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ABSTRACT: Constraining unforced and forced climate variability impacts interpretations of past climate variations and
predictions of future warming. However, comparing general circulation models (GCMs) and last millennium Holocene hy-
droclimate proxies reveals significant mismatches between simulated and reconstructed low-frequency variability at multi-
decadal and longer time scales. This mismatch suggests that existing simulations underestimate either external or internal
drivers of climate variability. In addition, large differences arise across GCMs in both the magnitude and spatial pattern of
low-frequency climate variability. Dynamical understanding of forced and unforced variability is expected to contribute to im-
proved interpretations of paleoclimate variability. To that end, we develop a framework for fingerprinting spatiotemporal pat-
terns of temperature variability in forced and unforced simulations. This framework relies on two frequency-dependent metrics:
1) degrees of freedom (;N) and 2) spatial coherence. First, we use N and spatial coherence to characterize variability across a
suite of both preindustrial control (unforced) and last-millennium (forced) GCM simulations. Overall, we find that, at low fre-
quencies and when forcings are added, regional independence in the climate system decreases, reflected in fewer N and higher
coherence between local and global mean surface temperature. We then present a simple three-box moist-static-energy-balance
model for temperature variability, which is able to emulate key frequency-dependent behavior in the GCMs. This suggests that
temperature variability in the GCM ensemble can be understood through Earth’s energy budget and downgradient energy
transport, and allows us to identify sources of polar-amplified variability. Finally, we discuss insights the three-box model can
provide into model-to-model GCM differences.

SIGNIFICANCE STATEMENT: Forced and unforced temperature variability are poorly constrained and understood,
particularly that at time scales longer than a decade. Here, we identify key differences in the time scale–dependent
behavior of forced and unforced temperature variability using a combination of numerical climate models and principles
of downgradient energy transport. This work, and the spatiotemporal characterizations of forced and unforced tempera-
ture variability that we generate, will aid in interpretations of proxy-based paleoclimate reconstructions and improve
mechanistic understanding of variability.

KEYWORDS: Energy transport; Climate models; Numerical analysis/modeling; Climate variability;
Interdecadal variability

1. Introduction

Climate variations can be either forced or unforced. Forced
variability results from top-of-atmosphere energy imbalances
due to external factors (e.g., changes in greenhouse gases, so-
lar radiation, or volcanic aerosols), while unforced variability
results from internal dynamics (e.g., ocean–atmosphere heat
exchange or chaotic system dynamics; e.g., Kay et al. 2015).
Our confidence in projections of future climate depends on
our ability to disentangle the relative magnitude of forced and
unforced variability in Earth’s recent climate history, particu-
larly on local to regional spatial scales (e.g., Hegerl et al.
2007). Traditionally, sources of variability are disentangled

using general circulation models (GCMs): forced climate vari-
ability can be estimated through an ensemble mean across a
large number of climate realizations, while unforced climate
variability can be characterized from long control integrations
where no external forcing is applied (e.g., Kay et al. 2015). On
fast (subdecadal) time scales, GCM simulations of the recent
past (from 1970 to present) forced by aerosol and greenhouse
gas concentrations broadly agree with each other and with in-
strumental observations (Hausfather et al. 2020), and point
toward El Niño–Southern Oscillation as the single largest
source of global mean surface temperature variability (e.g.,
Brown et al. 2015). However, on longer (interdecadal) time
scales, there is less agreement on the sources and magnitudes
of temperature variability among GCMs (e.g., Brown et al.
2015; Parsons et al. 2020). There is also evidence that GCMs
show less low-frequency regional variability than do proxies
(Laepple and Huybers 2014; Bothe et al. 2015) and historical
observations (DelSole 2006), although high uncertainties
muddy comparisons between reconstructed and modeled tem-
perature (Bakker et al. 2022).
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Paleoclimate proxy records can reconstruct variability on
time scales longer than the instrumental record (Huybers and
Curry 2006; Ault et al. 2013; Laepple and Huybers 2014;
Franzke et al. 2020), but care must be taken in interpreting
them. In the sparse proxy record of the Common Era, for ex-
ample (Fig. 1a), the degree to which a proxy time series is in-
dicative of global climate change versus localized regional

variations depends on the location of the proxy, the time scale
of interest, and the underlying source of variability (e.g.,
Anchukaitis et al. 2012; Anchukaitis and Smerdon 2022). The
relation between local and global temperature on different
time scales can be measured by coherence (a frequency-
dependent correlation metric; see section 3b). To illustrate this,
we use paleoclimate simulations of the Community Climate

FIG. 1. Temperature and coherence across proxy locations in (b)–(d) unforced and (e)–(g) forced model integra-
tions. (a) Locations of all proxies (including marine sediment cores, tree-ring records, coral records, and ice cores) in
the PAGES2k network (black). We indicate the sites of a North American tree-ring record (green triangle) and tropi-
cal Pacific Ocean coral dO18 record (orange square). (b) Local surface temperature at the tree temperature-proxy site
indicated by the green triangle in (a). Annual temperature anomalies are shown as green dots, with the 10-yr moving
mean shown as a solid green line. Global mean surface-temperature anomalies (10-yr moving mean) shown in black.
Temperature anomalies are calculated from modeled output from the CCSM4 piControl integration, which does not
include any external forcings. To find local surface temperature, we interpolate surface-temperature output to the
proxy location. Monthly temperature output is annually averaged and linearly detrended to calculate annual tempera-
ture anomalies. Standard deviation of annual mean local temperature is indicated in the top-right corner. (c) As in
(b), but for the coral temperature-proxy site indicated by the orange square in (a). (d) Coherence between global
temperature and local temperatures at the midlatitude tree temperature-proxy site in North America (green) and
the coral temperature-proxy site in the tropical Pacific Ocean (orange). Spectra are calculated using Welch’s method
(Welch 1967) with 32 windows. Coherence at the 95% confidence level is calculated according to Amos and
Koopmans (1963) and is indicated by the dashed black line. (e)–(g) As in (b)–(d), but using gridded temperature out-
put from the CCSM last millennium integration, which includes external forcings.
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System Model, version 4 (CCSM4; Gent et al. 2011). We calcu-
late coherence between global mean surface temperature and lo-
cal surface temperature at two proxy sites in the Past Global
Changes 2k (PAGES2k) database (PAGES2k Consortium
2017): that of a North American tree-ring record from San
Francisco Peaks, and that of a tropical Pacific coral d18O
record from Urvina Bay. Coherence is calculated using
surface-temperature output from two CCSM4 simulations: an
unforced preindustrial control run (Figs. 1b–d) and a forced
last millennium run (Figs. 1e–g; Landrum et al. 2013).

We note that biology and joint dependencies on other cli-
matic variables will further complicate how proxies at these
two sites record temperature variability (Dee et al. 2017). All
other things being equal, the results from this particular GCM
suggest that low-latitude marine proxies such as corals are
good recorders of unforced variability at interannual time
scales but provide relatively little information about unforced
variability on longer time scales (Fig. 1d, orange line). They
do, however, record forced variability on these time scales
(Fig. 1g, orange line). On the other hand, high-latitude conti-
nental records (e.g., trees) seem to primarily respond to re-
gional variations on fast time scales, showing little coherence
with global temperature on annual- to decadal-time scales
(Fig. 1d, green line). Like low-latitude proxies, they are only
able to provide information about forced global variations on
long time scales (Fig. 1g, green line). Both types of proxies
primarily reflect local temperature variability when no exter-
nal forcing is present. However, both proxies have high coher-
ence when external forcing is included, and thus largely reflect
forced multidecadal global temperature variability rather than
local processes.

Here, we seek to understand how forced and unforced vari-
ability are expected to differ in their manifestation across
time and space using numerical climate models and basic
physical principles. Such basic understanding is a necessary,
though not sufficient, condition for both better interpreting
paleoclimate variability and improving our mechanistic ex-
planations of natural variability.

We fingerprint the spatial pattern of forced and unforced
climate variability within CMIP5 (Taylor et al. 2012) prein-
dustrial control and last millennium simulations (Braconnot
et al. 2011), using two statistical metrics of annual mean sur-
face temperature. First, we use frequency-dependent degrees
of freedom (;N; e.g., Kunz and Laepple 2021), which is re-
lated to the spatial covariance structure of temperature and
broadly corresponds to the number of independently varying spa-
tial patterns of temperature at a given time scale (section 3a). Sec-
ond, we compute spectral coherence between local and global
temperature (e.g., Mann and Park 1993; Chave et al. 1987; Lall
and Mann 1995), which identifies regions that are driving global
temperature variability at a given frequency (section 3b). Using
these metrics, we characterize how the spatial patterns of temper-
ature variability change as a function of frequency in forced and
unforced simulations.

Care must be taken, however, in using GCM fingerprints.
GCMs have been argued to reproduce global temperature re-
constructions over the Common Era (Neukom et al. 2019;
Zhu et al. 2019) and historical period (Fredriksen and Rypdal

2016), or even overestimate global mean temperature vari-
ability (Pallotta and Santer 2020) due to long-term trends in
model-estimated internal variability (Po-Chedley et al. 2022).
However, they do not match regional low-frequency variabil-
ity, particularly in the low latitudes (Laepple and Huybers
2014; Bothe et al. 2015). To build confidence in the GCM re-
sults, we also explore the degree to which the salient features
of the GCM fingerprint can be derived from simple energetic
constraints. We develop a three-box Hasselmann-like model
for temperature, with the flexibility to specify key climate pa-
rameters, including ocean heat capacity and climate-feedback
strength (section 4a). We find that it qualitatively matches the
CMIP5 results (section 4b): first, N decreases at low frequen-
cies. Our three-box model indicates that this response is due
to temperature diffusion, as temperature gradients smooth
out and temperature anomalies become more globally coher-
ent on long time scales. Second, N decreases at low frequen-
cies when external forcing is included. This is because
imposing global or near-global forcings, like volcanic erup-
tions, produces more globally orchestrated climatic responses.
Decreases in N correspond to increases in coherence. In
section 4c, we also explore the impact of including more real-
istic, spatially varying ocean heat capacities and climate-
feedback strengths in our three-box model. The results from
our three-box model suggest that energetic constraints includ-
ing downgradient energy transport may be a productive way
to understand the time scale–dependent spatial structure of
temperature variability. Conclusions are presented in section 5,
where we also discuss potential applications of these findings to
the proxy temperature record.

2. Multicentennial climate model integrations

We seek to evaluate forced and unforced climate variability
as a function of frequency, and so we select nine fully coupled
climate models from the CMIP5 project (Taylor et al. 2012)
that each have both long preindustrial control (piControl)
integrations (the shortest is 400 years), as well as last mille-
nnium (past1000) simulations. The nine models are BCC-
CSM1.1, CCSM4, CSIRO Mk3L-1-2, FGOALS-s2, GISS-E2-R,
IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-P, and MRI-
CGCM3. Monthly mean surface temperature output is annu-
ally averaged and regridded to a 1283 64 grid (approximately
2.88 resolution).

In piControl integrations, all external forcings (including
from greenhouse gases, aerosols, ozone, and solar irradiance)
are held constant at preindustrial levels. Thus, variability in
these integrations is unforced, generated only through the
internal climate dynamics represented in the models. These
nine models also participated in the third Paleoclimate Model
Intercomparison Project (PMIP3; Braconnot et al. 2011) and
have past1000 simulations available. In the past1000 integra-
tions, which are run from 850 to 1849 CE, orbital, solar, volca-
nic, greenhouse gas, and land-use forcings evolve through
time, following Schmidt et al. (2011). Thus, variability in these
integrations is a combination of forced and unforced variabil-
ity, generated both through internal climate dynamics and cli-
mate responses to external (global) forcings.
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FIG. 2. GMST anomalies for nine CMIP5 (left) piControl and (center) past1000 simulations, and (right) relative con-
tribution of unforced variability (piControl/past1000). The piControl simulations represent unforced variability, and the
past1000 simulations represent forced variability driven primarily by volcanic eruptions. GMST is calculated as the area-
weighted mean temperature. Monthly temperature data are annually averaged and linearly detrended to calculate annual
temperature anomalies, shown in the first two columns. Black numbers in the bottom right corner indicate
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In Fig. 2, we show the linearly detrended annual global
mean surface temperature (GMST) anomalies for output
from the piControl (Fig. 2, first column) and past1000 (Fig. 2,
second column) integrations for all nine models. There is a
wide range of internal GMST variability across the models;
the standard deviation of annual mean GMST in the piCon-
trol simulations ranges between 0.078 and 0.158C, with a mean
value of 0.118C. Notably, BCC-CSM1.1 has an apparent oscil-
lation with a period of ;100 years, which is centered over
Antarctica and the Southern Ocean (not shown). This oscilla-
tion disappears in the forced past1000 simulations. The spread
in standard deviations across models is slightly larger in the
past1000 simulations, ranging between 0.118 and 0.228C, with
an average value of 0.168C. The strong negative temperature
anomalies in the past1000 simulations correspond to volcanic
eruptions, which are the primary mechanisms of forced variability
in the simulations. Models with high overall variability in the
past1000 simulations (e.g., CCSM4 in Fig. 2b; MPI-ESM-P in
Fig. 2t) show strong volcanic responses, whereas others with lower
overall variability (e.g., MIROC-ESM in Fig. 2q; BCC-CSM1.1 in
Fig. 2z) have more muted volcanic responses. However, we note
that intermodel comparison studies suggest that a model’s volca-
nically forced temperature response primarily depends on model
physics and chemistry (Clyne et al. 2021) rather than equilibrium
climate sensitivity (Pauling et al. 2021).

To understand the role of external forcing on global vari-
ability at different time scales, we can compare the magnitude
of externally forced variability to internal variability as a func-
tion of frequency. For each model, this approximation r is
computed as the ratio of the power spectrum of GMST in
the piControl simulation to the power spectrum of GMST
in the past1000 simulation (Fig. 2, third column). For all
figures, power spectra are calculated using Welch’s method
and 32 windows. In testing with synthetic time series of red
and pink noise, we found this provides a good smooth repre-
sentation of the continuum spectrum without unduly affecting
its shape.

Since past1000 simulations contain both forced and unforced
variability, r estimates the fractional contribution of unforced
variability to total (forced and unforced) variability at each time
scale. Across the CMIP5 models, unforced variability dominates
on interannual time scales [frequencies . (10 yr)21], with r ap-
proaching 1. Meanwhile, externally forced variability dominates
at multidecadal time scales [frequencies # (10 yr)21], although
there is a large spread among the models.

At the high end of this spread, in the BCC-CSM-1 model,
r 5 1.2 at low frequencies [(400 yr)21] (Fig. 2aa). This results
from the strong multidecadal oscillations in the unforced

simulations (Fig. 2y) that do not appear in the forced simula-
tions (Fig. 2z). This is the only model in which internal vari-
ability dominates at all time scales (r . 1 at all frequencies),
and the physical reasons for this behavior are unclear. At the
low end of the spread, in the CCSM4 model, r approaches
0.01 at low frequencies (Fig. 2c). This reflects the large sensi-
tivity to volcanic forcing noted earlier. The ensemble-average
low-frequency value of r is 0.32. In some models, r does not
flatten out (dashed black lines in Fig. 2) until multidecadal
time scales (e.g., CSIRO-Mk3L-1-2 in Fig. 2f; FGOALS-s2 in
Fig. 2i), whereas in other models, it flattens out at higher fre-
quencies (e.g., MIROC-ESM in Fig. 2r; GISS-E2-R in Fig. 2l).
Models for which r flattens out at lower frequencies are mod-
els in which adding external forcing adds more memory or
redness relative to the unforced GMST power spectrum. The
broad range of modeled behaviors in response to added exter-
nal forcing suggests that different models have different
mechanisms of low-frequency variability, different sensitivi-
ties to external forcing, or, as previously mentioned, different
parameterizations of short-term volcanic forcing that projects
onto low-frequency variability.

The time scale at which r stops increasing (Fig. 2, dashed
black line in third column) is qualitatively equivalent to the
time scale at which the power spectra of past1000 simulations
flattens. For all models included in this study, in both forced
and unforced simulations, the power spectra of GMST flatten
out by multidecadal to multicentennial time scales (Fig. S1 in
the online supplemental material). There is, however, sub-
stantial evidence that both instrumental records (Fredriksen
and Rypdal 2016; Franzke 2010) and paleoclimate proxies
(e.g., Laepple and Huybers 2014; Nilsen et al. 2016; Hébert
et al. 2022; Huybers and Curry 2006) exhibit a continuum of
surface temperature variability that follows power-law scaling,
or spectral power that continues to increase past multicenten-
nial time scales. Some models with forcings on longer time
scales (e.g., freshwater pulses; Zhu et al. 2019; Bakker et al.
2017) have produced power spectra that continue increasing
past millennial time scales, so the failure of the CMIP5 mod-
els to exhibit power-law scaling may be because they do not
include glacial variations.

3. Fingerprints of variability in CMIP5 models

a. Degrees of freedom

We here characterize how the spatial patterns of variability
change with frequency using a metric for the degrees of free-
dom. In statistics, the degrees of freedom Neff characterize the
number of independent pieces of information in a dataset.

$−
the standard deviation of GMST for that simulation. In the third column, the ratio of GMST piControl power spectrum
divided by past1000 power spectrum yields an estimate of the relative contribution of unforced variability. Power spec-
tra are estimated from the area-weighted, annual-mean GMST using Welch’s method (Welch 1967) with 32 windows.
Vertical solid black lines indicate the frequency at which external forcing begins to dominate over internal forcing (low-
est frequency at which this ratio . 1). Vertical dashed black lines indicate the frequency at which this ratio begins to
flatten out (ratio is twice its lowest-frequency value). Confidence at the 95% level (shaded) is calculated using a chi-
squared approach. Colors correspond to different GCMs.
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More informally, Neff can be thought of as the number of po-
tential different modes by which the dynamical system might
accommodate a perturbation.

For a time-varying climate field, Neff depends on the spatial
correlation of the variations: a system with fewer degrees of
freedom will have variability that is more globally coherent
compared to a system with more regionally independent vari-
ability. We should also expect that Neff will depend on time
scale: at longer time scales, we expect that different regions
and components of the climate system will come into balance
with each other and so will respond more coherently. Thus,
Neff will be reduced at low frequencies. Previous work has
shown this to be true in global climate models, observations
(e.g., Jones et al. 1997), and simple energy balance models
(North et al. 2011; Rypdal et al. 2015).

Here, we use a measure for Neff as a function of frequency,
also suggested recently by Kunz and Laepple (2021). This
metric is based on a ratio of regional to global variance den-
sity at each frequency. The variance of the mean of N inde-
pendent and identically distributed variables decreases with
the number of variables:

Var(hTiN) 5
Var(T)

N
,

where Var(T) is the variance of a random variable. Thus, a
way to estimate the number of independent variations (i.e.,
the number of effective degrees of freedom) across time series
at different spatial locations would be to take an estimate of
the variance of each random variable hVar(T)i and divide it
by the estimated variance of the average of all random varia-
bles Var(hTiN),

N 5
hVar(T)i
Var(hTi)N ,

where the variance is taken across time and the average is
taken across the number of spatial locations. However, this
approach generates a single approximation of Neff across all
frequencies.

To understand how Neff varies with time scale, we use power
spectral densities (PSDs), which measure the variance contribu-
tion from a particular frequency. The ratio of regional to global
PSD is a frequency-dependent ratio of regional to global vari-
ance. Let PTi

(f ) be the PSD of the temperature at the ith grid
point, and PhTi(f) be the PSD of the area-weighted GMST hTi.
We then define Neff as the ratio of the mean of the local PSDs
(area weighted) to the PSD of the global average temperature:

Neff(f ) 5
hPTi

(f )i
PhTi(f )

, (1)

which yields the mean variance of local temperature divided
by the variance of GMST at each frequency. Hereafter, we
drop the subscript “eff” after N. Uniform global temperature
fluctuations would correspond to N 5 1, while independent
white noise in each grid cell would correspond to N 5 8921
(our 1283 64 grid).

Figure 3 shows N(f) for both the unforced (Fig. 3a) and
forced (Fig. 3b) simulations. Across CMIP5 models, N de-
creases toward lower frequencies, indicating that variability
becomes more globally coherent on longer time scales. At the
highest frequency [(2 yr)21], N is similar in both the unforced
and forced simulations [mean N 5 105 (piControl); mean
N 5 94 (past1000)]. This suggests that on annual time scales,
unforced variations dominate, even when external forcing is
included. At the lowest frequency [(400 yr)21], N decreases
by approximately fivefold in the unforced simulations (mean
N 5 20 for piControl) and by approximately 13-fold in the
forced simulations (mean N 5 7 for past1000). As noted
above, this reduction in N on long time scales is consistent
with a diffusive system (Rypdal et al. 2015; Kunz and Laepple
2021), in which temperature anomalies smooth to larger spa-
tial scales at lower frequencies.

Compared to the unforced simulations, the forced simula-
tions consistently show reduced N at low frequencies. Across
models, at (400 yr)21, N is 3%–88% lower in the forced simu-
lations, with an ensemble mean reduction of 61%. The small-
est reduction in N is in BCC-CSM1.1, which, as noted
previously, has strong modes of internal variability that disap-
pear in the forced simulations; all other models decrease by at
least 36%. Lower N in past1000 simulations indicates that
slow variations in the forced simulations are dominated by ex-
ternal forcing that projects across large areas.

Overall, we see two primary features across the model ensem-
ble: namely, reduced N in forced simulations compared to the
unforced and reduced N at the low-frequency limit. This com-
mon behavior suggests that despite some model-to-model differ-
ences, relatively simple physical principles may govern how the
structure of temperature variability changes with frequency.

b. Coherence

The number of degrees of freedom are related to the num-
ber of independent sources of variability. To identify which
regions and dynamical mechanisms drive global variability at
different frequencies, we calculate the coherence of local sur-
face temperature with GMST (e.g., Mann and Park 1993; Lall
and Mann 1995; Chave et al. 1987). Coherence measures the
fraction of variance at a given frequency shared between two
time series. It is a frequency-dependent measure of cross
correlation, bounded between zero and one. To ensure our
coherence estimates are not unduly weighted toward the
high latitudes, where variability is higher, we normalize

GMST. Normalized GMST hT̃i 5∑8192
i51 (Ai/AEarth)(Ti/si),

where Ai/AEarth is the fractional surface area, Ti is the surface
temperature, and si is the standard deviation of temperature
in grid cell i. The normalization generates coherence esti-
mates that identify regions that drive global variability (or are
driven by global variability), rather than regions that have
high-magnitude, but locally isolated, variability. We note that
the coherence estimates using nonnormalized GMST are quali-
tatively similar to the coherence estimates shown in Fig. 4, al-
though they are slightly higher in regions with low temperature
variance (e.g., ;0.1 increase in the tropics zonal mean) and
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slightly lower in regions with high temperature variance (e.g.,
;0.15 decrease in the extratropics zonal mean).

Figure 4 presents the coherences calculated for both inter-
decadal [from (2 yr)21 to (25 yr)21] and multicentennial
[from (100 yr)21 to (400 yr)21] frequency bands. We show the
full spatial pattern in each of these frequency bands, along
with zonal means. We expect that fewer instances of N corre-
sponding to higher mean coherence, and indeed, the mean co-
herence across CMIP5 models does demonstrate the same
two primary features observed in the results for N (i.e.,
Fig. 3). First, coherence increases at low frequencies: zonal
mean coherence increases, on average, from 0.46 on interde-
cadal time scales (Fig. 4b) to 0.55 on multicentennial time
scales (Fig. 4a) in the piControl simulations; and, in the
past1000 simulations, from 0.47 on interdecadal time scales
(Fig. 4d) to 0.72 on multicentennial time scales (Fig. 4c). This
is consistent with a diffusive-like spatial smoothing of temper-
ature fluctuations on long time scales. Second, coherence in-
creases at the low-frequency limit when external forcing is
present (cf. Fig. 4c and Fig. 5a). Zonal mean coherence is
higher on multicentennial time scales in the past1000 simu-
lations (Fig. 4c) than in the piControl simulations (Fig. 4a),
except in the Southern Ocean (from approximately 708 to
408S). This suggests that the Southern Ocean is locally
driven, whereas global variability is driven by the tropics.
When no external forcing is included, the Southern Ocean
contributes heavily to global variability; when external

forcing is included, however, the Southern Ocean accounts
for a smaller proportion of global variability.

The spatial structure of coherence suggests that ENSO is a
primary driver of global variability on interdecadal time scales
in both forced and unforced simulations, as regions of high co-
herence (Figs. 4b,d) coincide with the ENSO pattern of sea
surface temperature anomalies. Some echoes of the ENSO
pattern remain at lower frequencies in the piControl simula-
tions (Fig. 4a), so a reddened ENSO response may be driving
internal variability on long time scales as well, as suggested
by Newman et al. (2003). When external forcing is included,
coherence on long time scales suggests that the tropics and
midlatitudes (from 408S to 408N) are the primary drivers of
global variability. There is particularly high coherence coin-
ciding with the intertropical convergence zones (Fig. 4c), in-
dicating that regions with deep convection (and, therefore,
high precipitation) are coordinated with global temperature
variability, consistent with previous results (Parsons et al.
2020).

Across all frequencies and forcing mechanisms, coherence
with normalized GMST is highest in the tropics (Fig. 4). This
suggests that temperature variability in the tropics is being
efficiently communicated to the poles, whereas temperature
variability in the high latitudes is not being communicated to
the equator. The tropics’ apparent control on global tempera-
ture variability is suggestive of downgradient (poleward) en-
ergy transport, which we explore in section 4.

FIG. 3. Degrees of freedom N in (a) piControl and(b) past1000 simulations. Degrees of freedom are frequency
dependent, following Eq. (1). Spectral calculations are estimated using Welch’s method with 32 windows. Colors
correspond to different GCMs, with the multimodel mean shown in bold black. Shading indicates the mean of the
models’ 95% chi-squared confidence intervals.
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4. Interpreting low-frequency dynamics with a
conceptual model

In this section, we explore whether the behavior we have
seen in this GCM ensemble can be understood as a result
of constraints on Earth’s energy budget. There are two key
characteristics of climate variability across GCMs: 1) fewer
degrees of freedom and greater spatial coherence at low fre-
quencies than at high frequencies, especially when external
forcing is present; and 2) at all time scales and in both forced
and unforced simulations, tropical temperature variability is
highly coherent with GMST variability. The first behavior is
suggestive of diffusion-like dynamics (e.g., North et al. 2011;
Rypdal et al. 2015), wherein a signal will spread over a larger
area if given time. The second behavior is suggestive of a
directionality in how temperature anomalies influence other
regions. This can arise in the climate system due to the down-
gradient transport of moist static energy (MSE; sensible heat
plus latent heat; e.g., Flannery 1984). The exponential in-
crease of latent heat at warmer temperatures means that trop-
ical temperature anomalies are associated with much greater

energetic anomalies than high-latitude temperature anomalies
of the same magnitude. These energetic anomalies are mixed
downgradient and, as a result, anomalies in tropical tempera-
tures are communicated nearly uniformly with latitude, whereas
high-latitude anomalies remain much more regionally confined
(Roe et al. 2015). Recent studies (e.g., Hwang and Frierson
2010; Rose et al. 2014; Roe et al. 2015; Siler et al. 2018) have
shown that simple models governed by downgradient transport
can largely characterize temperature, hydrology, and atmo-
spheric heat transport in both the climatology and long-term cli-
mate response to anthropogenic climate forcing. The results of
the previous two sections motivate exploring whether this
downgradient energy-balance perspective may also help under-
stand frequency-dependent behavior. To that end, we construct
a simple three-box model based on principles of downgradient
energy transport.

a. Three-box temperature model

We create a simplified, stochastic, moist static energy bal-
ance model, based on the one-box Hasselmann (1976) model,

FIG. 4. Mean coherence between local temperature and normalized GMST in (a),(b) piControl simulations and (c),(d) past1000 simula-
tions for (right) intra- to interdecadal variability [from (2 yr)21 to (25 yr)21] and (left) multicentennial variability [from (100 yr)21 to
(400 yr)21] across CMIP5 models. Coherence between local temperature and normalized GMST (see text for details) is calculated for
each individual model, and then coherence values are averaged across models. Stippling indicates grid cells that are insignificant at the
95% confidence level in at least five models. Coherence is calculated using Welch’s method (Welch 1967) with 32 windows. Zonal-mean
coherence (with coherence calculated between zonal mean temperature and GMST) is shown in panels to the right, with the 95% signifi-
cance level indicated with a vertical dashed line.

J OURNAL OF CL IMATE VOLUME 367012

	:� �������#� �/#����!2:���#��3��������������/:�:�2��A���� ��2���0��21�A���"����121�� �� ���� ������
���




adjusted to include moisture (Langen and Alexeev 2007)
and extended to three boxes. This yields a modeled dynami-
cal system that is simple enough to be solved analytically
and allows the testing of parameter sensitivity, but retains
the physical tendencies embodied in more complex, spa-
tially resolved, moist static energy balance models (e.g.,
North et al. 1981).

Our model splits the world into three boxes: one tropical
box (308S–308N) and two equal-sized extratropical boxes,
one in the Southern Hemisphere (908–308S) and one in
the Northern Hemisphere (308–908N). We consider temper-
ature anomalies T from some prescribed mean climate state.
Each box is forced by stochastic radiative anomalies R that
may be globally coherent (e.g., due to volcanic eruptions
Rg) or uncorrelated with other boxes (e.g., due to localized
weather R1,2,3). In each box, radiative anomalies can be
dealt with in three ways: 1) radiated out to space; 2) ex-
ported to other boxes; or 3) integrated by the ocean. The im-
portance of these pathways depends on the relative magnitude
of radiative damping (governed by a climate-feedback param-
eter l), the coupling between boxes (governed by a coupling
parameter g), and the ocean heat capacity c, which increases
with ocean mixed layer depth. This yields the following set of
equations:

c
dT1
dt

52lT1 1 H21 1 R1 1 Rg, (3)

c
dT2
dt

52lT2 2 H21 2 H23 1 R2 1 Rg; and (4)

c
dT3
dt

52lT3 1 H23 1 R3 1 Rg: (5)

Here, T1 and T3 are the surface temperatures in the extra-
tropics (box 1, Northern Hemisphere; box 3, Southern Hemi-
sphere), and T2 is the surface temperature in the tropics
(box 2). Heat transfers between boxes are represented by
H21 5 g(aT2 2 T1) (transport from box 2 to box 1) and
H23 5 g(aT2 2 T3) (transport from box 2 to box 3) and de-
pend on the temperature differential between the tropics and
extratropics, the strength of g, and the moisture constant a,
which allows for preferential transport of energy from the
tropics to the extratropics when a . 1 (Langen and Alexeev
2007). The moisture constant is based on the ratio of the MSE
increase in the tropics to the extratropics when temperature
warms 18C, and is approximately 1.7, based on current clima-
tology. We define the resulting standard deviation of tempera-
ture in each box as sTi

(i 5 1, 2, 3).

FIG. 5. Coarsened three-box CMIP5 results for (top) piControl simulations and (bottom) past1000 simulations. (a) Degrees of freedom,
(b) coherence in the extratropical Southern Hemisphere, (c) coherence in the tropics, (d) coherence in the extratropical Northern Hemi-
sphere, and (e) standard deviation of temperature in each box. Calculations are made after coarsening model output fields to three boxes
(908–308S, 308S–308N, and 308–908N) in each piControl simulation. Coherence is calculated between local temperature and global mean
surface temperature using Welch’s method (Welch 1967) with 32 windows. Colors correspond to individual model results, and multimodel
mean is shown in black. The chi-squared confidence interval for multimodel mean is shown at 95% level, representative of averaged indi-
vidual model uncertainties. (f)–(j) As in (a)–(e), but for past1000 (forced) simulations.
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We can normalize Eqs. (3)–(5) to find the following four
key parameters that govern the behavior of our three-box
model:

1) g/l, which is a measure of the relative efficiency of hori-
zontal heat transport to radiative damping;

2) a, which controls how much more efficiently heat is trans-
ported out of the tropics to the extratropics, associated
with the latent heat;

3) the characteristic time scale c/l, which controls the fre-
quency at which the power spectra of T1,2,3 and GMST
flatten; and

4) k 5 s2
R1,2,3

/(s2
R1,2,3

1 s2
Rg
), the relative importance of local

radiative anomalies to total radiative anomalies.

Equations (3)–(5) can be solved analytically for the degrees
of freedom N and the coherence (see the appendix). In the
following sections, we explore the dynamics of the three-box
model, including its frequency-dependent behavior (N and co-
herence) and the standard deviation of temperature sTi

.

b. Fitting conceptual model to CMIP5 output

We want to evaluate how the three-box system compares to
the variability of the GCM. To do this, in each of the nine
CMIP5 models, we average (i.e., coarsen) the GCM output
fields over the same three areas included in our three-box

model: the Southern Hemisphere extratropics, the tropics,
and the Northern Hemisphere extratropics. In effect, we are
analyzing GCM variability at the hemispheric scale. Figure 5
shows the resulting N (Figs. 5a,f), coherence (Figs. 5b–d,g–i),
and sT1,2,3

(Figs. 5e,j) in the coarsened GCM.
The coarsened CMIP5 models exhibit N with qualitatively

similar behavior to the full CMIP5 models. N decreases toward
low frequencies [mean N decreases from N 5 3.69 at (2 yr)21

to N 5 2.88 at (400 yr)21 in the piControl simulations (Fig. 5a)
and from N 5 3.41 at (2 yr)21 to N 5 1.57 at (400 yr)21 in the
past1000 simulations (Fig. 6f)], especially when external forcing
is present (cf. Fig. 5a and Fig. 5f). We note that N has an upper
bound of 4 because our model treats the tropics as two (coher-
ent) regions and there are two independent extratropical regions
(see appendix for analytical solutions). Finally, an equator-to-
pole gradient in sTi

is present (Figs. 5e,j), which steepens when
external forcing is present (cf. Fig. 5e and Fig. 6j).

We also note some other features of the coarsened GCM
results. Across all piControl simulations, N decreases in the
frequency band from ;(5 yr)21 to (7 yr)21 (Fig. 6a), which
can be explained by coherent temperature anomalies associ-
ated with ENSO. Coherence between tropical temperature and
GMST is maximized within this same frequency band, indicat-
ing that tropical temperature anomalies are driving variability
at this frequency, which is consistent with an ENSO sea surface

FIG. 6. Coarsened three-box CMIP5 results for (top) piControl simulations and (bottom) past1000 simulations, and three-box model re-
sults without global forcing in the top panels and with global forcing in the bottom panels. (a) Degrees of freedom, (b) coherence in the extra-
tropical Southern Hemisphere, (c) coherence in the tropics, (d) coherence in the extratropical Northern Hemisphere, and (e) standard devia-
tion of temperature in each box. Results are shown both for the coarsened three-box CMIP5 results (Fig. 5; solid lines indicate multimodel
mean, and shading indicates full model spread), and for the three-box model results (dashed lines). For the three-box model, parameter
values are chosen to be physically realistic and match high- and low-frequency behavior in coarsened GCMs (c 5 2 W m22 K21 yr21,
g 5 0.15 W m22 K21, l 5 1.5 W m22 K21, a 5 1.7, sR1,3

5 1Wm22, sR2
5 0:5Wm22, sRg

5 0 (unforced), or sRg
5 0:2 (forced) Wm22).

Global forcing is applied as red noise with a lag-1 correlation coefficient r 5 0.2. For CMIP5 results, coherence is calculated between local
temperature and global-mean surface temperature using Welch’s method (Welch 1967) with 32 windows. (f)–(j) As in (a)–(e), but for
past1000 (forced) simulations.
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temperature pattern. Coherence between extratropical tem-
perature and GMST is minimized in the Northern Hemisphere
in the ENSO frequency band (Fig. 5d), while the Southern
Hemisphere is largely unaffected by ENSO (Fig. 5b).

There are also significant hemispheric differences in the ex-
tratropical response to external forcing. On average, coher-
ence in the Southern Hemisphere is relatively unchanged
when external forcing is present (solid black line in Fig. 5b, cf.
with Fig. 5g), while coherence in the Northern Hemisphere in-
creases [primarily at frequencies of not more than ;(10 yr)21]
and temperature variability increases in almost all models when
external forcing is present (cf. Fig. 5d and Fig. 5i; cf. Fig. 5e
and Fig. 5j). This suggests that variability in the Southern
Hemisphere is largely governed by internal dynamics, as also in-
dicated in Fig. 4. However, we note that there are large inter-
model spreads in Southern Hemisphere coherence, especially in
the piControl runs (Fig. 5b), which indicates that different mod-
els have significantly different representations of internal dy-
namics in the Southern Hemisphere.

To evaluate whether our three-box model can capture
GCM behavior, we fit it to the coarsened GCM results. Our
parameters are chosen to be physically realistic and match
high- and low-frequency behavior in the coarsened GCMs. The
parameter set is l 5 1.5 Wm22K21, equivalent to a global
mean equilibrium climate sensitivity of 2.7 K for a 4 W m22

forcing; g 5 0.15 Wm22K21; a 5 1.7; c 5 2 Wm22K21 yr,
equivalent to a mixed layer depth of 15 m; and, for the forced
runs, local forcing that accounts for 80% of total extratropical
forcing and 60% of total tropical forcing. Additional parameter
details are included in the caption for Fig. 6. Our chosen param-
eters yield g/l 5 0.1, while past studies constraining dry diffu-
sivity have used g/l values closer to 1 (e.g., Armour et al. 2019;
Langen and Alexeev 2007). The characteristic time scale (c/l)
implied by these parameters is 1.3 yr.

Figure 6 shows solutions for N and coherence in the three-
box model as a function of frequency (Fig. 6, dashed lines) and
also sT1,2,3

(Figs. 6e,j), which measures polar amplification of
temperature variability. For our parameters, N decreases from
3.3 at the high-frequency limit to 2.6 at the low-frequency limit
(unforced; Fig. 6a), and from 3.3 at the high-frequency limit to
1.6 at the low-frequency limit (forced; Fig. 6f), plateauing to
minimum values at approximately (25 yr)21 in both simula-
tions. This is consistent with diffusion acting to distribute tem-
perature anomalies more uniformly on longer time scales.
Similarly, in all three boxes, coherence with GMST increases
at low frequencies (Figs. 6b–d,g–i) as temperature anomalies
become more spatially uniform.

At all frequencies, the tropical box (T2; Figs. 6c,h) has
higher coherence with the global mean (T) than either of ex-
tratropical boxes (T1,3; Figs. 6b,d,g,i). The tropical box is half
the surface area of the globe, and temperature anomalies are
coherent across the tropics. By contrast, each extratropical
box is only a quarter of the global surface area, and R1 and R3

are independent.
Both N and coherence show good agreement between

coarsened GCMs and the three-box model, in both forced
and unforced simulations (Figs. 6a–d,f–i). Agreement is espe-
cially good at the high- and low-frequencies, suggesting that

frequency-dependent variability in GCMs can be character-
ized by a diffusive process. A relatively small amount of
global forcing (sRg

5 0:2 Wm22, accounting for 20% of total
forcing in the extratropics and 40% of total forcing in the
tropics) leads to a dramatic reduction in low-frequency N (cf.
Fig. 6a and Fig. 7f). Our three-box model is not able to cap-
ture GCM behavior on decadal and multidecadal time scales
[from ;(5 yr)21 to (25 yr)21], which is indicative of mecha-
nisms not included in our model (i.e., ENSO). We also note
that sources of local variability (e.g., lateral variations in
temperature) are averaged out in the coarsened GCM, which
limits interpretation of the parameter values used in the
three-box model.

We also note that this standard set of parameters produces
polar-amplified temperature variability (sT1,3

. sT2
). This is

produced through two mechanisms. First, it is easier for heat
anomalies to spread from the tropics to the extratropics than
from one extratropical region to the other extratropical
region in the opposite hemisphere, because the tropics can ex-
change heat with both extratropical boxes while each extra-
tropical box can only exchange heat with the tropics. The
extratropics are geographically isolated, compared to the
tropics. Second, the MSE gradient a allows for a preferential
transport of energy from the tropics to the extratropics, which
amplifies temperature anomalies in the extratropics. We note
that polar amplification typically refers to the phenomenon
where, under external radiative forcing, the magnitude of
long-term surface temperature change at high latitudes is
higher than the GMST change. Here, we point toward the ex-
istence of polar-amplified temperature variability, which does
not require external forcing. Moreover, our model does not
include spatially varying feedback patterns or ocean mixed
layer depths (i.e., l and c are fixed constants) but is able,
nonetheless, to produce amplified temperature responses in
the extratropics on long time scales. This suggests that polar
amplification of temperature variability is at least partially
due to 1) the relative geographic isolation of the extratropics
(i.e., the extratropics are only connected to the tropics, whereas
the tropics are connected to both extratropical regions), and
2) downgradient energy transport.

In both the three-box model and the coarsened GCMs,
Northern Hemisphere polar amplification is enhanced when
external forcing is added (cf. Fig. 6e and Fig. 7j). However,
polar amplification is suppressed in the Southern Hemisphere
in the coarsened, forced GCM simulations (Fig. 6j), which the
three-box model is unable to emulate. The hemispheric differ-
ences in coherence and temperature variability suggest that
spatially varying l and c affect GCM behavior.

c. Sensitivity analysis

While the coarsened GCM and three-box model share the
same fundamental, diffusive-like behavior, there remains a
large spread among GCM estimates of frequency-dependent
behavior. Next, we explore how N, coherence, and sT1,2,3

vary
as a function of g/l, a, g/l, and k to understand the extent to
which these physical parameters might explain the intermodel
spread. Readers not interested in the effect of varying parameters
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on the three-box model can skip to section 5. For this section, we
probe the parameters away from a simplified standard set (de-
tailed in the Fig. 7 caption), which is distinct from the parameter
set used to fit to coarsened GCM results shown in Fig. 6.

As k decreases, N decreases and coherence increases at all
frequencies (Figs. 7a–c) because temperature responses have
become more globally orchestrated. Since the temperature
anomalies between boxes are more coherent with each other,
heat transfer between boxes is suppressed, and the equator-
to-pole gradient in temperature variability flattens (Fig. 7d).

As g/l increases, N decreases and coherence increases on
long time scales (Figs. 7e–g). Temperature anomalies in indi-
vidual boxes are being less efficiently transported to other
boxes, which results in less coherent temperature anomalies
between boxes. When there is no coupling (g/l 5 0), N and

coherence are constant across all frequencies, since there is
no heat exchange between boxes on any time scale. Polar am-
plification increases with g/l (Fig. 7h), because the mecha-
nisms for amplified temperature responses in the extratropics
identified in the previous section (preferential transport of en-
ergy from the tropics to the extratropics when a . 1, and the
trapping of heat at the extratropics due to the relative geo-
graphic isolation of the extratropics) can only operate when
heat transfer between boxes is allowed.

As the MSE gradient steepens (a increases) and poleward
transport enhances relative to equatorward transport, N in-
creases (Fig. 7i). This suggests that energy becomes trapped
in the extratropics, which are incoherent with each other,
driving an increase in N primarily on longer time scales. Due
to the influx of heat from the tropics, the extratropical boxes

FIG. 7. Degrees of freedom, spatially varying coherence, and polar amplification in the three-box model as a function of parameter set. Im-
pact of varying k (i.e., relative strength of global forcing) from k 5 1 (solid) to k 5 0.5 (dashed) on (a) degrees of freedom, (b) coherence in
extratropics, (c) coherence in tropics, and (d) standard deviation of temperature in tropics and extratropics, which is a measure of polar am-
plification of variability. Solid gray lines are for comparison and show results for a standard parameter set with values: l 5 1.5 W m22 K21;
g 5 0.5 W m22 K21; a 5 1.7; c5 5 W m22 K21 yr21, equivalent to a mixed layer depth of 40 m; and k 5 0.75, or local forcing that accounts
for 75% of total forcing. (e)–(h) As in (a)–(d), but for varying coupling strength from g 5 0 to g 5 l. (i)–(l) As in (a)–(d), but for varying
moisture parameter from a 5 1 to 3.4. (m)–(p) As in (a)–(d), but for varying mixed layer depth from c/l 5 1.3 to 13.4 yr21, which is equiva-
lent to varying mixed layer depths from 15 to 150 m. These curves are plotted from the analytic solutions to the three-box model that are pro-
vided in the appendix.
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contribute more heavily to GMST relative to the dry model,
leading to enhanced coherence in the extratropics (Fig. 7j)
and slightly lower coherence in the tropics (Fig. 7k). Similarly,
polar amplification is magnified when moisture is present
(Fig. 7l). As a increases, the same export of heat from the
tropics requires a smaller tropical temperature fluctuation.
The relative polar amplification is thus predominantly a sup-
pression of tropical temperature variability, rather than a
boosting of extratropical variability.

As the characteristic time scale c/l decreases, the frequency
at which N and coherence plateau shifts to higher values
(shorter time scales; Figs. 7m–o) because temperature anoma-
lies are more quickly integrated by the ocean. High-frequency
temperature variability in all three boxes is also enhanced, re-
sulting in added polar amplification as temperature anomalies
are more quickly trapped at the poles (Fig. 7p).

Finally, we briefly explore the impact of spatially varying l
and c on N, coherence, and sTi

(Fig. 8). We run two experi-
ments: 1) setting tropical ocean heat capacity to be twice as
large as extratropical ocean heat capacity (c2 5 2c1,3; Fig. 8,
red lines), which mimics the spatial pattern of summertime
ocean heat capacity (e.g., Chang et al. 2013); and 2) setting
the tropical radiative feedback to be twice as large (and,
therefore, more stable) as the extratropical radiative feedback
(l2 5 2l1,3; Fig. 8, blue lines), which mimics the effect of add-
ing a sea ice–albedo feedback in the extratropics.

When c2 5 2c1,3, N increases at high frequencies but has the
same low-frequency behavior as in the standard parameter set
(Fig. 8a). High-frequency extratropical coherence is higher,
and high-frequency tropical coherence is lower, relative to the
standard parameter set (Figs. 8b,c), because temperature anoma-
lies are more slowly integrated by an ocean with a deeper mixed
layer depth (higher c). Polar amplification increases (Fig. 8d; cf.
gray line and red line) because high-frequency variability in the
extratropics is enhanced and high-frequency variability in the
tropics is suppressed. Similarly, when l2 5 2l1,3, polar amplifica-
tion increases (Fig. 8d; cf. gray line and blue line) because tem-
perature anomalies in the extratropics are not as effectively
damped compared with the standard parameter set. Spatially

varying l and c results in changes toN, coherence, and polar am-
plification that are comparable to changes produced by varying
the mean values of parameters within uncertainty bounds.

5. Discussion and summary

We have evaluated frequency-dependent behavior across a
suite of long-running CMIP5 GCMs simulations from two ex-
periments, one of which only contains internal variability and
the other of which is subject to external forcing [the preindus-
trial control (piControl) experiment and last millennium
(past1000) experiment, respectively]. Specifically, across a range
of frequencies, we evaluated N, which estimates the number of
independently varying spatial patterns of temperature anoma-
lies, and coherence with global mean temperature, which identi-
fies regions driving variability. There are distinct fingerprints of
variability in forced and unforced simulations, which may be
useful in understanding how temperature variability is ex-
pressed in the paleoclimate record and evaluating how well
temperature variability in GCMs maps onto temperature vari-
ability observed in paleoclimate proxy data.

We identified three features robust across GCMs: 1) decreased
N at low frequencies; 2) an additional reduction in low-frequency
N when external forcing is included; and 3) a high coherence
with global mean surface temperature in the tropics. The first
two features are indicative of temperature diffusion or signals
spreading over larger areas over longer time periods. The third
feature is indicative of downgradient energy transport, wherein
temperature anomalies are efficiently communicated from the
tropics to the extratropics due to sensible and latent heat fluxes.
While these tendencies are generally robust across models, there
are large model-to-model differences in their intensity and associ-
ated time scales (e.g., Figs. 2, 3, and 5). In other words, the mech-
anisms and intensity of low-frequency variability continue to be
poorly constrained among GCM ensembles, although, as previ-
ously mentioned, some of the intermodel spread in forced simu-
lations may be due to differences in how high-frequency volcanic
forcing is applied and projected onto longer time scales (e.g.,
Clyne et al. 2021). We further note that our characterizations of

FIG. 8. Degrees of freedom, spatially varying coherence, and polar amplification in the three-box model with spatially varying feedbacks
and mixed layer depth. (a) Degrees of freedom, (b) coherence in the extratropics, (c) coherence in the tropics, and (d) standard deviation
of temperature in the tropics and extratropics. In one experiment (red), c is twice as large in the tropics relative to the extratropics. In the
other (blue), l is twice as large in the tropics relative to the extratropics. Results for the standard parameter set are shown in gray for com-
parison. Parameter values for the standard parameter set are described in Fig. 7. For all cases, the area-weighted mean c and l are the
same as in the standard parameter set. Coherence is estimated using Welch’s method (Welch 1967) with 32 windows.
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forced temperature variability are derived from the past1000 sim-
ulations, whereby forcing is primarily generated through volcanic
eruptions, and our findings may change for a different forcing
and background climate state. A further step could be evaluating
spatial fingerprints in response to specific forcings using single-
forcing ensembles.

We showed that the frequency-dependent behavior in
GCMs is broadly consistent with a three-box moist static en-
ergy balance model. Our model is a function of four key cli-
mate parameters: ocean heat capacity, diffusivity, the strength
of radiative damping, and the relative importance of local
forcing to total forcing. Understanding how different parame-
ters change the shape of N and coherence provides insight
into the mechanisms controlling intermodel differences in fre-
quency-dependent behavior. Our model also points toward
differing behavior in the northern and southern extratropics;
specifically, in GCMs, temperature variability in the Southern
Hemisphere is relatively independent of ENSO and appears
to be largely governed by local internal dynamics.

We also evaluated the spatial pattern of temperature variabil-
ity in our three-box model and in the GCMs. We identified two
mechanisms for polar amplification of temperature variability:
1) the bidirectional heat transport from the tropics and the rela-
tive geographic isolation of the extratropics (resulting in unidi-
rectional heat transport from the extratropics); and 2) the moist
static energy gradient. These allow for the preferential transpor-
tation of energy poleward and the trapping of additional energy
in the extratropics, which enhances extratropical temperature
variability relative to the tropics. Temperature power spectra
are thus redder in the extratropics and whiter in the tropics.

Our characterizations of temperature variability in forced
and unforced simulations suggest that diffusive tendencies may
help interpret the proxy paleoclimate record over the last millen-
nium. Varying physical parameters within the three-box model
has a large impact on frequency-dependent behavior and pro-
vides possible explanations for model-to-model differences in N
and coherence. Understanding which models have physics most
consistent with proxy paleoclimate reconstructions is a key next
step. However, we note that proxies encode climate data imper-
fectly, which further alters signals of variability. Proxies are sen-
sitive to nonclimate processes, including ice-core down-core
diffusion (Dee et al. 2017), measurement noise, and bioturbation
(Laepple and Huybers 2013). Proxies also may have seasonal
biases or joint dependencies (e.g., some tree-ring width records
may reflect the influence of both temperature and precipitation;
Tolwinski-Ward et al. 2011; Fritts 1966; St. George and Ault
2014) or systematically biased spatial coverage (e.g., Judd et al.
2020), all of which influence recorded variability. In addition,
proxies may record highly localized variability that cannot be re-
solved by GCMs (e.g., Laepple and Huybers 2014). Thus, inter-
preting proxy reconstructions using our characterizations of
temperature variability ultimately must consider these complicat-
ing factors, including how the proxy network itself will filter those
signals of variability. Here, we primarily focus on the dynamics
driving temperature variability, although understanding how our
characterizations of forced and unforced variability are expressed
in the proxy network will ultimately require explicit consider-
ation of proxy noise and filtering processes.

Nevertheless, our work suggests some clear targets for dis-
tinguishing between forced and unforced temperature vari-
ability, which may be reflected in the paleoclimate proxy
record. In particular, redder (steeper) spectral slopes and
enhanced spatial coherence are hallmarks of forced variabil-
ity. Relatedly, models suggest that some locations (e.g., the
tropics) may be more indicative of global temperature vari-
ability and others (e.g., the extratropics) are more indicative
of regional variability. Our analyses also show that these spatial
coherences are a function of forcing and time scale, knowledge
of which may help improve covariances used in data assimilation
algorithms. We propose that much of this behavior can be un-
derstood in terms of diffusive, downgradient energy transport,
which is consistent with the existence of polar-amplified, low-
frequency temperature variability. Finally, although it has not
been a focus of this paper, that same downgradient transport
has been shown to orchestrate spatial patterns of both temper-
ature and hydrology (e.g., Siler et al. 2018). Hydrology and
polar-amplified temperature variability could, in principle,
provide additional metrics for evaluating proxy records.
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APPENDIX

Analytic Solutions for the Three-Box Model

a. Three-box model

The equations of the three-box model are

c
dT1
dt

52lT1 1 H21 1 R1 1 Rg, (A1)

c
dT2
dt

52lT2 2 H21 2 H23 1 R2 1 Rg, (A2)

c
dT3
dt

52lT3 1 H23 1 R3 1 Rg, (A3)

H21 5 g(aT2 2 T1); and (A4)

H23 5 g(aT2 2 T3), (A5)

where T1, T2, and T3 are surface temperatures in box 1
(Northern Hemisphere extratropics), box 2 (tropics), and box 3
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(Southern Hemisphere extratropics), respectively; l is a climate
feedback parameter, c is the ocean heat capacity, and Ri is
radiative anomaly with standard deviation sRi

(i 5 1, 2, 3, g).
Hereafter, the frequency and forcings are normalized by l
such that v′ 5 (c/l)v and F′

i 5 Fi/l for i 5 1, 2, 3, g, where
v 5 2pf, such that Eqs. (A1)–(A5) are transformed to have
units of temperature (K). The prime symbols are dropped in
subsequent expressions. Setting Rg 5 0 approximates the
(unforced) piControl simulations, whereas setting Rg Þ 0
approximates the (forced) past1000 simulations.

Equations (A1)–(A5) can be solved for various useful
metrics, including degrees of freedom, coherence, and the
magnitude and frequency dependence of polar amplified
temperature variability.

b. Degrees of freedom

To compute degrees of freedom [Eq. (1)], we need expres-
sions for the power spectrum of temperature in each box
(PT1

, PT2
, PT3

), and an expression for the power spectrum of
area-weighted global mean temperature hPTi 5 P(T112T21T3)/4,
where the tropical box accounts for one-half of Earth’s surface
area and h?i denotes an average or expected value. The power
spectra PTi

can also be written as an autospectrum fTiTi
,

PTi
(v) 5 fTiTi

(v) 5 hT̃i (v)T̃*
i (v)i, (A6)

where a tilde indicates a Fourier transform and an asterisk de-
notes a complex conjugate. For completeness we provide the
full solutions, which are algebraically messy. In appendix
section c, we simplify by considering a symmetric case and some
limiting cases of high and low frequency. We assume the
forcing terms R1, R2, R3, and Rg are independent white-noise
forcing, such that fRiRj

5 0 when i Þ j, and fRiRi
5 s2

Ri
. The

solutions below can be easily modified to include independent

red-noise forcing by substituting si 5
!!!!!!!!!!!!!!!!!!!!!!!!!!!
2R2

i /{r[11 (v2/r2)]}
√

,
where the lag-1 autocorrelation between two successive time
samples has correlation coefficient 0 , r , 1.

The power spectrum of mean global temperature can be
written as

fhTihTi(v) 5 PhTi(v)

5 (s2
1 1 s2

3)
{v2 1 [1 1 2(1 1 a)g]2}

16(v2 1 1)[v2 1 (1 1 g 1 2ag)2]

1 s2
2

v2 1 (1 1 g 1 ag)2

4(v2 1 1)[v2 1 (1 1 g 1 2ag)2]

1 s2
g

4v2 1 [2 1 3(1 1 a)g]2
4(v2 1 1)[v2 1 (1 1 g 1 2ag)2]

: (A7)

Power spectra of individual boxes can be written as

fT1T1
(v) 5 PT1

(v)

5
1

v2 1 1

s2
R1

(ag2 1 2ag 1 g 1 1)2 1 v4 1 v2[(4a2 1 2a 1 1)g2 1 (4a 1 2)g 1 2]
[v2 1 (g 1 1)2][v2 1 (2ag 1 g 1 1)2]

1 s2
R2

(ag)2

[v2 1 (1 1 g 1 2ag)2]
1 s2

R3

a2 g4

[v2 1 (g 1 1)2][v2 1 (1 1 g 1 2ag)2]
1 s2

Rg

[v2 1 (1 1 3ag)2]
[v2 1 (1 1 g 1 2ag)2]







,

(A8)

fT2T2
(v) 5 PT2

(v) 5
(s2

R1
1 s2

R3
)g2 1 s2

R2
[(g 1 1)2 1 v2] 1 s2

Rg
[(3g 1 1)2 1 v2]

(v2 1 1)[v2 1 (1 1 g 1 2ag)2]
, (A9)

fT3T3
(v) 5 PT3

(v) 5 1
v2 1 1

s2
R1

a2g4

[v2 1 (g 1 1)2][v2 1 (1 1 g 1 2ag)2]
1 s2

R2

(ag)2

[v2 1 (1 1 g 1 2ag)2]

1 s2
R3

(ag2 1 2ag 1 g 1 1)2 1 v4 1 v2[(4a2 1 2a 1 1)g2 1 (4a 1 2)g 1 2]
[v2 1 (g 1 1)2][v2 1 (2ag 1 g 1 1)2]

1 s2
Rg

[v2 1 (1 1 3ag)2]
[v2 1 (1 1 g 1 2ag)2]







: (A10)

The degrees of freedom N are equal to hPTi/PhTi, or
(PT1

1 2PT2
1 PT3

)/4PhTi, following Eq. (1).

c. Coherence

To compute coherence between global-mean tem-
perature and temperature in box i, an estimate of

the cross-power density fTihTi
between the two is

needed:

fTihTi
(v) 5 hT̃i (v)T̃* (v)i, (A11)

or, for each individual box:
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fT1hTi
(v) 5 s2

R1

[1 1 2(1 1 a)g 1 iv][ag2 1 (1 1 2a)g(1 2 iv) 2 (i 1 v)2]
4(1 1 g 2 iv)(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
R2

ag(1 1 g 1 ag 1 iv)
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
R3

ag2[1 1 2(1 1 a)g 1 iv]
4(1 1 g 2 iv)(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
Rg

(1 1 3ag 2 iv)(2 1 3(1 1 a)g 1 2iv)
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2) , (A12)

fT2hTi
(v) 5 s2

R1

g[1 1 2(1 1 a)g 1 iv]
4(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2) 1 s2

R2

(1 1 g 2 iv)(1 1 g 1 ag 1 iv)
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
R3

g[1 1 2(1 1 a)g 1 iv]
4(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2) 1 s2

Rg

(1 1 3g 2 iv)[2 1 3(1 1 a)g 1 2iv]
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2) ,

(A13)

fT3hTi
(v) 5 s2

R1

ag2[1 1 2(1 1 a)g 1 iv]
4(1 1 g 2 iv)(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
R2

ag(1 1 g 1 ag 1 iv)
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
R3

[1 1 2(1 1 a)g 1 iv][ag2 1 (1 1 2a)g(1 2 iv) 2 (i 1 v)2]
4(1 1 g 2 iv)(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2)

1 s2
Rg

(1 1 3ag 2 iv)[2 1 3(1 1 a)g 1 2iv]
2(1 1 g 1 2ag 2 iv)(1 1 g 1 2ag 1 iv)(1 1 v2) :

(A14)

The coherence can be written as a complex function,

CTihTi
(v) 5

fTihTi
(v)

!!!!!!!!!!!!!!!!!!!!!!!!
fTiTi

(v)fhTihTi(v)
√ (A15)

where fTiTi
and fhTihTi come from Eqs. (A8)–(A10) and

(A7), respectively.

d. Example: Symmetrical world and limiting cases

In the simplest case of a symmetric world (sR1
5 sR2

5 sR3
),

then the degrees of freedom can be written as

PhTi

hPTi
(v) # 8[(4 + a + 3a2)g3(23 + 2k) + 3(1 + a2)g4(23 + 2k)]

[v2 + (1 + g)2]{2g(2k 2 3)(1 + a)[4 + 3(1 + a)g + (28 + 5k)(1 + v2)]}

+ 8{2g[25 + a(23 + k) + 2k](1 + v2) 2 2(1 + v2)2}
[v2 + (1 + g)2]{2g(2k 2 3)(1 + a)[4 + 3(1 + a)g + (28 + 5k)(1 + v2)]}

+ 8(g2{223 2 11v2 + a2(29 + 4k)(1 + v2) + 2k(7 + 3v2) 2 2a[6 + k(23 + v2)]})
[v2 + (1 + g)2]{2g(2k 2 3)(1 + a)[4 + 3(1 + a)g + (28 + 5k)(1 + v2)]}

(A16)

where k is the relative contribution of local forcing to total
forcing, s2

Ri
/(s2

g 1 s2
Ri
) for i5 1, 2, 3.

To understand how energy diffuses throughout the model
over time, we can examine the high- and low-frequency limits
of N (Nv"‘ and Nv"0). The limit Nv"‘ is a function only
of k, with higher k associated with higher Nv"‘, because, on
short time scales, temperature anomalies cannot be exported
out of the box. When local forcing in the extratropics dominates

(s2
R1,3

.. s2
R2
), Nv"‘ 5 4. When local forcing in the tropics

dominates (s2
R2

.. s2
R1,3

), Nv"‘ 5 2. When global forcing dom-
inates (s2

Rg
.. s2

R1,2,3
), Nv"‘ 5 1. The exact functional depen-

dence of the low-frequency limit Nv"0 is more complicated but
depends on k, g/l, and a, with lower Nv"0 under parameter
combinations that favor efficient heat transport.

Equation (A16) can be additionally simplified if we as-
sume a dry atmosphere (a 5 1):
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PhTi

hPTi
(v) 5 8(3g4 1 8g3)(2k 2 3) 1 2g2[(2k 2 5)v2 1 6k 2 11]

[v2 1 (1 1 g)2][8(2g 1 3g2)(2k 2 3) 1 (5k 2 8)(v2 1 1)]

1
8[g(3k 2 8)(v2 1 1) 2 (v2 1 1)2]

[v2 1 (1 1 g)2][8(2g 1 3g2)(2k 2 3) 1 (5k 2 8)(v2 1 1)]
: (A17)

As g " 0, PhTi/hPTi" 8/(82 5k), which is 1 when s2
1 5 0 and

8/3 when s2
g 5 0. As g" ‘, PhTi/hPTi" 1.

At high frequencies (v " ‘), PhTi/hPTi" 8/(82 5k). At
low frequencies (v " 0),

PhTi

hPTi
" 8[21 1 8g3(23 1 2k) 1 g(28 1 3k) 1 2g2(211 1 6k) 1 g4(29 1 6k)]

(1 1 g)2[28 1 5k 1 16g(2k 2 3) 1 24g2(2k 2 3)]

As k " 1 (such that s2
R1

.. s2
Rg
),

PhTi

hPTi
" 8[8g3 1 3g4 1 5g(v2 1 1) 1 (v2 1 1)2 1 2g2(5 1 3v2)]

[v 2 1 (1 1 g)2](3 1 16g 1 24g2 1 3v2)

As k " 0 (such that s2
R1

,, s2
Rg
), PhTi/hPTi" 1.

Even when a 5 1, there is some polar amplification. The
ratio of the power spectra of temperature in the extra-
tropics PT1

to that in the tropics PT2
is

PT1

PT2

(v) 5 (2k 2 3)(8g3 1 3g4) 1 2g(k 2 4)(1 1 v2) 2 (1 1 v2)2 1 2g2[211 2 5v2 1 k(5 1 v2)]
[21 1 2g(2k 2 3)(1 1 g) 2 v2][v2 1 (1 1 g)2]

: (A18)
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