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Abstract. Problem definition: We study scheduling multi-class impatient customers in par-
allel server queueing systems. At the time of arrival, customers are identified as being one
of many classes, and the class represents the service and patience time distributions as well
as cost characteristics. From the system’s perspective, customers of the same class at time of
arrival get differentiated on their residual patience time as they wait in queue. We leverage
this property and propose two novel and easy-to-implement multi-class scheduling poli-
cies. Academiclpractical relevance: Scheduling multi-class impatient customers is an impor-
tant and challenging topic, especially when customers’ patience times are nonexponential.
In these contexts, even for customers of the same class, processing them under the first-
come, first-served (FCFS) policy is suboptimal. This is because, at time of arrival, the system
only knows the overall patience distribution from which a customer’s patience value is
drawn, and as time elapses, the estimate of the customer’s residual patience time can be fur-
ther updated. For nonexponential patience distributions, such an update indeed reveals
additional information, and using this information to implement within-class prioritization
can lead to additional benefits relative to the FCFS policy. Methodology: We use fluid
approximations to analyze the multi-class scheduling problem with ideas borrowed from
convex optimization. These approximations are known to perform well for large systems,
and we use simulations to validate our proposed policies for small systems. Results: We
propose a multi-class time-in-queue policy that prioritizes both across customer classes and
within each class using a simple rule and further show that most of the gains of such a policy
can be achieved by deviating from within-class FCFS for at most one customer class. In
addition, for systems with exponential patience times, our policy reduces to a simple
priority-based policy, which we prove is asymptotically optimal for Markovian systems
with an optimality gap that does not grow with system scale. Managerial implications: Our
work provides managers ways of improving quality of service to manage parallel server
queueing systems. We propose easy-to-implement policies that perform well relative to rea-
sonable benchmarks. Our work also adds to the academic literature on multi-class queueing
systems by demonstrating the joint benefits of cross- and within-class prioritization.

Funding: A. Bassamboo received financial support from the National Science Foundation [Grant CMMI
2006350]. C. (A.) Wu received financial support from the Hong Kong General Research Fund [Early
Career Scheme, Project 26206419].

Supplemental Material: The online appendix is available at https://doi.org/10.1287 /msom.2023.1190.
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1. Introduction

minimize the abandonment and waiting costs aggre-

In this paper, we study scheduling multi-class impatient
customers in parallel-server queueing systems—call
centers being a canonical example. Customers in such
systems are modeled as being one of many classes, and
each class is associated with class-specific service and
patience time distributions as well as cost characteris-
tics. At the time of arrival, each customer’s class is iden-
tified, and the customer is placed at the end of a queue
corresponding to that class. The system manager’s
objective is to route idle servers to customers in order to
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gated over all arriving customers.

To achieve this objective, existing research proposes a
number of scheduling policies and proves the optimal-
ity of these policies in asymptotic regimes. Examples
include the well-known hy/y policy (Atar et al. 2010)
for exponential patience times and the generalized h/y
policy (Long et al. 2020) for nonexponential patience
times. An implicit yet fundamental assumption in
these policies is that customers belonging to the same
class are processed in a first-come, first-served (FCES)
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manner. However, as Bassamboo and Randhawa (2015)
suggest, processing customers of the same class under
FCEFS itself is suboptimal; deviating from FCES to allow
within-class prioritization can lead to significant cost
benefits relative to FCFS.

These benefits are primarily driven by another dimen-
sion of customer heterogeneity that is less understood in
the literature. From the system’s perspective, customers
of the same class at the time of arrival get further differ-
entiated on their residual patience time as they wait in
the system. This is because, at the time of arrival, the sys-
tem manager only knows the overall patience distribu-
tion from which an arriving customer’s patience value is
drawn, and as time elapses, the estimate of the custo-
mer’s residual patience time can be updated. For nonex-
ponential patience distributions, such an update indeed
reveals additional information. Bassamboo and Rand-
hawa (2015) use this information to propose a time-in-
queue (TIQ) policy that differentiates customers of the
same class based on their time in queue and shows that
this policy can significantly outperform FCFS in certain
circumstances.

These findings bring a natural question of how to
incorporate this new dimension of customer heteroge-
neity into a multi-class analysis when customers at time
of arrival are already heterogeneous in their classes.
Correspondingly, a scheduling policy for a multi-class
queueing system can be viewed as comprising two deci-
sions: when a server becomes available, to which cus-
tomer class should the server be allocated and, then, to
which customer within that class should the server be
allocated. Noting the analytical difficulty in obtaining
an exact solution, we undertake a fluid-based approach
and study the optimal policy in a fluid model of an over-
loaded queueing system. We then use the fluid solution
to propose scheduling policies for the original stochastic
queueing system.

Our fluid optimization yields some key insights. We
show that the fluid solution for multi-class systems
splits at most one customer class into two subclasses.
This strengthens the result in Bassamboo and Rand-
hawa (2015) developed for single-class systems in which
the class is split into at most two subclasses. In other
words, although, in principle, we allow differentiation
and prioritization within each class, the fluid optimal
policy only differentiates customers on their wait times
for at most one class, and all other classes are processed
under FCFS.

We use this observation to propose a scheduling pol-
icy for the stochastic system in which all but one class
are processed under FCFS. We refer to this policy as
mostly-FCFS. For this, we introduce an easy-to-compute
index that allows us to divide all classes into three sets
labeled as high priority F (these classes are fully served,
and asymptotically, no customers from these classes
abandon), medium priority P (these classes are partially

served), and low priority £ (these classes are not served
at all, and asymptotically, all customers from these clas-
ses abandon). The set F consists of classes that are given
full priority over classes in other sets, followed by the
classes in P and, finally, those in £. The set PP has at most
one class that is processed under non-FCFS.

The mostly-FCFS policy simplifies considerably if the
customer-based costs are solely due to abandonments.
In this case, this policy reduces to a pu priority rule that
prioritizes classes based on the ranking of the penalty
per abandonment, p, times the service rate of each class,
U, and processes customers within each class under
FCFS. This policy can hold under general patience distri-
butions because, in overloaded systems, the abandon-
ment metric depends primarily on the rate imbalance
between the arrival and service processes irrespective of
the patience distributions. Noting that, for exponential
patience times, a queue length-based objective can be
expressed in terms of an abandonment-based objective,
we obtain that the hp/y (holding cost X service rate X
mean patience time) priority policy is optimal for the
queue-length metric. In fact, Atar et al. (2010) shows that
this policy is asymptotically optimal at the fluid scale;
that is, its optimality gap divided by the system size
tends to zero as the system size grows indefinitely. We
strengthen this result by showing that this policy is in
fact O(1)-optimal for Markovian systems; that is, its
(unscaled) optimality gap to the optimal policy remains
bounded as the system size grows without bound.

Turning to the queue-length metric under general
patience distributions, if the patience time distributions
have decreasing hazard rates, our proposed policy en-
tails processing each class under FCFS and prioritizing
different classes using a ranking that depends on the
entire patience time distribution of each class beyond its
mean. If the patience time distributions have increasing
hazard rates, our proposed policy becomes the hij/y pri-
ority policy with one important caveat, that is, proces-
sing one class under the last-come, first-served (LCFS)
policy. We show that this distinction is important and
the performance can drop significantly if we process all
classes under FCFS.

As an alternative to the mostly-FCFES policy, we pro-
pose a multi-class time-in-queue policy, and we refer to
it as mTIQ. This policy has a more robust implementa-
tion but requires differentiating in real time customers
of all classes based on their time in queue. Unlike the
mostly-FCFS policy, which requires the knowledge of
the total capacity to compute the threshold wait times
associated with classes in the set P, this information is
not needed to implement the mTIQ policy. The mTIQ
policy assigns an available server to the class that cur-
rently has the highest cost gradient. That is, whenever a
server becomes idle, it is allocated to the class that cur-
rently has the highest marginal benefit of utilizing that
server and, then, within that class, allocated to a customer
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using the TIQ policy. We demonstrate that the mTIQ pol-
icy is robust to changes in capacity levels and this robust-
ness is also exhibited for the queue-length metric under
patience time distributions with increasing hazard rates.

Finally, we extend our policies to systems with depen-
dent service and patience times within each class. We
find that, in some cases, our proposed policies are identi-
cal to those under independent service and patience
times within each class, whereas in other cases, these pol-
icies can be very different, and further, in these cases,
there can be significant benefits of utilizing our proposed
policies that take into account the underlying within-
class dependence.

1.1. Literature Review

Our work is related to a growing literature on scheduling
heterogeneous impatient customers in service queueing
systems. This literature assumes that customers are a pri-
ori differentiated by certain characteristics, such as ser-
vice or patience time distributions or cost parameters.
Exact analysis of the optimal scheduling policy is often
intractable (a notable exception is Down et al. 2011, who
establish the optimal policy for a two-class, single-server
system); thus, a common mode of analysis in this litera-
ture is to build on the fluid or diffusion approximations
to original queueing systems to develop optimal policies
in asymptotic regimes. For example, Dai and Tezcan
(2008) employ diffusion approximations to develop poli-
cies for parallel-server systems with pool-dependent ser-
vice times. Gurvich and Whitt (2010) propose control
policies for parallel-server systems that maintain fixed
queue ratios to meet service-level targets. Kim et al. (2018)
study multi-class queueing systems with heterogeneous
patience time distributions and constructs near-optimal
policies by solving a diffusion control problem. Apart
from diffusion approximations, fluid approximations are
also commonly used to develop scheduling policies for
large systems. Examples include Atar et al. (2010), who
prove the asymptotic optimality of the h1j1/y priority rule
under exponential patience times and linear cost func-
tions. Long et al. (2020) extend the hy1/y priority policy to
allow nonexponential patience times and general cost
functions. Long and Zhang (2019) propose a virtual allo-
cation policy that assigns a fixed portion of servers to
each class and proves the asymptotic optimality of this
policy when patience time distributions have decreasing
hazard rates. As mentioned, an implicit yet fundamental
assumption in this literature is that customers within
each class are processed under FCFS although Bas-
samboo and Randhawa (2015) suggest that deviating
from FCFS to allow within-class differentiation can
lead to significant benefits in some circumstances.
Bassamboo and Randhawa (2015) further propose a
TIQ policy for a single-class queueing system that
allocates servers to customers based on their time in
queue. However, it is not clear from Bassamboo and

Randhawa (2015) how the TIQ policy defined in that
paper extends to our multi-class systems for which
scheduling policies must specify the joint allocation of
capacity both across classes and within each class bet-
ween customers with different wait times. To answer this
question, we generalize their single-class analysis to
multi-class systems. We introduce an index that mea-
sures the marginal benefit of allocating capacity to each
class with the TIQ policy applied and then use this index
to propose two novel and easy-to-implement scheduling
policies for multi-class queueing systems: mostly-FCFS
and mTIQ. It is worth noting that, although, in princi-
ple, we allow differentiation and prioritization within
each customer class, the mostly-FCFS policy can be im-
plemented by deviating from within-class FCFS for at
most one class. This endows the mostly-FCFS policy
with fairness benefits and practical relevance.

Our fluid optimization builds on Whitt’s (2006) fluid
approximation to single-class G/GI/n + GI queueing sys-
tems under FCFS. Kang and Ramanan (2010) and Zhang
(2013) formally prove that Whitt’s fluid model is a bona
fide fluid limit in the many-server heavy-traffic regime.
Because we can reduce our multi-class scheduling prob-
lem to a subclass-based optimization problem that pro-
cesses each subclass under FCFES, the single-class fluid
analysis in Whitt (2006) readily applies. Such a fluid
model can often yield accurate approximations to large
stochastic queueing systems in the overloaded regime
(Bassamboo and Randhawa 2010, Bassamboo et al. 2010).
Motivated by this, we directly work with a fluid model in
this paper. A similar fluid approach is employed in Bas-
samboo and Randhawa (2015) and Wu et al. (2018) to
study queueing systems with dependent service and
patience times. (Reich 2012 presents empirical evidence of
such dependence.) We extend our policies to incorporate
such dependence in Section 6.

2. Model

2.1. Queueing System

We consider a multi-class parallel queueing system, in
which m classes of customers are processed by a single
pool of N agents, each processing work deterministi-
cally at a unit rate. Customers of each classi=1,...,m
arrive to the system according to a stationary renewal
process with arrival rate A;. Customers of each class
have independent and identically distributed (i.i.d.) ser-
vice times with the cumulative distribution function
denoted by G;(-) and mean service time denoted by
1/u;. Each customer is associated with a patience time
and abandons the system if service does not start within
this time upon the customer’s arrival. We denote the
cumulative distribution function of class i customers’
patience times by F;(-), the probability density function
by fi(-), and the reciprocal of the mean patience time by
y:. Each customer’s patience time is independent of the
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customer’s service time (we discuss dependent service
and patience times within each class in Section 6).

The system manager’s goal is to find a scheduling pol-
icy that routes idle agents to customers in order to mini-
mize the long-run average costs. Specifically, let &;(x,
y,w) denote the cost experienced by a class i customer
who has service time x, patience time y, and offered
waited w (which is the amount of time the customer
would wait before entering service if the customer were
infinitely patient). Denote the set of all nonanticipating
(non-forward-looking) policies by I1. For any policy
7t € T, the total customer-based cost can be written as

m
71112]% ; AIE[Ez(Xu Yi/ Wln)]/ (1)

where W is the random variable representing the
steady-state offered wait for a class I customer with
patience time Y; and service time X; under the policy .
The expectation is taken over the random variables X;,
Y;, and WT.

With an appropriate choice of cost function ¢&; in (1),
we can capture different system costs. Specifically, we
can capture abandonment costs by setting &;(x,y, w) =
pil(y <w) with p; denoting the penalty per abandoned
class i customer. To capture queue-length costs, we can
set the cost rate as &;(x,y, w) = hymin{y, w} with h; de-
noting the cost per unit time waiting in queue per class I
customer. We can further capture the holding cost for
all customers in the system by setting the cost rate
as &;(x,y, w) = hy(min{y, w} + xI(y > w)), which incorpo-
rates a customer’s total time spent in the system (time in
queue and in service). We can also consider combining
abandonment and queue-length costs by adding up their
corresponding cost functions.

While this formulation allows us to work with general
cost functions, we focus on analyzing the abandonment
and queue-length cost functions to draw clean insights.
We then discuss how our analysis extends to other
(more general) cost functions.

2.2. Fluid Model
A scheduling policy for the queueing system in our multi-
class setting comprises two decisions: when a server
becomes available, to which class should the server be
allocated and, then, to which customer within that class
should the server be allocated. Noting the analytical
intractability of an exact solution, we undertake a fluid
approach to solve the policy optimization problem. This
is a typical approach in dealing with intractability of
stochastic systems and affording an intimate relation bet-
ween the policies for the fluid model and the original
queueing system.

In the fluid model, customers arrive to the system in
the form of a fluid both deterministically and continu-
ously at the corresponding arrival rate. Further, the

capacity is considered in a fluid manner too and can be
allocated fractionally to different classes. Thus, when
considering the fluid version of a scheduling policy in
steady state, the first decision of to which class allocate
an idle server becomes equivalent to computing the frac-
tion of capacity allocated to each class in steady state.

Regarding the second decision of to which customer
within a class to allocate the server, we note that most of
the existing literature focuses on FCFS by allocating the
server to the longest waiting customer in each class. In
this paper, we build on Bassamboo and Randhawa
(2015), who suggest that deviating from FCES to allow
within-class prioritization can lead to cost benefits under
nonexponential patience time distributions. Bassamboo
and Randhawa (2015) show that the decision of how to
allocate servers within a class in the fluid model can be
solved by splitting the class into at most two subclasses
and processing each subclass under FCFS. This policy can
be connected back to the fluid model using a TIQ policy.

In our multi-class setting, the two decisions of how to
allocate servers across classes and then to which cus-
tomer within a class to allocate a server are inherently
linked. We next analyze the fluid-optimization problem
to obtain a fluid solution, and we discuss in Section 4
how to implement the fluid solution in the original sto-
chastic queueing system.

We formulate our fluid optimization problem in two
stages: the first stage focuses on allocating capacity
across classes and, then, the second stage optimizes the
capacity allocated to each subclass within a class follow-
ing the first stage allocation. The first stage optimization
problem can be stated as follows:

- zl: Cilny), 2)
where C;(n;) is the total cost incurred from class I by
allocating capacity #; to that class.

To characterize C;(n;), we utilize the solution app-
roach in Bassamboo and Randhawa (2015). Specifically,
we divide each class into multiple subclasses, each oper-
ating under FCFS, and optimize the amount of capacity
allocated to each subclass. We use (i) to denote the
number of subclasses created from class i. (If (i) = 1,
then there is only one subclass for class i, and it com-
prises the entire class.) We denote the arrival rate to sub-
classj=1,...,J(i) by A;; and the corresponding capacity
allocated to this subclass by 7;;. Because the mean ser-
vice time of a class i customer is 1/u,, it follows that, in
the fluid model, customers of subclass j can be processed
deterministically at rate n;;u,. Moreover, the capacity

constraint states that ijg n;;j < n;, where the inequality

allows us to withhold capacity when necessary.

The offered wait for subclass j of class 7 solves a “rate
balance” equation so that the rate of customers entering
service (accounting for customer abandonment) equals
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the service rate. In this way, if A;; >n;;u, then the
offered wait w;; solves

AijFi(w;) = niju, 3)
and otherwise, if A;; <n;;ju;, then w;; =0 because this

subclass has excess capacity to process all arrivals with-
out delays. Thus, the offered wait w; ; solves

A[,jﬁi('wi,j) = min{ni,]-yi, /\l,]} (4)
Using the offered wait w;; for subclass j of class i, we

characterize the average customer-based cost for a rep-
resentative customer in this subclass as

i) = / / £y, )AGAEY). )
y Jx

The total cost rate for subclass j is A;;ci(w;;). Then, the
cost function C;(n;) for class i is obtained as the optimal
objective value of the following (second stage) within-
class optimization problem:

J (i)

Z Aijci(wiy) (6)

=1

Ci(ni) = inf
{@), Nijy Wiy, /\i,/lj:ll o J@)})
] (i)
s.t. Z/\i’j = A,‘,
j=1

AijFi(wij) < niju,,
] (@)

Zni,j <n;.
j=1

Naturally, the optimal capacity allocation across classes
obtained by solving (2) depends on the marginal benefit
of allocating capacity to each class, which further de-
pends on the optimal within-class allocation across sub-
classes obtained by solving (6). Hence, it is important to
first characterize the optimal solution to (6). We next
review the main results in Bassamboo and Randhawa
(2015) on the single-class analysis that help with this.

2.3. Single-Class Analysis

The optimization problem (6) determines the optimal
capacity allocation across subclasses within class i. Bas-
samboo and Randhawa (2015) provide a structural
result for this allocation, which we restate subsequently.
That is, the optimal solution splits a single class into at
most two subclasses.

Lemma 1. The optimal number of subclasses in the optimi-
zation problem (6) satisfies J*(i) < 2.

It is useful to introduce @;(-), which denotes the
offered wait as a function of capacity when the entire
class i is processed under FCFS. If A; <mn;u;, then the
offered wait under FCFS equals zero, and the cost for
this class C;(n;) trivially equals zero too. Otherwise, if
A; 2 n;u,, then the offered wait w;(1;) under FCFS solves

AE(@i(ny)) = nip;. @)

In this case, it is easy to see that the optimal allocation
utilizes the entire capacity. Then, using Lemma 1, we
can write (6) as follows:

Ci(n;) = min Ai1Ci(win) + Aiaci(wi) (8
(Wi, Wiy Airy Ain
s.t Ain+Aip = Ay, 9)
AipFi(win) + AipFi(wip) = um;,
(10)
w1 < Wwi(n;) < wip, (11)
Aig, Aip > 0. (12)

Constraint (11) is equivalent to w;; <w;, and w;, >
w;(n;), collectively ensuring that FCES is represented by
a unique offered wait vector. (In the absence of (11), one
could potentially also represent FCFS by setting both
w1 and w;ip equal to w;(n;) and setting an arbitrary
Ai1 €(0,;).) Note that, for any (w; 1, w; ) satisfying (11),
Relations (9) and (10) allow us to uniquely determine
Ai1and A;» as follows:

A= i — AiFi(win)
" Fi(wiy) — Fi(win)
Aip =Ai = Aj1.

Thus, we can consider (8) as an optimization problem
over the variables (w;1,w;,) only. We denote an opti-
mizer to this problem by (w; ;, wj,).

If the optimal solution to (8) gives wiy = w;(n;), then it
is optimal to have only one subclass for class i. In this
case, our formulation generates multiple optimal solu-
tions because setting w;, to any amount greater than w;
does not affect this one-subclass solution. Specifically,
we have A;; = Aand A;, = 0 for all such w;,. For conve-
nience, we set w;, = oo in this case. Also note that, in our
formulation, the LCFS policy can be represented by an
offered wait vector (0, c0); that is, one subclass has zero
offered wait and is served immediately, whereas the
other subclass is never served and abandons after wait-
ing out its patience time.

3. Optimizing the Fluid Model

The analysis in Section 2.3 answers the question of how
to allocate capacity within a class. Yet it does not answer
how to allocate capacity across classes, a decision that
must be made before one can further allocate capacity
within a class. To this end, we introduce an index that
measures the marginal value of allocating capacity to a
class, taking into account the optimal within-class allo-
cation (6). We then apply this index to rank and priori-
tize across classes.

3.1. Characterizing the Optimal Solution

We first establish a structural property of the class-
dependent cost function C;(-) as the optimal objective
value of (6).
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Lemma 2. The cost function C; is nonincreasing and con-
vex. Further, Cy(n) is differentiable for all n < A;/u,.

Lemma 2 proves that, even though there may be mul-
tiple solutions to (8), the class-dependent cost function
is differentiable for all n < A;/u,. We denote the nega-
tive of the derivative of the cost function by

B.(n):=—=C/(n) for n<A;/y,.

In other words, ,(n) is the marginal decrease in cost
when capacity allocated to this class is increased, in other
words, the marginal benefit of capacity. Notice that the
cost function C; may not be differentiable at n = A; /.
This is so because, for n = A;/,, the processing capacity
equals the incoming work, and thus, the offered wait is
zero and the cost C;(A;/y;) = 0. At this level of capacity,
the cost function may have different left and right deri-
vatives. In particular, increasing capacity has no impact
on the already zero cost, and so the right derivative is
zero. However, reducing capacity increases the cost, and
this may happen in a manner such that the left derivative
is strictly negative. To circumvent this issue, we define

B.(n;) := liTm —Ci'(n) for n; > A;/u;

as the left-side limit.

We discuss how to compute this index f5(-) for specific
cost functions, namely, abandonment costs, in Section
3.2 and queue-length costs in Section 3.3. However,
using a general formulation of this index, we are able to
solve the multi-class fluid optimization problems (2)
and (6). To facilitate our characterization of the optimal
solution, we first provide a structural property of the
total number of subclasses in the optimal solution.

Proposition 1. The fluid-optimal solution to (2) with C;
defined in (6) splits the m customer classes into at most
m + 1 subclasses. In particular, J(i) > 1 for at most one
class i, and further, for this class, we have J(i) = 2.

Bassamboo and Randhawa (2015) show that, when
focusing on a single class, the fluid-optimal solution
splits the class into at most two subclasses (cf. Lemma
1). So, for our multi-class optimization problem, it seems
a priori a good idea to split each class into two sub-
classes. However, Proposition 1 shows that, somewhat
surprisingly, the fluid-optimal solution splits at most
one class. In other words, although we allow differentia-
tion within each class, the optimal policy differentiates
among customers of at most one class.

Now, using Proposition 1 and the index 8, we charac-
terize the optimal solution to the fluid optimization pro-
blems (2) and (6) under general cost functions.

Proposition 2. Defining sets of classes F :={l:nj = A;/
wt, Pe=A1:0<n; <Ay/u,}, and € := {1 : nj = 0}. For any
feF,peP, andec & we have

B.(0) < B, () < By (1), (13)

Further, for any p,p’ € P, we have
B,(m) =B, (). (14)

In addition, we have J*(i) =1 for all i € F U &, and there is
at most one class is in P with J*(is) = 2.

Proposition 2 characterizes the necessary conditions
that the optimal capacity allocation across classes must
satisfy. The relation f,(0) < ﬁp(n;) in (13) must hold
because it states that no class in £ should be allocated
any capacity, and thus, for this to be optimal, the mar-
ginal value of allocating capacity to these classes must
be less than the marginal cost of decreasing capacity
from any class p in P. A similar reasoning suggests that
all classes within the set P should have equal marginal
values of increasing capacity. Among the set P, at most
one class can have two subclasses as a result of Proposi-
tion 1. Finally, ﬁp(n;) <pB f(n}) must hold because it states
that the marginal value of allocating capacity to any
class p in P should be less than the marginal cost of
decreasing capacity from any class fin F.

Notice that, by Lemma 2, our optimization problem is
convex, and thus, the conditions listed in Proposition 2
are also sufficient. However, the objective function is not
strictly convex in general, and there can be multiple opti-
mal solutions. As we show in the following sections, with
additional regularity conditions on patience time distribu-
tions and cost functions, the objective function is strictly
convex so that there exists a unique optimal solution.

We next focus on specific cost functions to draw clean
insights. We show how Proposition 2 applies to these
special cost functions and can be further strengthened.

3.2. Abandonment Metric
For the abandonment metric, we obtain the cost func-
tion &;(x,y,w)=pil(y<w) for all classes i=1,...,m.
Thus, for a subclass with offered wait w, we have
¢i(w) = piFi(w).

In (6), the objective function now can be written as

Z AijpiFi(wij) = Zpi(/\i,j —nuy)’,
j j

where the equality follows from the definition of w;; in
(4). Hence, the optimization problem reduces to

Ci(ny) = min (A —nu)"
)=, mn Zj:m =) (15)
J @)

s.t. Z/\[,j = A[,
j=1
Z n;; < nj.
j

It then follows from (15) that C;(n;) = pi(A; — yini)+.
Thus, the marginal gain in cost for class i when increas-
ing the capacity allocated to this class is equal to

NPy i A=,
Bilmi) = {0, otherwise. (16)
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Proposition 2 implies that the solution to (2) and (6) has
a “bang-bang” structure based on the penalty cost rate
pil;, in which classes are processed up to the available
capacity in descending order of their penalty cost rates,
and once the capacity is exhausted, the remaining classes
are not processed at all. Customers within each class are
processed under FCFS, and so each class has only one
subclass. The following result formalizes this solution.

Proposition 3. For the abandonment metric, if the classes
are ranked such that p;u,> pi1,,, for i=1,...,m—1,
then the solution to (2) and (6) is (i) = 1 for all i=1,
2,...,m. Defining

¢
. A
i’ =inf E —~>N3,
¢ i=1 H;
* __ . 73 * l'/—lA,' * __
we have nj = Ai/u, fori<i',nj =N -3 Eandni—o
fori>1.

3.3. Queue-Length Metric

We next consider the queue-length metric aggregated
over customer-level holding costs. Specifically, we con-
sider &;(x,y,w)=h;min{y,w} for i=1,...,m, which
gives the following class-dependent cost function

aﬁm=mlﬁuw@- 17)

This leads to a more involved fluid-optimization prob-
lem than that under the abandonment metric. We plug
this cost function (17) into (8) to obtain the fluid queue-
length optimization problem. We next compute the
marginal value of allocating capacity to class i. To this
end, we use H;(-) to denote the hazard rate of the
patience time distribution of class i. The marginal value
is computed by noting that, within class 7, the capacity is
utilized and allocated to subclasses optimally.

Lemma 3. For class i with arrival rate A; and capacity
n; < Ai/u,;, the marginal value of increasing capacity to
this class for the queue-length metric is given by

hi;
, if wi, >0,
Hi(w;i) f o
hiy, ;
(n;) = * =0, w ,
B0 =1 ety T Um0 <o (9
hiu,
17}1,, if wij;=0, wj,=00,
Vi

where (w;,,w;,) solves the fluid minimization problem (8)
for the queue-length metric and Hi(w) = fi(w)/F;(w) is the
hazard rate of the patience time distribution of class i.

The marginal value of increasing capacity to class i
stated in Lemma 3 can be understood as follows. First,
consider the case (wj,w},) = (0,0), that is, when it is
optimal to process class i under LCFS. In this case, a
marginal increase in capacity leads to an increase in

customers who can be processed immediately upon
arrival instead of never being processed. Because the
customers who are never processed wait on average
1/y; time units before abandoning, the corresponding
decrease in cost because of the increased capacity is
B.(n;) = hiy;/ ;. Next, consider the case in which FCFS is
optimal for this class so that wj; =w;(n) and wj, >
w;i(n;). In this case, the queue-length cost h;A; fé“‘("‘)
F,(y)dy is captured by the area under the curve ;A;F;(y)
over [0,@;(n;)] so that the marginal value of additional
capacity is calculated as the product of the height of the
curve, which is 1;A;Fi(0;(n;)), and the marginal change
in the interval length, which equals u,/(Afi(w;(n;))).
Multiplying them together, we obtain f,;(1;) = hju,/
H;i(w;(n;)). Finally, when the solution is of the form
(0,w;,), (Wi, w;), or (wj,), the same logic applies,
and we obtain the marginal value g,(n;) = hju,/Hi(w),
where w = wj}, if w}; >0 and w = w}, otherwise. Note
that, if w;; >0 and wj, < oo, then the optimality of
(w},,w;,) within class i in fact implies H;(w} ) = H;(wj,)
(Bassamboo and Randhawa 2015, proposition 2).

Using the characterization of § in Lemma 3, we can
draw on Proposition 2 to provide more structures of the
optimal solution to the fluid queue-length optimization
problem when patience time distributions have cons-
tant or monotone hazard rates. We discuss this next.

3.3.1. Exponential Patience Time: Constant Hazard
Rates. Under exponential patience times, we can sim-
plify the cost for each subclass j of class i to ¢;(w;;) =

%F,-(wi,j). Notice that this is identical to the cost under

the abandonment metric by setting p; = h;/y;. Thus,
Proposition 3 also characterizes the optimal solution to
the fluid queue-length optimization problem.

3.3.2. Increasing Patience Time Hazard Rates. Now,
consider patience time distributions with increasing
hazard rates. In this case, the optimal solution for each
class is captured by offered waits (0, o0), that is, to pro-
cess each class under LCFS (Bassamboo and Randhawa
2015, corollary 1). An intuitive explanation for this pol-
icy is that, with increasing hazard rates, when splitting a
class into two subclasses, the marginal value of increas-
ing capacity to the subclass with a lower offered wait is
always greater than the marginal cost of decreasing
capacity from the subclass with a higher offered wait,
and thus, the optimal subclass configuration should be
such that one subclass has a zero offered wait and the
other has an infinite offered wait. Then, using Lemma 3,
the marginal value of allocating capacity to class i is
given by B.(n;) = hiju,;/y, for n; < A;/p,. It follows that
the optimal solution under the queue-length metric is
similar to that under the abandonment metric; that is, it
is prescribed by Proposition 3 with the abandonment
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penalty p; replaced by the queue-length related cost
hi/y;. Proposition 1 further implies that at most one class
is processed under LCFS and all other classes, if pro-
cessed, are processed under FCFS. We formalize these
results as follows.

Proposition 4. If the patience time distributions of all clas-
ses have increasing hazard rates and, further, the classes
are ranked such that hju,/y; > hiipl; 1 /Viq fori=1,...,
m — 1, then for the queue-length metric, the solution to (2)
and (6) is J(i) = 1 for all i # " and J(i’) = 2, where

i’ =inf Z—l >N .
¢ i=1 H
Moreover, we have nj = \;/u, for i <i’,nj, =N — 2;11%
and n; =0 for i>7i. In the optimal solution, if Z;zl

Ai/u; > N, then class i’ has w},; = 0 and wj,, = co.

3.3.3. Decreasing Patience Time Hazard Rates. Next,
consider patience time distributions with decreasing
hazard rates. In this case, the optimal policy for each
class is to have one single subclass for that class, that is,
to process the entire class under FCFS (Bassamboo and
Randhawa 2015, corollary 1). Thus, the marginal value
of allocating capacity to class i is given by p,(n;) =
hiu,/Hi(w;(n;)) for all n; < A;/;, and this marginal value
is decreasing in capacity ;. This implies that the objec-
tive function in (2) is strictly convex. Thus, we have the
following characterization of the optimal solution.

Proposition 5. If the patience time distributions of all clas-
ses have decreasing hazard rates, then for the queue-length
metric, the cost function C; is strictly convex for all
i=1,2,...,m, and there is a unique characterization of the
optimal solution in the form (13) and (14) that utilizes the
entire capacity. Further, no class is split into two sub-
classes, that is, J(i) = 1 for all i.

3.4. Combining Abandonment and Queue-

Length Metrics
We next consider a cost function that combines aban-
donment and queue-length metrics. Specifically, this
new cost function would be a sum of abandonment and
queue-length costs, that is,

&i(w) = piFi(w) + hy /0 “Ey)dy. (19)

Plugging this cost function into (8), we obtain the corre-
sponding fluid-optimization problem. As before, Propo-
sition 2 provides a structural property of the optimal
solution to this optimization problem with the marginal
value of allocating capacity to class i given as follows.

Lemma 4. For class i with arrival rate A; and capacity
n; < Ai/u,;, the marginal value of increasing capacity to

this class for the cost function c; in (19) is

hip,; P
pitl; +m if wi;>0,
hiy; o .
B:(ni) = < pit +Ih_li(wz2)/ if wi; =0, wj, <o, (20)
pip; + ;Mi/ if wj; =0, wj,=co,
i

where (w} 1, W} ,) solves the optimization problem (8).

Another plausible way of combining abandonment
and queue-length metrics would be to omit the holding
cost for an abandoned customer when the penalty of
losing that customer is already included in the cost func-
tion. For such a system, the class-dependent cost would
be

&i(w) = piFi(w) + hiwF(w). (21)

To explain this cost function (that ignores holding cost
for abandoned customers), note that the holding cost is
only incurred for a Fi(w) fraction of class i customers
who eventually get served, and each of them waits w
time units in the fluid system before getting served.

For this cost function, the following result charac-
terizes the marginal value of allocating capacity to each
class, which we use to characterize the optimal solution
in the spirit of Proposition 2.

Lemma 5. For class i with arrival rate A; and capacity
n; < Ai/u,, the marginal value of increasing capacity to
this class for the cost function ¢; in (21) is

,Bi(ni) =
1 . .
pitk; + higt; ) Y if wi;>0,

1 * . % *
pilt; + hi; <W - wz’,2> ,if wiy =0, wj, <oo,

i2

pill;, if wi;=0, wj, =00,
(22)

where (w} 1, W} ,) solves the optimization problem (8).

4. Implementing the Fluid Solution in

Queueing Systems
Recall that a scheduling policy for the multi-class queue-
ing system consists of two decisions: (1) when a server
becomes idle, to which class should the server be allo-
cated and (2) to which customer within that class should
the server be allocated. The analysis of the fluid optimi-
zation in the previous section provides guidance for
developing scheduling policies for the stochastic queue-
ing system, and based on the fluid solution derived in
the previous section, we propose two scheduling poli-
cies for the stochastic queueing system: a mostly-FCFS
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policy that maintains within-class FCFS for all but at
most one class and an mTIQ policy that optimally differ-
entiates customers of all classes based on their time in
queue. These two policies are equivalent at the fluid
level, but the mTIQ policy has additional robustness to
changes in system parameters.

4.1. Mostly-FCFS Policy

In the previous section, we establish that the optimal
solution to the fluid-optimization problem had an impor-
tant characteristic: there was at most one class, denoted
by i, such that J*(is) = 2; that is, in the fluid limit, custo-
mers of this class are split into two subclasses with differ-
ent wait times. Given this fact, we propose a mostly-FCFS
policy in which all classes except class i, are processed
under FCFS. In fact, if there does not exist i; such that
J*(is) =2, then all classes would be processed under
FCFS. We later discuss this special case. More generally,
to decide to which class an idle server should be allocated,
we differentiate classes based on their marginal values of
increasing capacity using the index calculated from the
fluid solution.

Formally, we propose the following priority policy to
implement the fluid solution in the stochastic queueing
system:

1. First, process customer classes in the set F, and
prioritize these classes in descending order of f,(1;).
Within each class, process customers under FCFS.

2. Then, process customer classes in the set P using
the following rule.

a. First, consider customers of class i € P such
that i # i (i.e., those with [(i) = 1). Process custo-
mers with wait times greater than w;(n;) and give
priority to the customer who has waited longest
among them.

b. Then, if there exists a class with [*(is) = 2 with
(w;_,,w; ,) being the solution to the fluid optimiza-
tion problem (8), then process this class using the
TIQ policy as follows (Bassamboo and Randhawa
2015):

i. First, process customers who have waited
more than wj , time units as well as customers
who have waited less than wj ; time units.
Give priority to the customer who has waited
longest among them.

ii. Then, process all remaining customers of
class i,. Give priority to the customer who has
waited least among them.

Notice that, in step 1, for classes in the set F, any pri-
oritization policy of these classes would lead to a zero
fluid offered wait of these classes because there is ample
capacity to process all of them. However, because the
marginal value of allocating capacity can vary across
classes, we propose prioritizing these classes based on
their marginal values of increasing capacity. Similarly, in
step 2, the priority between (a) and (b) can be swapped

because all classes in the set P have identical marginal
values of increasing capacity.

In an overloaded system, this policy leaves no idle
capacity in the steady state. However, to ensure nonid-
ling in the stochastic system, we augment this policy by
allocating any idle server remaining after the primary
allocation to, first, any of the classes in P and, then, any
of the classes in £.

4.1.1. Settings in Which Mostly-FCFS Reduces to All-FCFS.
Note that, under the mostly-FCFS policy, for all classes
except class i;, customers within each class are served
under FCES. That is, this policy serves all classes under
FCFS with the exception of class i;. Further, if we have
J*()) =1 for all classes, then the mostly-FCFS policy
reduces to an all-FCFS policy.

Specifically, if we focus on the abandonment metric,
then as per Proposition 3, the mostly-FCFS policy re-
duces to a pu priority policy that processes all classes
under FCFS and prioritizes classes in descending order
of piu;. For the queue-length metric, if all patience time
distributions have decreasing hazard rates, then as per
Proposition 4, we again have J*(/) = 1 for all classes so
that the mostly-FCFS policy reduces to an all-FCFS pol-
icy. In this case, classes are prioritized in descending
order of hju;/H;(w;(n})), where n; is the solution to the
fluid program (2) and w; is the solution to (7).

4.2. Multi-class TIQ Policy

Note that implementing the mostly-FCFS policy re-
quires computing the optimal fluid solution. We next
extend the mostly-FCFS policy to a more robust mTIQ
policy. This policy differentiates between customers of
all classes based on their time in queue. It allocates an
idle server to a target class so as to minimize the instan-
taneous fluid cost rate (defined in (16) for the abandon-
ment metric and in (18) for the queue-length metric
using the current server allocation). In particular,

The mTIQ policy allocates an idle server to
a class in the set argmax f;,(min{n;, (Ai/y;)}), (23)

where 7; represents the current number of servers allo-
cated to class i. If the set arg max; f,(-) is not a singleton,
then ties are broken randomly. Once the class to which
to allocate the server is identified using (23), the server is
assigned to a customer within that class using the TIQ
policy in Bassamboo and Randhawa (2015) (this TIQ
policy is analogous to the one presented in 2(b) of the
mostly-FCFS policy).

The mTIQ policy is motivated by the fact that the
fluid-optimization problem is convex in the capacity of
each class (cf. Lemma 2). The mTIQ policy utilizes a
greedy allocation rule to obtain the fluid optimal solution
as it starts with zero capacity allocated to each class and
then allocates in a repeated manner available capacity in a
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fixed and small increment to the class with the highest
marginal value of capacity until the entire capacity is uti-
lized or the entire customer arrival rates are satisfied.
Unlike the mostly-FCFS policy, which requires knowing
the total capacity to compute the fluid solution (in particu-
lar, the offered waits associated with classes in the set P),
this information is not needed to implement the mTIQ
policy. In this sense, the mTIQ policy is more robust to
changes in capacity levels.

4.2.1. The mTIQ Policy Can Have a Robust Implemen-
tation. Consider minimizing the queue-length metric
for a system with increasing patience time hazard rates.
The discussion preceding Proposition 4 suggests that
the optimal fluid solution for each class is (0, o); that is,
each class should be processed under LCFS. Thus,
within each class, the idle server is allocated to the most
recently arriving customer. Further, we have (1) =
hiu,/y; for all n; < A;/u, (which does not depend on the
current allocation #;), and thus, the mTIQ policy priori-
tizes classes in descending order of h;u,/y; and within
each class processes customers under LCFS. This sug-
gests that the mTIQ policy has a more robust implemen-
tation as it operates (the optimal) within-class LCFES for
all classes as opposed to the mostly-FCFES policy that
operates LCFS for at most one class.

If we consider patience time distributions with de-
creasing hazard rates, then the mTIQ policy is almost the
same as the mostly-FCFS policy with all classes being
processed under FCFS but with one important caveat
that idle servers are allocated to classes in descending
order of hju,;/Hi(w;(n;)) in the mTIQ policy, where n;
represents the current number of servers allocated to
class i rather than the fluid optimal solution #; (which
we use in the mostly-FCFS policy).

5. Performance of the Proposed Policy

In this section, we study the performance of our pro-
posed policies: mostly-FCFS and mTIQ. In Section 5.1,
we provide a theoretical result for our policies in Mar-
kovian systems in which the interarrival, service, and
patience times are all exponentially distributed. For such
systems, we show that our proposed policies reduce to
an hyu/y priority policy and exhibit O(1)-optimality as
the system size grows; that is, its optimality gap relative
to the optimal policy remains bounded as the system
size grows without bound. Then, in Section 5.2, we per-
form numerical studies to demonstrate the perfor-
mance of our policies under nonexponential patience
time distributions.

5.1 O(1)-Optimality in Markovian Systems

For Markovian systems, the patience time distributions
are exponential, and following the discussion in Section
3.3, we obtain that the mostly-FCFS and mTIQ policies

both reduce to an hy/y priority policy that prioritizes
classes in descending order of h;i1,/y; and processes cus-
tomers within each class under FCFS.

To formally state the result on the performance of this
policy, we introduce the following notations. We denote
the total arrival rate to all classes by A, and we write the
individual arrival rates to each class and total number of
servers in terms of A; that is, the arrival rate to class i is
A; =a;A, wherea; >0and > /", a; = 1. We fix the offered
load at p > 1 by setting the number of servers as n, =
%(2?11 a;/u;)A. We denote the average queue-length
cost under the optimal policy by K, the average queue-
length cost under the /i1 /y priority policy by Kf'\“/ 7, and

the optimal objective value of the fluid optimization
problem (2) by C*(n, AA).

Proposition 6. If the interarrival, service and patience
times are all exponentially distributed, the classes are ranked
such that iy, /y; > hiql; 1)V for i=1,...,m—1, and

for any fixed p > 1, Zﬂzl% F1forallj=1,..., m, then
the hu/y priority policy is O(1)-optimal. That is, there

exists a finite constant A > 0 such that
K — K < A, forall A>0. (24)

Further, the optimal cost is lower bounded by the solution to
the fluid-optimization program. That is, K\ > C*(na, A).

This result shows that the optimality gap between
our policy, namely, the hu/y priority policy, and the
optimal policy is bounded and does not grow with the
system size. This result strengthens the finding in Atar
et al. (2010) that the hy/y priority policy is fluid-scale
optimal for Markovian systems; that is, the optimality
gap divided by the system size tends to zero as the sys-
tem size grows. In terms of the technical condition we
impose to obtain the O(1)-optimality, we require the
system to be effectively overloaded; that is, if we remove
any class that is not processed at all in the fluid solution,
then the remaining system is still overloaded. The con-
dition 2]1':1 %\”‘ #1 <or, equivalently, W + p)

i=14Vi/ly
forallj=1,...,m ensures that this is the case.

5.2. Numerical Study

We use simulations to illustrate the performance of our
proposed mostly-FCFS and mTIQ policies. We simulate
a two-class system in which customers arrive to the sys-
tem according to a Poisson process with a total arrival
rate A. The service times of each class are exponentially
distributed with unit mean, that is, u; =y, =1. The
queue-length holding costs are such that #; =1.5 and
hy = 1. For arrival rates A = 25,50,100,200 correspond-
ing to different system scales, we consider offered loads
p=1.05,1.1,1.5 by selecting the number of servers as

na =5 (S a/u)A = A/p.
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Table 1. Performance of mTIQ Policy Relative to Fluid Lower Bound for Exponential Patience Times

p=1.05 p=11 p=15
Arrival rate mTIQ Fluid Difference mTIQ Fluid Difference mTIQ Fluid Difference
25 6.0 4 2.0 7.5 6 1.5 19.1 18 1.1
50 8.5 6 2.5 11.6 10 1.6 35.2 34 1.2
100 12.9 10 29 21.3 20 1.3 69.3 68 1.3
200 22.7 20 2.7 38.8 38 0.8 135.2 134 1.2

5.2.1. O(1)-Performance for Markovian Systems. We
start by demonstrating the O(1)-optimality of our pro-
posed policies for Markovian systems. In our sim-
ulations, we let the patience times of each class be
exponentially distributed with mean two, that is,
y1 =7,=0.5, and let the two classes share the same
arrival rate, a; =a, =0.5. Under exponential patience
times, all customers of the same class in queue have an
identical residual patience time because of the memory-
less property. This reduces our proposed mostly-FCFS
and mTIQ policies to the iy /y priority policy.

We compare the cost obtained from the hyi/y priority
policy (i.e., prioritizing class 1 over class 2 and proces-
sing each class under FCFS) with the fluid lower bound.
For this numerical study, we report the average queue-
length cost (per time unit) by simulating each queueing
system for 10,000 time units and taking an average of 20
independent runs; the 95% confidence interval half
width is less than 1% of the reported values in all cases
we consider. Table 1 presents the results and provides a
numerical validation of Proposition 6: for Markovian
systems, the cost difference between the hy/y priority
policy and the fluid lower bound remains bounded as
the system size grows without bound. We also find that
the cost difference is lower for systems with higher
offered load p.

5.2.2. Performance of mTIQ Policy Under Lognormal
Patience Times. We next illustrate the performance of
our proposed policies under general patience time distri-
butions. We simulate a two-class system in which both
classes have lognormal patience such that the natural
logarithm of the patience times is normally distributed
with mean one and variance four (this is obtained by set-
ting the mean and variance of the lognormal patience

distribution to be ¢® and (' — ¢°), respectively). Again,
we let the two classes have the same arrival rate, 4, =
ay = 0.5. We compare the performance of the mTIQ pol-
icy, which allocates available servers to minimize the
instantaneous cost rate, to other reasonable benchmarks,
such as the hu/y priority policy, the reverse hip/y prior-
ity (that prioritizes classes in ascending order of hp/y)
policy, and the virtual allocation policy in Long and
Zhang (2019) (which assigns a fixed portion of servers to
each class) with all these benchmark policies processing
customers within each class under FCFS. Table 2 pre-
sents the results. We find that the mTIQ policy outper-
forms the reverse hy/y priority and virtual allocation
policies in all cases. (The mTIQ and virtual allocation
policies are equivalent at the fluid scale under p = 1.5, so
there are only tiny cost differences between these two
policies for large systems.) We also find that the mTIQ
policy performs slightly worse than the hy/y priority
policy when the system size (A = 25 and 50) and offered
load (p = 1.05 and 1.1) are not too large. Indeed, one can
verify that the hy/y priority policy is fluid-optimal in
these cases. The mTIQ policy fails to strictly prioritize
class 1 in smaller systems because of stochastic fluctua-
tion and, thus, performs slightly worse. However, as the
system size grows, the effect of stochastic fluctuation
diminishes, making the mTIQ policy effectively equiva-
lent to the hu /y priority policy. We also observe that the
mTIQ policy significantly outperforms the 111 /y priority
policy in heavily loaded systems (p = 1.5) and the cost
difference between these two policies grows with the
system size. This is because these two policies have
different fluid-level characteristics in heavily loaded
systems: the mTIQ policy partially serves each class,
whereas the hu/y priority policy completely serves
class 1 by always prioritizing that class.

Table 2. A Comparison of Steady-State Queue-Length Holding Cost of mTIQ, hi/y Priority, Reverse hyi/y Priority, and
Virtual Allocation Policies of Long and Zhang (2019) Under Lognormal Patience Times

p=1.05 p=11 p=15
Arrival rate  mTIQ h}—“ Reverse Virtual mTIQ 7;# Reverse  Virtual —mTIQ h,i Reverse  Virtual
25 7.5 -1.9% +33% +12.4% 9.9 —1.4% +33% +2.8% 33.4 +26% +82% +3.6%
50 10.1 —-1.8% +38% +13.4% 14.4 —-0.5% +41% +3.8% 59.5 +33% +94% +0.9%
100 14.6 +0.0% +42% +16.7% 25.6 +0.6% +45% +2.6% 116.9 +41% +109% +0.4%

200 24.6 +0.1% +46% +14.8% 45.2

+0.4% +47% +2.2% 225.3 +46%

+117% +0.3%
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5.2.3. Comparing mTIQ with Mostly-FCFS. We pro-
pose two scheduling policies for multi-class queueing
systems: mostly-FCFS and mTIQ. Each policy has its
advantages: mostly-FCFS has the least deviation from
within-class FCFS and, thus, has advantages in fairness
considerations, and mTIQ does not need the informa-
tion of total capacity and has robustness properties best
exhibited for the queue-length metric under patience
distributions with increasing hazard rates. In terms of
their cost performance, both policies have the same
fluid-level characteristics. Turning to smaller systems,
we numerically find that there is no clear dominance
between the two policies, and there are cases for which
either one can dominate the other.

Recall that, under exponential patience times, both
policies are trivially identical because the TIQ policy
within each class is the same as FCFS. Table 3 compares
the performance of the two policies under lognormal
and Erlang patience distributions. We find that, between
these two policies, mostly-FCFS performs slightly better
under lognormal patience distributions, and mTIQ per-
forms slightly better under Erlang patience distributions
(which have increasing hazard rates).

Given the similarity in the cost performance achieved
by these two policies, we recommend considering both
policies for the general prescription, selecting mostly-
FCEFS if there is a preference to adhere as close to within-
class FCFS as possible, and selecting mTIQ if there is a
preference to implement a more robust policy.

6. Dependent Service and Patience Times
In this section, we consider the scheduling problem
for multi-class systems with dependent service and
patience times within each class. Following Bassamboo
and Randhawa (2015) and Wu et al. (2018), we assume
that each class i customer arrives with a finite service
and patience time, which are i.i.d. draws from a class-
specific bivariate distribution; its probability density
function is denoted by fP. We use S; and T; to denote the
bivariate random variables representing a class i custo-
mer’s service and patience times. Define

o= [ /y P,

Table 3. A Comparison of mTIQ and Mostly-FCFS Policies

which represents the average amount of work required
by a nonabandoning class i customer who has waited w
time units in queue. Further define , := 1/¢.(0), which
represents a server’s average rate of processing class i
customers that are not delayed in queue. For each sub-
class j of class i processed under FCFS, analogously to
(4), the offered wait w; ; solves

Aij(wij) = Hﬁn{ni,jr My } (25)
i

Using the offered wait in (25), the abandonment cost for
this subclass is A;;Ci(w;;) = piA; jFi(w;;). Notice that this
abandonment cost is in general not equal to p;(n;u; —
A;)" because the average processing rate of nonaban-
doning class i customers (Wu et al. 2018 terms this rate
the effective service rate) may be different than ;. The
queue-length cost for this subclass is ;4 [ Fi(y)dy by
applying Little’s law.

Similar to Section 3.2, when focusing on the fluid
model, we can formulate the policy optimization prob-
lem as a two-stage optimization problem: the first stage
optimizes the capacity allocation across classes as stated
in (2), and the second stage optimizes the capacity allo-
cation across subclasses within each class. The counter-
part of (6) for systems with dependent service and
patience times within each class is as follows:

J (@)

inf AiiCi(w
{](i)/ wi,f/ Ai,j/jzll--'/](i)} ]zzl 11] l( l,]) (26)
J (@)
s.t. ZAi’j = Ai/
j=1
J (@)
ZAirf(Pi(wirf) < n.

=1

Proposition 1 extends to the new fluid-optimization pro-
blems (2) and (26). In other words, the dependence
between service and patience times within each class
does not alter the structure of the fluid-optimal policy
that implements within-class differentiation for at most
one class.

To provide more insights into the fluid optimal policy,
we consider a special class of joint service and patience

Erlang patience

Lognormal patience

p=1.05 p=15 p=1.05 p=15
Arrival rate mTIQ mostly-FCFS mTIQ mostly-FCFS mTIQ Mostly-FCFS mTIQ Mostly-FCFS
25 11.0 +0.5% 31.9 +4.1%* 7.5 —1.9%* 33.5 —1.5%*
50 15.8 +0.2% 55.7 +1.3%* 10.1 —1.7%* 59.6 —0.8%*
100 24.1 +0.1% 107.1 +0.4%* 14.6 —1.0%* 116.6 —0.2%
200 414 +0.0% 206.3 +0.0% 24.7 —0.4% 225.8 —0.1%

*Statistically significant at the 5% significance level.
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distributions generated by the Gaussian copula (see
Cario and Nelson (1997) for a background of copulas and
Wu et al. (2018) for an application of the Gaussian copula
in queueing systems), and we denote this class of joint
distributions by G; := G;(fs,, fr,) with fs, and fr, being the
marginal distributions of the service and patience times
of class i. The Gaussian copula is a useful and flexible
instrument to construct bivariate distributions with any
arbitrary marginals and attainable correlation coefficients
r; (Cario and Nelson 1997). To state our result, further
define the conditional service time function g;(t) :=
E[S; | T; = t], which represents the average amount of
work required by a class i customer whose patience
equals t time units.

We discuss how the structure of the fluid-optimal
solution is affected by the dependence between the ser-
vice and patience times within each class. We focus on
the abandonment metric because optimizing this metric
yields a simple py priority policy in the absence of depen-
dence and provides a good benchmark with which to
compare. The analysis of the queue-length metric follows
analogously but creates additional complexity without
offering new insights, so we omit it for brevity.

Recall that, when each class has independent service
and patience times, the optimal policy is a pu priority
policy that prioritizes classes up to available capacity in
descending order of their penalty cost of abandonment,
and the marginal value of increasing capacity to each
class is given by (16). Now, for systems with dependent
service and patience times within each class, if g; is
increasing for all classes, then customers within each
class should be processed under LCFS (Bassamboo and
Randhawa 2015, Wu et al. 2018). The marginal value of in-
creasing capacity to a class remains unchanged, namely,
B,(n:) = piy; for n; < Aj/u,. As a result, the pu priority
policy that prioritizes classes in descending order of pu
remains optimal. However, if g; is decreasing for all clas-
ses, then customers within each class should be pro-
cessed under FCFS (Bassamboo and Randhawa 2015,
Wu et al. 2018). Correspondingly, the marginal value of
increasing capacity to class i should be revised to

Bi(ni) = pi/gi(wi(n;)) for n; < Ai/u,,

where w;(n;) is the offered wait of class i processed
under FCFS with capacity #;.

Based on these observations, we next provide a struc-
tural property of the fluid-optimal solution for systems
with service and patience times generated by the Gauss-
ian copula within each class.

Proposition 7. Consider minimizing the abandonment cost.
i. Suppose (S;, T;) € G; with r; > 0 for each class i. Then,
the pu priority policy is optimal, and the optimal capacity
allocation follows the structure specified in Proposition 3.
ii. Suppose (S;, T;) € G; with r; <0 for each class i. Define
sets of classes F :={l :nj = A\y/u,}, P={1:0<nj </Ai/u;}

and € :={l:n; =0} If > 1" Ai/p; >N, then E=0, F =0,

and B, (n;) =B, (n,,) for any p,p" € P. If 357 A/ p; <N,
then all classes are in the set F.

Proposition 7 shows that the optimal policy under a
negative dependence between the service and patience
times within each class can be significantly different
than the pu priority policy, which is otherwise optimal
under a positive dependence or no dependence within
each class. Under a negative dependence, each class
should be allocated some capacity because the marginal
value of increasing capacity to a class that is not served
at all can be extremely large. This is in contrast to the pu
priority policy, which, under a limited total capacity,
chooses not to allocate any capacity to classes with low
abandonment costs. Further, under a negative depen-
dence, if the system is overloaded with insufficient
capacity to process all arrivals, then no class should be
served completely because the marginal cost of decreas-
ing capacity from a fully served class can be extremely
small. In this case, each class should be allocated some
capacity but not to the full level. This again is in con-
trast to the pu priority policy, which prioritizes classes
with high abandonment costs and serves those classes
completely.

The mTIQ policy proposed in Section 4.2 extends in a
straightforward manner to systems with dependent ser-
vice and patience times within each class. Whenever a
server becomes available, the mTIQ policy allocates the
server to the class with the highest instantaneous cost
gradient by substituting the new expressions of f,(-)
into (23) and allocates this server to a customer within
that class using the TIQ policy. We conduct a numerical
study to demonstrate the performance of this policy. We
follow the setting in Section 5.2 and consider a two-class
system in which customers arrive to the system accord-
ing to a Poisson process with total arrival rates A =
25,50,100, and 200. Class 7, i = 1, 2, has an arrival rate of
a;\, where a; = a, = 0.5. The abandonment penalties are
p1 =1 and p, = 1.5. For each arrival rate A, we consider
different offered loads p =1.05,1.1, and 1.5 by selecting
the number of servers as 1, = %(Zﬂi /u;)A. The service
and patience times of both classes are exponentially dis-
tributed with means one and two, respectively. They
are independent for class 1 and are generated by the
Gaussian copula with correlation coefficient r, = —0.6
for class 2.

We compare the performance of our mTIQ policy
with other simple policies, namely, the pyu priority pol-
icy and the reverse pu priority policy in Table 4. We find
that the mTIQ policy significantly outperforms the pu pri-
ority policy (which is the optimal policy that minimizes
the abandonment cost in the absence of within-class
dependence) in all cases, especially for large systems. This
suggests a substantial loss in cost performance if one
devises scheduling policies by considering the system
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Table 4. A Comparison of Abandonment Cost Under mTIQ, pu Priority, and Reverse pu Priority Policies for Negatively

Dependent Service and Patience Times

p=1.05 p=11 p=15
Arrival rate mTIQ pu Reverse mTIQ pu Reverse mTIQ pu Reverse
25 2.2 +3.7% +2.0% 2.7 +6.9% +3.3% 6.0 +8.0% +14%
50 3.0 +14% +1.2% 4.2 +17% +0.9% 12.8 +17% +10%
100 4.3 +26% —0.2% 6.5 +38% +0.7% 24.0 +25% +8.4%
200 6.7 +46% —0.1% 19.6 +61% -0.1% 48.6 +30% +6.9%

primitives within each class to be independent when they
are indeed dependent. We also observe that, in some cases
with moderate offered loads (p = 1.05 and 1.1), the mTIQ
policy performs slightly worse than the reverse pu prior-
ity policy. The cost differences between these two policies,
however, are statistically insignificant and are covered by
the 95% confidence interval. Indeed, in these cases, the
mTIQ policy and the reverse pu priority policy have the
same fluid-level characteristics. For heavily loaded sys-
tems (p = 1.5), the mTIQ policy deviates from the reverse
pu priority policy at the fluid scale and, thus, outperforms
the latter.

7. Conclusion

In this paper, we propose cost-minimizing scheduling
policies for queueing systems with multiple customer
classes characterized by their service and patience time
distributions and cost parameters. Our policies differenti-
ate between customers across classes and further within
each class based on the time they have spent in queue.
We propose two policy types: mostly-FCFS and mTIQ,
each performing reasonably well with its own useful
properties. Mostly-FCES is, as its name suggests, very
close to processing all customer classes under FCFS and,
in fact, processes at most one class under non-FCFS. This
endows mostly-FCFS with fairness benefits. The mTIQ
policy differentiates between customers of all classes
and is robust to changes in system parameters. Under
exponential patience times, both policies are equiva-
lent to a priority policy that we formally prove to be
O(1)-optimal for Markovian systems; that is, the opti-
mality gap remains bounded even if the optimal cost
grows without bound.

Our work can be extended in multiple directions. For
the most part, we focus on analyzing the fluid model and
translating the fluid solution to implementable schedul-
ing policies for stochastic queueing systems. Our theoreti-
cal results for exponential patience suggest that similar
results may hold in nonexponential patience settings. A
formal analysis of the asymptotic performance of our pro-
posed policies in these more general settings constitutes
an interesting avenue for future study.

Our formulation of customer-based cost objectives
can be extended to incorporate a reference effect that
captures the notion of fairness. Considering fairness is

especially important to classes that are processed under
non-FCFS. We expect that a similar result to Proposition 1
(i.e., at most one class is processed under non-FCFS) con-
tinues to hold in this setting, but the index  that mea-
sures the marginal cost benefit of increasing capacity to
a class must be revised to reflect fairness considerations.
A formal analysis of these fairness-based settings is an
interesting direction for future study.

We also believe that the topic of dependent service and
patience times should be explored further. In our work,
we obtain tractability by focusing on copulas, which
provide us with a specific framework for an insightful
analysis. Extending this framework to a broader class of
dependencies tied to empirically observed characteristics
would be another valuable endeavor.

Acknowledgments

The authors thank the department editor Morris Cohen, the
associate editor, and two anonymous reviewers for their careful
reading of the paper and for providing constructive feedback.

References

Atar R, Giat C, Shimkin N (2010) The cu/6 rule for many-server
queues with abandonment. Oper. Res. 58(5):1427-1439.

Bassamboo A, Randhawa RS (2010) On the accuracy of fluid models
for capacity sizing in queueing systems with impatient custo-
mers. Oper. Res. 58(5):1398-1413.

Bassamboo A, Randhawa RS (2015) Scheduling homogeneous impa-
tient customers. Management Sci. 62(7):2129-2147.

Bassamboo A, Randhawa RS, Zeevi A (2010) Capacity sizing under
parameter uncertainty: Safety staffing principles revisited. Man-
agement Sci. 56(10):1668-1686.

Cario MC, Nelson BL (1997) Modeling and generating random vec-
tors with arbitrary marginal distributions and correlation
matrix. Technical report.

Dai ], Tezcan T (2008) Optimal control of parallel server systems with
many servers in heavy traffic. Queueing Systems 59(2):95-134.
Down DG, Koole G, Lewis ME (2011) Dynamic control of a single-

server system with abandonments. Queueing Systems 67(1):63-90.

Gurvich I, Whitt W (2010) Service-level differentiation in many-
server service systems via queue-ratio routing. Oper. Res. 58(2):
316-328.

Kang W, Ramanan K (2010) Fluid limits of many-server queues
with reneging. Ann. Appl. Probab. 20(6):2204-2260.

Kim ], Randhawa RS, Ward AR (2018) Dynamic scheduling in a
many-server, multiclass system: The role of customer impatience
in large systems. Manufacturing Service Oper. Management 20(2):
285-301.

Long Z, Zhang ] (2019) Virtual allocation policies for many-server
queues with abandonment. Math. Methods Oper. Res. 90(3):399-451.



Downloaded from informs.org by [165.124.85.30] on 19 October 2023, at 13:28 . For personal use only, all rights reserved.

Bassamboo, Randhawa, and Wu: Scheduling Heterogeneous Impatient Customers
1080 Manufacturing & Service Operations Management, 2023, vol. 25, no. 3, pp. 1066—1080, © 2023 INFORMS

Long Z, Shimkin N, Zhang H, Zhang ] (2020) Dynamic scheduling
of multiclass many-server queues with abandonment: The gen-
eralized cpi/h rule. Oper. Res. 68(4):1218-1230.

Reich M (2012) The offered-load process: Modeling, inference and
applications. Unpublished PhD thesis, Technion-Israel Institute
of Technology, Haifa.

Whitt W (2006) Fluid models for multiserver queues with abandon-
ments. Oper. Res. 54(1):37-54.

Wu C, Bassamboo A, Perry O (2018) Service system with dependent
service and patience times. Management Sci. 65(3):1151-1172.
Zhang ] (2013) Fluid models of many-server queues with abandon-

ment. Queueing Systems 73(2):147-193.



	Optimally Scheduling Heterogeneous Impatient Customers
	Introduction
	Model
	Optimizing the Fluid Model
	Implementing the Fluid Solution in Queueing Systems
	Performance of the Proposed Policy
	Dependent Service and Patience Times
	Conclusion


