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ABSTRACT

With ubiquitous adoption of machine learning algorithms in web
technologies, such as recommendation system and social network,
algorithm fairness has become a trending topic, and it has a great
impact on social welfare. Among different fairness definitions, path-
specific causal fairness is a widely adopted one with great potentials,
as it distinguishes the fair and unfair effects that the sensitive at-
tributes exert on algorithm predictions. Existing methods based
on path-specific causal fairness either require graph structure as
the prior knowledge or have high complexity in the calculation
of path-specific effect. To tackle these challenges, we propose a
novel casual graph based fair prediction framework which inte-
grates graph structure learning into fair prediction to ensure that
unfair pathways are excluded in the causal graph. Furthermore, we
generalize the proposed framework to the scenarios where sensitive
attributes can be non-root nodes and affected by other variables,
which is commonly observed in real-world applications, such as rec-
ommendation system, but hardly addressed by existing works. We
provide theoretical analysis on the generalization bound for the pro-
posed fair prediction method, and conduct a series of experiments
on real-world datasets to demonstrate that the proposed framework
can provide better prediction performance and algorithm fairness
trade-off.
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1 INTRODUCTION

Nowadays, more and more people use web technologies, such as
recommendation system and social network, to seek information
and make decision. Such trend makes algorithm fairness critical,
since machine learning algorithms are widely adopted in these web
technologies and ensuring the fairness has a great impact on both
the social welfare and the platform interests [2-4, 7, 10, 11, 36, 37, 45,
47]. Algorithm fairness aims to reduce or even eliminate unjustified
distinctions of individuals based on their sensitive attributes (e.g.,
gender and race) during the prediction [41]. Unfortunately, machine
learning models constructed from the raw data are vulnerable to
the unfairness risk due to the historical prejudices in the data.
It is crucial for model designers to take algorithm fairness into
consideration for long-term social welfare.

In recent years, researchers have developed a variety of causal
fairness definitions to help machine learning models make fair pre-
dictions [16, 17, 21, 26, 28, 31, 32, 35, 39, 40, 42, 43], and one of them,
path-specific causal fairness [6, 26, 33], is adopted in this paper. Un-
der the definition of path-specific causal fairness, unfairness is
viewed as the presence of unfair causal effect through the disallowed
causal pathway that the sensitive attributes exert on predictions. In
other words, a fair prediction satisfies path-specific causal fairness
if it eliminates the causal effect that the sensitive attributes assert
on the prediction through disallowed causal pathways. Such a defi-
nition provides the flexibility of tracing the unfairness, because in
some scenarios, the sensitive attributes affect the decision along
multiple pathways, and not all pathways are unfair. For example, in
the online marketing, shown in Figure 1, gender and race (denoted
as sensitive attribute R) are only allowed to affect the promotion
through the preference, since it is reasonable to decide whether
sending the promotion according to the preference. Under this fair-
ness rule, paths R — Y and R — Z — Y are unfair paths and path
R — Q — Y is a fair path.
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Figure 1: Example of Online Marketing,.

To fulfill path-specific causal fairness, some existing works di-
rectly calculate the path-specific causal effect (PSE) [1, 27] along
the unfair pathways, and minimize the effect simultaneously when
maximizing prediction accuracy [26, 33]. Some other works correct
the variables located on the unfair pathway by a latent inference-
projection method [6]. However, these existing works still face the
following challenges: (1) Most of them require a pre-defined graph
as the prior knowledge to calculate PSE. (2) The calculation of the
path-specific effect is complex, requiring the sequential ignorability
assumption [18] to ensure the identification. (3) They all assume
the sensitive attributes are root nodes in the causal graph. Namely,
there are no other variables that affect the sensitive attributes. Few
of them consider the case when the sensitive attributes are non-root
nodes, which can be widely observed in real-world applications.
For example, in the recommendation system, the item popularity is
a sensitive attribute [10, 47], while this variable is a non-root node
as it is affected by the item’s characteristics.

In light of the above challenges, we propose a Causal Graph
based Fairness Framework (CGF). To tackle the challenge of lacking
the causal graph information, CGF integrates the causal graph struc-
ture learning and fair prediction, revealing the causal relationships
among the observed variables. To simplify the PSE calculation, CGF
imposes the fairness regularization at the graph level by restricting
the existence of unfair edges in the learned causal structure. In this
way, fair decisions are made based on the corrected observations
reconstructed from the learned graph structure. Furthermore, the
proposed CGF framework can straightforwardly generalize to the
case where sensitive attributes are non-root nodes by introducing
the latent variables to divide the fair and unfair effect flow. To the
best of our knowledge, the proposed framework CGF is the first
work to consider such non-root node case.

Generally speaking, the key of CGF framework is that the causal
graph, which the model relies on to make predictions, reveals the
fair causal paths of the original observation and eliminates the
edges that are unfair by fairness regularization. To be specific, the
proposed CGF framework contains three components including
graph structure learning, fairness regularization and label predic-
tion. The graph structure learning generates the causal graph that
reveals the causal relations between observed variables. We use
weighted adjacency to represent the causal graph and each ele-
ment in the adjacency matrix indicates the effect strength through
the edge. The adjacency matrix is learned by minimizing the dif-
ference between the observed data (i.e., the data recorded in the
dataset) and the data reconstructed based on the adjacency matrix.
The second component, fairness regularization, further constraints
the adjacency matrix by reducing the weights of the unfair edges,
which controls the effect flow through the unfair edges in the causal
graph. In other words, the fairness regularization guides the graph
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(a) Observed Graph. (b) Fair Graph. (c) Model Graph.

Figure 2: Causal Graphs of Online Marketing Example.

structure learning part by eliminating the unfair edges in the causal
graph. With the above two components, the reconstructed data
based on the learned causal graph is a correction of the original
observed data with unfair effect eliminated. Then on top of the
reconstructed data, the third component, label prediction, provides
the fair predictions.

To validate the effectiveness of CGF framework, we conduct
a series of experiments on real-world datasets. On the real-world
dataset, we compare the proposed framework with several baselines,
and experimental results show that CGF can provide a better utility
and fairness trade-off. Further, we conduct experiments on a real-
world recommendation dataset to evaluate the performance of CGF
framework under the case of sensitive attributes as non-root nodes.
The experimental results demonstrate that CGF framework can
make comparable accurate recommendations while reducing the
negative effect caused by sensitive attributes (i.e., item popularity),
compared to existing recommendation methods.

2 BACKGROUND

Causal Graph. A causal graph is a directed acyclic graph (DAG)
reflecting the causal relationships between variables. Let G denote
a causal graph, and G = (V, E), where V is the set of nodes repre-
senting all the variables, and E is the set of edges with each edge
Vi — V; describing the causal relation between variable V; and V;.
The parents nodes of node V;, denoted as II(V;), and V; € II(V;) if
Vj — V;. A node is a root node if it has no parent nodes. A path,
also named as causal pathway, is defined as a sequence of unique
nodes with edges between each consecutive node. The depth of a
node in the graph is the number of arrows in the longest path to
the root nodes. In the rest of the paper, we use the term “node”,
“variable”, and “attribute” interchangeably.
Path-specific Causal Fairness. Path-specific causal fairness en-
sures that the sensitive attributes are not allowed to affect the
prediction along the unfair causal pathway. Path-specific causal
fairness distinguishes the causal pathways that start from sensitive
variables to predicted variables into fair paths and unfair paths, and
the goal of fair prediction is to reduce the unfair paths. Path-specific
causal fairness is closely related to other definitions of fairness. It
is equivalent to remove the direct and indirect discrimination [43].
When all paths starting from the sensitive variables are unfair,
achieving path-specific causal fairness is equal to demographic
parity (i.e., removing disparate impact) [38].

DEFINITION 2.1. (Observed Graph). Observed graph is the causal
graph of the observed data.

DEFINITION 2.2. (Fair Graph). The causal graph satisfying the
fairness criterion, and meanwhile, preserving the remaining structure
of the observation graph, is the fair graph.
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DEFINITION 2.3. (Model Graph). Model graph is the causal graph
that the decision model relies on.

Figure 2 shows the observational graph, fair graph and model
graph of the example of online marketing in Section 1. Figure 2a is
the observational graph, which is the causal graph of the observed
data. In the graph, the fair path R — Q — Y represents that it is
acceptable, in terms of preference, that some people with certain
race/gender are not offered with promotion. While, the pathsR — Y
and R — Z — Y are unfair, indicating that it is disallowed that
the race/gender affects the promotion offering directly or indirectly
through ZipCode. Figure 2b is the fair graph, which describes the
ideal causal relations. Compared with the observational graph, it
eliminates the unfair paths. By removing the unfair paths, the fair
graph reflects that the difference of promotion offering results
across different race/gender groups is explained by the different
preference levels among those groups. The rightmost sub-figure
is the model graph, which is the graph that the model relies on to
predict. As shown in Figure 2c, the model takes R, Z, and Q as input,
therefore, they all have directed arrows pointing to prediction Y.

From the above triple-graph perspective, under path-specific
causal fairness, the model graph should be consistent with the fair
graph, but it is not. Therefore, our objective is to exclude the unfair
path (the red dashed arrow in Figure 2c) for the decision, and retain
the remaining causal pathways.

Structure Causal Model (SCM). In SCM, each node in G is as-
sociated with a causal mechanism representing the generation
of the current node by its parent nodes. It defined as: ¥ =
{fi : Vi = fi(II(V;)) + €;}, where V; € V is the i-th node in the graph,
II(V;) is the set of parent nodes of V;, and ¢; is the random noise.
Graph Structure Learning. The problem of graph structure learn-
ing is to infer a directed acyclic graph (DAG) from data that reflects
the causal relationships among variables. In general, this can be
summarized as solving the following problem:

miny S(G(W),D) subject to G(W) € DAG, (1)

where W € R%* js the adjacency matrix, G(W) is the graph whose
adjacency matrix is W, S(G(W), D) is the scoring function mea-
suring the fitness between graph G(W) and the data D. Searching
DAG from data is known to be an NP-hard problem [30]. Recently,
a continuous optimization based approach called NOTEARS [46]
has been proposed to handle this problem by introducing a matrix
exponential based DAG constraint: tr(e"®"W) = d. The matrix ex-
ponential is given by the power series: VoW = 3 % (W o w)k,
where the k-th term denotes the adjacency afterkkotimes walking
on the graph, and W © W makes the element of adjacency matrix
non-negative. The trace of the k-th term (k > 0) should be zero if
the graph is acyclic, because a node cannot go back to itself after k
times walking. Therefore tr(e"©") = d indicates that the graph
is acyclic, where d is the trace of first term in the power series.

3 METHODOLOGY

To satisfy the path-specific causal fairness, we propose a causal
graph learning based fairness framework CGF. The key of CGF
framework is to make the causal graph and the data that the model
relies on close to the ideal fair graph. The proposed framework

3682

WWW 23, April 30-May 04, 2023, Austin, TX, USA

contains three components: graph structure learning, fair regular-
ization, and label prediction. The graph learning part aims to reveal
the graph structure of the observation data, the fairness restriction
targets at reducing the unfair paths, and the label prediction part
outputs the fair predictions. These three components influence each
other in that: These three components are interdependent, as the
fairness restriction guides the graph learning by reducing the unfair
edges, and the final prediction is made based on the values of its
parent nodes which is detected by the graph learning component.
Overall, the objective function is:

L=LgL+Lg+Lp, (2)

where Lgy, is the graph learning loss, L is the fairness restriction,
Lp is the label prediction loss. In the following sections, we will first
present the detailed implementation when the sensitive attributes
are root nodes, provide the theoretical analysis about the general-
ization error, and then generalize the developed method to the case
where sensitive attributes are non-root nodes.

3.1 CGF Framework

In the following three subsections, we will present the implementa-
tions of the three components in Eqn. (2).

3.1.1  Graph Structure Learning. The objective of graph structure
learning is to find the optimal causal graph that fits the observed
data best. Motivated by the continuous optimization of causal graph
structure learning [46], the loss of graph structure learning is:

Lot = BID = DI+ 1 (1r(e"O™)  (da + dy + 1))+ palIWls,
®)
where W € R(datdx+1)x(da+dx+1) js the adjacency matrix, and
if its element wj ; # 0, there exists an edge V; — V; with weight
w;, j indicating the effect strength. d4 is the dimension of sensitive
attributes, and dx is the dimension of other features. D is the ob-
served data, and D is the reconstructed data based on W and D
according to the causal graph. © is the element-wise matrix multi-
plication operator, eV ®"W denotes the matrix exponential of W 0 W,
tr(-) is the matrix trace. f, y1, and y» are the hyper-parameters.
The first term in Eqn. (3) measures the fitness of the causal graph
by calculating the difference between the observed data and the
data reconstructed from the graph. The second term is the directed
acyclic graph (DAG) constraint, which ensures the learned graph
does not contain any cycle [46]. The third term is the £; norm of
the adjacency matrix which makes the learned graph to be sparse.
The details of data reconstruction (i.e., D) and the DAG constraint
are described as follows.
Cascade Data Reconstruction. In data reconstruction, each node
is reconstructed based on its parents’ reconstructed values. Eqn. (4)
shows the reconstruction of node V;:

Vi = fi(TL(V))W [y, i]), (4)

where f;(-) is the causal mechanism of node V;, (V) is Vi's parent
nodes after reconstruction. ify is the index set of V;’s parent nodes.
W i, i] is the elements in the adjacency matrix W whose row
indices are in iy and column indices are i. It is noticed that the
reconstruction of a node is based on its parents’ reconstructed
values, instead of the observed values, because the observed values
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Figure 3: Cascade Data Reconstruction Example.

contain unfair effect if the parent nodes locate in the unfair paths.
To satisfy this, the parent nodes should be reconstructed before
the child nodes, thereby the data reconstruction follows a cascade
reconstruction procedure with ascending order of depth.

We use a graph with five nodes (Figure 3), to illustrate the cascade
data reconstruction. In the figure, A is the sensitive attribute, X,
X3, Xy are regular features, and Y is the class label. The red arrows
denote the unfair edges. The reconstruction order decided by the
depth is: A & X4, X2, X3, Y and the reconstruction procedure is:

Root Nodes: A = A; )f4 = Xy;

Depth 1 node: ):(2 = W24+ wy2Xy + ba; R )
Depth 2node: X3 = wi3A+ws3Xy+wy3Xo+bs;
Depth 3 node: vy o= w154 +wes5X4 + W3,5)A(3 + by,

where w; ; is the element of the i-th row and the j-th column in adja-
cency matrix W, b; is the intercept term, and D= [A, Xy, X3, Xa, f/].
In this example, we adopt the linear function as the causal mecha-
nism, and it can generalize to the more complex functions, such as
neural network by changing f;(-) in Eqn. (4).

DAG Constraint. The second term in Eqn. (3) is the directed acyclic
graph (DAG) constraint, which ensures that there is no cycle in
the learned graph [46], as a node cannot affect itself. The trace of
adjacency matrix’s exponential is adopted in the second term to
measure the graph acyclic.

3.1.2  Fairness Regularization. The goal of fairness regularization
is to reduce the unfair edges, so that the sensitive attributes pass
less effect through the unfair path. As mentioned previously, the
element in the adjacency matrix not only represents the causal
direction, but also indicates the effect strength along this edge.
To reduce the unfair edges, the elements in the adjacency matrix
associate with unfair edges should be close to zero. Therefore, we
apply the following fairness regularization on the adjacency matrix:

Lp = a||W © Mg||1, (6)

where O is the element-wise matrix multiplication, W is the adja-
cency matrix, and M is the fairness mask with the same dimension
as W. The element of the j-th row, i-th column of Mg is set as 1 if
edge V; — Vj is unfair. More details related to the construction of
the fairness mask are in the appendix. || - ||1 is the #; norm. The fair-
ness regularization Ly minimizes the total strength of effect on the
unfair edges, which reduces the effect flow along the unfair paths.
By regularizing on the adjacency matrix, fairness regularization is
able to eliminate the unfair path A — Y and A — X3 in Figure 3.
Therefore, with the fairness regularization, the reconstructed data
D is a correction of the original data D with unfair effect reduced.
Fairness Mask Construction. Our proposed method only requires
prior knowledge of what attributes are allowed or not allowed to
construct the fairness mask Mp. For example, in online marketing
example, Figure 2, the prior knowledge is that Race/Gender R is
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only allowed to affect Y through Preference Q. Therefore, in the
fairness mask, in the i-th column, only the j-th row is set to be
0, and all others in the i-th column are set as 1, if Race/Gender is
the i-th variable, and Preference is the j-th variable. It means that
except Race/Gender R — Q Preference, all other paths including
Race/Gender R — Z or R — Y are all unfair paths.

3.1.3  Label Prediction. Since the unfair effect has been reduced
in the reconstruction data, the prediction based on the obtained
reconstruction is fair. The label Y is predicted as: ¥ = DWy, where
Wy is the last column of W, which indicates the existence of the
edges and their effect strength starting from other nodes to Y and
D is the reconstructed data. Accordingly, the prediction loss is:
Lp =Y - V12

3.1.4  Generalization to Nonlinear Causal Mechanism. In Eqn. (5)
and label prediction, the adopted linear causal mechanism can
generalize to more advanced functions by modifying the cascade
data reconstruction and the adjacency matrix. Assume we choose
neural network (NN) as the causal mechanism, the reconstruction
of node Vj is: V; = fiNN (DWL.NN), where fl.NN(~) represents the
neural network, WNN ¢ R(da+dx)XdNN s the parameter of the
first linear layer in fiN N (.), dxn is the dimension of the first hidden
layer. Namely, to use the NN mechanism, replace the linear model
in Eqn. (5) with the NN whose first layer is the linear layer and all
those NNs share the common hidden layers, as suggested in [22].
The adjacency matrix is constructed based on the parameter in the
first linear layer. Specifically, each element in the adjacency matrix
W is calculated as: w;j = ||Wl.NN [/, :1112, where WiNN [j,:] is the
Jj-th row in Wl.NN.

3.1.5  Initialization and Optimization. When the sensitive attributes
are root nodes, the overall loss function is:

N ~ 2
L=l = V1B +BID = DI+ 11 (r(e" W) = (da +dx + 1)

2l Wls + allW © Mglls,
A ~ )
where Y is defined in Eqn. (6), and D is the reconstruction of D via
the cascade data reconstruction presented in Section 4.1.1.
Initialization. As mentioned previously, the cascade data recon-
struction requires acyclic graph. To satisfies this, we can initialize
the adjacency matrix by the following two ways: (1) adopt the prior
knowledge about the basic acyclic graph; (2) pre-train the parameter
by the following objective function:
1Y =TI+ BID ~ I3 + 1 (1Y) — (da 4 +1)) . (9)

where D' is the data reconstructed by the observed data. Each node
Vi in D’ is calculated as: Vi/ = fi (IL(V;)W iz, i]), where II(V;) is
the node V;’s observed value, and W [i., i] is the same as the one
in Eqn. (4). Eqn. (8) replaces the cascade data reconstruction Din
Eqn. (7) with regular data reconstruction D', which not strictly
requires acyclic graph.

Optimization. We adopt the Adam [19] to optimize both Eqn. (8)
and Eqn. (7). Besides, at each iteration of optimizing Eqn. (7), the
adjacency matrix W is forced to be acyclic.
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Figure 4: Sensitive Attributes as Non-root Nodes.

3.2 Theoretical Analysis

Here we provide the theoretical analysis about the generalization
error. Following the results in [22, 24], we have:

THEOREM 3.1. Suppose the data D follow the Gaussian distribu-

tion, the generalization error of the proposed fair classifier hp on the
D()
hr
inequality with probability 1 — §,V§ > 0:

1
Dpob < A2 \/m o) G, 2
e S (”D Pllfro ¥ N = * 5 * s ) (9
~NF
+4E" + 7 [Raag + Ca(Ry, +Rp) +10g(3)] +Cs,

b
observed dataset, which is denoted as €;° , satisfies the following

where D°P is the distribution of the observed data and D is its observed
sample. D is the reconstructed data by cascade reconstruction, and
its distrubution is denoted as DF . e}? = fZ) t,(a, x)pD(a, x)dadx,
is the expected error on the underlying space D, and €,(a,x) =
fYL(Y, h(g, x))p(Y|a,x)dY is the expected error on a single point
(a,x). é;ﬁ is the empirical error of classifier hp on DF. Rdag and
R, are the value of DAG constrain, {1 regularization, which are the

last two terms in Eqn. (3). RF is the value of fairness regularization
defined in Eqn. (6). 7, C1 ~ Cs are constants.

Theorem 3.1 give an upper bound of the generalization error
of the fair classifier on the observed dataset. The upper bound
shows that the generalization error is related to the qualities of the
reconstruction and the classifier trained on the fair dataset, which is
exactly the two terms in our objective function. The reconstruction
part in Theorem 3.1 also represents the fairness level, since the fairer
the data is, the fairer the dataset is, the smaller the reconstruction
error. Detailed proof of Theorem 3.1 is in the Appendix.

3.3 Generalization to Non-Root Node Case

Most of the existing works consider sensitive attributes such as age,
gender, and race that can only be the root nodes in the causal graph.
However, in some real-world applications, sensitive attributes are
affected by other variables. For example, in the recommendation
system, the item popularity should not affect whether this item to be
recommended [10, 47], for the purpose of recommendation diversity.
Figure 4 shows causal graph of the recommendation example where
U and I represent user and item respectively, P denotes the item
popularity and Y denotes whether the user click the item. In this
example, the item popularity P is the sensitive attribute, and it is
the non-root node as it is affected by the item’s characteristics.
Challenge. When the sensitive attributes A are non-root nodes,
their parent nodes IT(A) also contain the information about those
sensitive nodes. If the parent nodes have other causal pathways
to the label node Y not passing the sensitive node, the informa-
tion related to the sensitive attributes can still reach the label node
through those paths. Therefore, the proposed framework in Sec-
tion 3.1 requires slight modification to handle this case.
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Effect Diversion. To address the challenge, two latent nodes, Z
and Z y» are added between the parent nodes and the sensitive nodes
to divert the effect flow. This allows the fairness regularization
proposed in the previous section to be applied to the unfair flow.
Zs controls the effect from the sensitive attributes’ parent nodes to
the label node passing through the sensitive attributes, while Z,
controls the effect from the parent node to the label node not passing
through the sensitive attributes. Thus, the paths from the parent
nodes IT(A) to the label node Y are divided into two categories, one
containing only Zy, and the other containing only Z. By separating
Zy and Zs, the fairness regularization can be directly applied to the
paths containing Zs, as no other paths are exposed to information
leakage risk. When there are multiple non-root sensitive attributes,
the same procedure is applied to each one of them.

Figure 5 shows the causal graph with effect diversion in the

recommendation example, where the latent node Z,, is user em-
bedding, Zs is the item popularity related embedding and Z is the
clicking variable Y related embedding. The parent node I affects
item popularity only through Zg, and other paths from I to Y all
pass through Z,,. The red arrows indicate the unfair paths where
the fairness regularization is applied on.
Objective Function. In Eqn. (3), the reconstruction part requires
the variables’ observed values, while in this case latent nodes lack
that. To address this issue, we notice that to fit the graph with effect
diversion, Zy and Z; should have less overlapped information. To
fulfill this, the orthogonal regularizations on Z; and Z are adopted
in the graph structure learning part to ensure the separation of the
effect flow. Overall, the objective function is:

N - I . .
L=l =TI+ pIID - DI + 5 % cos(z", )
i=

2
11 (er(OW) = (da+dx + D)+ 2l Wl +allW © Mell,
(10)
where 7 is the number of total items. cos(-, -) denotes cosine sim-
ilarity, which ensures the orthogonality between Zs(i) and Z!(/i),
and other types of correlation measure such as HSIC [12] can be
adopted. Compared with Eqn. (2), the graph structure learning part
is modified to satisfy the effect diversion design. In the recommen-
dation system example, ||Y — 4 |g is the clicking prediction error,
and ||D - D| |2 is the error of predicting the item popularity.

4 EXPERIMENT

We experiment on two real-world datasets, Adult Dataset (one of the
commonly adopted datasets when evaluating algorithm fairness)
and MovieLens Dataset (one of the popular datasets in recommen-
dation area) to confirm: (1) The proposed CGF framework works
on both cases where sensitive attributes are root or non-root nodes.
(2) Our proposed framework provides a better trade-off between



WWW 23, April 30-May 04, 2023, Austin, TX, USA

utility and fairness. More details regarding implementations are
listed in the Appendix.

4.1 Experiment on Adult Dataset

Dataset. Adult dataset!, is a commonly adopted dataset for fairness
evaluation. In this dataset, there are total 48842 individuals and each
has 14 attributes regarding their demographic information, jobs,
and level of education. The class label is binary indicating whether
an individual’s income is above or below 50k. The objective is to
predict the income class given an individual’s attributes.

Unfair Paths. As suggested in [26], the direct path “Gender” —
“Income”, and the paths containing edge “Gender” — “Married” are
all unfair. Namely, the gender should not direct affect the income
and meanwhile it is not allowed to affect income through marital
status.

Baselines. The logistic regression model (LR) and neural network
(NN) constructed from raw data is adopted as the baseline. We also
adopt the Fair Inference (FIO) [26] and PSE-DR [43] as the baselines.
FIO method directly minimizes the path-specific causal effect from
sensitive attributes to the label nodes through the unfair paths. The
causal graph used in FIO is the same as the one in the original
paper [26], and is shown in the appendix. PSE-DR is a two-step
method which first learns the causal graph and then trains the
classifier based on the corrected data generated from the learned
causal graph. Our proposed models are denoted as LR-CGF and
NN-CGF, which take the linear logistic regression model and neural
network as the causal mechanism function, respectively.

Data Pre-processing for Baseline PSE-DR. To run the code
of baseline PSE-DR? provided by the authors in [43], the Adult
datasets requires additional stratification step to reduce the num-
ber of categories of each variable. The procedure of each vari-
able is: higher_edu: higher_edu: |higher_edu/10]; high_hours:
Lhigh_hours/20]; managerial_occ: | managerial_occ/5]; gov_jobs:
Lgov_jobs/5]; age: | age/20]; native_country: | native_country/5],
married: | married/3], where | x| denotes the floor of the scalar x,
which is the largest integer i, such that i <= x.

Evaluation Metrics. Due to label imbalance, Area Under the ROC
Curve (AUC) is adopted as the utility metric. The higher the AUC
value, the better the utility. Following [26], we adopt the path-
specific causal effect (PSE) [27, 29] to measure the fairness. The PSE
value may have a negative value indicating the negative effect. The
closer the PSE value is to 0, the fairer the model is.

4.1.1 Result Analysis. Table 1 summarizes the results of different
methods on Adult dataset with 5-fold cross validation. It is observed
that compared with baseline methods, our proposed methods are
fairer and meanwhile have better utility. On this dataset, when
evaluated on the test set randomly split from the original dataset,
there is a trade-off between fairness and utility. The baseline LR
has the highest AUC but it is unfair with the highest PSE value
among all methods. Compared with LR, the methods with fairness
design sacrifice the utility for fairness. Among the methods with
fairness design, our proposed methods LR-CGF and NN-CGF have
a better trade-off between utility and fairness, which validates the
effect of regularizing the fairness at the graph level. We also notice
that the method with nonlinear causal mechanism performs best in

!https://archive.ics.uci.edu/ml/datasets/adult
Zhttps://www.yongkaiwu.com/publication/zhang-2017-causal/zhang-2017-causal.zip
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Method AUC () PSE (= 0)
LR 0.712 £ 0.005 3.508 + 0.005
NN 0.721 £ 0.012 2.068 + 0.223
FIO 0.505 + 0.007 1.048 + 0.003

PSE-DR  0.686 + 0.018 0.450 + 0.151

LR-CGF  0.507 £ 0.099 0.925 £ 0.073

NN-CGF 0.689 +£0.012 —0.198 +0.109

Table 1: Results on Adult Dataset. f: the higher the better,
and = 0: the closer to 0, the better.

terms of both utility and fairness. The reason is that compared with
linear causal mechanism, the neural network can reconstruct the
data better while ensuring fairness. This observation also confirms
Theorem 3.1 that the better the reconstruction is, the better the
performance is.

We further experimentally explore the relationship between the
reconstruction and fairness regularization. We fix one part’s hyper-
parameter and tune the other one. Figure 6 reports the results of
NN-CGF. From Figure 6a and 6b, it is observed that, with the in-
creasing strength of reconstruction, it improves the accuracy but
reduces the fairness. The fairness regularization has an opposite
effect with reconstruction part. As shown in Figure 6¢ and 6d, the
fairness regularization improves the model fairness but reduces util-
ity. Overall, the reconstruction part and the fairness regularization,
together, control the trade-off between model utility and fairness.

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
B

(a) AUC () v.s. B. (b) PSE (= 0) v.s. f5.

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
a a

(c) AUC () v.s. a. (d) PSE (= 0) v.s. a.

Figure 6: Effects of Reconstruction and Fairness Regulariza-
tion.

4.2 Experiment on Recommendation Dataset

In this section, we conduct the experiment on real-world recom-
mendation data to show that, in the case when sensitive attributes
are non-root nodes, our proposed framework is able to provide fair
predictions with high utility.

Dataset. The MovieLens dataset [13] is adopted to validate the
performance of CGF. Following the settings in [10], the sensitive
attribute item popularity is added to each item, and for each item,
the value of item popularity is 1 if its total exposure is top 20%, oth-
erwise 0. The item popularity is a non-root node since it is affected
by item characteristics. For each user, we sort their interactions
according to the timestamp, and the last interaction is put into the
test set, and others are in the training set. The validation set is the
last interaction of each user in the training set.
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Baselines. We adopt Matrix Factorization (MF) [20], General-
ized Matrix Factorization (GMF) and Multiple Layer Perceptron
(MLP) [14] as our baselines. GMF and MLP are also the base models
of our proposed framework, and we name our methods as GMF-CGF
and MLP-CGF accordingly.

Neural Network Structure of CGF. Figure 7 shows the neural
network structure of MLP-CGF, where Z is the concatenation of
user embedding Z,,, rating related item embedding Z;, popularity
related item embedding Zg and popularity P. The weight W; and
W in the first layer control the flow of information into rating
prediction and popularity prediction, separately. After the first
layer, the ratings and popularity tasks shared several common
layers, followed by their specific prediction layers.

The weighting matrices W; and W; control the information flow
from Z to rating and popularity prediction, respectively. The de-
tails of W; and W are shown in Figure 8. The dimension of W}
and W are both (3dg;pg + 1) X dspgres Where dgppg is the em-
bedding size, dgpgpe is the dimension of the first layer in shared
common layers. Each of the weights contains four parts that are Z;,
related weights, Z; related weights, Z; related weights and P related
weights. the P related weights Wsl in W; is zero matrix because in
popularity prediction, ground-truth popularity value should be the
input. Notice that Z; and Xj, should not affect item popularity, we
also minimize the norm of W and Wsl Since the paths Z; — Y and
P — Y are unfair as shown in Figure 5, the fairness regularization
iss L = o (W7 111 + W71,

Evaluation Metrics. In terms of utility/accuracy measure, Top-k
ranking metrics hit rate (HR) and normalized discounted cumu-
lative gain (NDCG) are adopted to measure the recommendation
performance. Following [10], the Gini Index and Popularity Rate
(PR) are also adopted to measure the fairness. Given the item im-
pression list K = [k, kg, - - , k7], where k; represents the num-
ber of exposures of the i-th item, the Gini Index is defined as:

I I
Gini Index(K) = ﬁ ‘21 ‘21 |ki — kj|, where I is the number
i=1j=
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Method HR () NDCG (1) GINI({}) PR ({})
MF 0.197 0.103 0.878 0.861
GMF 0.195 0.098 0.875 0.857
MLP 0.149 0.077 0.919 0.925
GMF-CGF (ours) 0.166 0.084 0.837 0.773
GMF-CGF w/o ord 0.174 0.089 0.853 0.820
GMF-CGF w/o fairness 0.166 0.089 0.857 0.808
GMF-CGF w/o ord & fairness 0.195 0.102 0.881 0.860
MLP-CGF (ours) 0.116 0.059 0.882 0.844
MLP-CGF w/o ord 0.112 0.054 0.902 0.891
MLP-CGF w/o fairness 0.141 0.066 0.923 0.932
MLP-CGF w/o ord & fairness 0.139 0.066 0.903 0.863

Table 2: Results on the Movielens Dataset. || indicates the
lower, the better.

of total items, k is the mean of item impression list K. Gini Index
measures the statistical dispersion of the item exposure. Popularity
rate is the ratio of popular items among the total items recom-

I I
mended to the users, and is defined as: PR(K) = > Pik;/ Y, ki,

i=1 i=1
where P; is binary denoting the i-th item’s value of item popularity.
For HR and NDCG, the higher the value is, the better the perfor-
mance is. For Gini Index and PR, the lower the value is, the fairer

the model is.

4.2.1 Results Analysis. Table 2 shows the results of baselines and
our proposed methods with Top 10 rankings metrics. We also list
the results of our methods’ variants. *-CGF w/o rec denotes the
CGF without the orthogonal regularization part, i.e., f; = 0 in
Eqn. (10). *-CGF w/o fairness and denotes CGF without the fairness
regularization part (& = 0). *-CGF w/o ord & fairness is CGF without
both of these two parts.

In terms of fairness, our proposed methods recommend more di-
verse items, and meanwhile, have the comparable recommendation
accuracy to the baselines. This observation verifies that our pro-
posed method makes the base model to be fair without scarifying
too much utility. It is worth to mention that the results measured
by GINI and PR are also the indirect indicator of how good the dis-
entanglement of the effect from sensitive attributes’ parent nodes
to label node. The better it disentangles, the fairer the model. Fur-
thermore, the ablation results shown in the Table 2 indicate that
the orthogonal regularization and the fairness regularization both
contribute to the model fairness.

To further analyze the effect of orthogonal regularization and
fairness regularization, in Figure 9, we plot the four metrics with
respect to different regularization strengths by tuning one hyper-
parameter and fixing the others. From this figure, we can observe
that the stronger the regularization strength is, the fairer the model
is, and the more utility is sacrificed. Furthermore, the utility and
fairness trade-off can be controlled by tuning the values of two reg-
ularizations” hyper-parameters. We also notice that MLP-CGF per-
forms slightly different in terms of HR and NDCG: The stronger the
orthogonal regularization and the fairness regularization, the bet-
ter the performance. The reason is that compared with GMF-CGF,
MLP-CGF has more learnable parameters in the neural network,
and adding those regularizations would prevent the over-fitting.
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Figure 9: Effects of the Orthogonal Regularization and Fairness Regularization.

5 RELATED WORK

Most of the existing path-specific causal fairness works restrict the
unfair pathways by reducing their path-specific effect. In [25, 26],
the prediction error and the path-specific effect along with unfair
causal pathways are jointly minimized. The work proposed in [43]
designs a two-step algorithm, by first learning the graph structure
and then minimizing the prediction error with PSE regularization.
In [33], the authors adopt the response-function variable to bound
the path-specific causal fairness. Instead of directly minimizing the
path-specific effect, a latent inference-projection based method is
proposed in [6] to correct the variables that are the descent nodes of
sensitive attributes. In [15], the CEVAE framework [23] is adopted
to infer the causal mechanism based on the pre-defined causal
graph, and then the auxiliary prediction model is constructed based
on the selected causal relation along with the fairness requirement.
Relation to Existing Works. Most of the above existing works
require the prior knowledge about causal graph to calculate the
PSE or to correct sensitive variables’ descent variables, which is
hard to be satisfied in real-world applications. Compared with the
work in [43] that has a separated time-consuming causal struc-
ture learning step, our work applies the fairness constraint on the
continuous-optimization based graph structure learning, which can
efficiently obtain the causal graph and simplify the PSE calculation.
Furthermore, it is worth mentioning that all the above existing
works assume that the sensitive attributes are root nodes. The pro-
posed framework is the first work that generalizes to the case when
sensitive attributes are non-root nodes under path-specific causal
fairness. Additionally, our proposed framework is motivated by
the work of utilizing the causal graph discovery to enhance the
machine learning generalization ability [22]. Compared with [22],
the proposed CGF framework contains the cascade reconstruction
step, which is the major difference. With the cascade reconstruction
step, the unfairness contained in the original data can be corrected.
Besides, CGF also has the fairness regularization in our proposed
method, which reduces the unfair paths in the causal graph and
meanwhile assures that the data correction follows the fair graph.
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We also notice that in the recommendation system domain, there
are some existing works that handle the popularity bias by examin-
ing the causal link between the popularity and the item [8, 9, 44].
Compared with works in this line, in our work, we adopt the struc-
tural causal model and estimate the variable’s generation function
by neural work, so that we can directly recover the data under the
fair graph (there is no path from popularity variable P to Y), and
use the corrected data to train the recommendation model. This is
the key difference between our work and other existing work.

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel causal graph based fair predic-
tion framework under path-specific causal fairness. The core of the
proposed framework is to ensure that the graph adopted by the
prediction model should be close to the fair graph. To fulfill this, we
integrate the graph structure learning and the fairness regulariza-
tion in an interactive way. The learned graph structure reveals the
causal graph of the original observations with unfair edges elimi-
nated, and the data reconstructed from the learned graph is close
to the original observations with unfair effect corrected. Based on
the corrected causal graph and its associated data, the prediction
model achieves the path-specific causal fairness. Experimental re-
sults confirm that the proposed framework ensures fair predictions
and meanwhile retains the comparable utility. We also generalize
the proposed framework to the case of sensitive attributes being
non-root nodes by effect redividing, which is further validated by
experiments on a real-world recommendation dataset.

In this paper, we assume that there are no latent confounders in
the dataset. When this assumption is not satisfied, the causal graph
may not be identified from the observation data. Recently, some
causal discovery works that target to recover the causal graph in
the presence of latent confounders [5, 34] have been developed. We
also have a strong assumption that the data follows the Gaussian
distribution in the theoretical analysis. Relaxing the above two
assumptions and generalizing our work to the latent confounders
case will be the future work.
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