Check for
Updates

Automatically Localizing Dynamic Code Generation
Bugs in JIT Compiler Back-End

HeuiChan Lim
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
hlim1@arizona.edu

Abstract

Just-in-Time (JIT) compilers are ubiquitous in modern com-
puting systems and are used in a wide variety of software. Dy-
namic code generation bugs, where the JIT compiler silently
emits incorrect code, can result in exploitable vulnerabilities.
They, therefore, pose serious security concerns and make
quick mitigation essential. However, due to the size and com-
plexity of JIT compilers, quickly locating and fixing bugs
is often challenging. In addition, the unique characteristics
of JIT compilers make existing bug localization approaches
inapplicable. Therefore, this paper proposes a new approach
to automatic bug localization, explicitly targeting the JIT
compiler back-end. The approach is based on explicitly mod-
eling architecture-independent back-end representation and
architecture-specific code-generation. Experiments using a
prototype implementation on a widely used JIT compiler
(Turbofan) indicate that it can successfully localize dynamic
code generation bugs in the back-end with high accuracy.

CCS Concepts: » Software and its engineering — Just-
in-time compilers; Software testing and debugging.

Keywords:]JIT Compiler, Back-End, Dynamic Program Anal-
ysis, Dynamic Code Generation, Automatic Bug Localization

ACM Reference Format:

HeuiChan Lim and Saumya Debray. 2023. Automatically Localiz-
ing Dynamic Code Generation Bugs in JIT Compiler Back-End.
In Proceedings of the 32nd ACM SIGPLAN International Confer-
ence on Compiler Construction (CC °23), February 25-26, 2023, Mon-
tréal, QC, Canada. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3578360.3580260

1 Introduction

JIT compilers, used to improve the performance of inter-
preted systems, are used in a wide variety of commonly used

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

CC ’23, February 25-26, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0088-0/23/02.
https://doi.org/10.1145/3578360.3580260

145

Saumya Debray
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
debray@cs.arizona.edu

software. Bugs in JIT compilers can have a widespread im-
pact; in particular, dynamic code generation bugs, where the
JIT compiler silently emits incorrect code that results in in-
correct execution of the application being optimized, can give
rise to exploitable vulnerabilities (e.g., see the numerous JIT
compiler exploits described by Google’s Project Zero team
[1]). The security implications of dynamic code generation
bugs make it essential to identify and fix them quickly. Un-
fortunately, the size and complexity of modern JIT compilers
can make manual debugging and fixing such bugs tedious
and time-consuming. Therefore, providing automated tool
support for reasoning about such bugs is vital.

This paper considers the following bug localization prob-
lem: given a single “proof of concept” (PoC) input' for trig-
gering a dynamic code generation bug in a JIT compiler
back-end, use automated techniques to identify a ranked list
of back-end representation objects affected by the bug (i.e.,
witnesses) and a ranked list of potentially buggy functions
(i.e., culprits).

The JIT compilation process can be thought of as a pipeline.
The JIT compiler constructs an intermediate representation
(IR) of the input program’s bytecode, which it receives from
the interpreter; performs various optimizations on the IR;
then passes the optimized IR to a back-end that maps the opti-
mized IR to native code. As a result, dynamic code generation
bugs can arise in the IR optimization process (optimization
bugs) or when converting the IR to native code (back-end
bugs). In addition, the data structures and algorithms used
for the IR are usually very different from those used for
the back-end. For example, the Turbofan JIT compiler in
Google’s V8 JavaScript engine uses a sea-of-nodes structure
for its IR graph [12], while the back-end uses a control-flow
graph (CFG) where each block of CFG holds a sequence of
back-end objects. Moreover, an IR is the primary data struc-
ture used throughout the optimization, i.e., the result of the
optimization is a manipulated IR. At the same time, the back-
end also affects the code buffer, which is not a part of the
representation object. Accordingly, optimization bugs are
quite different from back-end bugs. This paper focuses on
the latter class of bugs; to the best of our knowledge, it is

Vendors require bug reports to specify how the bug can be reproduced
(e.g., see [3, 7]). For JIT compiler bugs, this translates to providing a PoC
input that triggers the buggy behavior.

https://doi.org/10.1145/3578360.3580260
https://doi.org/10.1145/3578360.3580260
https://doi.org/10.1145/3578360.3580260
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578360.3580260&domain=pdf&date_stamp=2023-02-17

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Optimized IR Just-in-Time Compiler Back-End

HeuiChan Lim and Saumya Debray

ONON®

oS
O0O0

Back-end Representation
Generator/Optimizer

-

Control-Flow Graph

Machine Instructions Writer

\

CFG Block

Q
Back-end Representation

Executed Machine
Instructions

Code Buffer

| B2

B3 |

|55|48|89|95

push ... A
mov .. Object (RepObj) Sequence
Ty cmp..
imp .. JENEEEE
| c3 | mov .. Q N

mov ... Back-end Representation

\

Object (RepObj)

/

Figure 1. From Input optimized IR to back-end representation to output code execution (left). Each CFG block holds a sequence

of back-end representation objects, i.e., RepObjs (right).

the first work on the automatic localization of dynamic code
generation bugs in JIT compiler back-ends.

Unfortunately, existing work on automatic bug localiza-
tion does not carry over to the bugs we consider. Earlier
work by Lim and Debray [18] focuses on optimization bugs;
Lim et al. [19] mentions modeling both optimization and
back-end bugs but do not discuss any algorithms or imple-
mentation for the latter. Neither of these works performs bug
localization for back-end bugs. Proposals for bug localization
for ordinary compilers [4, 5, 27, 29] do not carry over to JIT
compilers due to a number of differences between the two
kinds of compilers, including, e.g., tight coupling with an in-
terpreter; history-sensitive optimization; fixed-size dynamic
code buffers, and the potential for dynamic deoptimization.
For example, in a single execution of a program, a function
can start out as interpreted byte-code, get JIT-compiled with
one set of optimizations, then later get deoptimized to in-
terpreted code, then subsequently get JIT-compiled again,
possibly with a different set of optimizations that result in dif-
ferent optimized code than before. Finally, other approaches
to automated bug localization [2, 6, 14, 17, 26] do not work
because the code that exhibits incorrect execution behav-
ior (the application being optimized) is not the code that
contains the bug (the JIT compiler).

This paper proposes a novel approach for automatic lo-
calization of dynamic code generation bugs in JIT compiler
back-ends. It is based on modeling the JIT compiler’s repre-
sentations of the code being JIT-compiled. We use dynamic
analysis to collect low-level execution traces of the JIT com-
piler’s executions. We then construct a model for each such
execution, and compare the models for buggy executions
of the JIT compiler with models for non-buggy executions
to identify similarities and differences between buggy and
non-buggy executions of the JIT compiler. We use this to
identify specific problematic components of the input pro-
gram’s code representations and use information about the

146

code that manipulated those components to identify poten-
tial buggy functions in the JIT compiler’s source code.

We evaluated the effectiveness of our approach using a
prototype tool that we applied to 40 back-end dynamic code
generation bugs (5 real-world; 35 synthetic) in Google V8’s
JIT compiler, Turbofan. The results demonstrate that our
approach can provide high-accuracy source-level localization
of such bugs.

This paper makes the following contributions.

1. To the best of our knowledge, this paper is the first to
propose an approach to modeling JIT compiler back-
end representations.

. It describes an algorithm to localize the dynamic code
generation bugs in the back-end by analyzing the mod-
eled back-end representation.

. It demonstrates the efficacy of our ideas experimen-
tally using 40 back-end bugs (5 real-world; 35 syn-
thetic) in a widely-used real-world JavaScript JIT com-
piler.

2 Research: From PoC-to-Localization

This section presents an automated approach for localizing
dynamic code generation bugs in JIT compiler back-ends.

Figure 1 shows a conceptual flow of the JIT compiler back-
end. The back-end receives an optimized IR from the opti-
mizer constructing/optimizing the back-end representation
in a control-flow graph (CFG) structure and emits machine
instructions. The CFG is constructed based on the scheduled
optimized IR nodes. Each block of CFG holds a sequence of
back-end representation objects. In our approach, we con-
sider these sequences as a single sequence. The JIT compiler
back-end (e.g., Instruction Selector and Register Allocator in
V8) generates and manipulates RepObjs to be closer to the
architecture (e.g., x64) whose instructions it generates. In the
final step, the code generator generates architecture-specific
machine code based on the representation object and writes
this code to the code buffer, where it is executed.

Automatically Localizing Dynamic Code Generation Bugs in JIT Compiler Back-End

Different JIT compilers use different data structures for
their back-ends, e.g., Google V8’s Instruction objects [10]
are different from JavaScriptCore’s B3 IR [11] and Spider-
Monkey’s LIR [9] objects. To maintain generality and avoid
tethering our ideas and algorithms too closely to the im-
plementation specifics of any one JIT compiler, we use the
generic term ‘RepObj’ to denote back-end representation
objects generated from the IR and converted to machine
instructions (Figure 2).

RepObj

O

V8 Instruction

<

B3 IR Node

A

lon LIR Node

Figure 2. Back-end Representation Object (RepObj)

Our approach aims to identify buggy RepObjs containing
incorrect values and analyze them to locate the culprit func-
tions in the JIT compiler’s source code that created those
incorrect values. The buggy RepObjs and functions identi-
fied are ranked in the order of most likely related to the bug
to the least. To achieve this goal, we compare the JIT com-
piler’s execution on inputs that trigger the bug with those
that do not determine what the buggy executions have in
common with non-buggy executions that do not. From each
such execution, we construct an abstract model that captures
essential characteristics of the JIT compiler’s back-end be-
havior. These abstract models are then compared to extract
commonalities and differences.

2.1 Buggy vs. Non-Buggy Executions

To determine whether a JIT compiler’s execution on a given
input program p is buggy or non-buggy, we run p twice
using the interpreter/JIT compiler system: once without JIT
compilation and another with JIT compilation. The JIT com-
piler’s execution is considered to be buggy if the result of
executing p with JIT compilation enabled is different from
the output with JIT compilation disabled.

2.2 Overview of the Analysis Pipeline

Figure 3 demonstrates the architecture of our prototype tool.
Our tool has five main parts, from input to output, each
responsible for a specific task. The input to the tool is a
proof-of-concept (PoC) program (e.g., JavaScript code) that
triggers a bug in the JIT compiler back-end.

1. Input programs generation (Sec. 2.3). Given a single PoC
program, we use directed fuzzing to generate a set of
mutated variants of the original program. Some of
these variants will continue to trigger the JIT compiler
bug while others do not.

147

CC ’23, February 25-26, 2023, Montréal, QC, Canada

2. Modeling (Sec. 2.4). Each input program, i.e., the orig-
inal PoC and its variants, is executed with the Inter-
preter/JIT compiler system. For each input, we collect
an instruction-level execution trace and analyze the
executed instructions of the JIT compiler back-end
to construct an abstract model of the JIT compiler’s
manipulation of its back-end representation.

3. Witness identification and ranking (Sec. 2.5). Witnesses,

i.e., model components suspected to be affected by the

JIT compiler bug(s), are identified and ranked.

Culprit instruction selection and ranking. (Sec. 2.7 and

Sec. 2.8). We analyze each ranked witness’s access log

to identify the executed instructions suspected to be

the culprit of the bug.

5. Rankings analysis and final result generation (Sec. 2.9).
We analyze the two rankings, i.e., witness and instruc-
tion rankings, and construct a final result.

4.

The output from our tool is a text file containing (1) a ranked
list of buggy witnesses, i.e., abstract RepObjs corresponding
to the concrete buggy RepOb js, information; and (2) a ranked
list of suspicious JIT compiler source functions.

2.3 Input Programs Generation

Existing approaches to input mutation for generating input
variants for automated bug localization [4, 16, 23] fail to con-
sider the unique characteristics of JIT compilers. For example,
while ordinary compilers translate the entire input program
to native code, only parts of the input program (the “hot”
code) get JIT compiled. This means that mutations made to
the original input program using existing approaches might
not be JIT compiled, resulting in weak or nonexistent rela-
tionships between the mutations and the bug under inves-
tigation. The approach introduced by Lim and Debray [18]
generates mutated variant programs targeting JIT compilers
but making random changes to the abstract syntax tree (AST)
of the original program without considering how the change
might influence the JIT compiler’s buggy behavior.

Given the original program p, and a user-provided value
n that specifies the number of new programs to generate, our
directed fuzzer generates a set of new programs via three dif-
ferent phases: (1) random mutation; (2) target identification;
and (3) controlled mutation.

2.3.1 Phase 1: Random Mutations. The directed fuzzer
first creates n randomly mutated variants of py by making
n copies of po’s AST and making a random change to each
copied AST. The change must follow two rules: (1) the change
must not violate the syntax rule of the input program’s lan-
guage; (2) the change should be semantically similar to the
original. To satisfy these two rules, the fuzzer limits its mu-
tations to existing AST nodes, i.e., the fuzzer does not add
or remove nodes but only changes the values.

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Witness Identification

HeuiChan Lim and Saumya Debray

Culprit Instruction Rankings Analysis and

& Ranking Selection & Ranking Final Result Generation
»| Modeler |—S—
—| Modeler |—s, .| Witness Instruction _ | Ranking
Original Input, po Identification Selection > Analysis Final Result
</> »| Fuzzer p—| Modeler [—5,— Witnesses Ranked Selected Ranked Analysis
Witnesses Instructions Instructions R(\iun
Witness Instruction Result ||
Ranking Ranking Former
i Modeler |——Sp—

Figure 3. The architecture of our analysis tool

2.3.2 Phase 2: Target Identification. This phase aims
to identify the AST nodes related to the bug, i.e., mutat-
ing specific AST nodes eliminates the buggy behavior. Such
identification lets us know which specific part(s) in the input
program is related to the JIT compilation and, more impor-
tantly, triggers a bug in the JIT compiler. The output of this
phase is a set of node ids of the original AST.

2.3.3 Phase 3: Controlled Mutation. Given a set of node
ids of the original AST to target from the second phase, this
phase aims to generate a set of n new programs targeted to
mutate or avoid specific parts of the original program, py.
To obtain a program that does not trigger a bug in the JIT
compiler, the fuzzer makes a change specifically targeting
the nodes of AST with ids in the target id set. On the other
hand, we generate the bug-triggering programs by mutating
the AST, avoiding the nodes with ids in the target node id
set. The output of this phase is a set of new input programs
with the original input po: P = {po, ..., pn}-

2.4 Back-end Representation Modeling

As discussed, the JIT compiler back-end receives an architecture-

independent graph-structured optimized IR from the op-
timizer, generates a back-end representation, manipulates
them (e.g., register allocation and optimization), and emits
architecture- specific machine instructions.

For each p; in the set of input programs P, we obtain an
instruction-level trace of the JIT compiler’s execution on
input p; using Intel’s Pin dynamic analysis tool [20]. Let
Si = {s1,..., k) denotes a concrete back-end representation,
i.e., a sequence of concrete RepObj,s;, 1 < j < k, constructed
for p;. For each such s; we use the execution trace to ex-
tract information about the JIT compiler’s manipulation of
concrete RepObj to construct an abstract RepOb j ’s}; we use
aRepObj to denote an abstract RepObj. We construct an ab-
stract model S; = {(s1,...,5), i.e., a sequence of aRepObjs.
In constructing the abstract model, we assume that we know
the names of the functions that allocate RepOb js. These func-
tion names can be obtained from the source code of the JIT
compiler (e.g., Emit function in V8) or provided by the user;

148

the identification of these allocators is orthogonal to the
topic of this paper, so we do not pursue it further in this
discussion.

In addition to constructing the abstract model S;, we con-
struct an abstract code buffer. The final step of JIT compila-
tion is writing architecture-specific machine instructions to
a code buffer. We model this code buffer to keep track of val-
ues written into it. We analyze the JIT compiler’s execution
trace to identify where the code buffer allocator function is
called and thereby determine the start address and size of the
code buffer. This allows us to identify subsequent memory
operations in the execution trace that access the code buffer.
The abstract code buffer is a mapping (initially empty) from
offsets in the code buffer to values; when the JIT compiler
writes (the binary encoding of) a machine instruction into
the concrete code buffer, we update the abstract code buffer
accordingly, as follows. We analyze the JIT compiler’s ex-
ecution trace for memory writes into the address range of
the code buffer. If a value w is written into an offset m in the
code buffer, we update the abstract code buffer to indicate
that the value at offset m is w.

The aRepObjs have the following components.

Representation Object Identifier: An identifier is a number
uniquely assigned to each aRepObj at the generation time.
This identifier is used in identifying the order of generation
of the aRepObj’s corresponding concrete RepObj.

Representation Object Address: While analyzing the ex-
ecution trace, if we encounter a function call to RepObj al-
locator function, we analyze the executed instructions of
the callee to extract the value that the function returns to
the caller. We can obtain the location of the return value
from the system’s application-binary interface (ABI). E.g., in
x86-64 systems, pointers are returned in the rax register.

Representation Object Size: Given the RepObj address, i.e.,
the start address of the allocated memory block, we use the
size (in bytes) of RepObj to determine the end address of the
memory block. Then, we use the start and end addresses to
identify the memory read/write accesses to RepObj.

Automatically Localizing Dynamic Code Generation Bugs in JIT Compiler Back-End

Representation Object Opcode: The opcode of RepObj rep-
resents the machine operation the object will be translated to.
It is assigned based on the target architecture (e.g., a RepObj
for 32-bit cmp operation of x86-64 architecture is assigned
with an opcode stands for X64Cmp32 mnemonic in Turbo-
fan) but may not be an actual machine-level opcode for that
architecture. The code generator determines an architecture-
specific opcode based on the opcode and operands of RepObj.
The opcode of RepObj can be obtained by analyzing the ex-
ecuted instructions of the allocator function that memory
writes to the start address of the allocated object, i.e., the
address of the representation object address.

IR Node Opcodes: The back-end uses IR node opcodes to
determine the opcode for new RepObjs. We extract the IR
node’s opcodes and maintain them in our aRepObj.

Assume that we have an optimized IR graph that is an
input to the back-end. To identify the opcodes of IR nodes
used in generating RepObj, we analyze the executed instruc-
tions of the caller function of RepObj allocator. Before the
caller function calls the allocator function, it analyzes IR
nodes from the IR graph. Our approach is to identify these
nodes being analyzed by the JIT compiler to generate specific
RepObj.

This differs from the existing approaches, including the
model structure that Lim and Debray suggested [18]. The
structure of their abstract IR node holds the opcode of the
node alone, i.e., they do not map the node to its prece-
dence bytecode. Therefore, a mapping between the IR nodes
and bytecodes may increase the accuracy in identifying the
IR nodes related to the bug during witness identification
(Sec. 2.5.3).

Operands: The operands are synonyms with the definition
of instruction operands, i.e., entities operated upon by the
instruction [22]. In V8, the register allocator accesses the
operands to allocate registers. Despite the fact that the JIT
compilers make distinctions among the different kinds of
operands, we do not make such distinctions in our implemen-
tation. This is because (1) it is non-trivial to distinguish them
from the instruction-level execution trace; (2) the number of
operands for each RepObj is not fixed, i.e., the numbers are
determined at run-time. Thus, we keep a record of operands
as values written between the start and end addresses of the
concrete RepObj in the corresponding aRepObj.

Offsets of Code Buffer: The code generator writes the con-
structed machine instructions to the code buffer by analyzing
RepObjs, and more than one machine instruction can be con-
structed from a single object. We maintain the offset of the
code buffer in the aRepObj to create a mapping between the
aRepObjs and the emitted machine instructions. Figure 4
demonstrates a conceptual level of this mapping. Each s;
is represented with the RepObj opcode, and the binary val-
ues in the code buffer are the binary encoding of the x86

149

CC ’23, February 25-26, 2023, Montréal, QC, Canada

instruction opcodes and operands. To create this mapping,
we keep a record of RepObj that was last accessed before
the machine instruction is written to the code buffer. Sup-
pose we encounter an executed instruction writing machine
instruction to a code buffer. In that case, we add the offset
of the code buffer to the aRepObj corresponding to the last
accessed concrete RepObj.

Maintaining a mapping between aRepObjs and the ab-
stract code buffer makes it possible to reason about a greater
variety of bugs that were not possible in earlier work, e.g.,
bugs resulting from improper manipulation of one data struc-
ture (e.g., the code buffer) as a result of incorrect values in a
different data structure (e.g., RepObj). Earlier work by Lim
and Debray [18] models the JIT compiler’s IR manipulation
but not any auxiliary data structures, and thus cannot reason
about bugs that arise due to misalignment between different
data structures in the JIT compiler.

A Sequence of Abstract RepObjs

ds 64 2f d
l L
Abstract j_]j
Code Buffer
45 (85 | 60 | Ob | 44 | 3b | e7 of 2e

Figure 4. aRepObjs to abstract machine instructions

Access Log: The JIT compiler back-end accesses its RepObjs
to read values (e.g., opcodes, operands) or manipulate them
(e.g., for register allocation). Our aRepObjs maintain the ac-
cess log of information about such accesses to the concrete
RepObj. While analyzing the JIT compiler’s execution trace,
when we find an instruction I that accesses a RepObj, we
record the following information about I in theaRepObj’s
access log: (1) the instruction id of I; (2) the source-code func-
tion I belongs to; (3) I's opcode and operands; (4) the memory
location accessed, i.e., offset from the address of accessed
RepObj; (5) value stored (if access overwrites some current
value, we maintain the pre-overwrite and post-overwrite
values); and (6) access type. The access types referred to are:
(a) create a RepObj; (b) write a new value to a RepObj; (c)
update an existing value in a RepObj; and (d) write machine
instructions to the code buffer.

2.5 Witness Identification

The JIT compiler bug under investigation manifests itself as
one or more incorrectly constructed RepObjs that eventually
result in the generation of incorrect optimized code; we refer
to the corresponding aRepObjs as witnesses. Given a set of
abstract models, S = {31, e, §n}, we take the following steps
to identify witnesses:

CC ’23, February 25-26, 2023, Montréal, QC, Canada

1. Partition S into two sets: §B and §NB, denoting the
abstract models for the buggy and non-buggy JIT com-
piler executions respectively.

2. Find the set of aRepObjs that the models in §B have
in common; and similarly for gNB.

3. Find the differences between the two sets in the earlier
step.

2.5.1 Model Partitioning. We use the approach discussed
in Section 2.1 to determine whether the execution of the JIT
compiler is buggy or non- buggy. If the execution is buggy,
we add the model §l constructed for that execution to §B;
otherwise we add :S: to §NB.

2.5.2 Finding Commonalities between Models. To find
the aRepObjs that a set of models have in common, we first
designate a base model for each of §B and §NB, denoted by
base(gB) and base(gNB) respectively: base(gB) is the model
obtained from the original PoC p,, while base(gNB) is the
non-buggy model that is “most similar” to base(Sg). We
determine the similarity of models using sequence align-
ment between the opcode sequences in the aRepObjs in the
models. The idea is that similar models have similar opcode
sequences between their RepObjs, and therefore, the bet-
ter the alignment between the opcodes of the two aRepObj
sequences in the models, the greater their similarity. Our cur-
rent implementation uses the Needleman-Wunsch sequence
alignment algorithm for this [21]. The output of this phase
is the two different sets of aRepObj positions, i.e., a set of
aRepObj positions common to the buggy group and a set of
aRepObj positions common to the non-buggy group.

2.5.3 Finding Differences between Sets of Models. Our
next task is to determine how the commonalities between
all the buggy models differ from the commonalities of all the
non-buggy models. This is given by the symmetric difference
between the aRepObjs that appear in buggy commons and
non-buggy commons and captures the witnesses culpable for
the buggy behavior of the JIT compiler. Algorithm 1 demon-
strates the steps of our approach to finding the witnesses.
Given the two base models and two sets of common aRepObj
positions, the algorithm to identify witnesses proceeds as
follows:

1. Find the alignment of positions from the buggy base
to the non-buggy base (line 18).

2. Select witnesses from base(gg) (lines 19-20).

3. Find the alignment of positions from the non-buggy
base to the buggy base (line 21).

. Select witnesses from base(gNB) (lines 22-23).

5. Merge two sets found in steps 2 and 4 (line 24).

6. Return the merged set, WITNESSES (line 25).

Function buggies (lines 1 - 9) demonstrates the steps of se-
lecting witnesses from the buggy base. We prepare an empty
Witnesses set (line 2). For every position i in the buggy base

150

HeuiChan Lim and Saumya Debray

aligned to the non-buggy base, check if the position i is a
common position in the buggy models (lines 3 - 4). If true,
retrieve the actual aRepObj from the buggy and non-buggy
bases (lines 5 - 6). One thing to mention is that the algorithm
simplified the process of retrieving the aRepObjs from the
non-buggy base by using the same position i as a buggy base.
In the actual implementation, we compute the position of
non-buggy aRepObj aligned with the buggy aRepObj at posi-
tion i separately. Given the buggy and non-buggy aRepObjs,
we compare the properties of the two to verify that they are
the same objects. The properties of the aRepOb js we compare
are (1) opcodes, (2) sizes, (3) IR node opcodes, (4) operands,
and (5) mapped machine instructions. Suppose any one of
the comparisons fails, i.e., s # 1. In that case, we determine
they are different and add the aRepObj from buggy base to
Witnesses set (lines 7-8). Then, return Witnesses (line 9).

Function nonbuggies (lines 10-16) demonstrates the steps
of selecting witnesses from the non-buggy base. First, we
prepare an empty Witnesses set (line 11). Then, for every
position i that is common in the non-buggy models, check if
the aRepObj at the position i aligns with any of the aRepObjs
in the buggy base (lines 12-13). If there is no aligned aRepOb j
in the buggy base, extract the actual aRepObj from the non-
buggy base (line 14). Contrary to the approach of selecting
the witnesses from the buggy base, we do not compare the
properties of the non-buggy aRepObj to the buggy. This
is because there is no aligned aRepObj in the buggy base
that we can compare to, so we add the extracted non-buggy
aRepObj to Witnesses (line 15). Then, we return Witnesses
(line 16).

2.6 Ranking the Witnesses

Given the set of selected witness back-end representation
objects, WITNESSES, we rank the aRepObjs through two
phases: (1) sort by occurrence; (2) sort by order of generation.
Before we sort the aRepOb js in WITNESSES, we filter out nop
aRepObj, e.g., X64ArchNop RepObj in V8. This is based on
our experiment that the corresponding concrete RepObjs are
not translated to machine instructions. Figure 5 shows an
example of witness ranking steps. The numbers in each cell
represent the model identifiers.

2.6.1 Sort by Occurrence. This phase groups the selected
witnesses by their occurrence. We identify and group the
aRepObjs that occur either on the buggy or the non-buggy
side, then group the rest, i.e., aRepObjs that occur on both
sides separately. Then, we prioritize aRepObjs that only oc-
cur in the buggy sequences. This is based on the observation
that aRepObjs that occur only on one side are more likely to
be directly related to the JIT compiler bug: an aRepObj that
occurs in the buggy executions but not in the non-buggy
ones are indicative of the buggy executions doing something
that the non-buggy ones do not;. In contrast, an aRepObj
that occurs in the non-buggy executions but not in the buggy

Automatically Localizing Dynamic Code Generation Bugs in JIT Compiler Back-End

Algorithm 1: Selecting the Witness Models

Input: CMM(S5): Common buggy object positions.
Input: CMM(Sys): Common non-buggy object
positions.
Input: base(Sp): Buggy base.
Input: base(Syp): Non-buggy base.
Result: WITNESSES: Identified Witnesses.
1 function buggies(Comm, AlignedPos, Basel, Base2):

2 Witnesses «— 0;

3 for i € AlignedPos do

4 if i ¢ Comm then

5 s « Basel;

6 Te Base2;

7 if $# 7 then

8 L Witnesses «— Witnesses U {s}
9 return Witnesses;

10 function nonbuggies(Comm, AlignedPos, Base):
Witnesses «— 0;
for i € Comm do

if i ¢ AlignedPos then

L s <« Base;

Witnesses < Witnesses U {s}
return Witnesses;

11
12
13
14
15

16

17 begin

BugToNonBug «— align_posbase(gg) (base(Sn));

FROMBUG « buggies(CMM(Sg),
BugToNonBuyg, base(§3), base(gNB));

NonBugToBug «— align_posbase(gNB) (base(gg));

FROMNONBUG « nonbuggies(CMM(gNB),
NonBugToBug, base(gNB));

WITNESSES <+ FROMBUG U FROMNONBUG;

return WITNESSES;

18

19

20

21

22

23
24

25

ones is indicative of the non-buggy executions doing some-
thing that the buggy executions fail to do.

2.6.2 Sort by Order of Generation. For each group, we
sort the witnesses by the order of generation. As discussed in
Section 2.4, the identifiers of aRepObjs represent the order
of generation. Thus, we sort the witnesses by identifiers in
ascending order.

2.6.3 Witness Ranking: An Example. An example of
witness sorting by occurrence and order of generation is
shown in Figure 5. The second sequence shows an example of
how WITNESSES is sorted by occurrence. The cells in green
(cells 1 and 2) are aRepObjs that occur only in the buggy
models, while the cells in blue (cells 3 and 4) are aRepObjs

151

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Exists only in buggy sequences
Exists only in non-buggy sequences
Exists in both buggy and non-buggy sequences

WITNESSES

31122| 6 |25

Models Sorted by
Occurrence

Models Sorted in the Order
of Generation (Final Ranking)

Figure 5. Ranking the witnesses

that occur only in the non-buggy models, and cells in grey
(cells 5 and 6) are aRepObjs occur in both buggy and non-
buggy models.

The last sequence in Figure 5 shows an example of a sorted
result, i.e., final ranking. Let RANKING denote a list of ranked
witnesses from left to right.

2.7 Culprit Instruction Selection

We analyze the access logs of the ranked witnesses to identify
the culprit executed instructions, i.e., executed instructions
that improperly manipulated the concrete RepObj or failed
to make proper manipulation(s). As discussed in Section 2.4,
the access information is constructed from analyzing the
executed instructions meaning that we can easily reconstruct
the executed instructions from the information.

Given the ranked list of witnesses, the set of buggy models,
and the set of non-buggy models, we take the following steps
to identify the culprit instructions:

1. Find the common information (Sec. 2.7.1). Find the in-
formation that is in the ranked witness’s access log
and all its correspondings within the same group.

2. Find the unaligned information (Sec. 2.7.2). Find the
information that is in the ranked witness’s access log,
but does not appear in one or more access logs of
corresponding aRepObjs on the other side.

3. Find the intersecting information from the above two
steps (Sec. 2.7.3). Find the ranked witness’s information
that is commonly found in all corresponding aRepObjs
on the same group while do not appear in one or more
times on the other side.

2.7.1 Find the Common Access Information. Given
the two model access logs A and B, we align the access
information positions in A to the positions in B. The two
access information aligns if they have the same (1) function
symbol, (2) executed instruction’s opcode and operands, (3)
accessed location, (4) accessed value (including the written
value if the access was for a value write), and (5) access type.
There are five different access types: new object creation,
new value write, value overwrites, and machine instruction
emit. Given an access log Q of some ranked witness s; and

CC ’23, February 25-26, 2023, Montréal, QC, Canada

access log sequences L = {Ly, Ly, ..., L, }, here L; is an access
log of corresponding aRepObjs of 5; in the same group, we
find the common access information, i.e., access information
that is found in all access logs Q and L.

2.7.2 Find the Unaligned Access Information. Given
an access log Q of some ranked witness 's\j, 1 <j<n,
we select all access information that does not align to one
or more access information of the corresponding aRepObjs
on the other side. The idea is that if the same instruction
was executed on both the buggy and non-buggy concrete
RepObjs, the instruction does not influence the decision to
make the concrete RepOb js either buggy or non-buggy. Thus,
the instruction can be removed from the candidacy for culprit
instruction. On the other hand, if an instruction was executed
on one side, but not on the other side, implicates that an
instruction may have influenced the decision. Thus, such
instruction is worth considering for further analysis.

2.7.3 Find the Intersecting Access Information. The
final step in selecting the culprit instruction(s) is finding the
executed instructions that are common to one side (buggy
or non-buggy) but not on the other side.

2.8 Culprit Instruction Ranking

Given the set of selected culprit executed instruction infor-
mation, we rank the information in ascending execution
order, i.e., instructions that are executed earlier during exe-
cution are ranked higher than those that are executed later.
The intuition is that those culprit instructions that are exe-
cuted earlier are more likely to have played a causal role in
creating incorrect RepObjs compared to those executed later.
Since the instruction ids represent the order of instruction
execution, we can rank culprit instructions by comparing
their instruction ids.

2.9 Rankings Analysis and Final Result Generation

The final step of our tool is ranking analysis and producing
the final result file. Our result file holds (1) a list of ranked
witness information and (2) lists of ranking functions, which
each list is nested under each ranked witness information.
1 Ranking 1. Opcode: @xabc, IR Opcode(s): @xchd
2 |--Ranking 1. Function ABC.
3 |--Ranking 2. Function KLM.

2.9.1 Ranked Witness Information. We provide three
main pieces of information about the ranked witness, which
are the ranking number, RepObj opcode, and the list of IR
node opcodes. For example, in the example, the 1% ranked
witness corresponds to the concrete RepObj with opcode
Oxabc, which is from an IR node with opcode @xcbd.

2.9.2 Lists of Ranked Functions. Lines 2-3 show exam-
ples of function names listed under each ranked witness.
These functions are identified by analyzing the ranked cul-
prit executed instruction information. While traversing the

152

HeuiChan Lim and Saumya Debray

ranking, we map the information to the function level while
maintaining the ranked order.

3 Evaluation

We developed a tool to evaluate the efficacy of our ideas.
We use esprima-python [8] to generate an abstract syntax
tree (AST) for JavaScript programs, and escodegen [24] to
generate JavaScript programs from the ASTs. Modeler is built
on top of Intel Pin Tool [20] using C/C++. The analyzers for
selecting, ranking, and producing the final result are built
using Python3.8. The evaluation was done on a machine with
32 cores (@3.30 GHz) and 1 TB of RAM, running Ubuntu
20.04.1 TLS.

3.1 Methodology

Our automatic bug localization tool targets dynamic code
generation bugs in Google V8’s JIT compiler back-end. We
experimented on 40 different bugs obtained in two differ-
ent methods. We obtained five bugs from Google’s bug re-
port Community (https://bugs.chromium.org/), and we in-
troduced 35 synthetic bugs in the JIT compiler source code.

We classify the bugs into three different classes depending
on where the bug is located. The classes are (1) Instruction
selector bugs; (2) register allocation bugs; and (3) code gener-
ation bugs. For example, the real bugs no.1196683, 1336869,
5129, and 9113 are instruction selector bugs, i.e., incorrect
type has been assigned to the back-end representation object.
The real bug n0.913296 is a code generation bug, i.e., incor-
rect machine instructions are generated. Then, we further
segment the bugs into three different types: (1) a bug in the
JIT compile source code that is not expected to execute, but
executed; (2) a bug is in the code that is expected to execute,
but failed to execute, and (3) a bug in the code that is access-
ing the value of representation, i.e., reading or writing a bad
value to the representation or code buffer.

To thoroughly assess the efficacy of our tool, we selected
our synthetic bugs to ensure that they covered all relevant
parts of the JIT compiler back-end and included each of the
three types of bugs discussed above. To measure the accuracy
of our ranking result, we compare our result to the ground
truth. The ground truth is obtained using the following steps:

1. If a bug is from the report, we identify the ground truth
from the developers’ discussion and the committed fix.
If a bug is introduced by ourselves, we keep a record
of which function we are introducing the bug to.

2. We add print statement(s) in the buggy function to
print the address and opcode of ground truth RepObjs
that the function manipulates.

. We run the PoC program with the buggy version of
V8 executable, d8, to get the representation object’s
address and opcode.

3.1.1 Accuracy of Rankings. Table 1 shows the accuracy
of ranking results from our tool using the Top-n metric (we

https://bugs.chromium.org/

Automatically Localizing Dynamic Code Generation Bugs in JIT Compiler Back-End

Table 1. Top-n Ranking Results (n = 1, 5, 10, 20)

| Ranking | Top-1 | Top-5 | Top-10 | Top-20 |
Model [16 (40.0%) | 31 (77.5%) [35 (87.5%) | 40 (100%)
Function | 26 (65.0%) | 39 (97.5%) | 39 (97.5%) | 40 (100%)

use n = 1, 5, 10, 20), which counts the number of test inputs
where the ground truth occurs in the top n rankings produced
by our tool, e.g., “Top-1’ gives the number of test inputs where
the ground truth is ranked first by our analysis and “Top-5
counts the number where the ground truth is within the top
5 items in our ranking.

The table header (first row) shows the labels of each col-
umn. The second row of the table shows the ranking result
of witnesses that correspond to the ground truth RepObjs
in Top-1/5/10/20. Finally, the last row of the table shows the
ranking result of the ground truth function in Top-1/5/10/20.
Our tool successfully localized 16, 31, 35, and 40 bugs within
Top-1, Top-5, Top-10, and Top-20, respectively. In percent-
age, the witnesses are ranked 40%/77.5%/87.5%/100% bugs
within Top-1/5/10/20 while the culprit functions are ranked
65%/97.5%/100%/100% bugs within Top-1/5/10/20.

B HIGH ® AVERAGE B LOW
300

[]
iy 270,
2
S 200
%

100
k) 56, 25
] 0 3 16 1
E

T T

§ Model Ranking

Group

Figure 6. Number of abstract RepObjs by group

Figure 6 shows the number of aRepObjs by the group in
high, average, and low. ‘Model’ (left) shows the number of
aRepObj in models we constructed for 40 bugs. High means
the highest number of aRepObjs constructed for a single
model among the models for all input programs, which is
270 objects in our experiments. Average means the average
number of aRepObjs constructed for 40 bugs, which is 56.
Low means the lowest number of aRepObjs constructed for
a single model among the models for all input programs,
which is 3. ‘Ranking’ (right) shows the number of aRepObj
in the ranking. Among the 40 ranking results, the highest
number of aRepObjs ranked in a single result is 25. On
average, 16 aRepObjs are ranked. The lowest number of
ranked aRepObjs is 1. Comparing the ‘Ranking’ to ‘Model,
the smaller the numbers is better. Our approach can reduce
the number of aRepObj in the rankings by 90.74%, 71.43%,
and 66.67% for high, average, and low, respectively, from the
models. The higher the percentage is better.

153

CC ’23, February 25-26, 2023, Montréal, QC, Canada

B HIGH ®m AVERAGE B LOW
1500

1000

500

Number of Fucntions

Full

Model Ranking Ground Truth

Group

Figure 7. Number of functions by group

Figure 7 shows the number of JIT compiler functions by
the group in high, average, and low. ‘Full’ shows the high-
est, average, and lowest number of functions executed when
JIT compiling 40 bug PoC programs. The highest number
of JIT compiler functions executed when JIT compiling one
of 40 bug PoC programs are 1310, 1014 is the number of
functions executed on average, and 932 is the lowest number
of functions executed. ‘Model” shows the number of func-
tions executed on the back-end representations and code
buffers. ‘Ranking’ shows the number of functions listed in
the ranking. ‘Ground Truth’ shows the number of func-
tions ranked under the ground truth RepObj in the rank-
ing. The result shows that our approach was able to reduce
the number of functions from the complete list of executed
functions to functions ranked underground truth RepObj
by 99.24%/99.71%/99.89% for high, average, and low, respec-
tively.

The study [15] shows that developers’ acceptability level
of automatic bug localization results is if the ground truth is
ranked within the Top-10, and the developers’ most preferred
method (function) level granularity. This suggests that for the
automatic bug localization approach to be used in practice,it
is essential to remove irrelevant elements in debugging and
ranking the appropriate targets. Our results suggest that
we can significantly remove the irrelevant elements and, in
most cases, rank the ground truths (back-end objects and
functions) within the Top-10.

3.2 Example: Bug Report No.1196683

Candidate Rank #1. Opcode: 0xb3,
- Function Rank# 1. VisitRO
Candidate Rank #2. Opcode: 0x60, IR Opcode (s):
- Function Rank# 1. EmitWithContinuation

IR Opcode(s): []

Ox1ldl, 0x131

Candidate Rank #7. Opcode: 0xd6, IR Opcode(s): Oxlcc
- Function Rank# 1. VisitChangeInt32ToInt64

Candidate Rank #24. Opcode: 0xdd, IR Opcode(s): Oxea
o] - Function Rank# 1. AddInstruction

H O oa0 0s wNER

Figure 8. Example of the output generated for bug
n0.1196683. The ground truth witness is ranked no. 7 and
the culprit function is ranked no. 1.

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Figure 8 shows an example of the output generated by our
tool for bug report number 1196683 (CVE-2021-21220) [25].
The bug is in the function VisitChangeInt32ToInt64(). It
causes a RepObj with an incorrect opcode 0xd6 (kX64Mov1)
to be generated for 0x1cc (ChangeIntToInt64) IR node;
the correct opcode should be 0xd7 (kX64Movsx1q). This is a
type mismatch bug that can be abused in the exploitation
by creating a corrupted array to achieve the out-of-bound
(OOB) primitive. Our tool successfully analyzed the JIT com-
piler’s back-end generating @xd6 RepObj from the @x1cc
IR node leads to buggy behavior, i.e., mismatch of execu-
tion output between the bytecode-only and JIT-compiled
code. As a result, the witness corresponds to the ground
truth is ranked at 7 (line 6). Additionally, our tool identified
VisitChangeInt32ToInt64 function as the culprit and only
listed in the function ranking (line 7).

4 Discussion
4.1 Target Identification for Mutation

The quality of input programs can affect the quality of rank-
ings. This is because a difference in the input programs can
cause the JIT compiler to execute different optimizations,
which can lead to a different back-end behavior. In some
cases, fuzzer’s target identification fails to identify the code
parts that are directly related to the bug. For example, if the
bug triggering code is within the if-else statement, altering
the control-flow by changing the statement’s condition can
remove the buggy behavior. Our fuzzer identifies the condi-
tion as target to mutate. Although, mutating the condition
can remove the buggy behavior, the accuracy of rankings
may be lower than the rankings obtained from the input
programs with the mutation of code that is directly related
to the bug in the JIT compiler. We are working on improving
the target identification to improve the quality of rankings.

4.2 Efficiency of Modeler

JIT compilers perform multiple passes of optimizations and
code generation for different input programs. Based on the
complexity of JIT compilation, the size and time for obtaining
the execution traces are different. Since our modeler builds
models by analyzing the execution traces, the performance of
the modeler is inconsistent. For example, our modeler takes
approximately 3 minutes to build a model for the PoC pro-
gram of bug report n0.1196683, while the modeling can take
less or more time for other programs. We seek to minimize
the modeling time to improve the overall performance.

4.3 Threats to Validity

To reduce the threats to validate the effectiveness of our
evaluation, we performed experiments on 40 bugs, which
include real-world bugs and the bugs introduced referencing
the real-world bugs. Moreover, we partitioned the bugs based
on the components the bug is located in the back-end and in 3

154

HeuiChan Lim and Saumya Debray

different types. Such partitioning is to validate our approach
is able to cover different component bugs and the types. In
best of our knowledge, there are no existing approaches
consider to segment the bugs carefully as ours.

5 Related Work

There are only a limited number of literature on automated
bug localization in JIT compilers. JIT compilers have a num-
ber of characteristics that make them very different from
ordinary compilers; as a result, existing work for ordinary
compilers [4, 5, 27, 29] do not carry over to JIT compilers.
Statistics-based techniques [4-6, 13, 14, 17, 27, 29], are
widely used in automatic bug localization. The approaches
require many inputs (a few hundred to thousands). These
inputs are collected either from user reports (sampling) or
fuzzers, e.g., AFL [28]. Unfortunately, the approach to wait
for many user reports is not very practical when it comes
to the systems that change rapidly and the problem can be
security sensitive. The random generation of inputs without
the fuzzer aware of JIT compiler characteristics and a bug is
hard to guarantee the high accuracy in identifying the bug.
While the work done by Lim and Debray [18] and Lim
et al. [19] have similar concept to ours, i.e., bug localization
through an explicit modeling of JIT compiler behavior, their
approach is not applicable to JIT compiler back-end bugs.

6 Conclusion

Just-in-Time (JIT) compilers are used in a wide variety of
software. Thus, a bug that can rise to an exploitable vul-
nerabilities can have a high impact. This paper proposes
an approach to automatically localize dynamic code gener-
ation bugs in the JIT compiler back-end. Empirical studies
on Google Turbofan show that our approach can success-
fully model the behavior of back-end and use the models in
localizing the bugs with high accuracy.

Acknowledgements

This research was supported in part by the National Science
Foundation under grant no. 1908313.

References

[1] n.d. Project Zero: News and updates from the Project Zero team at
Google. https://googleprojectzero.blogspot.com/

[2] Mickey R. Boyd and David B. Whalley. 1993. Isolation and Analysis
of Optimization Errors. In Proceedings of the ACM SIGPLAN’93 Con-
ference on Programming Language Design and Implementation (PLDI),
Albuquerque, New Mexico, USA, June 23-25, 1993, Robert Cartwright
(Ed.). ACM, 26-35. https://doi.org/10.1145/155090.155093

[3] bugzilla.mozilla.org. n.d.. Bug Writing Guidelines. https://bugzilla.
mozilla.org/page.cgi?id=bug-writing.html

[4] Junjie Chen, Jiagi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu
Zhang. 2019. Compiler bug isolation via effective witness test pro-
gram generation. In Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August

https://googleprojectzero.blogspot.com/
https://doi.org/10.1145/155090.155093
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html

Automatically Localizing Dynamic Code Generation Bugs in JIT Compiler Back-End

26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 223-234. https://doi.org/10.1 145/3338906.3338957

[5] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced

(7]

[8] JS Foundation. 2012. esprima-python.

(9]

[15

—

(16]

(17

—

(18]

Compiler Bug Isolation via Memoized Search. In 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020. IEEE, 78-89. https:
//doi.org/10.1145/3324884.3416570

Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and
Kapil Vaswani. 2009. HOLMES: Effective statistical debugging via
efficient path profiling. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 34-44.

chromium.org. n.d.. Reporting Security Bugs. https://www.chromium.
org/Home/chromium-security/reporting-security-bugs/
https://github.com/Kronuz/
esprima-python

Mozilla Foundation. n.d.. IonMonkey/LIR. https://wiki.mozilla.org/
lonMonkey/LIR

Google. n.d. V8 Instruction Class. https://github.com/v8/v8/blob/
main/src/compiler/backend/instruction.h#L859

Apple Inc. n.d.. Bare Bones Backend/B3 Intermediate Representation.
https://webkit.org/docs/b3/intermediate-representation.html

Fedor Indutny. 2015. Sea of Nodes. Accessed 2021-02-22.

Lingxiao Jiang and Zhendong Su. 2007. Context-aware statistical
debugging: from bug predictors to faulty control flow paths. In Pro-
ceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering. 184-193.

Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instru-
mentation and sampling strategies for cooperative concurrency bug
isolation. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications. 241-255.
Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016.
Practitioners’ expectations on automated fault localization, Andreas
Zeller and Abhik Roychoudhury (Eds.). 165-176. https://doi.org/10.
1145/2931037.2931051

Xia Li and Durga Nagarjuna Tadikonda. 2022. Improving Mutation-
Based Fault Localization via Mutant Categorization. In The 34th Interna-
tional Conference on Software Engineering and Knowledge Engineering,
SEKE 2022, KSIR Virtual Conference Center, USA, July 1 - July 10, 2022,
Rong Peng, Carlos Eduardo Pantoja, and Pankaj Kamthan (Eds.). KSI
Research Inc., 166-171. https://doi.org/10.18293/SEKE2022-157

Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. 2003. Bug
isolation via remote program sampling. ACM Sigplan Notices 38, 5
(2003), 141-154.

HeuiChan Lim and Saumya Debray. 2021. Automated bug localization
in JIT compilers. In VEE °21: 17th ACM SIGPLAN/SIGOPS International

155

[19]

[20]

[21]

[22]
[23]

[24]
[25]

[26]

[27]

[28]

[29]

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Conference on Virtual Execution Environments, Virtual USA, April 16,
2021, Ben L. Titzer, Harry Xu, and Irene Zhang (Eds.). ACM, 153-164.
https://doi.org/10.1145/3453933.3454021

HeuiChan Lim, Xiyu Kang, and Saumya Debray. 2022. Modeling
Code Manipulation in JIT Compilers. In Proceedings of the 11th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis (SOAP 2022). 9-15.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood. 2005. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proc. ACM Confer-
ence on Programming Language Design and Implementation (PLDI).
Chicago, IL, 190-200.

Vijay Naidu and Ajit Narayanan. 2016. Needleman-Wunsch and Smith-
Waterman Algorithms for Identifying Viral Polymorphic Malware
Variants. In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and
Secure Computing, 14th Intl Conf on Pervasive Intelligence and Com-
puting, 2nd Intl Conf on Big Data Intelligence and Computing and Cy-
ber Science and Technology Congress, DASC/PiCom/DataCom/Cyber-

SciTech 2016, Auckland, New Zealand, August 8-12, 2016. IEEE Computer
Society, 326-333. https://doi.org/10.1109/DASC-PICom-DataCom-

CyberSciTec.2016.73

Oracle. 2010. Instructions, Operands, and Addressing.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-
based fault localization. Softw. Test. Verification Reliab. 25, 5-7 (2015),
605-628. https://doi.org/10.1002/stvr.1509

Yusuke Suzuki. 2012. Edcodegen. https://github.com/estools/
escodegen

Adrian Taylor. 2021. Issue 1196683: Security: 2021 pwn2own entry.
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
David B. Whalley. 1994. Automatic Isolation of Compiler Errors. ACM
Trans. Program. Lang. Syst. 16, 5 (1994), 1648-1659. https://doi.org/10.
1145/186025.186103

Jing Yang, Yibiao Yang, Maolin Sun, Ming Wen, Yuming Zhou, and Hai
Jin. 2022. Isolating Compiler Optimization Faults via Differentiating
Finer-grained Options. In IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA,
March 15-18, 2022. IEEE, 481-491. https://doi.org/10.1109/SANER53432.
2022.00065

Michal Zalewski. 2013.
coredump.cx/afl/

Zhide Zhou, He Jiang, Zhilei Ren, Yuting Chen, and Lei Qiao. 2022.
LocSeq: Automated Localization for Compiler Optimization Sequence
Bugs of LLVM. IEEE Trans. Reliab. 71, 2 (2022), 896-910. https:
//doi.org/10.1109/TR.2022.3165378

american fuzzy loop. https://lcamtuf.

Received 2022-11-10; accepted 2022-12-19

https://doi.org/10.1145/3338906.3338957
https://doi.org/10.1145/3324884.3416570
https://doi.org/10.1145/3324884.3416570
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://github.com/Kronuz/esprima-python
https://github.com/Kronuz/esprima-python
https://wiki.mozilla.org/IonMonkey/LIR
https://wiki.mozilla.org/IonMonkey/LIR
https://github.com/v8/v8/blob/main/src/compiler/backend/instruction.h#L859
https://github.com/v8/v8/blob/main/src/compiler/backend/instruction.h#L859
https://webkit.org/docs/b3/intermediate-representation.html
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.18293/SEKE2022-157
https://doi.org/10.1145/3453933.3454021
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.73
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.73
https://doi.org/10.1002/stvr.1509
https://github.com/estools/escodegen
https://github.com/estools/escodegen
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://doi.org/10.1145/186025.186103
https://doi.org/10.1145/186025.186103
https://doi.org/10.1109/SANER53432.2022.00065
https://doi.org/10.1109/SANER53432.2022.00065
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/TR.2022.3165378
https://doi.org/10.1109/TR.2022.3165378

	Abstract
	1 Introduction
	2 Research: From PoC-to-Localization
	2.1 Buggy vs. Non-Buggy Executions
	2.2 Overview of the Analysis Pipeline
	2.3 Input Programs Generation
	2.4 Back-end Representation Modeling
	2.5 Witness Identification
	2.6 Ranking the Witnesses
	2.7 Culprit Instruction Selection
	2.8 Culprit Instruction Ranking
	2.9 Rankings Analysis and Final Result Generation

	3 Evaluation
	3.1 Methodology
	3.2 Example: Bug Report No.1196683

	4 Discussion
	4.1 Target Identification for Mutation
	4.2 Efficiency of Modeler
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

