (7):

𝜕2

𝜕𝑡2 ∫𝛺
𝜌 𝒗 ⋅ 𝒖̃ 𝑑𝛺 + ∫𝛺

𝜺(𝒗) ⋅ (𝑪 𝑫 𝒖̃) 𝑑𝛺 = ∫𝛺
𝒗 ⋅ 𝒇 𝑑𝛺 ∀ 𝒗 ∈ 𝑉 , (9)

here 𝑉 is the subspace of 𝐻1
0 (𝛺)𝑑 of continuous piecewise-polynomial

unctions built from local functions 𝝓𝑒
𝑗 (𝒙). After algebraic manipula-

ions, Galerkin Eq. (7) are written as the system of ordinary differential
quations:

𝒖̈ +𝑲𝑼 = 𝟎, (10)

n the absence of damping and externally applied forces. In Eq. (10) 𝑴
nd 𝑲 are the global mass matrix and stiffness matrix, respectively. Ini-
ial conditions 𝑼 (0) = 𝑼 0 afnd 𝑼̇ (0) = 𝑼̇ 0, must be provided. They are
uilt through a summation process of elemental matrices and vectors,

=
𝑛𝑒
∑

𝑒=1
𝑴𝑒, 𝑲 =

𝑛𝑒
∑

𝑒=1
𝑲𝑒, (11)

here 𝑴𝑒 and 𝑲𝑒 are the elemental mass matrix, and stiffness matrix
nd in sparse global form, that is, only non-zero entries are used and

hey are mapped into appropriate global locations by a connectivity
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map from local to global nodes. The dense elemental arrays 𝑴𝑒 and 𝑲𝑒

are defined by the contributions from element 𝛺𝑒 to the integrals as

𝑴𝑒
𝑖𝑗 = ∫𝛺𝑒

𝜌 𝝓𝑒
𝑖 . 𝝓𝑒

𝑗 𝑑𝛺, 𝑲𝑒
𝑖𝑗 = ∫𝛺𝑒

(𝑫𝝓𝑒
𝑖 ) ⋅ (𝑪 𝑫𝝓𝑒

𝑗 ) 𝑑𝛺, (12)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑑𝑜𝑓 . We then proceed to discretize in time using the
Newmark [44] method. In the Newmark time integration scheme, the
acceleration and velocity at 𝑡+𝛥𝑡 are written in terms of displacement,
velocity, and acceleration at time 𝑡 and the displacement at 𝑡+𝛥𝑡 using

̇̃𝒖(𝑡 + 𝛥𝑡) = ̇̃𝒖(𝑡) + 𝛥𝑡(1 − 𝛾) ̈̃𝒖(𝑡) + 𝛾𝛥𝑡 ̈̃𝒖(𝑡 + 𝛥𝑡), (13)

̈̃𝒖(𝑡 + 𝛥𝑡) =
𝒖̃(𝑡 + 𝛥𝑡) − 𝒖̃(𝑡)

𝛽𝛥𝑡2
−

̇̃𝒖(𝑡)
𝛽𝛥𝑡

+
𝛽 − 0.5

𝛽
̈̃𝒖(𝑡), (14)

here ̇̃𝒖 and ̈̃𝒖 are the velocity and acceleration vectors, respectively.
n Eqs. (13) and (14), 𝛽 and 𝛾 are Newmark time integration parame-
ers. Substituting the two equations in Eq. (10) results in a linear system
f equations that has 𝒖̃(𝑡+𝛥𝑡) as its only unknown. For all of our 1D and
D simulations, we choose 𝛽 = 0.25 and 𝛾 = 0.5 for which the Newmark
ime integration method is implicit and unconditionally stable with no
umerical damping. In consequence, we ensure that the value of 𝛼𝐿,
he longitudinal attenuation coefficient, is not affected by the numerical
amping due to the choice of the time integration scheme.
Finally, the choice of the wave pulse is particularly relevant, as our
odels must be able to correctly reproduce the high-frequency (MHz
ange) signals without loss or distortion. The sine function and the
ann-windowed tone burst are the most widely used in the field. For
he type of numerical simulations in this study, our analysis concluded
hat the Hann-windowed tone burst is more suitable than the sine
unction. While the latter generates multiple reflections at the front of
he signal that distort the received signal, the Hann-windowed achieves
clean, stable wave propagation. The signal takes the general form:

(𝑡) = ℎ(𝑡) sin (2𝜋𝑓𝑡) , (15)

here 𝑓 is the pure tone burst frequency (center frequency) and ℎ(𝑡) is
he Hann-windowed function defined by

(𝑡) = 1
2

[

1 − cos
(

2𝜋𝑡
𝑇𝐻

)]

, (16)

here 𝑇𝐻 is the Hann-windowed length, which can be calculated using
he number of cycles in the tone burst signal 𝑁𝐵 as

𝐻 = 𝑁𝐵∕𝑓. (17)

.1. One-dimensional spatial discretization: FEM and LME approximants

We use a 1D numerical model for the directional isolation and anal-
sis of the grain configurations effects on wave propagation. The 1D
etting allows us to efficiently explore the parameter space (size, ma-
erial properties, and relative order of grains) and increase the number
f realizations per simulation, hence ensuring statistical significance.
We define the base setting with an elastic bar of length L, as

ketched in Fig. 1. We divide the domain into a collection of equal-
ized longitudinal grains (main figure). Each grain is then numerically
iscretized with a one-dimensional grid of nodes (i.e., internal divisions
hown at the zoomed-in grain panel). The average material properties
or our simulations are the following [45]: Young’s modulus 𝐸𝑠 = 9 GPa
nd density 𝜌 = 916.8 kg/m3. An elastic wave will thus propagate at
elocity 𝑐 =

√

𝐸𝑠∕𝜌. The density of the grains (and therefore the speed
of sound 𝑐 and impedance) can be kept homogeneous along the bar
for control simulations and then varied per grain to generate different
polycrystalline structures. The bar contains 163 grains of equal size
(0.6135 mm). To generate the wave, we apply a three-cycle Hann-
windowed toneburst as a Dirichlet boundary condition on the left side
𝑥 = 0. A typical problem uses lengths around 100 mm and frequencies
from 3 to 7 MHz. We compare the amplitude of emitted and received
signals at the extremes of the 1D domain. The numerical parameters
3

(e.g., number of nodes per wavelength, type of wave signal, time
step) are chosen with strict convergence and optimization criteria as
detailed in Section 2.3. Note that we define the number of elements
per wavelength 𝜆 (and not per grain) because it is more restrictive for
the values in this study.

The discretization alternatives that we present for 1D simulations
are classical FEM first and second-order Lagrange polynomials (P1
and P2 elements), and LME approximants, a meshfree method. The
interest in studying the behavior of LME approximants stems from the
attractiveness of smooth basis functions in general for the numerical
solution of PDEs. Some examples include B-splines, nonuniform ratio-
nal B-splines (NURBS), and isogeometric analysis (IGA) [46,47]. The
strength of IGA is in high-fidelity boundary representation, whereas
its weakness is in realizing bulk discretizations; hence, using a more
flexible, meshfree method in the bulk as LME or coupling it with IGA
can resolve several numerical challenges [48]. The LME approximant
schemes were developed in [32] using a framework similar to meshfree
methods, which implies their trivial extension to 2D and 3D domains
represented by a scattered set of points in contrast with B-splines,
NURBS, and IGA. LME approximants have a Gaussian decay that is
modulated by a nondimensional parameter 𝛾𝐿𝑀𝐸 , which controls the
aspect ratio and effective support of the resulting basis functions.
As 𝛾𝐿𝑀𝐸 tends to infinity, it has been proved [32] that the affine
function supported on the Delaunay triangulation of the node set is
recovered. In practice, for 𝛾𝐿𝑀𝐸 = 4 the shape functions are visually
very close to the Delaunay approximant. In [32], it was shown that for
some values of 𝛾𝐿𝑀𝐸 , the approximation properties of the maximum-
entropy basis functions are greatly superior to those of the finite
element linear functions representing smooth solutions, even when
the added computational cost due to larger support is taken into ac-
count. Subsequent studies show that maximum entropy shape functions
are suitable for solving a variety of problems, such as linear [49]
and geometrically nonlinear thin shell analysis [50], compressible and
nearly incompressible elasticity problems, and large deformations in
biomembranes [51,52]. The LME approximations have several advan-
tages over other meshfree methods such as the element-free Galerkin
method [53] or the reproducing kernel particle method [54], and
are amenable for parallelization and supercomputing. For example, in
contrast to the above-mentioned methods, LME approximations ful-
fill the weak Kronecker-delta properties facilitating the imposition of
Dirichlet boundary conditions, their shape functions are always positive
which leads to non-negative values in the off-diagonals in the mass
matrix, and they require fewer integration points to achieve the same
accuracy [55–57]. In all examples we use 𝛾𝐿𝑀𝐸 = 1.8.

2.2. Two-dimensional spatial discretization and grain structure: MOOSE
and NEPER implementation

We develop our computational framework in MOOSE (Multiphysics
Object-Oriented Simulation Environment) [41], an open-source, paral-
lel finite element implementation. The package is based on PETSc [58,
59], which ensures optimal scalability for the resolution of large scale
problems in our supercomputer facility [60]. To create the tessella-
tions in two-dimensional domains representing the microstructure, we
employ Neper [61], an open-source polycrystal generation software.

To facilitate the comparison with 1D results and to isolate the
effect of grain size distribution vs. grain shape, we use Neper’s Lloyd
algorithm. As shown in Fig. 2(a), this algorithm generates uniform cen-
troidal Voronoi tessellations (CVT) to create a microstructure of high
shape-wise regularity, which serves well the purpose of this study. The
input sphericity and grain diameter histograms for this microstructure
are displayed in Fig. 2(b) and (c). The sphericity of a polyhedron,
according to Neper’s documentation, is the ratio of the surface area of
the sphere of equivalent volume to the surface area of the polyhedron.
Clearly, in two dimensions, the sphericity measure corresponds to the

ratio of the perimeter of the circle of equivalent surface area to the
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Fig. 1. Sketch of the computational domain used to represent the polycrystalline nature of ice. In the main figure, the domain is divided in equal-sized longitudinal grains. The
magnified section shows how each grain is spatially discretized with a one- dimensional collection of nodes.
Fig. 2. (a) Example of the computational domain with uniform centroidal Voronoi tessellation, and its corresponding grain sphericity (b) and grain diameter (c) histograms. The
vertical axis in histograms is normalized so that the data represents the probability density function estimate and the total number of grains for this example is 1000.
perimeter of the polygon. Note that we choose this algorithm because
of the convenience for this work, but more advanced approaches are
available to represent realistic microstructures, if needed [31,61]. Al-
though traditionally standard Voronoi tessellations can be employed to
represent microstructures with relative success [62–64], the so-called
digital statistical twins approach streamlines the model fitting and
validation process by bringing the synthetic microstructure as close as
possible to the experimental microstructures. Digital microstructures
that are statistically equivalent to real counterparts can be easily gen-
erated using Neper’s grain growth algorithms. The analysis of such
microstructures and their validation using real ice micrographs will be
the subject of a subsequent study.

We impose symmetry boundary conditions (SBC) on the top and
bottom edges of our domain to account for a quasi longitudinal plane
wave in the horizontal direction 𝑥. SBCs can be implemented by setting
the displacements in the direction perpendicular to the propagation di-
rection, namely 𝑢𝑦, equal to zero. In the 2D case, it has been shown that,
given a large enough sampling space in the simulation domain, SBCs
and periodic boundary conditions perform equally well in capturing the
plane wave solution in polycrystalline materials [65]. Furthermore, to
generate the wave, we apply a three-cycle Hann-windowed toneburst as
a Dirichlet boundary condition for 𝑢 at 𝑥 = 0 (the transmitting surface).
4

𝑥

In our simulations, the length and the height of the domain (i.e., 𝑙𝑥 and
𝑙𝑦 in Fig. 3(a)), vary based on the mean grain diameter. More specif-
ically, a larger mean grain diameter requires a larger domain size to
ensure sufficient sampling space in the longitudinal and the transverse
directions to accommodate for SBCs. It is worth mentioning that the
grains near the top and the bottom boundaries get doubled in size due
to the mirroring effect caused by the choice of the SBC. Choosing a
sufficiently large enough domain is believed to average out the stronger
scattering due to these larger boundary grains. The boundary at the
rightmost side of the domain along 𝑙𝑦 is kept traction-free.

The discretization of the computational domain is heavily influ-
enced by two length scales present in the model, namely, the wave-
length, 𝜆, and the mean grain diameter, 𝑑. Based on the performance
study we take in Section 2.3, we choose 𝜆∕ℎ ≥ 20 and 𝑑∕ℎ ≥ 10, where
ℎ is the mesh size. Furthermore, we employ structured meshes with
quadrilateral elements. It has been shown that the choice of structured
mesh compared to an unstructured conforming mesh does not affect
the solution if the mesh is chosen to be fine enough to resolve the grain
boundaries [65]. The choice of structured meshes will reduce the mesh
density and, consequently, the computation time. Fig. 3(b) shows an
example of the mesh that is used in our 2D simulations.
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Fig. 3. Sketch of the computational domain used in 2D simulations. The symmetry boundary condition and the choice of input pulse is shown in (a) and (b) illustrates the
structured mesh with quadrilateral elements used in this study.
We consider the following elastic stiffness of a single crystal with
hexagonal symmetry reported in [66]:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶12 𝐶23 𝐶22 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Eq. (18) describes all the elastic properties that are needed to assemble
the global stiffness matrix 𝐊 in Eq. (10). The ice material properties
used in this study including the mass density as well as the values of
elastic constants in Eq. (18) are summarized in Table 1. For a poly-
crystalline microstructure, the 3D elastic stiffness matrix 𝐂 is rotated
by a set of random Euler angles, assigned to each grain. We adopt the
passive Bunge convention with 𝑍0, 𝑋1, 𝑍2 rotations in which we apply 3
successive rotations characterized by the Euler angles about the 𝑍 axis,
then about the new 𝑋 axis, and finally about the new 𝑍 axis. Here the
axis subscripts 0, 1, and, 2 indicate the rotation occurrences. For a set
of three Euler angles 𝜃1, 𝛩, 𝜃2 the orthogonal rotation tensor becomes:

𝐑
(

𝜃1, 𝛩, 𝜃2
)

=
⎡

⎢

⎢

⎣

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤

⎥

⎥

⎦

, (19)

where

𝑅11 = cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 cos𝛩 (20)

𝑅12 = sin 𝜃1 cos 𝜃2 + cos 𝜃1 sin 𝜃2 cos𝛩 (21)

𝑅13 = sin 𝜃2 sin𝛩 (22)

𝑅21 = −cos 𝜃1 sin 𝜃2 − sin 𝜃1 cos 𝜃2 cos𝛩 (23)

𝑅22 = − sin 𝜃1 sin 𝜃2 + cos 𝜃1 cos 𝜃2 cos𝛩 (24)

𝑅23 = cos 𝜃2 sin𝛩 (25)

𝑅31 = sin 𝜃1 sin𝛩 (26)

𝑅32 = −cos 𝜃1 sin𝛩 (27)

𝑅33 = cos𝛩. (28)

Finally, we obtain the rotated elastic tensor as:

𝐶𝑖𝑗𝑘𝑙 = 𝑅𝑖𝑚𝑅𝑗𝑛𝑅𝑘𝑜𝑅𝑙𝑝𝐶𝑚𝑛𝑜𝑝, (29)

where 𝐶𝑚𝑛𝑜𝑝 is the unrotated rank four elastic tensor whose Voigt rep-
resentation is defined in Eq. (18). The random crystallographic orienta-
tions have a uniform distribution to ensure macroscopic isotropy [26].
We then assume a plane strain formulation, in which the out-of-plane
strain is set to zero. Consequently, the corresponding entries of the
rotated 𝐂 are dropped out to accommodate the 2D formulation.
5

2.3. Convergence, wave pulse, and choice of optimal time step

In this study, we use both the traditional 𝐿2-norm and the total en-
ergy as the quantities of interest to establish convergence. Considering
𝛺 as the one-dimensional domain through which the wave propagates,
the total amount of energy is expressed as:

𝐸 = 1
2 ∫𝛺

[

( 𝜕𝑢
𝜕𝑡

)2
+ 𝑐2

( 𝜕𝑢
𝜕𝑥

)2]

𝑑𝑥, (30)

where the quadratic form 𝐸 is constant over time and 𝑐2 = 𝐸𝑠∕𝜌. The
first and second terms in 𝐸 are related to the kinetic and potential
energies, respectively. As a reminder, the 𝐿2-norm of the error is
defined as:

‖𝑒‖𝐿2
=
(

∫𝛺
|𝑢 − 𝑢̃|2𝑑𝑥

)1∕2
, (31)

where 𝑢̃ is a spatially discretized version of the continuous function 𝑢
(i.e., using either FEM or LME). We use d’Alembert’s general solution
to obtain the exact solution 𝑢 of the Hann-windowed signal, that is

𝑢(𝑥, 𝑡) = 𝐴 1
2

[

1 − cos
(

2𝜋𝑡
𝑇𝐻

− 𝑘𝑥
𝑁𝐵

)]

sin(𝑘𝑥 − 2𝜋𝑓𝑡), (32)

which we use to compute the 𝐿2-norm error and the energy error of
the numerical solution 𝑢̃ at the end of the bar.

We first use these two convergence criteria to further justify the
choice of the Hann-windowed wave pulse. We compare the behavior of
a sinusoidal and a Hann-windowed pulse on the one-dimensional bar
framework and average values presented in Section 2.1. The frequency
of the pulses is set to 3.5 MHz and the domain is discretized with
P1 FEM, using three integration Gauss points per element. Besides the
visual absence of perturbations in the front of the Hann-windowed
signal, Fig. 4 shows how this type of pulse consistently outperforms
the sinusoidal signal both in (1) energy relative and 𝐿2-norm errors,
and (2) accuracy as the number of finite elements per grain increases.
We can also observe how the Hann-windowed pulse achieves higher
accuracy faster, which reduces the computational cost.

The choice of an adequate integration time step 𝛥𝑡 is critical for
the accuracy and convergence of the solution. A time step that is
too small would render the computation time impractical. Conversely,
using time steps that are too large hinders the resolution of high-
frequency components. Although our scheme is unconditionally stable,
a practical route to find an accurate time step is to apply a factor 𝜒 on
the expression [67]:

𝛥𝑡 ≤ 𝜒 𝛥𝑥
𝑐
, (33)

which is reminiscent of the Courant–Friedrichs–Lewy (CFL) condi-
tion [68] for the stability of explicit schemes, where 𝛥𝑥 is the space
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Table 1
Ice material properties.
𝜌
(kgm−3)

𝐶11
(GPa)

𝐶12
(GPa)

𝐶22
(GPa)

𝐶23
(GPa)

𝐶44
(GPa)

𝐶55
(GPa)

916.8 15.010 5.765 13.929 7.082 3.4235 3.014
Fig. 4. Comparison of the two signals as an external force: Hann-windowed tone burst signal and sine function. On the left is the energy relative error and on the right is the
𝐿2-norm error. The frequency of the pulses is set to 3.5 MHz and the domain is discretized with p = 1 FEM, using three integration Gauss points per element, 𝑁𝑔 = 3.
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etween two spatial discretization points and 𝑐 is the wave speed. The
actor 𝜒 can be understood in the limit as the ratio of the traveled
ength per time step.
We now extensively analyze the convergence behavior of our mod-

ls according to changes in (1) type of discretization method, (2)
umber of elements per wavelength, (3) time step 𝛥𝑡 and coefficient 𝜒 ,
and (4) number of Gauss points. Our objective is to justify an optimal
selection of parameters for the computational setting used in our study,
and establish the behavior of FEM and LME discretization methods as
a reference for future applications. Again, we execute the simulations
on the one-dimensional framework and average parameters specified
in Section 2.1. Following the aforementioned results, we introduce a
Hann-windowed pulse of 3.5 MHz and observe the evolution of the
error when the objective parameters are modified. We summarize the
most important results of our analysis in Figs. 5 and 6. In Fig. 5(a), we
study how the 𝐿2-norm error behaves varying 𝜒 between 0.1 and 0.9
s the number of elements per wavelength (N per 𝜆) is increased. We
resent this variation for different discretization methods and number
f Gauss points: FEM P1 element integrated with three Gauss points,
EM P2 element with five Gauss points, and LME with five Gauss
oints. The Gauss points number (𝑁𝑔) for each basis function is such
hat optimizes integration accuracy and computational cost. We ob-
erve relevant values around 𝜒 = 0.47 and 𝜒 = 0.7, and we further
nalyze and make comparisons in Fig. 5(b) and (c), respectively. The
omparison in Fig. 5(b) confirms how the three methods achieve more
ccurate and stable solutions as the number of elements per grain
ncreases. Interestingly, LME is extremely smooth at all levels of dis-
retization, while P1 oscillates in coarse meshes and only consolidates
t the 20 elements threshold. In contrast, P2 has a much more steep
onvergence and achieves higher accuracy with fewer elements.
This prevalence of P2 is repeatable for other values of 𝜒 and

ould point to this discretization element as the most appropriate one.
owever, a detailed analysis for a larger range of 𝜒 , that we present in
ig. 6(a), confirms that the minimum observed in Fig. 5(a) around 𝜒
0.7 exists for different number of elements per wavelength, at which
1 outclasses the other methods. Interestingly, the same study for LME
ith 𝛾𝐿𝑀𝐸 = 1.8 in Fig. 6(b) reveals that LME decreases the error
onotonically as 𝜒 is decreased, and for different number of elements
per 𝜆. This would be recommended for applications in which the

eduction of the time step is required and therefore the monotonic,
redictable behavior of the error is an advantage. For the relatively
imple setting of our study, we fix 𝜒 = 0.7 and we select P1 and at
east 20 elements per wavelength to ensure proper convergence and
ptimal performance.
6

. Numerical results and discussion

In this section, we apply our numerical model to calculate atten-
ation in ice, which serves as a model for polycrystalline material
ave propagation. We introduce the way we compute attenuation and
hen we (1) explore attenuation vs. grain size and compare it with
omogenization analytical techniques, (2) study the role of hierarchical
istributions and second-order descriptors in 1D, and (3) analyze and
est the role of the standard deviation of density gradients in a more
ealistic 2D setting.

.1. Ultrasonic attenuation

We calculate the attenuation coefficient 𝛼𝐿 following the method
uggested by Kalashnikov [69]. In general, the change of amplitude 𝐴
f a decaying/attenuating plane wave can be expressed as:

= 𝐴0𝑒
−𝛼𝐿𝑑𝑝 , (34)

here 𝐴0 is the transmitted amplitude of the propagating wave and 𝑑𝑝
s the traveled distance from the initial location (propagation length).
𝐿 is expressed here as Np/m. To this extent, the fast Fourier trans-
orm of the time domain for the transmitted and received signals is
alculated.
Then the attenuation coefficient is obtained by comparing the fre-

uency domain of the transmitted and the received signals at each
requency (see Fig. 7(b)). The transmitted signal is readily available
t 𝑙𝑥 = 0. The received signal is calculated at the propagation length,
𝑝, which is taken to be at 90% of the domain length, 𝑙𝑥. In order to
valuate the received signal in the two-dimensional case, we sample
line at 𝑑𝑝 consisting of 1000 discrete points along the width of the
omain 𝑙𝑦. At each time step, this generates a displacements vector of
imension 1000, which is averaged to get the final form of the received
ignal. Fig. 7 clearly shows the loss of amplitude of the propagating
ave at 𝑑𝑝.

.2. Influence of grain size and frequency in numerical and analytical
ttenuation

In this section, we study the role of average grain size and fre-
uency on the attenuation behavior. Our simulations are performed
n quasi-uniform grain size distributions (i.e., Gaussian with a very
mall standard deviation) and a random rotation pattern of the grain
lasticity tensor. We compare our results to Weaver’s theory of wave
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𝑁

Fig. 5. (a) 𝐿2-norm error for P1, P2 and LME for 40 elements. (b) 𝐿2-norm error at 𝜒 = 0.47 and for different number of elements per wavelength, 𝑁 per 𝜆. (c) 𝐿2-norm error
at 𝜒 = 0.7 and for different 𝑁 per 𝜆.
Fig. 6. 𝐿2-norm error as a function of the number of elements per wavelength, varying 𝜒 between 0.1 and 0.9 for discretizations (a) FEM, p = 1, 𝑁𝑔 = 3, and (b) LME, 𝛾𝐿𝑀𝐸 = 1.8,
𝑔 = 5.
Fig. 7. Typical (a) time and (b) frequency domains for the transmitted signal and received 5 MHz center frequency signal corresponding to Model I defined in Table 2. The
amplitude decrease is clearly visible in both time and frequency domain plots.
propagation in polycrystals [14]. Weaver’s theoretical model was eval-
uated using the single crystal elastic constants in Table 1 (Section 2.2)
and is valid through the stochastic regime. Although the theory is
formulated in 3D, for the scattering regime that we are considering in
7

this study, it was shown that the 2D model performs as well as the 3D
one in recovering the theory [70]. Therefore, we did not modify the
theory to accommodate our 2D simulations. For the comparison, we
have considered different mean grain diameters in the range of 67 μm to
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Fig. 8. Snapshot of the ultrasonic wave propagation in random uniform microstructure corresponding to 5 MHz center frequency and 67 μm average grain diameter taken at
𝑡 = 7 μs. The color bar represents the magnitude of the displacement.
Table 2
Details of the models used for the attenuation simulations in 2D. 𝑛, 𝑑, ℎ, DOF, 𝑓 , and R are the total number of grains, mean grain diameter,
element size, number of degrees of freedom, center frequency, and number of realizations, respectively.
Model
name

𝑙𝑥 × 𝑙𝑦
(mm2)

𝑛 𝑑
(mm)

ℎ
(mm)

DOF 𝑓
(MHz)

R

I 10 × 2.5 5,513 0.0669 0.006 1,393,057

3.5, 5 15II 10 × 5 5,000 0.113 0.01 1,003,002
III 12 × 10 3,000 0.220 0.02 602,202
IV.A 20 × 20 4,489 0.336 0.03 892,448IV.B 1,089 0.684
680 μm for 3.5 and 5 MHz center frequencies. Due to the random nature
of the wave scattering, it is required to perform a statistical analysis of
multiple microstructures that are randomly generated. Achieving sta-
tistical significance implies the generation of random grain geometries
as well as random crystallographic orientations. However, producing
and meshing unique random distributions is computationally expen-
sive. To mitigate the time demands of this process, we follow the
strategy presented in [65]. It has been shown that multiple random
microstructure realizations can be achieved using a faster approach in
which the grain geometries are kept unchanged and only the crystal
orientations, represented by Euler angles, are randomly re-assigned.
Van Pamel et al. [65] report that the results are statistically equivalent
to those from randomly changing the grain structures and the crystal
orientations.

Fig. 8 shows an example of the simulated wavefront propagation
and the corresponding scattering. The color bar represents the magni-
tude of the displacement in m, and the snapshot is taken at 𝑡 = 7 μs.
The distortion of the wavefront, as well as the reflection of the wave
inside the medium, are clearly visible in Fig. 8. We have considered 15
realizations corresponding to the grain diameters shown in Fig. 9(a).
Each realization is characterized by a set of random Euler angles that
rotate the elasticity tensor of the individual grains. We then calculate
the corresponding attenuation coefficient 𝛼𝐿 using the methodology
explained in Section 3.1. Details of the models used for this study are
listed in Table 2.

In accordance with the analytical model, we observe that for both
3.5 and 5 MHz center frequencies the attenuation coefficient increases
with the mean grain diameter up to the 330 μm threshold. Inter-
estingly, the same is not true for the mean grain diameters larger
than 330 μm, as shown in Fig. 9(a). Over that threshold (i.e., grain
diameters larger than 330 μm), 𝛼𝐿 reaches a plateau, which can further
be explained as the transitional scattering zone between the Rayleigh
and the stochastic scattering regimes. The transitional zone can be
visualized (see Fig. 9(b)) by plotting the normalized attenuation 𝛼𝐿𝑑
versus normalized propagation constant 𝑘𝑑 in the log space, where 𝑑
is the grain diameter and 𝑘 represents the wave number. As shown in
Fig. 9(b), the transitional zone marks the end of the Rayleigh scattering
regime and the beginning of the stochastic scattering regime for which
𝑘𝑑 ≪ 1 and 𝑘𝑑 ≫ 1, respectively.
8

The steep section of each curve in Fig. 9(a) represents the increase
of sensitivity of a particular wavelength to the mean grain size. Atten-
uation values close to zero correspond to grain diameters that cannot
be detected by the comparatively large wavelength. As the grain size
increases, so does the attenuation. As expected, the higher frequency
with a shorter wavelength is more sensitive to the smaller diameters
and shows, in general, more attenuation. The finite element results re-
ported in this section show good agreement with the theory, exhibiting
an average relative difference of 13.7%. Note that we have used the
average grain diameter in our analytical model for comparison. The
results are comparable to other studies in literature, but the use of the
two-point correlation function of real microstructures can significantly
reduce this difference [71]. The results depicted in Fig. 9(a) and (b)
are relevant for the validation of the numerical model and for the
selection of frequencies and grain diameters, as well as giving a first
approximation to the attenuation behavior in polycrystalline ice.

3.3. Role of interface gradient of grain distribution in attenuation

In this section, we study how the attenuation varies when the den-
sity of the ice grains is modified, following both natural and artificial
configurations. Our objective is to capture the governing statistical
parameters and study the role of second-order descriptors in uncom-
mon grain arrangements. We frame the problem on a one-dimensional
domain to initially isolate a single longitudinal response. We extend
this study to two-dimensions in Section 3.4. An example of the one-
dimensional setting we use is shown in Fig. 10. We introduce changes
of density in the grains and therefore we affect the speed of sound
𝑐 (and therefore impedance). We apply a three-cycle Hann-windowed
toneburst as a Dirichlet boundary condition on the left side 𝑥 = 0
and use the numerical scheme presented in Section 2.1 with P1 FEM.
The results are consistent with those obtained by applying LME. To
standardize the numerical simulations and avoid local effects, we com-
pare the amplitude of emitted and received signals at the extremes of
the 1D domain, where the speed of sound is kept constant. Between
those measuring extremes, 163 grains of equal size (0.6135 mm) are
placed, mimicking a filter. The material property distributions of grains
are realized through a vector of speeds 𝐜 with 163 different values of

speed, whose variability stems from changes in density. The density
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Fig. 9. Effect of grain size on the attenuation coefficient in (a) the linear space and (b) the normalized log space. The finite element results are compared with the theory. The
error bars in (a) represent the standard deviation of attenuation values for multiple realizations corresponding to each grain size. The dashed lines in (a) are the shape-preserving
fit of the discrete point (triangle markers) for better visualization. The log space plot of the normalized attenuation 𝛼𝐿𝑑 against normalized propagation constant 𝑘𝑑 is shown in
b), where 𝑘 is the wave number, and 𝑑 denotes the average grain diameter.
Fig. 10. Sketch of the computational domain representing the polycrystalline microstructure of ice. The lower plot shows the values of the speed of sound associated with each
ne of the grains. The upper plot records the corresponding discrete jump between one grain and the next, fundamental in our analysis of attenuation predictability. The values
sed in this figure correspond to one single example. We apply several permutations of the grains to achieve multiple realizations with different orderings.
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istributions we use have a mean of 916.8 kg/m3 and a range between
826 and 1234 kg/m3.

Typical material formation processes tend to develop microstruc-
tures with properties that vary, approximating normal or log-normal
distributions [72,73]. In our algorithm, which reproduces variations in
density, these patterns have a high probability of occurrence and do not
lead to hierarchical orderings at a mesoscale. In consequence, different
patterns in this category converge to similar density gradient averaged
values, and the attenuation response can be predicted using a simple
descriptor (e.g., mean and deviation of the distribution). However, if
more extreme ordered configurations are introduced, we observe a
disparity of attenuation coefficients that prevents the prediction using
classical descriptors (see inset plot in Fig. 11).

We then proceed to analyze the landscape of hierarchical orderings
with the objective of finding a reduced-order model to predict atten-
uation in complex distributions. We use an algorithm using random
and specific customized parameters and subsequent permutations to
generate a large number 𝑁𝑐 of mesoscale ordered distributions of
he sound speed vector 𝐜. Our objective is to determine a suitable
econd-order descriptor that captures the attenuation variability when
particular set of grains. For each configuration 𝐽 in 𝑁𝑐 , and since the

attenuation is related to interface jumps at the local level, we propose
to part from a jump variable 𝛥𝑐, which we define for each 𝑖 grain as:

𝑐𝑖 = 𝑐𝑖+1 − 𝑐𝑖, 𝑖 = 1,… ., 𝑁𝑔𝑟 − 1, (35)

here𝑁𝑔𝑟 is the total number of grains (which is kept constant between
onfigurations). The standard deviation of particular configuration 𝐽
an be expressed as:

𝐽
𝛥𝑐 =

√

√

√

√

√

1
𝑁 − 1

𝑁𝑔𝑟−1
∑

(

𝛥𝑐𝑖 − 𝛥𝑐
𝐽)2

, (36)
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𝑔𝑟 𝑖=1 w
nd the global average for 𝐽 is computed as:

𝛥𝑐
𝐽
=

𝑁𝑔𝑟−1
∑

𝑖=1

𝛥𝑐𝑖
𝑁𝑔𝑟 − 1

. (37)

From here, we deduce a normalized second-order descriptor based on
this discrete material gradient variable that allows us to quantify the
ordering degree of a particular distribution. We define the variable 𝜉
for a particular distribution 𝐽 as:

𝜉 =
𝜎𝐽𝛥𝑐

max(𝜎𝛥𝑐 ) − min(𝜎𝛥𝑐 )
, (38)

here max(𝜎𝛥𝑐 ) and min(𝜎𝛥𝑐 ) have been used for normalization, and
hey correspond to the maximum/minimum values of the considered
pectrum of configurations (𝐽 = 1…𝑁𝑐). Note that 𝜉 describes how
he jumps in material properties are distributed, and any dependence
e find will not be modified by the normalization. However, in this
ay 𝜉 indicates the level of organization for a particular configuration
pectrum. For example, given a range of variability and a number of
rains, values of 𝜉 close to zero indicate the ordering that minimizes
ifferences in material properties between adjacent grains, while values
f 𝜉 close to one indicate the orderings at which the magnitude of the
umps between the grains has been maximized. Our results using this
arameter indicate that 𝜉 is able to predict the attenuation coefficients
or highly-ordered distributions. We present in Fig. 11 a collection of
30 different simulations on the 𝛼𝐿 − 𝜉 space. Typical randomized con-
igurations, such as the ones found in natural microstructures, have the
ighest probability of occurrence and present values in the range of 𝜉 =
.38–0.45 (in color green). The corresponding attenuation coefficient
alues fall within the ranges predicted in Section 3.2, which worked
ith conventional distributions.
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Fig. 11. Attenuation coefficient relationship with 𝜉 at the frequency 3.5 MHz for 130 configurations. The top figure shows the attenuation as a function of the first-order descriptor
𝛥𝑐, which cannot capture the attenuation behavior. Each box contains a specific distribution of the speed wave 𝑐. Boxes in black mean small jumps between adjacent properties of
rains, boxes in magenta mean big jumps between adjacent properties of grains, and boxes in blue mean random permutation of grains properties. The square markers in green
ean random permutation with a higher probability of occurrence.
i
o
𝛼

On the left side of the chart, small 𝜉 values signal configurations
hat minimize the gradient of density. These types of configurations
an naturally occur due to atypical growing processes or due to gravity
ffects. An example would be a distribution in which the speed of sound
volves from lowest to highest (or, interestingly, the other way around).
t is important to note that this arrangement of material properties leads
o extremely small attenuation values, far below what is expected for a
andom permutation of the very same values. In contrast, high values
f 𝜉 represent configurations where the gradients between grains are
aximized, and lead to very high values of attenuation. These extreme
ower and higher 𝜉 configurations have been selected at random to
reate a representative curve and study the behavior of the attenuation
ver a relevant spectrum of orderings. Relevant for templating and de-
ign of artificial microstructures, these distributions exhibit unusually
igh attenuation values.
In conclusion, Fig. 11 shows that the relationship between attenu-

tion and the spectrum of configurations can be reduced to a single
arameter. The results of our analysis indicate that the attenuation
xhibits a quadratic growth as the parameter 𝜉 increases.

.4. Role of interface gradient in two-dimensional microstructures

In this section, we characterize the attenuation coefficient response
n 2D ordered configurations. The 2D configurations implement the
orresponding randomized crystal orientations. Following the method-
logy outlined in Section 3.3, we apply here a mass density gradient to
he microstructure in the wave propagation direction 𝑙𝑥. We choose a
omputational domain with dimensions 𝑙𝑥 × 𝑙𝑦 = 40 × 20 mm2 that con-
ains a total of 1000 grains. The mean grain diameter for this setup is
pproximately 1 mm. We then consider a random Gaussian distribution
f the density that has the mean equal to the density value used in other
ections of this study, namely 𝜌 = 916.8 kg/m3. Furthermore, the stan-
ard deviation of the density pattern is 26.19 kg/m3 that corresponds to
183.36 kg/m3 range in density values (i.e., 20% total density change,
ee Fig. 12(f)). This random density distribution is utilized to generate
arious ordered density patterns based on parameter 𝜉 (see Fig. 12(a–
)). We then obtain the attenuation values following the procedure
10

xplained in Section 3.1 for a 5 MHz center frequency input signal.
Different density distributions defined by the parameter 𝜉 are shown
n Fig. 12. To isolate the effect of the mass density change from the
ne introduced by the grain orientations, we normalize the calculated
𝐿 with respect to a baseline attenuation coefficient 𝛼𝐿. The baseline
attenuation corresponds to the case in which the mass density is
constant throughout the domain and the loss in wave amplitude is only
due to the scatter resulting from different grain orientations. As can be
observed in Fig. 12, the attenuation behavior is in agreement with the
one obtained for 1D. Interestingly, the quadratic fit is reproduced in
the two-dimensional case and the results suggest that 𝜉 can be used as
a design parameter to achieve extremely lower or higher attenuation
values in realistic microstructures.

4. Conclusions

In this paper, we have presented a numerical approach for the anal-
ysis of ultrasonic wave propagation in polycrystalline solids exhibiting
hierarchical distributions at the mesoscale. Due to its relevance to
cryoultrasonics NDE and several other fields in science and engineering,
we have focused on ice as a model for this family of microstructures. We
have used an optimized numerical approach to explore how attenuation
within the ultrasonic frequency range is affected by a landscape of
density distributions with different degrees of hierarchical ordering.
We have concluded that second-ordering descriptors are necessary to
accurately capture the attenuation response; moreover, we introduced
a new parameter, based on the standard deviation of the speed of
sound gradient, that shows a quadratic response with ultrasonic atten-
uation. We have tested the parameter in both one and two-dimensional
settings.

Additionally, we extensively tested our computational approach
and explored the numerical performance of first and second-order
finite elements, and LME approximants, which cannot be found in the
literature. We have concluded that (1) second-order finite elements
perform better with non-optimal time step coefficients, that (2) if
the optimal coefficient can be achieved, linear finite elements exhibit
superior convergence, and that (3) LME stabilizes the totality of the
convergence curve for the error in total energy and 𝐿2-norm, and that,

in contrast with FEM, the error decreases monotonically with the time
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Fig. 12. Change in the longitudinal attenuation coefficient as a function of density variation between adjacent grains along the length of the domain 𝑙𝑥 (i.e., the propagation
direction). The vertical axis is normalized with respect to the baseline attenuation, 𝛼𝐿, in which density is constant throughout the domain. The density variation orderings shown
n (a)–(e) are based on the random Gaussian density distribution shown in (f).
tep. We have reported the upper bound for the optimal time step
oefficient 𝜒 ≤ 0.7 and details on the discretization parameters that
chieve optimal computational performance in linear FEM.
These results are relevant for ice, for which literature is scarce,

ut also for any material that undergoes non-uniform growing pro-
esses that induce hierarchical organizations of material properties.
nderstanding wave propagation in ice opens the door to metamaterial
esign guidelines, where the fine-scale can be controlled precisely to
btain a customized ultrasonic response. Although 2D simulations have
een proven to be representative of wave propagation of polycrystalline
aterials, we suggest that future work should include a validation of
hese results in the 3D setting. Likewise, the parameter space is large
nd the effect of further frequencies and grain shape should be analyzed
n the frame of highly ordered configurations.
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