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Abstract

Graduation rates are a key measure of the long-term efficacy of academic interventions.

However, challenges to using traditional estimates of graduation rates for underrepresented

students include inherently small sample sizes and high data requirements. Here, we show

that a Markov model increases confidence and reduces biases in estimated graduation

rates for underrepresented minority and first-generation students. We use a Learning Assis-

tant program to demonstrate the Markov model’s strength for assessing program efficacy.

We find that Learning Assistants in gateway science courses are associated with a 9%

increase in the six-year graduation rate. These gains are larger for underrepresented minor-

ity (21%) and first-generation students (18%). Our results indicate that Learning Assistants

can improve overall graduation rates and address inequalities in graduation rates for under-

represented students.

Introduction

University decision-makers invest in educational programs to support the success of diverse

students. Assessing programmatic efficacy, however, is made complicated by complexities in

program implementation and measurement of program outcomes. Administrators often mea-

sure programmatic efficacy using a single metric of student success, such as course failure rate

(commonly rates of D, F, or withdrawal; DFW), and make decisions about funding or program

longevity using this information. While this strategy provides an important view of one aspect

of program efficacy, the analysis is limited to a single point in a student’s academic career. This

limitation risks missing other important student success outcomes across longer timescales,

including retention and graduation rates, that the educational program may impact. Thus,

there is a need for statistical methods to incorporate measures of longer-term, or “down-

stream”, student success into program evaluation metrics.

Additionally, if an educational program has a small scope (e.g., implementation in a single

section of a course) or administrators are interested in the program’s impacts on students
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from minoritized identities (e.g., women in science majors or underrepresented minority stu-

dents), then program assessment is challenged by small sample sizes. Smaller sample sizes lead

to lower confidence in measures of student success such as DFW or retention rates. This cre-

ates a need for methods to estimate more accurate statistics for program efficacy metrics with

small sample sizes.

When program managers and administrators use graduation rates as a measure of program

success, there is an inherent discrepancy between the students who are currently engaged in

the particular program under study, and the students whose data are part of the graduation

rate calculation. Specifically, very few of the students who are currently in an academic pro-

gram are involved in a “current” estimate of the program’s graduation rate. Most of these stu-

dents have departed the program, with or without a degree (or other marker of successful

completion of the program). Thus, there is a benefit to developing an “online” estimate of

graduation rates—that is, an estimate of graduation rates that can be updated regularly [1] and

includes data from all cohorts of students, including those who are still enrolled in the pro-

gram. Such an online estimate of graduation rate is arguably more appropriate for program

evaluation in that it makes use of the most up-to-date information on student retention and

persistence. A traditional estimate of six-year graduation rate (SYGR), on the other hand, relies

entirely on data that is at least six years old. If, five years ago, there was a sizable improvement

in first-year retention in the academic program under study, then the six-year graduation rate

as estimated in the following year will be higher as a result (all other things being equal). This

highlights the strength of the online estimate, in that it can incorporate all available informa-

tion on year-to-year transitions.

As Markov chains model transitions of a system between states, they provide a natural

mathematical structure to represent the year-to-year transitions of students between academic

states (e.g., freshman year, sophomore year). A (first-order) Markov model is one in which the

probability of the system transitioning from one state to another is conditionally independent

of all previous states of the system, given the current state. Previous work has leveraged Mar-

kov chains to construct estimates of college students’ retention and persistence [1–3]. Boumi

and Vela [1] further allowed for reflexive transitions from a state to itself; that is, students can

remain in the same academic level at multiple points in time. This “multi-level absorbing Mar-

kov chain” allowed multiple visits to a state either in sequence (e.g., a student remaining in the

sophomore state for more than one academic year) or non-contiguous (a student withdrawing

for multiple, non-contiguous semesters then re-enrolling). Here, the term “absorbing” refers

to the fact that once a student enters either the Graduation state or the Drop-Out state, they

are assumed to remain in that state. Thus, in the parlance of Markov chains, these system states

are said to be absorbing states. By contrast, each academic year is a transient state because stu-

dents pass through these states en route to a permanent outcome (i.e., one of the two absorbing

states). However, the introduction of reflexive transitions by Boumi and Vela [1] leads to an

underestimation bias in Markov-based estimates of SYGR. Those authors develop a correction

to account for this bias, but to avoid this issue, we focus on graduation within six calendar

years of students’ matriculation.

Here, we assess the ability of a Markov chain model to constrain estimates of SYGR by com-

paring its performance to that of a traditional graduation rate calculation. We use eight years

of data from “UNI”, a large, private university in the northeast of the United States, to compute

SYGR estimates. SYGR metrics are typically used as descriptive statistics as opposed to a pre-

diction, although there are instances where one might take a predictive view of SYGR. One

example is a prospective student who is using SYGR to compare the relative strengths of two

candidate academic programs. Such a student is assuming that the past performance (SYGR)

is an indicator of future performance (their anticipated academic experience and likelihood of
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successful completion of a degree). By contrast, the typical descriptive interpretation of SYGR

measures the academic performance of a specific cohort from (at least) six years ago. In prac-

tice, a traditionally-calculated SYGR is used as a point estimate, with no quantification of

uncertainty. However, this metric is only exact for the cohort on which it is based. These stu-

dents necessarily entered the university at least six years ago, and may have departed the uni-

versity a year ago or more. Mapping this traditionally-calculated SYGR to the present day

leads to the interrelated issues of uncertainty stemming from variations in SYGR over time

and sensitivity of the calculated SYGR to potentially small cohort sizes. While decision-makers

typically do not quantify uncertainty in SYGR, for the reasons outlined above, we characterize

these sensitivities and uncertainties by constructing bootstrap confidence intervals.

We hypothesize that the use of more data in the Markov estimates will lead to more confi-

dent estimates of SYGR than a traditional calculation. This ability to use more data makes an

online estimate of graduation rates suitable for small groups of students. We demonstrate the

power of the analysis by using it on a localized academic program, the Learning Assistant (LA)

program, and smaller demographic sub-groups within the program. However, we stress that

an online estimate of graduation rates has no drawback relative to a traditional calculation.

The online estimate will make use of all of the same information as a traditional estimate, as

well as the year-to-year transition information from not-yet-departed students. This makes the

online estimate appropriate for other settings as well. We assess, through our real-world data

from UNI, the benefits of using the Markov model to estimate SYGR for smaller, minoritized

groups of students (underrepresented minorities and first-generation college students).

Finally, using the LA program at UNI as a test case, we evaluate the impacts of students’ expo-

sure to LAs in terms of improvements to SYGR for students who have experienced LA support

in a high-attrition science course.

Methods

Data and context

We analyze the academic progress of students at UNI, the second largest producer of STEM

graduates among all private universities in the United States. UNI is a primarily undergraduate

institution with approximately 15,000 undergraduate and 3,000 graduate students. The student

body is rich in diversity, with more than 2,500 international students and 2,900 African Ameri-

can, Latino American, and Native American (AALANA) students. UNI services a substantial

deaf/hard-of-hearing student population and has developed extensive accommodation

resources, with over 1,500 deaf/hard-of-hearing students taking courses alongside their hear-

ing peers. Data for this study includes all UNI students, and comes from the UNI Office of

Institutional Data. The data include previous and subsequent academic records, program

(major) at the time of each class, and, if the student graduates, the graduation year and degree

obtained. All data are fully anonymized prior to use in our analysis and the requirement for

informed consent was waived for this retrospective study.

We demonstrate the power of Markov analysis by using it to evaluate the effectiveness of a

localized program, UNI’s Learning Assistant (LA) program. In this program, UNI hires under-

graduate Learning Assistants (LAs) to support instructors using evidence-based, student-cen-

tered learning practices in their courses. LAs receive training in pedagogical knowledge and

pedagogical content knowledge through planning sessions with faculty and a pedagogy course

[4, 5] to support them as effective near-peer educators in the classroom. STEM faculty use LAs

to implement evidence-based teaching strategies known to increase learning [6, 7] and lower

DFW rates [7–10]. A scoping review [11] of 39 peer-reviewed studies found that LA-supported

courses were associated with improvements in higher-order cognitive skills [12] and improved
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conceptual learning [6], a result that did not depend upon a single set of curricular materials

(e.g., [13–15]). DFW rates in LA-supported courses are lower than in non-supported courses

[7, 9, 10], with increased impacts on students from underrepresented demographic groups [8].

Importantly, previous work has not closely examined how LA support relates to longer-term

metrics such as graduation and retention rates, nor has a direct comparison between concur-

rent supported and unsupported classes been possible. At UNI, the LA program is imple-

mented in a subset of sections of particular courses, and Markov analysis enables a

comparison between the performance of the LA-supported students and the “control” group

of students in unsupported sections. In this way, UNI’s LA program naturally gives rise to con-

texts in which improved program efficacy metrics for small data situations could provide deci-

sion-makers with more confident estimates of student success.

Traditional estimate of six-year graduation rate

Traditional estimates of graduation rates require first identifying a student cohort of interest.

Suppose Nstart is the initial number of students who matriculate in that cohort. Among those

students, let Ndeg represent the number of students who obtain a degree within six years. Then

GRtr = Ndeg/Nstart is the estimate of the SYGR for this cohort of interest. A key limitation of

using this traditional approach is that Nstart is frequently quite small when the cohort of inter-

est is an underrepresented group of students, or a relatively small subgroup of students who

experience an academic intervention.

Markov chain-based estimate of six-year graduation rate

Model. In contrast to the traditional SYGR calculation, we employ a Markov model that

estimates the SYGR by leveraging the probabilities of students persisting from year-to-year,

conditioned on their initial class status (e.g., freshman, sophomore).

Define S = {1, 2, 3, 4, 5, 6, D, G} as the state space for our Markov chain model, where the

integers 1, 2, . . ., 6 represent the numbers of years that a student has been enrolled at UNI

(e.g., students in state 2 are generally sophomores), D represents students who have dropped

out and no longer are pursuing a degree, and G represents students who have earned a degree.

States D and G are both absorbing states, while the others are transient.

Suppose that Ni represents the number of students in state i at the beginning of a year, and

let Nj represent the number of those students who are in state j by the end of the year. Then the

transition probability from state i to state j is

Pij ¼ P Xtþ1 ¼ jjXt ¼ i
� �

¼
Nj

Ni
: ð1Þ

This probability is, by definition, 0 if j is not in {i+1, D, G}. Additionally, by definition, P

(Xt+1 = j | Xt = D) = 0 if j not equal to D, and similarly P(Xt+1 = j | Xt = G) = 0 if j not equal to

G. Thus, the overall structure of the transition probability matrix is sparse (Table 1). The tran-

sition model is depicted visually in S1 Fig in S1 File.

The six-step transition probability of a student arriving in the graduation state (G) within

six years of matriculation (originating in state 1) are P61G = P(Xt+6 = G | Xt = 1). These provide

an estimate of SYGR: GRma = P61G, the row 1, column G (eighth column) of the sixth power of

the transition probability matrix P.

A key strength of the Markov modeling approach is the ability to combine information

from multiple cohorts of students. For example, let A and B represent two cohorts of interest.

Let NA,i and NB,i represent the numbers of students from cohorts A and B who are in state i at

the beginning of a year. Similarly, let NA,j and NB,j represent the numbers of students who are
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in state j by the end of that year. Then the combined estimate of the transition probability

from state i to state j is

PAB;ij ¼
NA;j þ NB;j

NA;i þ NB;i
: ð2Þ

Using Eq (2) enables the Markov model to include the most up-to-date data. For example,

as of this writing, students who matriculated in Fall 2021 have only been at university for one

full year. Using traditional methods, a SYGR estimate that includes these students will not be

available for another five years. Their data, however, can be incorporated into the Markov

model for SYGR by influencing the estimates of P12, P1D, and P1G. For such a “partial data”

cohort, they do not influence any of the subsequent transition probability estimates.

Validation. We first perform a “positive control” experiment to demonstrate that a

reduced form of the Markov model produces results that match the traditional SYGR calcula-

tion. For each of the cohorts matriculating in Fall 2013, Fall 2014, and Fall 2015, we construct

a reduced form of the Markov model by only using the Fall 2013, 2014, or 2015 cohorts’ data

(respectively) to construct each Markov transition probability matrix (Eq 1). In this way, these

models employ the same information that traditional estimates of SYGR use for those same

cohorts. We compare the graduation rate estimates from these reduced form Markov models

to traditional graduation rate estimates as a way to validate that the Markov model faithfully

reproduces the traditional baseline.

In contrast to this positive control, the full form of the Markov model involves a single full

data cohort, and five partial data cohorts. For example, a program manager in Fall 2021 could

use the full six years of data for the Fall 2015 cohort in order to estimate the SYGR using the

traditional approach. They could also employ the Fall 2016, 2017, 2018, 2019, and 2020

cohorts’ information in an estimate of SYGR using the Markov chain approach. Further, the

Markov chain model provides a natural structure (Eq 2) to combine all of the available infor-

mation into a single estimate of SYGR by also including the Fall 2013 and 2014 cohorts’ data.

This constitutes the “full” Markov model for SYGR.

Bootstrapping uncertainty characterization

To test our hypothesis that a Markov model will lead to more confident estimates of gradua-

tion rates than a traditional model, we quantify uncertainty in our estimates of SYGR by con-

structing confidence intervals using bootstrap resampling. We do this for both the traditional

Table 1. Markov model transition probability matrix.

1 2 3 4 5 6 D G

1 0 P12 0 0 0 0 P1D P1G

2 0 0 P23 0 0 0 P2D P2G

3 0 0 0 P34 0 0 P3D P3G

4 0 0 0 0 P45 0 P4D P4G

5 0 0 0 0 0 P56 P5D P5G

6 0 0 0 0 0 0 P6D P6G

D 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 1

General structure of the transition probability matrix for state space {1, 2, 3, 4, 5, 6 (year at university), D (Drop out),

G (Graduate)} to represent the conditional probability of the system transitioning to a final state (column), given that

the system starts in a particular initial state (row).

https://doi.org/10.1371/journal.pone.0287775.t001
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and the Markov chain models. We resample with replacement rows from the original overall

student data set, resampling a number of rows equal to the original size of the data set. For

each resample, we compute the SYGR using the traditional (or Markov) approach. We use

ensembles of 1,000 resamples and estimate a 95% confidence interval as the 2.5–97.5% range

in the ensemble of computed SYGR. Experiments using different sizes of resample ensembles

indicate this ensemble size is sufficiently large that our results are not sensitive to this choice.

Subsets of students

We demonstrate the strength of the Markov model for SYGR for studying relatively small

cohorts of students by examining how SYGR differs for students in courses supported by

undergraduate LAs and those without such LA support. Further, we examine how this impact

of LA support may have differential effects for underrepresented minority students and first

generation college students. All of these groups (LA-supported, underrepresented minority,

and first generation) are relatively small on their own, so their intersections provide an ample

proving ground for the benefits of the Markov model for SYGR (e.g., LA-supported first gener-

ation college students). For these experiments using smaller subgroups of students, we do not

present any results using the traditional approach to compute SYGR because the benchmark-

ing experiment (Sec. 2.3.2) will demonstrate the fidelity with which the Markov model esti-

mates SYGR. We use Cohen’s h to quantify the effect size differences in graduation rates

between the student subsets who have participated in LA-supported courses (pLA) and those

who haven’t (pnoLA; Eq 3) [16].

h ¼ 2½arcsinð
ffiffiffiffiffiffi
pLA

p
Þ � arcsinð

ffiffiffiffiffiffiffiffiffi
pnoLA

p
Þ� ð3Þ

To control for the variety of students’ major disciplines, and the variety of courses that LA

support is incorporated into, we include the LA-supported group only students who encounter

LA support in high-attrition courses within the College of Science at UNI. These include intro-

ductory physics and mathematics courses, such as precalculus and calculus (see Supporting

Information). We note that other high-attrition courses are present, but few or no sections

that incorporate LAs. For these experiments, we restrict our data set to only students who take

at least one of these courses between Fall 2013 and Summer 2021. We note that i) the LA and

no-LA groups of students are demographically similar, ii) students have no advance knowl-

edge of which sections of a course will be LA-supported when they enroll, and iii) aside from

LA support, there are no further systematic differences between LA-supported sections of a

course and non-LA-supported sections (e.g., sections use the same syllabus).

Students who encounter LA support in at least one of the aforementioned courses contrib-

ute to the Markov-based calculation starting in the first year in which they have LA support. In

this way, the transition probabilities in the Markov transition matrix for the LA-supported stu-

dents should only represent transitions which would have been affected by the LA support

“treatment”. By contrast, the “control” group of students includes all students who have no

exposure to LA support in the high-attrition science courses (see above). The numbers of stu-

dents and class sections each semester, and the breakdown between LA-supported and non-

LA-supported, is provided in Supporting Information (S1 Table in S1 File).

We note that separating students based on LA status (LA-supported or not) and examining

the groups’ differences in graduation rates establishes a correlative or associative relationship,

but cannot prove a causal one. This is, of course, the nature of all such treatment-versus-con-

trol type experiments (e.g., vaccine trials). The deep existing literature documenting the bene-

fits of LA support for students across different institutional profiles and disciplines–including

transferable and durable gains in higher-order cognitive skills, conceptual learning, and
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problem-solving skills (see Sec. 1)–provides strong reason to hypothesize that students’ expo-

sure to LA support should be related causally to their likelihood of graduation within six years.

Results

Benchmarking against traditional graduation rate calculation

When only cohorts with a full six years of data are used to compute SYGR using the Markov

method, estimates of GRma from the reduced form Markov model faithfully match the tradi-

tional graduation rate estimates, GRtr (Table 2). To within a percentage point, the medians

and 2.5–97.5% bootstrap confidence interval bounds (and widths) are all consistent for the

Fall 2013, Fall 2014, and Fall 2015 cohorts, as well as when all three cohorts’ data are combined

(using Eq 2). These results provide strong evidence that the Markov model is a valid approach

to estimate SYGR. For the remainder of this work, the Markov model uses all student data that

would be hypothetically available at the time when a traditional SYGR estimate could be com-

puted. For example, the Markov-based SYGR for the Fall 2013 cohort will include five years of

data for the Fall 2014 cohort, four years of data for the Fall 2015 cohort, and so forth. The “all

combined” model includes all available student data in our data set from Fall 2013 to Summer

2021 (the last academic term in our data set). We use “percentage point” to refer to ranges and

absolute differences in the SYGR to avoid confusion with relative changes or relative differ-

ences in SYGR.

Quantification of uncertainty

The Markov model produces estimates of SYGR that are substantially more confident than

the estimates of SYGR using the traditional approach (Fig 1). For the Fall 2013–2015 cohorts,

using the Markov method results in 95% CI widths that are tightened by between 33% and

44% relative to the CI widths following the traditional calculation. Importantly, all of the

median SYGR estimates are consistent across the two methods to within 1 percentage point:

71% for Fall 2013 for both methods; 71% for Fall 2014 for both methods; and 73% for Fall

2015 using the traditional approach, as compared to 72% when using the Markov model

(Table 3). When using all available data, the reduction in 95% CI width is somewhat lower

(34% relative to the traditional calculation) but still appreciable. This is attributable to the

fact that using all available data means that the amount of information from partial-data

cohorts (Fall 2016 to present) is relatively smaller compared to the full-cohort information

(Fall 2013–2015).

Table 2. Validating graduation rates from the reduced-form Markov model.

Cohort Method 2.5th percentile Median 97.5th percentile 95% CI width

Fall 2013 Traditional 66 71 75 8

Markov 66 71 75 9

Fall 2014 Traditional 66 71 75 9

Markov 67 71 75 9

Fall 2015 Traditional 69 73 77 9

Markov 69 73 77 8

All combined Traditional 69 72 74 5

Markov 69 72 74 5

Estimates of six-year graduation rate (%) from the traditional calculation and the reduced form (full-data cohorts only) Markov model. Numbers are rounded to the

nearest percentage point, so the 95% CI width reported may not appear to equal the difference between the 97.5th and 2.5th percentiles.

https://doi.org/10.1371/journal.pone.0287775.t002
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Fig 1. Six-year graduation rates. Using a Markov model to estimate SYGR (bottom panel) leads to tighter 95%

confidence intervals than when a traditional approach is used (top panel). Shown are kernel density estimates for six-

year graduation rate for the Fall 2013 (light gray), Fall 2014 (gray), and Fall 2015 (dark gray) cohorts and all three of

these cohorts combined (orange).

https://doi.org/10.1371/journal.pone.0287775.g001

Table 3. Graduation rate estimates and confidence intervals.

Cohort Method 2.5th percentile Median 97.5th percentile 95% CI width

Fall 2013 Traditional 66 71 75 8

Markov 68 71 73 6

Fall 2014 Traditional 66 71 75 9

Markov 68 71 74 6

Fall 2015 Traditional 69 73 77 9

Markov 69 72 74 5

All combined Traditional 69 72 74 5

Markov 70 71 73 3

Estimates of six-year graduation rate (%) from the traditional calculation and the full-form Markov model. Numbers are rounded to the nearest percentage point, so the

95% CI width reported may not appear to equal the difference between the 97.5th and 2.5th percentiles.

https://doi.org/10.1371/journal.pone.0287775.t003
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Small subsets of students

As expected, the CI widths for smaller subsets of students (AALANA students and first-gener-

ation college students) are notably wider than for the general student population (Table 4).

This is due to the fact that the sample sizes for these underrepresented groups are smaller, by

their nature as underrepresented groups (see S2 Table in S1 File). Importantly, similar benefits

in terms of reduced CI widths are seen in the Markov-based estimates of SYGR for AALANA

students and first-generation students in College of Science majors (Table 4).

The Markov approach improves the confidence interval widths by between 25 and 42%

(tightening) relative to the traditional model (Fig 2A and 2C, and Table 4). It is notable that

the CIs for AALANA science majors using the traditional approach for computing SYGR are

consistently more than 20 percentage points wide, with sizable variation from year-to-year in

the median estimate (55% in Fall 2013, 59% in Fall 2014, and 70% in Fall 2015). This interan-

nual variability when the traditional approach is used is problematic, as students and academic

program managers may make decisions based on SYGR information that varies widely from

year to year. For example, when using the Fall 2013 cohort, the 95% CI for AALANA science

major SYGR spans from 40 to 68%, which does not even include the median SYGR when

using the Fall 2015 cohort (70%). While this does not necessarily show statistically significant

differences from year to year, these results highlight that for small subsets of students, there are

substantial variations in best estimates of SYGR when using the traditional approach.

By contrast, using the Markov model incorporates more information as it becomes avail-

able. Thus, the estimates of SYGR are better centered on the long-term median: 62% in Fall

2013, 64% in Fall 2014, 69% in Fall 2015, and 65% overall, for AALANA students. Further, the

CI widths are consistently below 20 percentage points. Similar gains in terms of tighter Cis

and lower interannual variability in estimated SYGR are seen when the Markov model is

applied to the subset of first-generation science majors (Fig 2B and 2D, and Table 4).

Table 4. Graduation rates and confidence intervals for small subgroups.

Cohort Method 2.5th percentile Median 97.5th percentile 95% CI width

AALANA Fall 2013 Traditional 40 55 68 28

Markov 54 62 71 17

Fall 2014 Traditional 48 59 70 22

Markov 57 64 73 17

Fall 2015 Traditional 59 70 83 24

Markov 62 69 77 15

All combined Traditional 55 62 69 14

Markov 61 65 70 9

First-generation Fall 2013 Traditional 61 70 81 19

Markov 64 70 76 11

Fall 2014 Traditional 57 67 77 20

Markov 61 68 76 15

Fall 2015 Traditional 63 72 81 17

Markov 65 70 75 10

All combined Traditional 64 70 75 11

Markov 67 70 73 7

Estimates of six-year graduation rate (%) for AALANA (top set) and first-generation (bottom set) science majors, using both the traditional calculation and the full-form

Markov model. Numbers are rounded to the nearest percentage point, so the 95% CI width reported may not appear to equal the difference between the 97.5th and 2.5th

percentiles.

https://doi.org/10.1371/journal.pone.0287775.t004
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Proof of concept: Evaluating the impacts of LA support

We focus now on students who, at some point during their time at UNI, were enrolled in at

least one of the high-attrition science courses and had declared a science major (see Sec. 2.5).

We separate this group of students into two groups: the “LA group” of students had an under-

graduate Learning Assistant support at least one of their high-attrition science courses; the

“no-LA group” were enrolled in sections of these high-attrition courses that were not sup-

ported by an LA. All results presented in this section include all available student data from

Fall 2013 to Summer 2021 (the “all combined” case from the previous Results sections), and

employ the Markov model.

We find that exposure to LAs in high-attrition science courses is associated with a 9 per-

centage point improvement in SYGR, relative to students who were enrolled in sections of

these courses that did not have LA support (Fig 3A). LA-supported students have a median

SYGR of 77% (95% CI of 73–81%). This is statistically significantly higher than the non-LA

group, which has a median SYGR of 68% (95% CI of 66–70%). While the difference in gradua-

tion rates between LA-supported students (77%) and non-LA-supported students (68%) corre-

sponds to a “small” effect size h = 0.20, a 9 percentage point difference in graduation rates is

noteworthy in practice.

These gains are even more substantial for underrepresented groups of students. For

AALANA science majors enrolled in high-attrition courses, LA support is associated with an

improvement of 21% in SYGR (Cohen’s h = 0.49; medium effect size). LA-supported

AALANA students had a median SYGR of 81% (71–93%), as compared to the non-LA group

Fig 2. Six-year graduation rate estimates for small subgroups of students. Using a Markov model (bottom panels) to estimate SYGR for AALANA (left

panels) and first-generation (right panels) science majors leads to tighter 95% confidence intervals and decreases year-to-year variability as compared to a

traditional approach (top panels). Shown are kernel density estimates for six-year graduation rate for the Fall 2013 (light gray), Fall 2014 (gray), and Fall 2015

(dark gray) cohorts and all three of these cohorts combined (orange).

https://doi.org/10.1371/journal.pone.0287775.g002
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of AALANA students, who had a median SYGR of 59% (53–66%). Similarly, for first-genera-

tion college students with science majors, the no-LA group had a median SYGR of 65% (60–

70%), while the LA group had a median SYGR of 83% (75–91%), for an improvement of 18

percentage points (Cohen’s h = 0.42; medium effect size).

Discussion and conclusions

We have presented an approach to use Markov chains to estimate SYGR for cohorts of univer-

sity students. We have used real-world data from UNI to fit this model, and have demonstrated

that it faithfully reproduces graduation rate estimates that would be obtained by following a

traditional approach. We find that the Markov model yields SYGR estimates with much tighter

confidence intervals and lower interannual variability than a traditional approach. We attri-

bute this to the fact that the Markov model leverages all available data, as opposed to only data

for cohorts for which at least six years of data are available. This is particularly important for

small cohorts of students, which we demonstrated using AALANA students, first-generation

college students, and students who experience a specific academic intervention (LA support in

high-attrition courses). Confidence intervals for SYGR for underrepresented groups are gener-

ally wider, owing to the smaller sample sizes. Even using the Markov model, incorporating all

available data, for underrepresented groups who have had LA support in a course, CIs for

SYGR can be more than 20 percentage points wide. In these cases, the CIs using a traditional

approach are so wide as to lose practical value. Thus, the Markov model for SYGR is particu-

larly valuable in assessing educational program efficacy, especially for underrepresented

groups of students.

Graduation rates are frequently used to assess the efficacy of educational programs, but the

uncertainties in these graduation rates are not typically addressed or included in these assess-

ments. In this work, we have demonstrated that a Markov model can provide tighter and less

variable confidence intervals by incorporating all student data as it becomes available. This is

important for academic institutions and programs to provide the most up-to-date information

as possible about program efficacy and student outcomes. This work indicates a path forward

that addresses the issue that when a university shares graduation rate information, this infor-

mation is out-of-date as soon as it is posted. Practically none of the students whose data went

into the calculation of that graduation rate are still at that university.

Through our demonstration of the utility of the Markov model for small subsets of stu-

dents, we find that Learning Assistant support in high-attrition gateway science courses is

associated with a 9 percentage point improvement in SYGR among LA-supported students, as

compared to their non-LA-supported counterparts. We acknowledge that our approach can-

not directly correct for potential “instructor effects” based on individual instructors or their

pedagogical choices. However, our results for the gains in SYGR associated with LA support

are consistent from year to year, across all instructors and courses for the high-attrition intro-

ductory science courses studied here. Further, the integration of LAs into a course supports a

variety of evidence-based pedagogies [6, 7], including, for example, more active learning

approaches. In light of the demonstrated benefits of active learning [17–19], we interpret our

findings as stemming from LA support enabling instructors to implement more evidence-

based pedagogies, which in turn leads to improvements in student performance.

Fig 3. Improvement in graduation rate from learning assistant support. Learning Assistant support is associated

with a 9 percentage point improvement in six-year graduation rates for science majors in general (a). These gains are

even larger for AALANA science majors (b; 21 percentage point increase in SYGR) and for first-generation college

students with science majors (c; 18 percentage point increase in SYGR).

https://doi.org/10.1371/journal.pone.0287775.g003

PLOS ONE Markov model for student retention

PLOS ONE | https://doi.org/10.1371/journal.pone.0287775 June 26, 2023 12 / 14

https://doi.org/10.1371/journal.pone.0287775.g003
https://doi.org/10.1371/journal.pone.0287775


These improvements that are associated with LA support are substantially larger for under-

represented groups of students. LA-support is associated with a 21 percentage point improve-

ment in SYGR for AALANA students and an 18 percentage point improvement for first-

generation college students. The SYGR estimates for these small subsets of students have wide

CIs, making it difficult to disentangle the impacts from an academic intervention such as

undergraduate LAs. However, we have demonstrated here that the Markov approach can suc-

cessfully constrain SYGR estimates for subsets as small as a few dozen students. In addition to

the notable improvements to SYGR, LA support is associated with improvements in year-to-

year persistence throughout a student’s time at UNI (see Supporting Information). Our analy-

sis indicates that undergraduate LA support in high-attrition introductory science courses

may be a potentially fruitful pathway to address persistence and graduation rate gaps between

non-underrepresented students and underrepresented students.

Supporting information

S1 File. Supplementary figures and tables. This file contains figures and tables with supple-

mental analyses to support the main text results.

(PDF)
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