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Gyroscopic alignment gives rise to highly spatially anisotropic columnar structures that in 
combination with complex domain boundaries pose challenges for efficient numerical dis-
cretizations and computations. We define gyroscopic polynomials to be three-dimensional 
polynomials expressed in a coordinate system that conforms to rotational alignment. We 
remap the original domain with radius-dependent boundaries onto a right cylindrical or 
annular domain to create the computational domain in this coordinate system. We find 
the volume element expressed in gyroscopic coordinates leads naturally to a hierarchy of 
orthonormal bases. We build the bases out of Jacobi polynomials in the vertical and gen-
eralized Jacobi polynomials in the radial. Because these coordinates explicitly conform to 
flow structures found in rapidly rotating systems the bases represent fields with a rel-
atively small number of modes. We develop the operator structure for one-dimensional 
semi-classical orthogonal polynomials as a building block for differential operators in the 
full three-dimensional cylindrical and annular domains. The differentiation operators of 
generalized Jacobi polynomials generate a sparse linear system for discretization of differ-
ential operators acting on the gyroscopic bases. This enables efficient simulation of systems 
with strong gyroscopic alignment.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

Gyroscopic alignment of a fluid occurs when flow structures align with the rotation axis. It is typical that such flows 
are highly spatially anisotropic columnar structures irrespective of the geometry that confines them. Natural questions that 
arise in the presence of spatial anisotropy and complex geometry are (i) what functional bases are optimal for accurate 
representation and computation and (ii) can discretization of differential operators remain sparse such that fast algorithmic 
strategies are possible. We define a gyroscopic polynomial to be a three-dimensional polynomial expressed in a coordinate 
system that conforms to this rotational alignment. For example, the recently developed Spherinder basis [1] is an orthonor-
mal gyroscopic polynomial basis for the unit ball. This basis eschews spherical coordinates to better represent flows found 
in rapidly rotating fluids. A typical discretization of the unit ball is an expansion in spherical harmonics:

f (r, θ,φ) =
∑

m,l

Yl,m(θ,φ)Fl,m(r). (1)
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Though the coordinate system (r, θ, φ) is orthogonal, gyroscopically aligned field contours parallel to ê Z = cos θ êr − sin θ êφ

are functions of both the radius r and colatitude θ . This means axially aligned fields require a large number of modes before 
the expansion converges to a sufficient accuracy. The Spherinder methodology [1] demonstrates how to design spectral bases 
for gyroscopic coordinates to get around this issue. Not only do the bases represent gyroscopic fields with relatively few 
modes, but differential operators acting on these basis functions have a sparse matrix representation. Spherinder basis 
discretization is therefore fast and efficient for gyroscopic flows in the sphere geometry. In this paper, we extend this 
methodology to define gyroscopic polynomials on stretched cylinders and annuli with bounding surface h(S), a polynomial 
in cylindrical radial coordinate S .

Cylindrical and annular geometries are common in laboratory settings for rotating flows [2]. Experimenters design an 
apparatus to emulate instabilities and turbulent motions relevant to geophysical fluid flow regimes. The domain is typi-
cally a cylinder or annulus of fluid under rapid rotation. Often the upper surface of the fluid is left free and so forms an 
equipotential surface - a parabolic contour in this case. We will define the gyroscopic coordinate system that follows these 
curved upper surfaces. We demonstrate the coordinate system leads naturally to an orthogonal basis of polynomials as in 
the sphere [1]. These basis functions can describe fields contained in spheres, ellipsoids, parabolic cylinders and more exotic 
domains. We generalize the bases one step further to stretched annular domains with inner radius Si and outer radius So .

Jacobi polynomials that frequently arise in the discretization of partial differential equations (PDEs) are fundamental in 
the application of gyroscopic polynomials. A Jacobi polynomial P (a,b)

n (z) is orthogonal under the weight function

w(a,b)(z) ! (1 − z)a(1 + z)b (2)

such that

〈
P (a,b)

n (z), P (a,b)
m (z)

〉

w(a,b)
!

1∫

−1

dz w(a,b)(z)P (a,b)
n (z)P (a,b)

m (z) ∝ δm,n, (3)

where δm,n is the Kronecker delta symbol. The Legendre polynomials correspond to (a, b) = (0, 0) and the Chebyshev poly-
nomials have (a, b) = (−1/2, −1/2). A key property of Jacobi polynomials is they form a closed set under differentiation, 
since

d
dz

P (a,b)
n (z) ∝ P (a+1,b+1)

n−1 (z). (4)

This sparse derivative representation of P (a,b)
n in the P (a+1,b+1)

m basis is the catalyst for efficient numerical methods. In 
typical problems one uses the volume element of the coordinate system to induce an inner product. In some cases this 
volume element leads directly to a Jacobi-type weight function. This was the case in [1,3,4], where the authors employed a 
hierarchy of Jacobi polynomials to discretize cylindrical and spherical coordinate systems.

Classical Jacobi polynomials fall short when generalizing cylindrical domains to have either (i) a polynomial bounding 
surface or (ii) a finite inner radius Si > 0. Careful study of the volume elements in these geometries reveals the requirement 
for one or more augmenting polynomial factors in the weight function relative to w(a,b) . To proceed we must extend standard 
Jacobi polynomials to a more general class of weight functions that accommodates these polynomial factors, and so we 
define the generalized Jacobi polynomials. As with Jacobi polynomials, generalized Jacobi polynomials admit sparse derivative 
operators. The total degree of the augmenting polynomial factors in the weight function determines the operator bandwidth, 
so though not as sparse as the classical operators, the discretized matrix system still has only O((d + 1) × N) terms, where 
d is the total augmenting degree and N is the maximum polynomial degree of the truncated system.

Let (S, $, Z) be the standard cylindrical coordinate system, let h(S) denote the polynomial height function of the domain 
of interest and define the stretched vertical coordinate

η ! Z
h (S)

. (5)

When we seek a gyroscopic basis in terms of approximating functions of the form

&m,l,k(S,$,η) = eim$ Pl (η) Q (m,l)
k (S). (6)

Here Pl is a yet-determined degree l polynomial while Q (m,l)
k is a radial function parameterized by the azimuthal wavenum-

ber m and vertical degree l. We would like to represent fields in the domain with linear combinations of the basis functions:

f (S,$,η) =
∞∑

m=−∞

∞∑

l=0

∞∑

k=0

&m,l,k(S,$,η) F̂m,l,k. (7)

Since gyroscopic alignment suppresses vertical complexity, an aligned field represented in these coordinates will have a 
rapidly converging expansion in the vertical l index. We may therefore truncate l to some relatively small Lmax compared 
with the radial truncation length Nmax when we discretize the field. This is the first major motivating factor behind the 
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gyroscopic coordinate system and cannot be overemphasized: gyroscopically aligned fields admit an expansion in relatively few 
gyroscopic modes.

The next step is to identify appropriate classes of functions for Pl(η) and Q (m,l)
k (S). The (S, $, η) coordinates system 

explicitly separates dynamics in the stretched vertical and radial directions. When expressing the volume element of this 
coordinate system we uncover the classical Jacobi polynomial weight function for the η coordinate so that Pl(η) ! P (α,α)

l (η)

for some α. The radial dependence is more subtle. First note that the functions Q (m,l)
k (S) are parameterized by m and l. This 

parameterization allows us to (i) guarantee regularity throughout the domain in the presence of coordinate singularities 
and (ii) ensure the basis & can be expressed as a Cartesian (x, y, z) polynomial. We will show that generalized Jacobi 
polynomials multiplied by the function Sm h(S)l satisfy the above two conditions. The three-dimensional basis will inherit 
the sparsity of differentiation operators of its one-dimensional polynomial building blocks. This is the second motivating 
factor for the gyroscopic basis: the gyroscopic bases decompose into one-dimensional (possibly generalized) Jacobi polynomials and 
hence have sparse matrix representations of algebraic and differential operators.

In Section 2.1 we describe the gyroscopically aligned coordinate system for cylindrical geometries and in Section 2.2 we 
describe the generalization to annular domains. We develop the generalized Jacobi polynomials in Section 3 to be used as 
building blocks for the gyroscopic polynomials. In Section 4 we define the gyroscopic bases, a hierarchy of basis functions 
used to represent scalar and vector fields. Section 5 details how the bases lead to sparse matrix operators for all differential 
operators needed in fluid dynamics. We put the bases to the test in Section 6 where we solve the damped inertial waves 
eigenvalue problem in various geometric configurations. We wrap up the paper in Section 7.

2. The stretched coordinate systems

We adopt the stretched coordinate system (s,φ,η) related to Cartesian (x, y, z) coordinates by

x = s cosφ,

y = s sinφ,

z = ηh(s)

(8)

where

φ ∈ [0,2π), η ∈ [−1,1], h(s) ≥ 0. (9)

The domain of s depends on the geometry, where

s ∈ [0, So] (Cylinder),

s ∈ [Si, So] (Annulus).
(10)

These coordinates have a polar singularity along the z axis (s = 0). The coordinate systems also support an outer equatorial 
singularity, sphere-type decay of the height function as s → So , and the annulus permits an inner equatorial singularity with 
similar decay as s → Si . Presence of these singularities depends on particular choice of the height function h(s).

Let (S, $, Z) denote standard cylindrical coordinates and 
(
êS , ê$, ê Z

)
the associated unit vectors. Letting h′(s) = ∂sh(s), 

we find partial derivatives transform as

∂S = ∂s − h′(s)
h(s)

η∂η,

∂$ = ∂φ,

∂Z = 1
h(s)

∂η.

(11)

The coupling of the partial derivatives demonstrates that the coordinate vectors ∂s and ∂η aren’t orthogonal. This coupling 
between stretched coordinates will play out in the sparsity structure of differential operators acting on the gyroscopic bases. 
The volume element in our stretched coordinates is

dV = h(s)s ds dφ dη. (12)

The key to defining gyroscopic polynomials is using a weighted version of dV dictated by h(s) to induce a hierarchy of 
orthonormal 3D bases. These bases naturally conform to coordinate singularities and nest in a particular way that yields a 
sparse linear algebraic structure for discretized PDEs.
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2.1. Stretched cylindrical coordinates

Due to well-known regularity conditions [5–7,3] in polar coordinates, a scalar field f proportional to eimφ decays like sm

as s → 0, and parity yields

f ∼ eimφsm F
(

s2
)

. (13)

To explicitly handle the parity condition and to map the physical stretched cylindrical domain onto the computational 
cylinder we define the variable t ∈ [−1, 1] by the transformation

t = 2
(

s
So

)2

− 1. (14)

We then find that

∂t = S2
o

4
1
s

∂s, dt = 4

S2
o

s ds (15)

and the transformed volume element reads

dV = S2
o

4
h(t)dt dφ dη. (16)

To proceed, we factor our height function into the following:

h(t) = (1 − t)
1
2 χo h̃(t)χh (17)

where h̃, the non-vanishing part of the height function h, is necessarily strictly positive in [−1, 1]. The power χh is either 1
or 1

2 , enabling geometries with square-root dependencies in the non-vanishing height functions:

h(t) = (1 − t)
1
2 χo ×

{
h̃(t) (χh = 1) ,√
h̃(t)

(
χh = 1

2

)
.

(18)

The power χo denotes an outer equatorial singularity in the domain. It equals unity when there is a 
√

1 − t factor in the 
height function h(t), otherwise it is zero.

Fig. 1 demonstrates three different sample geometries in the stretched cylindrical coordinate system. In this figure, the 
paraboloid has (χo, χh) = (0, 1) since there is no outer equatorial singularity (χo = 0) and the height function is not square 
rooted (χh = 1). The oblate spheroid has (χo, χh) = (1, 1) due to the outer equatorial singularity. The biconcave disk has 
(χo, χh) =

(
1, 1

2

)
due to both the outer equatorial singularity and the square root non-vanishing height.

2.2. Stretched annular coordinates

The stretched annulus coordinate system (s,φ,η) is identical to that of the cylinder except in its limited radial extent 
s ∈ [Si, So]. We depict several stretched annular domains in Fig. 2. The annular t coordinate is a direct generalization to the 
cylindrical one: t ∈ [−1, 1] takes the form

t = 1

S2
o − S2

i

(
2s2 −

(
S2

o + S2
i

))
. (19)

Derivatives transform as

∂t = S2
o − S2

i

4
1
s

∂s, dt = 4

S2
o − S2

i

s ds (20)

and the volume element reads

dV = S2
o − S2

i

4
h(t)dt dφ dη. (21)

In both the cylindrical and annular cases we changed variables from s to t ∈ [−1, 1]. This transformation replaced the s ds
part of the geometric volume element with dt . This has two benefits: (i) the volume element is simplified to remove the 
non-Jacobi-type weight factor s and (ii) the choice of variables guarantees regularity at coordinate singularities. We describe 
regularity with respect to coordinate singularities in more detail in Section 4.

Following the notation of Section 2.1 we again factor the height function, this time with a possible zero at the inner 
radius t = −1:
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Fig. 1. Stretched cylindrical domains. Paraboloid (left), oblate spheroid (middle) and biconcave disk (right). Each of these geometries utilizes a distinct 
height function and combinations of parameters. The first non-trivial extension to a standard right cylinder is the paraboloid domain: the height function 
is a linear, non-vanishing function of t . Note this is a quadratic factor in s; geometries linear in s have a cusp at s = 0, making the domain non-smooth. 
The next extension in weight function is the oblate spheroid, which has a constant h̃ but an outer equatorial singularity at t = 1. Boundary singularities are 
always of Jacobi type - they occur at the edge of the numerical domain and so map onto the (1 ± t) polynomial in the Jacobi weight function. In the case 
of the outer equatorial singularity the Jacobi exponent is a = 1

2 . Cylinders cannot have vanishing height at s = 0 and so cannot have an inner equatorial 
singularity. The biconcave disk extends this geometry to multiply by the square root of the non-vanishing part of the height h̃(t). This takes the Jacobi c
parameter from 1 to 1

2 . The gyroscopic polynomial method applies to any of these types of geometries and discretizes the domain using particular products 
of vertical and radial polynomials.

Fig. 2. Stretched annular domains for s ∈ [Si , So] = [0.35,1]. Paraboloid (left), sphere (middle), and torus (right). Similar to Fig. 1, each of these geometries 
utilizes a distinct height function and combinations of parameters. The outer equatorial singularity at s = So (t = +1) leads to a √1 − t factor in the height 
function, represented by χo = 1, while the inner s = Si (t = −1) equatorial singularity contributes a √1 + t factor, corresponding to χi = 1. Though we 
don’t display an example in this figure, gyroscopic polynomials admit square roots around the non-vanishing height h̃ denoted by χh = 1

2 .

h(t) = (1 − t)
1
2 χo (1 + t)

1
2 χi h̃(t)χh , (22)

where χo and χi denote the presence of the outer and inner equatorial singularities, respectively, while χh permits the 
presence of a square root around h̃. Fig. 2 demonstrates a few particular geometries the coordinate system can describe.

2.3. Upper-half geometries

It is often the case that experimenters pursue geometries with flat bottoms, for example tanks with a free surface of 
rotating fluid [2,8–10] or upper hemispherical rotating flows [11]. In the case that the cylinder or annulus has no equatorial 
singularities and h̃ appears without a square root - that is, (χo,χi,χh) = (0,0,1) - we can shift the domain using a change 
of coordinates. We restrict η to [0, 1] and define ζ ∈ [−1, 1] by

ζ = 2η − 1 ⇐⇒ η = ζ + 1
2

. (23)

This means
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Fig. 3. Stretched domains for possible height functions in the upper-half geometry. This domain only supports (χo,χi ,χh) = (0, 0, 1). Note the difference in 
radial coordinate s (left) and t (right) used to describe the two figures. We display h expressed in the coordinate that admits the simplest representation. 
The right-hand figure displays a more complex height function. It is proportional to a shifted Chebyshev T3 polynomial in the t coordinate and hence is 
degree six in s. This domain may not be of particular geophysical significance but demonstrates the generality of the gyroscopic method.

z = ζ + 1
2

h(s). (24)

This changes not only the scale factor for z derivatives,

∂Z = 1
h(s)

∂η = 2
h(s)

∂ζ , (25)

but also the mode coupling in s derivatives,

∂S = ∂s − h′(s)
h(s)

η ∂η = ∂s − h′(s)
h(s)

(1 + ζ ) ∂ζ . (26)

The structural change η ∂η .→ (1 + ζ ) ∂ζ forces us to restrict the upper-half geometries to non-vanishing polynomials in t , 
namely h ≡ h̃. Fig. 3 portrays sample domains in the upper-half geometry.

2.4. Domain selection for exposition

For the remainder of the paper we will assume the most basic form of geometry for the cylinder and annulus domains. 
This allows us to present the relevant details on constructing the gyroscopic bases without clouding the presentation with 
notation and extra indices. To that end we make the geometric simplifications (χo, χi, χh) = (0, 0, 1) for the remainder of 
the paper. This means we have h(t) ≡ h̃(t) so that h is a non-vanishing polynomial. We present the necessary modifications 
to the gyroscopic basis functions and operators for the special case geometries in Appendix B.

2.5. Spinor basis

Though we have fully specified our gyroscopic coordinate systems we still have freedom in how we choose the vector 
basis to represent vector fields. The polar geometry of each axial slice leads us to expand vector fields in terms of the 
spinor basis. One key feature of this basis is that it is diagonal under differentiation: cross-terms in vector derivatives vanish. 
Another important aspect of the spinor basis is that it separates out regularity at the origin - each component has a different 
decay rate as s → 0. By designing these decay rates into the gyroscopic bases we will see the gradient action on a scalar field 
maps precisely onto these spin components. These features of the spinor basis lead to the straightforward generalization to 
higher rank tensor fields. This means we can automatically produce arbitrary rank gradients free of cross-terms; this would 
be messy in the standard cylindrical vector basis (êS , ̂e$, ̂eZ ), to say the least.

We denote the spin weight of a vector field component by σ ∈ {−1,0,+1}. We define the spinor basis following [3,4,1]:

ê± ! 1√
2

(
êS ∓ iê$

)
, ê0 ! ê Z (27)

We represent a vector field u(s, φ, η) as

u(s,φ,η) = uS êS + u$ê$ + u Z ê Z =
∑

σ

uσ êσ , (28)
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where uS , u$ , u Z and uσ are all functions of the stretched coordinates (s, φ, η). This basis diagonalizes the gradient con-
nection:

∇±ê+ = ∓ 1
S

ê+, ∇±ê− = ± 1
S

ê−, (29)

where ∇± acts on a single azimuthal mode eimφ fm(s,η) by

∇± ≡ 1√
2

(
∂S ∓ m

S

)
. (30)

This diagonalization improves sparsity of differential operators when using the gyroscopic bases to discretize PDEs.
Another important motivation for the spinor basis is that the spin components behave predictably at the z axis. For 

σ ∈ {−1,0,+1}, the uσ component of the vector field decays like

uσ = ê†
σ · u ∼ s|m|+σ Fσ

(
s2

)
, s → 0, (31)

where Fσ is an arbitrary well-behaved function of s2. This means the basis functions $(α,σ )
m,l,k previously defined behave 

precisely as needed to represent vector fields regular throughout the domain.
Each additional rank r in a tensor field contributes an additional value in σ ’s range. For example, a rank two tensor T

will have a component

ê†
+ · ê†

+ · T ∝ s|m|+2, s → 0 (32)

so we see |σ | ≤ r. For more details on the spinor basis for higher rank tensors see [3].

3. Generalized Jacobi polynomials

We defined the stretched cylindrical and annular coordinate systems to create a numerical domain for computation of 
differential operators advantageous to gyroscopic flows. In both cases we mapped the curved upper surface z = h(s) of 
the domain onto a flat one η = 1. To proceed we create a Cartesian (x, y, z) polynomial basis expressed in the gyroscopic 
coordinates. The volume element in the stretched coordinates leads to a standard Jacobi weight function in the inner product 
for the vertical polynomials but a generalized one for the radial polynomials. This generalized weight consists of additional 
non-vanishing polynomial factors.

In this section we develop orthonormal polynomials and the corresponding polynomial algebra with respect to a gener-
alized Jacobi weight function. Define the generalized Jacobi weight with n additional polynomial factors by

w(a,b,c1,...,cn; p1,...,pn)(z)! (1 − z)a(1 + z)b p1(z)c1 . . . pn(z)cn , (33)

where a, b > −1, ci ∈ R and each pi(z) is a non-vanishing polynomial for z ∈ [−1,1]. We refer to the polynomials pi(z)
as the augmenting factors of the generalized Jacobi weight function. To ease notation we define the augmenting parameter 
vector c = (c1, . . . , cn) and augmenting polynomial vector p = (p1, . . . , pn).

We define the inner product

〈 f , g〉(a,b,c; p) !
1∫

−1

dz w(a,b,c; p)(z) f g =
1∫

−1

dz (1 − z)a(1 + z)b p1(z)c1 · · · pn(z)cn f g (34)

and corresponding norm

‖ f ‖2
(a,b,c; p) ! 〈 f , f 〉(a,b,c; p) . (35)

The inner product (34) induces a family of Hilbert spaces H (a,b, c; p), where

H (a,b, c; p) !
{

f : [−1,1] → C : ‖ f ‖(a,b,c; p) < ∞
}
. (36)

The generalized Jacobi polynomials P (a,b,c; p)
n are those polynomials orthonormal under the weight function w(a,b,c; p):

〈
P (a,b,c; p)

n , P (a,b,c; p)
m

〉

(a,b,c; p)
= δm,n (37)

Normalization requires the mass of the inner product:

ω(a,b,c; p) ! ‖1‖(a,b,c; p) (38)

so that
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P (a,b,c; p)
0 (z) = 1√

ω(a,b,c; p)
. (39)

From here on we drop the p symbol from our notation when it is unambiguous. Operations on the polynomials never 
change the underlying augmenting polynomial factors, just their powers, so for notational simplicity we retain only the 
indices (a,b, c). When our discussion doesn’t depend on the Jacobi parameters a, b we also drop these. Computing these 
polynomials requires some additional tools [12–18], but they all boil down to using known quadrature rules to compute the 
three-term recurrence coefficients 

(
α(a,b,c)

n ,β
(a,b,c)
n

)
satisfying

zP (a,b,c)
n (z) = β

(a,b,c)
n P (a,b,c)

n+1 (z) + α(a,b,c)
n P (a,b,c)

n (z) + β
(a,b,c)
n−1 P (a,b,c)

n−1 (z). (40)

We describe a method for computing (αn, βn) in Section 3.1. Once we have the three-term recurrence coefficients in hand 
we can compute the polynomials themselves. Importantly, the recurrence (40) also enables us to compute exact quadrature 
rules for polynomials up to a specified degree. We describe the calculation in Section 3.2. This quadrature is the final 
tool necessary to compute the sparse operator matrix coefficients acting on the polynomial bases. We define embedding 
operators in Section 3.3 and differentiation operators in Section 3.4, then describe how to compute them in Section 3.5.

3.1. Three-term recurrence

The three-term recurrence (40) is critical to computing with orthogonal polynomial systems. From these coefficients 
we can compute the polynomials and their derivatives as well as quadrature rules and the matrix entries for discretized 
representations of operators acting on the polynomial systems. We need all of these tools before we can build our gyroscopic 
polynomial bases.

There are many methods for computing the three-term recurrence coefficients for orthogonal polynomials with respect to 
a given measure [19,12], including the discretized Stieltjes procedure and modified Chebyshev algorithm. These methods use 
modified moments of the measure computed with known Gaussian quadrature rules to calculate the recurrence coefficients. 
As we will see, vertical degree parameterizes the radial parameters of the gyroscopic polynomials. This means one or more 
of the generalized Jacobi parameters increments with this degree. To generate our recurrence coefficients we therefore turn 
to the Christoffel-Darboux formulation [17] to recursively generate three-term coefficients for orthogonal polynomials with 
successively incremented parameter values. Below, we adapt the formulation [17] to the interval [−1, 1] with a slightly more 
general augmenting polynomial. The proof in [17] using the Christoffel-Darboux formula only needs minor modification; we 
omit it for brevity.

Let w(0)(z) be a weight function with known three-term recurrence coefficients 
(
α(0)

n ,β
(0)
n

)
and orthonormal polyno-

mials P (0)
n (z). In practice this system is a Jacobi polynomial system with fixed a, b parameters, but since these parameters 

are fixed throughout the discussion we omit them here. The goal is to derive recurrence coefficients corresponding to aug-
menting the weight function with a linear polynomial. To that end, for positive integer c define w(c)(z) = w(0)(z) p(z)c

where p(z) = m z + b is a linear polynomial in z. We want to compute 
(
α(c)

n ,β
(c)
n

)
, the three-term recurrence coefficients 

for w(c)(z), in terms of known quantities.
Let z0 = − b

m be the z intercept of p(z). For integer 0 ≤ k < c define C (k)
n such that

C (k)
n = (±1)n

√
±1

P (k)
n (z0) P (k)

n+1 (z0)β
(k)
n

, (41)

where we select +1 when m < 0 and −1 otherwise. Then

α(k+1)
n =

P (k)
n+2 (z0)

P (k)
n+1 (z0)

β
(k)
n+1 − P (k)

n+1 (z0)

P (k)
n (z0)

β
(k)
n + α(k)

n+1,

β
(k+1)
n = C (k)

n

C (k)
n+1

P (k)
n (z0)

P (k)
n+1 (z0)

β
(k)
n

(42)

and

P (k+1)
n (z0) = C (k)

n

n∑

j=0

(
P (k)

j (z0)
)2

. (43)

This formulation provides a means to recursively compute the coefficients for w(z) = w0(z)p(z)c in terms of the weight 
function w0(z)p(z)c−1. To compute 

(
α(c)

n ,β
(c)
n

)
up to term N we require an initialization of 

(
α(0)

n ,β
(0)
n

)
up to term N +c+1.

The Christoffel-Darboux method applies to linear factors in the weight function. For weight functions with higher degree 
polynomials we factor the polynomials into a product of linear and quadratic factors. A bit of algebra allows us to bypass 

8
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complex-valued weight functions for complex-conjugate pairs of roots. We show the generalization to quadratic factors 
with complex conjugate roots in Appendix A. The Christoffel-Darboux formulation therefore applies to any real-coefficient 
augmenting polynomial.

To compute the three-term recurrence for the generalized Jacobi weight w(a,b,c; p)(z) with n augmenting factors we 
repeat this process for each factor pi individually. At each stage we replace w(0)(z) with the most recently computed 
polynomial system. This increases the corresponding initialization size of the known three-term recurrence coefficients but 
otherwise the process is unchanged.

In what follows we see the gyroscopic bases are built in a hierarchy of generalized Jacobi parameters. Computing the 
three-term recurrence for each member of the hierarchy from scratch using the Stieltjes or modified Chebyshev procedures 
requires O

(
N2) operations, or O

(
N3) total operations for the entire hierarchy. The Christoffel-Darboux formulation enables 

computing the same set of three-term recurrences in O
(

N2) total operations, making the gyroscopic basis computationally 
tractable.

Generating three-term recurrence coefficients with modified measures is an active research topic. In [20] the authors 
compute the connection coefficients between orthogonal polynomials with rationally modified measure using banded ma-
trix factorizations. This methodology is directly applicable to our present work and provides a stable alternative to the 
Christoffel-Darboux formulation with similar computational complexity. Both the Christoffel-Darboux formulation and that 
of [20] require an initial known orthogonal polynomial system to compute the connection. We typically start with Jacobi 
polynomials and perform a discretized Stieltjes procedure to compute the initial recurrence coefficients when the Jacobi 
weight is augmented with a non-integer power of a polynomial. The authors of [21] describe an alternate approach that 
implements half-powers of polynomials efficiently, enabling accurate computation of the initial recurrence when χh = 1/2.

3.2. Quadrature rules

Starting with the three-term recurrence (αn, βn) for a general polynomial system with Pn orthonormal with respect to 
weight function w(z) we compute the N-term Gauss quadrature rule (z j, w j) such that

1∫

−1

dz w(z) f (z) ≈
N−1∑

j=0

w j f (z j), (44)

where we have equality when f is a polynomial of degree at most 2N − 1. The Golub-Welsch algorithm [16] for computing 
(z j, w j) utilizes the operator Z Pn = zPn(z), which forms a symmetric tridiagonal matrix Z acting on the basis Pn with 
diagonal αn and off-diagonals βn . We truncate (40) to degree N and rewrite it in matrix form via

Z0:N−1,0:N




P0(λ)

...
P N(λ)



 = λ




P0(λ)

...
P N−1(λ)



 (45)

so that

(
Z0:N−1,0:N−1 − λI

)





P0(λ)
...

P N−2(λ)
P N−1(λ)




=





0
...
0

−βN−1 P N(λ)




. (46)

Now the right-hand side is the zero vector only when λ is a root of P N (λ). The eigenvalues z j are therefore the quadrature 
nodes, and the associated eigenvector is then




P0(z j)

...
P N−1(z j)



 . (47)

We compute the quadrature weights via

1
w j

=
N−1∑

i=0

Pi(z j)
2. (48)

The algorithm takes O(N2) operations to compute due to the symmetric tridiagonal structure of the matrix Z . In case the 
eigensolve has error beyond machine precision we refine the eigenvalue solution to z j using a Newton iteration,

9
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z(k+1)
j = z(k)

j −
P j

(
z(k)

j

)

P ′
j

(
z(k)

j

) , (49)

for 0 < k < ∞. We then recompute w j using the final iterate z(∞)
j . In practice we need only a single iteration to converge 

within machine precision.

3.3. Embedding operators

Just like for classical Jacobi polynomials, the generalized Jacobi polynomials have sparse embedding operators. We define

Ia : H (a,b, c) .→ H (a + 1,b, c)

Ia f = f

Ib : H (a,b, c) .→ H (a,b + 1, c)

Ib f = f

Ici : H (a,b, c1, . . . , ci, . . . , cn) .→ H (a,b, c1, . . . , ci + 1, . . . , cn)

Ici f = f

(50)

where each operator is the identity acting to embed a function in the corresponding codomain. This implies the Hilbert 
spaces naturally nest: for δa, δb, δci ∈N we have

H (a,b, c) ⊆ H (a + δa,b + δb, c + δc) . (51)

We can achieve multiplication by the various weight factors using the embedding adjoints. We have

I†
a : H (a,b, c) .→ H (a − 1,b, c)

I†
a f = (1 − z) f

I†
b : H (a,b, c) .→ H (a,b − 1, c)

I†
b f = (1 + z) f

I†
ci : H (a,b, c1, . . . , ci, . . . , cn) .→ H (a,b, c1, . . . , ci − 1, . . . , cn)

I†
ci f = pi(z) f .

(52)

The bandwidth of each operator is one more than the degree of the corresponding weight factor.
Let a field be represented by a column vector of expansion coefficients:

f (z) =
(

P0(z) . . . Pn(z)
)



F̂0
...

F̂n



 . (53)

Then an operator L acting on domain with orthogonal polynomial system {Pn} and codomain with orthogonal polynomial 
system {Q m} takes the matrix form Lm,n such that

L f (z) =
(

Q 0(z) . . . Q m(z)
)



L0,0 . . . L0,n
...

. . .
...

Lm,0 . . . Lm,n








F̂0
...

F̂n



 . (54)

We then see that row m of L recombines the expansion coefficients F̂ expressed in the P basis to form the coefficient of 
L f multiplying Q m . Equivalently, we can interpret L acting on the basis functions themselves:

LP (z) =
(
LP0(z) . . . LPn(z)

)
=

(
Q 0(z) . . . Q m(z)

)



L0,0 . . . L0,n
...

. . .
...

Lm,0 . . . Lm,n



 , (55)

in which case column n of L recombines the Q basis to form LPn . These points of view help us interpret Fig. 4, where we 
plot the sparsity structure of the embedding operators for a single first order augmenting polynomial.
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Fig. 4. Sparsity diagram for generalized Jacobi embedding operators for weight function with a single additional linear factor. We interpret row m of the 
operator as recombining the expansion coefficients expressed in domain basis P to form the coefficient for codomain polynomial Q m . We interpret column 
n of the operator as recombining the codomain polynomials Q to produce LPn . The adjoints of each operators have a transposed sparsity structure.

3.4. Differentiation operators

A single framework unifies the sparse differentiation operators on the generalized Jacobi polynomials. We define the 
operator

D (δa, δb, δc) : H (a,b, c) .→ H (a + δa,b + δb, c + δc) (56)

where each δ ∈ {−1, +1}. To compute the action of the operator we need some definitions. Let k ≤ n and (i1, . . . , ik) be a 
strictly increasing index tuple 1 ≤ i1 < i2 < . . . < ik ≤ n. Define ρi1,...,ik and ρ ′

i1,...,ik
such that

ρi1,...,ik (z)!
k∏

j=1

pi j (z)

ρ ′
i1,...,ik

(z)!
k∑

j=1

ci j p′
i j
(z)

k∏

l=1
l 8= j

pil (z),

(57)

where ρ∅(z) ! 1 and ρ ′
∅(z) ! 0. Then our operator takes the following forms:

D (+1,+1, δc) = ρi1,...,ik (z)
d

dz
+ ρ ′

i1,...,ik
(z)

D (+1,−1, δc, ) = ρi1,...,ik (z)
(

b + (1 + z)
d

dz

)
+ ρ ′

i1,...,ik
(z)(1 + z)

D (−1,+1, δc, ) = ρi1,...,ik (z)
(

−a + (1 − z)
d

dz

)
+ ρ ′

i1,...,ik
(z)(1 − z)

D (−1,−1, δc, ) = ρi1,...,ik (z)
(

−(1 + z)a + (1 − z)b + (1 − z2)
d

dz

)
+ ρ ′

i1,...,ik
(z)(1 − z2)

(58)

where the index tuple (i j) contains index l if δcl = −1. We see these operators reduce to the standard Jacobi polynomial 
operators when the index tuple is empty. Hence:

D (+1,+1,+1) = d
dz

≡ Dm,

D (+1,−1,+1) = b + (1 + z)
d

dz
≡ Ds,

D (−1,+1,+1) = −a + (1 − z)
d

dz
≡ −D†

s ,

D (−1,−1,+1) = −(1 + z)a + (1 − z)b + (1 − z2)
d

dz
≡ −D†

m,

(59)

with Dm and Ds defined as in Appendix C of [4].
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Fig. 5. Sparsity diagram for generalized Jacobi differentiation operators (59) for weight function with a single additional linear factor. The operators act on 
column vectors of expansion coefficients from the left, with row m producing the mth expansion coefficient in the codomain basis. The adjoint operators 
have a transposed sparsity structure and swapped domain and codomain compared with the non-adjoint operators.

The bandwidth of each operator is one more than the degree of the ρ1,...,n(z) polynomial. We therefore see sparsity 
depends on the specific pi(z) that appear in the generalized Jacobi weight function. Each additional degree in the gener-
alized weight contributes an additional diagonal in the operator matrices. In Fig. 5 we plot the sparsity structure of the 
differentiation operators for a single first order augmenting polynomial.

To provide an example, in the case of stretched cylindrical coordinates with a parabolic height profile we have a single 
additional factor of degree one. Differentiation operators acting on the radial parts of the parabolic cylinder therefore have 
bandwidth two. Fig. 5 shows the sparsity structure for these operators. The stretched annulus with parabolic height function 
has two linear augmenting polynomials, and so differentiation operators have a bandwidth of three.

This sparsity is the key reason we developed the generalized polynomials. We use the polynomials to build a hierarchy 
of basis functions orthonormal with respect to the weighted volume element of specific curved geometries. Incorporating 
the volume element in the inner product means the basis functions naturally conform to geometric singularities. Not only 
are the basis functions well-behaved for representing arbitrary fields in the domain, but also their nodes don’t cluster near 
coordinate singularities [22,3,23]. This has clear benefits for the CFL condition in explicit time-stepping schemes.

3.5. Operator computation

The operator matrix entries Lm,n for a given operator L : (a,b, c) .→ (a + δa,b + δb, c + δc) are

Lm,n =
〈
LP (a,b,c)

n , P (a+δa,b+δb,c+δc )
m

〉

(a+δa,b+δb,c+δc)
. (60)

The three-term recurrence provides a stable method to evaluate the polynomials and their derivatives. We differentiate (40)
to obtain

P ′
n+1(z) = 1

βn

[
(z − αn)P ′

n(z) + Pn(z) − βn−1 P ′
n−1(z)

]
. (61)

In Section 3.2 we computed the quadrature nodes z j and weights w j such that

1∫

−1

dz w(a,b,c)(z) f (z) ≈
N−1∑

j=0

w(a,b,c)
j f (z j), (62)

where we have equality for f a polynomial of degree at most 2N − 1. We therefore compute Lm,n by evaluating the inner 
product (60) with the quadrature rule, using the three-term recurrence to compute the polynomials and their derivatives in 
the argument of the integral.

4. The gyroscopic bases

With the tools developed in Section 3 we now define a family of basis functions orthogonal in the stretched domain. 
Each basis function should be a Cartesian (x, y, z) polynomial expressed in the stretched coordinate system (t, φ, η). For 
this to be the case we note that

zl = ηlh(t)l = ηl(1 − t)
l
2 χo (1 + t)

l
2 χi h̃(t)l χh (63)

or, using our domain simplification assumption (χo, χi, χh) = (0, 0, 1) explained in Section 2.4,

zl = ηl h̃(t)l. (64)

Any gyroscopic polynomial of vertical degree l has an l-dependent prefactor so that it can factor into a Cartesian polynomial. 
In what follows we define the gyroscopic basis functions for the stretched cylinder and stretched annulus domains.
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4.1. Stretched cylinder bases

Recall the volume measure dV (12). We want to form a three-dimensional basis orthonormal under this measure. For 
standard Jacobi polynomials we know we maintain sparsity under differentiation by expressing the output of the derivative 
with incremented parameters (a + 1, b + 1). To that end we weight the volume element dV with the boundary polynomial

m(α)(t,η) !
(

1 − η2
)α

(1 − t)α h̃(t)2α . (65)

This factor multiplying the volume measure gives us access to a numerical parameter α > −1 that we let increment under 
differentiation, a key element to maintaining sparsity of discretized PDEs. Now define the weighted volume measure dµ(α)

by

dµ(α) ! 1
2π

4

S2
o

m(α)(t,η)dV

= 1
2π

(
1 − η2

)α
(1 − t)α h̃(t)2α+1 dφ dη dt

(66)

and inner product

〈 f , g〉dµ(α) !
∫

dµ(α) f g. (67)

This leads us to define the basis function as follows:

$
(α,σ )
m,l,k = eimφ(1 + t)

|m|+σ
2 h̃(t)l P (α,α)

l (η) Q
(
α,|m|+σ ,2l+2α+1; h̃

)

k (t). (68)

Here Q (a,b,c; p)
k denotes the degree-k generalized Jacobi polynomial orthogonal under the weight (1 − t)a(1 + t)b p(t)c . These 

basis functions are orthonormal with respect to dµ(α) since

〈
$

(α,σ )
m,l,k ,$

(α,σ )
m′,l′,k′

〉

dµ(α)
= 1

2π

2π∫

0

dφ e−i
(
m−m′)φ

1∫

−1

dη
(

1 − η2
)α

P (α,α)
l (η)P (α,α)

l′ (η)

×
1∫

−1

dt (1 − t)α (1 + t)|m|+σ h̃(t)2l+2α+1

Q
(
α,|m|+σ ,2l+2α+1; h̃

)

k (t)Q
(
α,|m|+σ ,2l+2α+1; h̃

)

k′ (t)

= δm,m′ δl,l′ δk,k′ .

(69)

The parameter σ is the spin weight of the basis as described in Section 2.5. A key feature of these basis functions is that 
they conform to any coordinate singularities in the domain. The full cylinder has a coordinate singularity at s = 0. The basis 
resolves this singularity by using the t coordinate, a function of s2, in conjunction with the (1 + t)

m
2 ∝ sm prefactor for 

azimuthal mode eimφ . The α parameter creates a mechanism to maintain sparsity under differential operators. Just as the 
generalized Jacobi operators increment and decrement their parameters - see Section 3.4 - so will calculus operators applied 
to the gyroscopic basis functions. The parameter α enables proper incrementing and decrementing so that the hierarchy of 
bases fits together in a sparse way. We must also ensure all terms in an equation live in the same Hilbert space, which we 
achieve by judicious conversion of the α parameter for each term.

In Fig. 6 we display some select gyroscopic modes for a cylinder with parabolic height. The index l denotes the vertical 
complexity while the index k denotes the radial complexity.

4.2. Stretched annulus bases

We proceed analogously to the stretched cylinder case, using the appropriate volume element. We weight the volume 
element dV with the boundary polynomial

m(α)(t,η) !
(

1 − η2
)α (

1 − t2
)α

h̃(t)2α, (70)

where the only difference compared to the cylinder case in (65) is an additional (1 + t)α factor corresponding to the inner 
annulus boundary at s = Si . Define the weighted measure dµ(α) for α > −1 such that
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Fig. 6. Meridional φ = 0 slices of the gyroscopic basis $
(
− 1

2 ,0
)

m,l,k for a parabolic cylinder, h(s) = 1
5

(
1 + 4s2)

. The left half (x < 0) of each subplot is the 
physical z domain, while the right half (x > 0) is the equivalent stretched η domain. The index (m, l, k) appears as text in each subplot. Rows correspond to 
constant (m, l) choices while columns correspond to constant k. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

dµ(α) ! 1
2π

4

S2
o − S2

i

(
1 − η2

)α (
1 − t2

)α
h̃(t)2α dV

= 1
2π

(
1 − η2

)α (
1 − t2

)α
h̃(t)2α+1 dφ dη dt

(71)

and induced inner product 〈·, ·〉dµ(α) .
Though there are no radial coordinate singularities we still insert an sm prefactor in front of our basis functions. This 

guarantees the basis functions match the cylinder case as Si → 0 and importantly prevents node clustering around s = Si

for small Si . We note

2s2 = S2
i (1 − t) + S2

o(1 + t) (72)

and define

s̃(t) =
(

S2
i (1 − t) + S2

o(1 + t)
) 1

2
(73)

Now we define the gyroscopic basis as follows:

ϒ
(α,σ )
m,l,k = eimφ s̃(t)|m|+σ h̃(t)l P (α,α)

l (η)Q
(
α,α,2l+2α+1,|m|+σ ; h̃, s̃

)

k (t), (74)

so that
〈
ϒ

(α,σ )
m,l,k ,ϒ

(α,σ )
m′,l′,k′

〉

dµ(α)
= δm,m′ δl,l′ δk,k′ . (75)

For α = 0 the annulus basis functions limit to the cylinder ones as Si → 0:

lim
Si→0

ϒ
(0,σ )
m,l,k = $

(0,σ )
m,l,k . (76)
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Fig. 7. Radial part of the cylinder and annulus basis functions for various Si , (α, σ ) = (0, 0). Observe that for small Si the bases approach those of the full 
cylinder Si = 0.

Table 1
Radial coordinate and the generalized Jacobi parameters for cylindrical and annular geometries.

Geometry Radial Coordinate Radial Jacobi Parameters for Q (...)
k (t)

Cylinder t = 2
(

s
So

)2
− 1

(
α, |m| + σ ,2l + 2α + 1; h̃

)

Annulus t = 1
S2

o −S2
i

(
2s2 −

(
S2

o + S2
i

)) (
α,α,2l + 2α + 1, |m| + σ ; h̃, s̃

)

We plot the radial generalized Jacobi polynomial in Fig. 7, where we see visual proof of the limiting case. In particular, 
Fig. 7 shows curves for azimuthal mode m = 10. All curves decay like sm = s10 as s → 0 independent of whether s = 0 is 
in the domain. This ensures the radial nodes are clustered well away from the s = Si boundary when Si is small, making 
the resolution more uniform throughout the domain. Mahajan [24] explored Zernike-type polynomials for the annulus with 
similar Si → 0 limiting properties.

4.3. Basis function summary

In Table 1 we summarize the differences in the radial coordinate and generalized Jacobi parameters between the cylin-
drical and annular geometries. With the definition (73) of s̃(t) and the appropriate radial Jacobi parameters, outlined in 
Table 1, we have the general form of the gyroscopic basis,

&
(α,σ )
m,l,k (t,φ,η) = eimφ s̃(t)|m|+σ h̃(t)l P (α,α)

l (η)Q (...)
k (t), (77)

which applies to both cylindrical and annular geometries.

4.4. Half domains

Using the ζ coordinate as in Section 2.3 we can implement an orthonormal basis hierarchy for the upper-half domains. 
Recall that to use the ζ coordinate the domain must have no equatorial singularities and no square root around h̃. For both 
the full cylinder and annulus we simply replace the Jacobi polynomials in η with polynomials in ζ while maintaining the 
rest of the basis structure. In Fig. 8 we plot a few upper-half domain annulus modes.

4.5. Field expansions

We have now defined the hierarchy of gyroscopic bases to discretize scalar and vector fields in stretched cylindrical and 
annular domains. As a reminder, we will expand our fields with basis functions &, where & denotes either the cylinder 
basis $ or the annulus basis ϒ. Scalar fields decompose into their gyroscopic polynomial components:

f (t,φ,η) =
∞∑

m=−∞

∞∑

l=0

∞∑

k=0

&
(α,0)
m,l,k (t,φ,η) F̂ (α)

m,l,k (78)

where we freely specify α > −1. Vector fields decompose into a sum of their spin components:

u(t,φ,η) =
∑

σ

êσ

∞∑

m=−∞

∞∑

l=0

∞∑

k=0

&
(α,σ )
m,l,k (t,φ,η)Û (α,σ )

m,l,k . (79)
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Fig. 8. Meridional φ = 0 slices of the gyroscopic basis ϒ
(
− 1

2 ,0
)

m,l,k for a parabolic annulus with radii [0.25, 1.0]. The left half (x < 0) of each subplot is the 
physical z domain, while the right half (x > 0) is the stretched ζ domain. The index (m, l, k) appears as text in each subplot. Rows correspond to constant 
(m, l) choices while columns correspond to constant k.

The coefficient vectors F̂ (α)
m,l,k and Û (α,σ )

m,l,k are the expansion coefficients in the gyroscopic basis. Using the generalized Jacobi 
polynomial algebra of Section 3 we obtain sparse matrix representations of calculus operators acting on these coefficient 
vectors.

We compute the expansion coefficients using the inner product induced by dµ(α):

F̂ (α)
m,l,k =

〈
f ,&(α,0)

m,l,k

〉

dµ(α)
(80)

and

Û (α,σ )
m,l,k =

〈
e∗
σ · u,&

(α,σ )
m,l,k

〉

dµ(α)
. (81)

We approximate the integrals in the inner products using the Jacobi-(α, α) quadrature rule in the vertical coordinate fol-
lowed by the appropriate generalized Jacobi quadrature rule in the radial coordinate. This process utilizes bases’ nested 
orthogonality to sift out the radial dependence attached to each azimuthal and vertical mode.

5. Discretization

We now describe how to use the gyroscopic basis functions to discretize PDEs in the stretched cylindrical and annular 
domains. This strategy is completely parallel to that developed for the Spherinder geometry [1]. In fact, the gyroscopic 
bases for cylindrical domains are a direct generalization of the spherinder basis. We see the gyroscopic basis reduces to the 
spherinder basis when we choose height function h(t) = √

1 − t .

5.1. Operators

Generalized Jacobi polynomial algebra enables sparse matrix implementations of vector calculus. Operators map between 
the (l,k) indices of the basis functions as well as (σ ,α). When an operator maps between scalars and vectors, like the scalar 
gradient or vector divergence, we see a natural decomposition into the three components: a σ -raising operator, a σ -lowering 
operator and a σ -preserving operator.
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5.1.1. Regularity
Paralleling [1], we describe the regularity structure of fields using the regularity space of degree m defined by

Reg(m) =
{

f : [0,1] → C s.t. f (s) ∼ s|m| F
(

s2
)

as s → 0
}

, (82)

where F (s2) is any even function of s that is analytic in neighborhood of s = 0. Then the degree m azimuthal mode of 
a scalar field lives in Reg(m) while vector fields decompose into the direct sum of three regularity spaces, Reg(m − 1) ⊕
Reg(m) ⊕ Reg(m + 1) [3], corresponding to the spin components of the vector field.

We now define a hierarchy of Hilbert spaces indexed by real parameter α > −1:

Hα(m) =
{

f ∈ Reg(m) s.t. ‖ f ‖dµ(α) < ∞
}
. (83)

Differential operators map between these Hilbert spaces. Generalized Jacobi polynomial algebra provides a sparse represen-
tation of these operators acting on the gyroscopic bases.

These definitions exactly match those of [1]. The regularity structure at s = 0 is identical in both cases and hence our 
definition of Hα(m) matches up to the definition of the norm ‖·‖dµ(α) .

5.1.2. Differential operators
In [1] we defined the gradient, divergence and curl operators in a coordinate-invariant way. When we projected vector 

fields onto the spinor basis we saw these differential operators split into three fundamental parts: a spin-raising operator, 
a spin-lowering operator and a spin-preserving operator. Because the generalized gyroscopic bases have the same regularity 
structure as in the spherinder we observe the same underlying structure.

We now define the fundamental differential operators Dδ for δ ∈ {±1,0} such that

Dδ
(α,σ ) : Hα(m + σ ) .→ Hα+1(m + σ + δ), (84)

where

Dδ
(α,σ ) !∇δ =

{ 1√
2

(
∂
∂ S ∓ m

S

)
δ = ±1,

∂
∂ Z δ = 0.

(85)

To compute the operator coefficients we need the constants γ (α)
l , δ(α)

l and λ(α)
l such that

P (α,α)
l (η) = γ (α)

l P (α+1,α+1)
l (η) − δ

(α)
l P (α+1,α+1)

l−2 (η)

d
dη

P (α,α)
l (η) = λ

(α)
l P (α+1,α+1)

l−1 (η).
(86)

The fundamental operators in the full cylinder then have the following structure:

So

2
D+

(α,σ )$
(α,σ )
m,l,k = $

(α+1,σ+1)
m,l,• γ (α)

l

[
Ih D(+1,+1,+1)

]

•,k

− $
(α+1,σ+1)
m,l−2,• δ

(α)
l

[
I†

h D(+1,+1,−1)

]

•,k

So

2
D−

(α,σ )$
(α,σ )
m,l,k = $

(α+1,σ−1)
m,l,• γ (α)

l

[
Ih D(+1,−1,+1)

− $
(α+1,σ−1)
m,l−2,• δ

(α)
l

[
I†

h D(+1,−1,−1)

]

•,k

D0
(α,σ )$

(α,σ )
m,l,k = $

(α+1,σ )
m,l−1,• λ

(α)
l

[
Ia

]

•,k
,

(87)

where Ia is embedding with respect to the Jacobi a parameter, Ih is embedding with respect to the height polynomial 
h̃ defined in Section 3.3, and the three-argument D the generalized Jacobi differential operator defined in Section 3.4. 
Analogous to Einstein summation notation, we sum over repeated dots • in a product expression.

The annulus operators have a near-identical structure, changed only to account for the spin-weight polynomial propor-
tional to s moving to the final position:
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S2
o − S2

i

2
D+

(α,σ )ϒ
(α,σ )
m,l,k = ϒ

(α+1,σ+1)
m,l,• γ (α)

l

[
Ih D(+1,+1,+1,+1)

]

•,k

− ϒ
(α+1,σ+1)
m,l−2,• δ

(α)
l

[
I†

h D(+1,+1,−1,+1)

]

•,k

S2
o − S2

i

2
D−

(α,σ )ϒ
(α,σ )
m,l,k = ϒ

(α+1,σ−1)
m,l,• γ (α)

l

[
Ih D(+1,+1,+1,−1)

]

•,k

− ϒ
(α+1,σ−1)
m,l−2,• δ

(α)
l

[
I†

h D(+1,+1,−1,−1)

]

•,k

D0
(α,σ )ϒ

(α,σ )
m,l,k = ϒ

(α+1,σ )
m,l−1,• λ

(α)
l

[
Ia Ib

]

•,k
,

(88)

where Ib is embedding with respect to the Jacobi b parameter.
In the upper-half geometry the spin-preserving operators, corresponding to z-differentiation, are multiplied by a factor 

of two, a reflection of the ζ coordinate having half the physical range of the η coordinate. In addition, the spin-modifying 
operators map an l .→ l − 1 component which for the cylinder takes the form

〈
D+

(α,σ )$
(α,σ )
m,l,k ,$

(α+1,σ+1)
m,l−1, j

〉

dµ(α+1)
= −2λ

(α)
l

[
H′ Ia Ib

]

j,k
〈
D−

(α,σ )$
(α,σ )
m,l,k ,$

(α+1,σ−1)
m,l−1, j

〉

dµ(α+1)
= −2λ

(α)
l

[
H′ Ia I†

b

]

j,k
,

(89)

where we define H′ = d
dt h̃(t) as multiplication by the derivative of the height function. For the annulus we have

〈
D+

(α,σ )ϒ
(α,σ )
m,l,k ,ϒ

(α+1,σ+1)
m,l−1, j

〉

dµ(α+1)
= −2λ

(α)
l

[
H′ Ia Ib Is

]

j,k
〈
D−

(α,σ )ϒ
(α,σ )
m,l,k ,ϒ

(α+1,σ−1)
m,l−1, j

〉

dµ(α+1)
= −2λ

(α)
l

[
H′ Ia Ib I†

s

]

j,k
,

(90)

where Is is embedding with respect to the s̃ polynomial.
Just by matching spin weight we can easily construct traditional calculus operators acting on the basis functions from 

the fundamental differential operator Dδ . We have the scalar gradient

ê∗
+ · ∇&

(α,0)
m,l,k = D+

(α,0) &
(α,0)
m,l,k

ê∗
− · ∇&

(α,0)
m,l,k = D−

(α,0) &
(α,0)
m,l,k

ê∗
0 · ∇&

(α,0)
m,l,k = D0

(α,0) &
(α,0)
m,l,k ,

(91)

and the divergence

∇ ·
(

ê+&
(α,+)
m,l,k

)
= D−

(α,+) &
(α,+)
m,l,k

∇ ·
(

ê−&
(α,−)
m,l,k

)
= D+

(α,−) &
(α,−)
m,l,k

∇ ·
(

ê0&
(α,0)
m,l,k

)
= D0

(α,0) &
(α,0)
m,l,k .

(92)

Note that we must keep careful track of α and σ as we apply the Dδ operators. Each differential operator raises α by one 
and modifies σ according to δ. Hence the scalar Laplacian L(α) : Hα(m) .→ Hα+2(m) takes the form

L(α)&
(α,0)
m,l,k ! ∇2&

(α,0)
m,l,k = ∇ ·

(
∇&

(α,0)
m,l,k

)

=
(
D−

(α+1,+1)D
+
(α,0) + D+

(α+1,−1)D
−
(α,0) + D0

(α+1,0)D
0
(α,0)

)
&

(α,0)
m,l,k .

(93)

The fundamental differential operators carve the path to computing the vector curl. We first compute the output spin 
components of the curl acting on each spin component of a general vector separately. This reveals the spin coupling struc-
ture of the operator as well as scale factors for each coupling, here ±i. We then form the full operator by selecting the 
appropriate Dδ for each spin coupling. The end result is
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Fig. 9. Sparsity structure for the fundamental differential operators in cylindrical geometry with a parabolic height function. The input mode is indicated 
by the square at location (3l, 3k) = (0, 0). The vertical axis 3l is the change in vertical degree l for the output of the operator, while the horizontal axis 3k
is the change in horizontal degree k. Plus symbols indicate coupling for the δ = +1 operator, minus symbols indicate coupling for δ = −1 and disks indicate 
δ = 0 coupling.

Fig. 10. Sparsity structure for the fundamental differential operators in annular geometry with a parabolic height function. Bandwidth is one greater than 
that of the cylindrical domain of Fig. 9 despite matching height functions.

∇ ×
(

ê+&
(α,+)
m,l,k

)
= i ê+D0

(α,+)&
(α,+)
m,l,k − i ê0D−

(α,+)&
(α,+)
m,l,k

∇ ×
(

ê−&
(α,−)
m,l,k

)
= −i ê0D+

(α,−)&
(α,−)
m,l,k + i ê−D0

(α,−)&
(α,−)
m,l,k

∇ ×
(

ê0&
(α,0)
m,l,k

)
= −i ê+D+

(α,0)&
(α,0)
m,l,k + i ê−D−

(α,0)&
(α,0)
m,l,k .

(94)

We define the vector Laplacian L(α,σ ) : Hα(m + σ ) .→ Hα+2(m + σ ) by

L(α,σ )&
(α,σ )
m,l,k ! ê∗

σ · ∇2êσ &
(α,σ )
m,l,k . (95)

We specifically chose to represent vectors in the spinor basis so that this operation is diagonal in the spin components. 
Using the gradient, divergence and curl operators we compute the L(α,σ ) with

∇2u = ∇ (∇ · u) − ∇ × ∇ × u. (96)

We plot the sparsity structure of the three fundamental differential operators for the cylinder in Fig. 9 and the annulus 
in Fig. 10. The spin weight increment is given by the symbol in the figure - a plus indicates δ = +1, a minus indicates 
δ = −1 and a circle indicates δ = 0. Observe the vertical ζ coordinate of the half domains generates an additional l .→ l − 1
row for δ = ±1 not present in the full geometry. The annulus domain has bandwidth one greater than the cylinder domain 
due to its additional linear factor in the generalized Jacobi weight function for the radial expansion.

5.1.3. Coordinate vector operators
Spin weight again guides operator definition for projection and coordinate vector multiplication just as for differential 

operators. Multiplication by the radial s = s ̂eS vector takes the form

s $
(α,0)
m,l,k = So

2
ê+$

(α,+)
m,l,•

[
Ib

]

•,k
+ So

2
ê−$

(α,−)
m,l,•

[
I†

b

]

•,k
(Cylinder)

s ϒ
(α,0)
m,l,k = 1

2
ê+ϒ

(α,+)
m,l,•

[
Is

]

•,k
+ 1

2
ê−ϒ

(α,−)
m,l,•

[
I†

s

]

•,k
(Annulus),

(97)

showing the structure is identical when taking into account the spin weight factor is 1 + t for cylinders and s̃ for annuli.
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Fig. 11. Sparsity structure for the coordinate vector operators in cylindrical geometry with a parabolic height function.

Multiplication by the axial z = z ê Z vector produces a vector in the ê0 direction. Recall that β(α)
l is the off-diagonal term 

in the three-term recurrence for Jacobi-(α, α) polynomials. Then

z &
(α,0)
m,l,k = ê0

(

β
(α)
l &

(α,0)
m,l+1,•

[
I2

h

]

•,k
+ β

(α)
l−1&

(α,0)
m,l−1,•

[
I† 2

h

]

•,k

)

. (98)

With the upper-half geometry we instead have

z &
(α,0)
m,l,k = 1

2
ê0

(

β
(α)
l &

(α,0)
m,l+1,•

[
I2

h

]

•,k
+ β

(α)
l−1&

(α,0)
m,l−1,•

[
I† 2

h

]

•,k
+ &

(α,0)
m,l,•

[
I†

h Ih

]

•,k

)

, (99)

which is identical to (98) except for the scale factor and l .→ l term.
Dot products with the s and z vectors produce a spin-0 scalar field. The operator structure is the same as (97) and (98)

except spin components move in the opposite directions. That is, Ib .→ I†
b in the cylinder and Is .→ I†

s in the annulus.
We plot the sparsity structure of the coordinate vector operators for the cylinder domain in Fig. 11. The s multiplication 

operator does not change the l degree, while that z operator maps l .→ l ± 1 in the full domain. Again the vertical ζ
coordinate of the half domain forces an additional l .→ l coupling not present in the full geometry.

5.1.4. Conversion
The last remaining tool we need is the α-conversion operator. We define

I(α,σ ) : Hα(m + σ ) .→ Hα+1(m + σ ) (100)

via

I(α,σ )$
(α,σ )
m,l,k ! $

(α,σ )
m,l,k

= $
(α+1,σ )
m,l,• γ (α)

l

[
Ia I2

h

]

•,k
− $

(α+1,σ )
m,l−2,• δ

(α)
l

[
Ia I† 2

h

]

•,k
(Cylinder)

I(α,σ )ϒ
(α,σ )
m,l,k ! ϒ

(α,σ )
m,l,k

= ϒ
(α+1,σ )
m,l,• γ (α)

l

[
Ia Ib I2

h

]

•,k
− ϒ

(α+1,σ )
m,l−2,• δ

(α)
l

[
Ia Ib I† 2

h

]

•,k
(Annulus).

(101)

We can now convert expansion coefficients for functions in Hα(m) to the expansion coefficients for that same function in 
the Hα+1(m) basis. This is necessary when forming equations that equate derivatives to function values; we always need 
the equations to live in a single Hα(m) space.

The embedding adjoint I†
(α,σ ) : Hα(m +σ ) .→ Hα−1(m +σ ) acts to multiply by the α-weighted polynomial of the dµ(α)

measure:

I†
(α,σ )$

(α,σ )
m,l,k !

(
1 − η2

)
(1 − t) h̃(t)2$

(α,σ )
m,l,k

= $
(α−1,σ )
m,l,• γ (α)

l

[
I†

a I† 2
h

]

•,k
− $

(α−1,σ )
m,l+2,• δ

(α)
l

[
I†

a I2
h

]

•,k
(Cylinder),

I†
(α,σ )ϒ

(α,σ )
m,l,k !

(
1 − η2

)(
1 − t2

)
h̃(t)2ϒ

(α,σ )
m,l,k

= ϒ
(α−1,σ )
m,l,• γ (α)

l

[
I†

a I†
b I† 2

h

]

•,k
− ϒ

(α−1,σ )
m,l+2,• δ

(α)
l

[
I†

a I†
b I2

h

]

•,k
(Annulus).

(102)
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Fig. 12. Sparsity structure for the conversion operators in cylindrical geometry with a parabolic height function in s, which is linear in t . Because the 
operators are adjoints of each other the sparsity structures are negated in both 3l and 3k, i.e. 3l .→ −3l and 3k .→ −3k.

Fig. 13. Sparsity structure for boundary evaluation at t = t0 with (Lmax, Nmax) = (5,11). The row index corresponds to vertical degree l.

Here we see the maximum vertical degree increase l .→ l + 2 as appropriate for multiplication by 1 − η2. We demonstrate 
the sparsity structure of the conversion operators for the cylinder domain in Fig. 12.

5.1.5. Triangular truncation
For the conversion operator Iα to be an exact identity operator we need to triangularly truncate the radial expansion as 

a function of vertical degree. Observe in the sparsity diagram for linear h̃ the l .→ l − 2 component has a k .→ k + 2 piece. 
This defines our radial truncation:

N(l) = Nmax − l × degree
(

h̃
)
, (103)

where N(l) denotes the maximum radial degree for vertical degree l and Nmax is the radial degree for l = 0. Then since 
N(l − 2) = N(l) + 2 the operator is closed on our truncated expansion. We employ l-dependent triangular truncation for all 
expansions using this basis, where truncation becomes steeper with increasing degree of h̃.

5.2. Boundary evaluation

Evaluating a field at a constant radius t = t0 is straightforward. We simply sum the radial series in k evaluated at t0 for 
each l. For a field to vanish identically at t = t0 we must have, for each m and l,

N(l)∑

k=0

Q (··· )
k (t0) F̂ (α,σ )

m,l,k = 0 (104)

We plot the sparsity structure of the t = t0 boundary evaluation operator in Fig. 13. We sort coefficients F̂ (α,σ )
m,l,k so that k is 

the fastest index, then l, then m. Notice the structure is block diagonal - the radial coefficients are weighted and summed 
for each l, corresponding to the rows of the operator.

Evaluating at a constant stretched height η = η0 takes a bit more work. For each k we want to sum the series in l up 
to maximal vertical degree Lmax, but the radial generalized Jacobi parameters depend on l, preventing a straightforward 
sum reversal. To reverse the sums we convert the l-dependent h̃ parameter to the common value Lmax + 2α + 1 using 
combinations of Ih and I†

h . Then to enforce a field vanishes at η = η0 we have, for each m and k,

Lmax∑

l=0

P (α,α)
l (η0)

N(l)∑

n=0

[
(Ih)

Lmax−l
(
I†

h

)l
]

k,n
F̂ (α,σ )

m,l,n = 0. (105)

In contrast to the t = t0 operator we see dense fill-in in the sparsity structure for evaluation at η = η0, shown in Fig. 14. 
In this case each row corresponds to a different k index, with summation over l that forces dense coupling of the basis 
functions.
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Fig. 14. Sparsity structure for boundary evaluation at η = η0 (i.e., z = h(s)) with (Lmax, Nmax) = (5, 11). The row index corresponds to radial degree k while 
each block corresponds to increasing l.

6. The damped inertial waves test problem

We now demonstrate the power of the gyroscopic bases by exploring the damped inertial waves eigenproblem. We 
choose a few different geometries that describe the Coreaboloid [2] at various rotation rates. The upper equipotential surface 
of the Coreaboloid forms a paraboloid with steepness and depth parameterized by the rotation rate and volume of the 
fluid. We match the initial Coreaboloid experiment rotation rates and apply the gyroscopic discretization method to both 
cylindrical and annular domains.

6.1. Damped inertial waves discretization

The damped inertial wave equations model the exponential decay in time of inertial modes for rotating fluids with 
viscosity. This system is a stepping stone toward the full convection problem which is thermally forced at the boundaries. 
We solve the nondimensional Navier-Stokes equations (NSE)

∂t u + 2êz × u = −∇p + E ∇2u

∇ · u = 0
(106)

in a rotating coordinate frame subject to no-slip boundary conditions u = 0 at all bounding surfaces. Smallness of the Ekman 
number E ; 1 indicates rotational forces dominate over viscous forces. For convenience the Ekman number is defined as 
E = ν

25S2
o

where ν denotes the fluid viscosity and 5 the rotation rate. Length, time and velocity are rescaled by So , 5, and 
5So respectively. We substitute ∂t .→ λ and solve for the generalized eigenvalues λ of the discretized system.

To enforce the no-slip boundary condition we multiply the velocity field components by the boundary polynomial 
m(1)(t, η) defined in (65) for the cylinder and (70) for the annulus. This is a form of Galerkin recombination of the ba-
sis functions and is equivalent to the I†

(α,σ ) operator from Section 5.1.4. Unsurprisingly, the boundary polynomial m(1)(t, η)

vanishes on the boundary of the domain t = ±1, η = ±1, so fields recombined in this way explicitly satisfy the boundary 
condition. We therefore define our velocity coefficient vectors Û (0,σ ) in terms of the auxiliary variable V̂ (1,σ ) via

Û (0,σ ) ! I†
(1,σ ) V̂ (1,σ ). (107)

The generalized eigensystem takes the form

(
Lbulk Lproj

)(
X
τ̂

)
= λ

(
Mbulk Mproj

)(
X
τ̂

)
(108)

where

X =





I†
(1,+) V̂ (1,+)

I†
(1,−) V̂ (1,−)

I†
(1,0) V̂ (1,0)

P̂ (1)




, Mbulk =





I(1,+)I(0,+) 0 0 0
0 I(1,−)I(0,−) 0 0
0 0 I(1,0)I(0,0) 0
0 0 0 0




, (109)

Lbulk =





E L(0,+) − 2i I(1,+)I(0,+) 0 0 −D+
(1,0)

0 E L(0,−) + 2i I(1,−)I(0,−) 0 −D−
(1,0)

0 0 E L(0,0) −D0
(1,0)

D−
(0,+) D+

(0,−) D0
(0,0) 0




, (110)
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and

Lproj = diag
(
P(2,+),P(2,−),P(2,0),P(1,0)

)
, Mproj = 0. (111)

We solve this generalized eigenproblem for unknowns 
(

V̂ (1,σ ), P̂ (1), τ̂
)
, where τ̂ are the Lanczos-tau coefficients; see Sec-

tion 6.1.1 for an introduction to these additional variables and corresponding projection operators P(α,σ ) .
The momentum equations live in H2(|m| + σ ) while the divergence equations live in H1(|m|). The cascaded conversion 

operators in the M matrix and in the Coriolis terms make the momentum equations consistent with α = 2. We choose α = 1
for both the velocity and pressure field. The pressure gradient then lives in α = 2 along with the rest of the momentum 
equation, so no conversions are necessary.

We solve each of these eigenproblems using the SuperLU sparse linear solver [25,26] by computing the 500 modes 
closest to λ = 0. In all test problems we use the resolution (Lmax, Nmax) = (40, 160), which yields eigenvalues that are 
stable with respect to increases in resolution, indicating sufficient resolution.

In the preceding paper [1] we perform a convergence analysis for the inviscid inertial waves problem in the sphere. 
This eigenproblem has analytic solutions that we compare to our computed solutions. In the present case with polynomial 
height functions there are no analytic solutions known to the authors. We therefore refer the reader to [1] for a detailed 
convergence study as well as a comparison with existing spectral codes.

6.1.1. Projection operators
Each P(α,σ ) matrix projects the tau polynomials onto an equation living in Hα(|m| + σ ). We define these projections as 

the highest radial and vertical modes of the α-conversion operator:

P(α,σ ) ! I(α−1,σ )[:], (112)

where [:] denotes slicing the highest (most oscillatory) modes in the s and η directions. The actual number of modes sliced 
depends on the domain - since the full cylinder only has a single radial boundary we take only the final radial mode. The 
annulus has two radial boundaries; this requires slicing the final two radial coefficients for each vertical degree. In both 
domains we have boundaries at the top and bottom so we always slice the final two vertical modes.

Note that other choices of projections are possible. For example we could define

P(2,σ ) !
(
I(1,σ )I(0,σ )

)
[:] (113)

or even

P(α,σ ) ! I[:], (114)

where the no-subscript I : Hα(|m| +σ ) .→ Hα(|m| +σ ) is the identity operator. These choices lead to non-trivial numerical 
differences in the solution and the optimal choice typically requires trial and error.

6.2. Fundamental mode vs. rotation rate in the coreaboloid

The Coreaboloid [2] refers to a rotating fluid layer with a free surface confined to an annular container. The rotation 
rate determines the steepness of the parabolic equipotential upper surface and therefore the geometry of the problem. We 
describe this free surface using parameters from the Coreaboloid paper:

hcore(s) = h0 + 52

2g
s2, h0 = H N R − 52 S2

o

4g
. (115)

The experimental apparatus has values Si = 10.2 cm, So = 37.25 cm and H N R = 17.08 cm, and g = 9.81 m/s2. To improve 
numerical conditioning of the algorithm we nondimensionalize height and radius by So so that we have s ∈ [0.27, 1], 
H N R/So = 0.46 and

h(s) = 1
So

hcore(So s) = 1
So

(
h0 + 52 S2

o

2g
s2

)
. (116)

This rescaling keeps the height function bounded near one. Large dynamic ranges of h cause loss of precision when com-
puting the three-term recurrence of the gyroscopic polynomials. For vertical degree l the basis functions have a prefactor of 
h(t)l . This compounds largeness in h, leading to inaccuracy in the computed operators and solution. Proper nondimension-
alization - namely rescaling lengths with So - avoids this issue.

In all experiments we set m = 14 and E = 10−5. Fig. 15 shows the dependence of the critical mode on the rotation 
rate. Fig. 16 plots the fundamental pressure mode for select geometries. Mode spiraling is evidenced by pro- or retrograde 
curving of contour lines of the pressure field as s increases from the inner to outer domain wall. This is apparent in the 64 
RPM equatorial slice of Fig. 16 (third column), which exhibits a prograde spiral.
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Fig. 15. Fundamental eigenvalue in the Coreaboloid for various rotation rates, measured in rotations per minute (RPM), with m = 14 and E = 10−5.

Fig. 16. Fundamental pressure mode in the Coreaboloid for m = 14 and E = 10−5 at various rotation rates viewed from the side, i.e. a meridional cross-
section (top row), and from above (bottom row). The geometry becomes singular above 66 RPM where the height at the inner radius vanishes. We mark 
the nondimensionalized non-rotating height HN R/So that each surface intersects at s = 1/

√
2. The rotational Froude number F r5 = 52 So

g measures the 
relative importance of the centrifugal force and gravity. As the rotation rate increases the upper surface of the domain steepens. We here see the spiraling 
strengthen along with this increase in rate.

6.3. Fundamental mode vs. eccentricity in the spheroid

We now compute the fundamental eigenmode of the damped inertial waves problem in an oblate spheroid. We compute 
the solution for a range of eccentric spheres with height function

h(s) = H

√

1 −
(

s
So

)2

. (117)
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Fig. 17. Fundamental eigenvalue in the oblate spheroid for various heights H , where m = 14 and E = 10−5.

Fig. 18. Fundamental pressure mode in the oblate spheroid for select heights H . The mode is localized at the equator for highly eccentric (low H) spheroids. 
As H increases the mode migrates into the bulk of the fluid.

As above we set m = 14 and E = 10−5 for all problems. In Fig. 17 we show the complex eigenfrequency λ as a function of 
the height H . Fig. 18 demonstrates the pressure field of the mode at three select heights.

6.4. Fundamental mode vs. inner radius

We compute the fundamental mode for a fixed height profile as we vary the inner radius, holding constant both m = 14
and E = 10−5. We investigate both the Coreaboloid geometry at 64 RPM as well as the sphere with an inner cylinder along 
the z-axis excised. In both cases the fundamental mode is confined away from the central axis. This means its frequency 
is relatively independent of the inner radius. Fig. 19 plots the fundamental pressure mode for select inner radii in the 
Coreaboloid and Fig. 20 plots it for the sphere.

7. Conclusions

Motivated by the spatial anisotropy induced by rotating flows we introduce gyroscopic coordinate systems and corre-
sponding orthogonal 3D bases for functional approximations in stretched cylinders and annuli. The coordinate systems are 
tailored to gyroscopically aligned dynamics upon specification of the height function z = h(s). For polynomial-type h(s) the 
method defines a natural hierarchy of bases that permit the sparse discretization of PDEs and hence efficient, fast numerical 
computations.

The volume element of the gyroscopic coordinate system leads to a generalized Jacobi polynomial weight function. To 
proceed we defined generalized Jacobi polynomials with augmenting polynomial factors specified by h(s). Analogous to 
the Jacobi case we found sparse embedding and differential operators that map polynomials from one set of generalized 
parameters to another, each parameter differing by an integer. We developed efficient tools to calculate the polynomials and 
operator coefficients. Importantly, the Christoffel-Darboux formulation for computing the three-term recurrence relations 
provides a hierarchical means of calculating the polynomials. In this way we compute all recurrences for a problem with 
fixed azimuthal order m in O(N2) operations rather than O(N3) using standard techniques.

With coordinate system and generalized Jacobi polynomials in hand we demonstrate how to construct the gyroscopic 
bases. Because we used the volume element to define our basis the polynomials themselves are singularity free on their 

25



A.C. Ellison and K. Julien Journal of Computational Physics 489 (2023) 112268

Fig. 19. Fundamental pressure mode in the Coreaboloid rotating at 64 RPM for select inner radii viewed from the side (top row) and from above (bottom 
row). Spiraling is not evident in the modes with smaller inner radius Si .

Fig. 20. Fundamental pressure mode in the sphere for select inner radii viewed from the side (top row) and from above (bottom row). As in Fig. 16 we 
see evidence of spiraling. In these cases the spiraling is retrograde rather than prograde in the upper-half geometry. This is because the upper-half pressure 
modes are even in degree, while the sphere modes are odd. The different symmetries about z = 0 lead to the two different spiraling behaviors.

domain. We chose particular coordinate-dependent prefactors so that the polynomials are truly Cartesian (x, y, z) polyno-
mials expressed in the gyroscopic coordinate system. We found sparse differential operators mapping between bases in the 
hierarchy to implement tensor calculus for PDEs occurring in fluid dynamics. We demonstrated their utility by solving the 
classical test eigenproblem of damped inertial waves in various domains.

The Gyropoly python package, available at https://github .com /acellison /gyropoly, contains tools for computing with gen-
eralized Jacobi polynomials and scripts for reproducing all examples from this paper. The python code provides a convenient 
interface for computing with generalized Jacobi polynomials. On top of this library we build the gyroscopic bases and asso-
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ciated calculus operators. These tools are building blocks much in the same spirit as recent numerical platforms such as the
Dedalus software package [27].
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Appendix A. Three-term recurrence for quadratic augmenting factors

Define

w(a,b,c)(x) = (1 − x)a(1 + x)b
(

x2 + y2
)c

w(a,b,c,d)(x) = (1 − x)a(1 + x)b(iy − x)c(−iy − x)d
(118)

with

ω(a,b,c) =
1∫

−1

(1 − x)a(1 + x)b
(

x2 + y2
)c

dx

ω(a,b,c,d) =
1∫

−1

(1 − x)a(1 + x)b(iy − x)c(−iy − x)d dx

(119)

Define the inner product

〈p,q〉(a,b,c,d) = 1
ω(a,b,c,d)

1∫

−1

w(a,b,c,d)(x)p(x)q(x)dx, (120)

which generates orthonormal polynomials P (a,b,c,d)
n with three-term recurrence

xP (a,b,c,d)
n (x) = β

(a,b,c,d)
n P (a,b,c,d)

n+1 (x) + α(a,b,c,d)
n P (a,b,c,d)

n (x) + β
(a,b,c,d)
n−1 P (a,b,c,d)

n−1 (x) (121)

We want to generate three-term recurrence coefficients α(a,b,c+1)
n = α(a,b,c+1,c+1)

n , β(a,b,c+1)
n = β

(a,b,c+1,c+1)
n from known co-

efficients corresponding to w(a,b,c) . To do so we repeatedly apply the formulae for β(a,b,c+1,d)
n , β(a,b,c,d+1)

n , α(a,b,c+1,d)
n and 

α(a,b,c,d+1)
n in [17] to obtain

β
(a,b,c+1)
n =





(∑n
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2
)(∑n+2

k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2
)

(∑n+1
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2
)2





1
2

β
(a,b,c)
n+1 (122)

α(a,b,c+1)
n =





∑n+2
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2

∑n+1
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2 − 1



Re

[
P (a,b,c)

n+1 (iy)

P (a,b,c)
n+2 (iy)

]

β
(a,b,c)
n+1

−





∑n+1
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2

∑n
k=0

∣∣∣P (a,b,c)
k (iy)

∣∣∣
2 − 1



Re

[
P (a,b,c)

n (iy)

P (a,b,c)
n+1 (iy)

]

β
(a,b,c)
n + α(a,b,c)

n+1 .

(123)
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We bootstrap up to the desired c parameter using the known recurrence and polynomials. To generate the recurrence 
for polynomials of degree N we require an initialization with Ninit = N + 2(floor(c) + 1) recurrence coefficients. When c
is an integer we generate the three-term recurrence for P (a,b,c)

n by starting with the Ninit terms in the Jacobi recurrence 
for P (a,b)

n ≡ P (a,b,0)
n . When c is not an integer we define γ ! c − floor(c) and compute Ninit terms in the recurrence for 

P (a,b,γ )
n using for example the Stieltjes procedure or modified Chebyshev algorithm. From this base stage we then use the 

Christoffel-Darboux formulations to recurse up to c.
This analysis works as well for arbitrary real quadratic factors that don’t vanish in (−1, 1). Simply factor the quadratic 

polynomial into its complex conjugate roots via x2 + c1x + c2 = (x − z)
(
x − z

)
and replace any occurrence of iy above with 

z. We therefore have a stable method of computing the recurrence coefficients for arbitrary, non-vanishing polynomials with 
real coefficients. Simply factor the polynomial into its roots and perform the standard parameter increment on real zeros 
and the double-increment on conjugate pairs.

Appendix B. Fully general domain formulations

B.1. The general cylinder

Define the weighted volume measure dµ(α) for α > −1 by

dµ(α) ! 1
2π

4

S2
o

(
1 − η2

)α
(1 − t)α h̃(t)2χhα dV

= 1
2π

(
1 − η2

)α
(1 − t)

1
2 χo+α h̃(t)(2α+1)χh dφ dη dt

(124)

and inner product

〈 f , g〉dµ(α) !
∫

dµ(α) f g. (125)

We therefore define the basis function as follows:

$
(α,σ )
m,l,k = eimφ(1 + t)

|m|+σ
2 (1 − t)

l
2 χo h̃(t)lχh P (α,α)

l (η) Q

((
l+ 1

2

)
χo+α,|m|+σ ,(2l+2α+1)χh; h̃

)

k (t). (126)

Here Q (a,b,c; p)
k denotes the degree-k generalized Jacobi polynomial orthogonal under the weight (1 − t)a(1 + t)b p(t)c . Then 

these basis functions are orthonormal with respect to dµ(α) since

〈
$

(α,σ )
m,l,k ,$

(α,σ )
m′,l′,k′

〉

dµ(α)
= 1

2π

2π∫

0

dφ e−i
(
m−m′)φ

1∫

−1

dη
(

1 − η2
)α

P (α,α)
l (η)P (α,α)

l′ (η)

×
1∫

−1

dt (1 − t)

(
l+ 1

2

)
χo+α

(1 + t)|m|+σ h̃(t)(2l+2α+1)χh

× Q

((
l+ 1

2

)
χo+α,|m|+σ ,(2l+2α+1)χh; h̃

)

k (t)Q

((
l+ 1

2

)
χo+α,|m|+σ ,(2l+2α+1)χh; h̃

)

k′ (t)

= δm,m′ δl,l′ δk,k′ .

(127)

The full cylinder has a coordinate singularity at s = 0. The basis resolves this singularity by using the t coordinate, a 
function of s2, in conjunction with the (1 + t)

m
2 ∝ sm prefactor for azimuthal mode eimφ . We handle the s = So coordinate 

singularity, which only occurs when χo = 1, by including the (1 − t)
l
2 prefactor. This causes the basis functions of vertical 

degree l to decay at the appropriate rate as t → 1 as shown in (63).
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B.1.1. Differential operators
The differential operators in the general cylinder take the form

So

2
D+

(α,σ )$
(α,σ )
m,l,k = $

(α+1,σ+1)
m,l,• γ (α)

l

[
(Ih)

Xh D(+1,+1,+1)

]

•,k

− $
(α+1,σ+1)
m,l−2,• δ

(α)
l

[(
I†

h

)Xh
D(δa,+1,−1)

]

•,k

So

2
D−

(α,σ )$
(α,σ )
m,l,k = $

(α+1,σ−1)
m,l,• γ (α)

l

[
(Ih)

Xh D(+1,−1,+1)

− $
(α+1,σ−1)
m,l−2,• δ

(α)
l

[(
I†

h

)Xh
D(δa,−1,−1)

]

•,k

D0
(α,σ )$

(α,σ )
m,l,k = $

(α+1,σ )
m,l−1,• λ

(α)
l

[
(Ia)

Xa

]

•,k
,

(128)

where

δa =
{

+1, χo = 1
−1, χo = 0

, Xa =
{

0, χo = 1
1, χo = 0

, Xh =
{

1, χh = 1
0, χh = 1

2
. (129)

As in Section 5.1, we sum over repeated dots • analogous to Einstein summation notation, and the dagger † superscript is 
the adjoint operator.

Deriving these differential operator coefficients is straightforward but tedious on the surface. One could differentiate a 
basis function, thereby computing the grid space differential action of the operator. They would need to then split up the 
operator into its l .→ l + 3l components using Jacobi polynomial algebra. Finally they could identify the radial operator for 
each 3l component, matching it to the analytic expression of the operators as defined in Section 3.4. This process involves 
using known Jacobi polynomial algebra rules to simplify conversions like (86).

If we rather follow the required generalized Jacobi parameter increments, ensuring they map appropriately, accounting 
for the s = So coordinate singularity is extremely simple. Because the a parameter of the Jacobi polynomials is l + α + 1

2
when χo = 1, the l .→ l −2 components of the differential operators need an additional down-conversion of the a parameter. 
The generalized Jacobi differential operators naturally achieve this when δa = −1.

B.1.2. Coordinate vector operators
The s vector multiplication operators are unchanged in the general cylinder. Multiplication by the axial z vector takes 

the form

z $
(α,0)
m,l,k = ê0

(

β
(α)
l $

(α,0)
m,l+1,•

[
(Ia)

χo
(
I2

h

)χh
]

•,k
+ β

(α)
l−1$

(α,0)
m,l−1,•

[(
I†

a

)χo
(
I† 2

h

)χh
]

•,k

)

. (130)

B.1.3. Conversion operators
The general conversion operators take the form

I(α,σ )$
(α,σ )
m,l,k ! $

(α,σ )
m,l,k

= $
(α+1,σ )
m,l,• γ (α)

l

[
Ia

(
I2

h

)χh
]

•,k
− $

(α+1,σ )
m,l−2,• δ

(α)
l

[
(Ia)

Xa
(
I† 2

h

)χh
]

•,k

(131)

where

Xa =
{

†, χo = 1
1, χo = 0

. (132)

That is, for χo = 1, the l .→ l − 2 component has the down-conversion operator I†
a . We omit the conversion adjoint here. To 

compute them replace 3l with −3l and take the adjoint of each radial operator.

B.2. The general annulus

We proceed analogously to the stretched cylinder case, using the appropriate volume element. Define the weighted 
measure dµ(α) for α > −1 such that
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dµ(α) ! 1
2π

4

S2
o − S2

i

(
1 − η2

)α (
1 − t2

)α
h̃(t)2χhα dV

= 1
2π

(
1 − η2

)α
(1 − t)

1
2 χo+α (1 + t)

1
2 χi+α h̃(t)(2α+1)χh dφ dη dt

(133)

and induced inner product 〈·, ·〉dµ(α) .
Now we define the gyroscopic basis as follows:

ϒ
(α,σ )
m,l,k = eimφ

(
S2

i (1 − t) + S2
o(1 + t)

) |m|+σ
2

(1 − t)
l
2 χo (1 + t)

l
2 χi h̃(t)lχh P (α,α)

l (η)

× Q

((
l+ 1

2

)
χo+α,

(
l+ 1

2

)
χi+α,(2l+2α+1)χh,|m|+σ ; h̃, s̃

)

k (t),

(134)

so that
〈
ϒ

(α,σ )
m,l,k ,ϒ

(α,σ )
m′,l′,k′

〉

dµ(α)
= δm,m′ δl,l′ δk,k′ . (135)

Like the stretched cylinder case, the bases naturally conform to all coordinate singularities. When the domain vanishes 
at s = Si or s = So we insert the (1 + t)

l
2 or (1 − t)

l
2 prefactor, respectively, guaranteeing fast-enough decay for vertical 

modes of degree l as s approaches the boundary.

B.2.1. Differential operators
The differential operators in the general annulus are

S2
o − S2

i

2
D+

(α,σ )ϒ
(α,σ )
m,l,k = ϒ

(α+1,σ+1)
m,l,• γ (α)

l

[
(Ih)

Xh D(+1,+1,+1,+1)

]

•,k

− ϒ
(α+1,σ+1)
m,l−2,• δ

(α)
l

[(
I†

h

)Xh
D(δa, δb,−1,+1)

]

•,k

S2
o − S2

i

2
D−

(α,σ )ϒ
(α,σ )
m,l,k = ϒ

(α+1,σ−1)
m,l,• γ (α)

l

[
(Ih)

Xh D(+1,+1,+1,−1)

]

•,k

− ϒ
(α+1,σ−1)
m,l−2,• δ

(α)
l

[(
I†

h

)Xh
D(δa, δb,−1,−1)

]

•,k

D0
(α,σ )ϒ

(α,σ )
m,l,k = ϒ

(α+1,σ )
m,l−1,• λ

(α)
l

[
(Ia)

Xa (Ib)
Xb

]

•,k
,

(136)

where

δa,b =
{

+1, χo,i = 1
−1, χo,i = 0

, Xa,b =
{

0, χo,i = 1
1, χo,i = 0

, Xh =
{

1, χh = 1
0, χh = 1

2
. (137)

Again deriving these operators is natural when we follow the Jacobi parameter increments. The only modifications com-
pared to the non-singular geometries are the δa,b increments and the Ih powers. These all can be “read off” when we split 
the operator into separate 3l components and compute the target radial Jacobi parameters.

B.2.2. Coordinate vector operators
The s vector multiplication operators are unchanged in the general annulus. Multiplication by the axial z vector takes 

the form

z $
(α,0)
m,l,k = ê0

(
β

(α)
l $

(α,0)
m,l+1,•

[
(Ia)

χo (Ib)
χi

(
I2

h

)χh
]

•,k

+ β
(α)
l−1$

(α,0)
m,l−1,•

[(
I†

a

)χo
(
I†

b

)χi
(
I† 2

h

)χh
]

•,k

)
.

(138)

B.2.3. Conversion operators
The general conversion operators take the form

I(α,σ )ϒ
(α,σ )
m,l,k ! ϒ

(α,σ )
m,l,k

= ϒ
(α+1,σ )
m,l,• γ (α)

l

[
Ia Ib

(
I2

h

)χh
]

•,k
− ϒ

(α+1,σ )
m,l−2,• δ

(α)
l

[
(Ia)

Xa (Ib)
Xb

(
I† 2

h

)χh
]

•,k

(139)

30



A.C. Ellison and K. Julien Journal of Computational Physics 489 (2023) 112268

where

Xa,b =
{

†, χo,i = 1
1, χo,i = 0

. (140)

B.3. Half domains are incompatible with vanishing heights

Placing the domain boundary at z = 0 rather than z = −h(s) produces a structural change in the derivative coupling. This 
structural change, η ∂η .→ (1 + ζ ) ∂ζ , induces odd vertical mode coupling in the radial derivatives: derivatives map l .→ l − 1
in addition to the standard coupling l .→ l and l .→ l − 2. The l + 1

2 +α Jacobi parameter for sphere-type boundaries and root 
height functions does not allow for odd mode coupling. To see this, note that reaching the (1 − t)

l−1
2 factor present in l − 1

basis functions from the (1 − t)
l
2 factor in l basis functions requires multiplication by 

√
1 − t , which is not implementable 

with sparse Jacobi polynomial algebra. This means the only possible upper half geometries in the ζ coordinate are standard 
cylinders and annuli with polynomial heights.
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